1
|
Styszko J, Kostrzewa T, Gorska-Ponikowska M, Kuban-Jankowska A. Citric Acid Controls the Activity of YopH Bacterial Tyrosine Phosphatase. Drug Des Devel Ther 2024; 18:1165-1174. [PMID: 38623566 PMCID: PMC11018125 DOI: 10.2147/dddt.s444500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.
Collapse
Affiliation(s)
- Joanna Styszko
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
2
|
Jin J, Yuan Y, Xian W, Tang Z, Fu J, Liu X. The ever-increasing necessity of mass spectrometry in dissecting protein post-translational modifications catalyzed by bacterial effectors. Mol Microbiol 2023. [PMID: 37127430 DOI: 10.1111/mmi.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Protein post-translational modifications (PTMs), such as ADP-ribosylation and phosphorylation, regulate multiple fundamental biological processes in cells. During bacterial infection, effector proteins are delivered into host cells through dedicated bacterial secretion systems and can modulate important cellular pathways by covalently modifying their host targets. These strategies enable intruding bacteria to subvert various host processes, thereby promoting their own survival and proliferation. Despite rapid expansion of our understanding of effector-mediated PTMs in host cells, analytical measurements of these molecular events still pose significant challenges in the study of host-pathogen interactions. Nevertheless, with major technical breakthroughs in the last two decades, mass spectrometry (MS) has evolved to be a valuable tool for detecting protein PTMs and mapping modification sites. Additionally, large-scale PTM profiling, facilitated by different enrichment strategies prior to MS analysis, allows high-throughput screening of host enzymatic substrates of bacterial effectors. In this review, we summarize the advances in the studies of two representative PTMs (i.e., ADP-ribosylation and phosphorylation) catalyzed by bacterial effectors during infection. Importantly, we will discuss the ever-increasing role of MS in understanding these molecular events and how the latest MS-based tools can aid in future studies of this booming area of pathogenic bacteria-host interactions.
Collapse
Affiliation(s)
- Jie Jin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
3
|
Capitani N, Baldari CT. The Immunological Synapse: An Emerging Target for Immune Evasion by Bacterial Pathogens. Front Immunol 2022; 13:943344. [PMID: 35911720 PMCID: PMC9325968 DOI: 10.3389/fimmu.2022.943344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
4
|
Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. EcoSal Plus 2021; 9:eESP00142021. [PMID: 34910573 DOI: 10.1128/ecosalplus.esp-0014-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.
Collapse
|
5
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
7
|
Yersinia pseudotuberculosis YopH targets SKAP2-dependent and independent signaling pathways to block neutrophil antimicrobial mechanisms during infection. PLoS Pathog 2020; 16:e1008576. [PMID: 32392230 PMCID: PMC7241846 DOI: 10.1371/journal.ppat.1008576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6–7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation. Pathogenic Yersinia species carry a virulence plasmid encoding a type 3 secretion system that translocates 6–7 effector Yops into host cells. We demonstrate that YopH protects Yersinia pseudotuberculosis from neutrophil-produced reactive oxygen species (ROS) and degranulation by interfering with signaling pathways downstream of three major receptor classes in neutrophils. We show that a previously identified target of YopH, SKAP2, controls some of the pathways essential for YopH to inactivate during infection. SKAP2 is essential in mediating ROS production downstream of two major receptors; however, it is dispensable for degranulation from the three major receptors tested. Our study illustrates that YopH protects Y. pseudotuberculosis by blocking both SKAP2-dependent and independent signaling pathways that regulate several neutrophil functions.
Collapse
|
8
|
Samassa F, Ferrari ML, Husson J, Mikhailova A, Porat Z, Sidaner F, Brunner K, Teo TH, Frigimelica E, Tinevez JY, Sansonetti PJ, Thoulouze MI, Phalipon A. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell Microbiol 2020; 22:e13166. [PMID: 31957253 PMCID: PMC7187243 DOI: 10.1111/cmi.13166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Strategies employed by pathogenic enteric bacteria, such as Shigella, to subvert the host adaptive immunity are not well defined. Impairment of T lymphocyte chemotaxis by blockage of polarised edge formation has been reported upon Shigella infection. However, the functional impact of Shigella on T lymphocytes remains to be determined. Here, we show that Shigella modulates CD4+ T cell F‐actin dynamics and increases cell cortical stiffness. The scanning ability of T lymphocytes when encountering antigen‐presenting cells (APC) is subsequently impaired resulting in decreased cell–cell contacts (or conjugates) between the two cell types, as compared with non‐infected T cells. In addition, the few conjugates established between the invaded T cells and APCs display no polarised delivery and accumulation of the T cell receptor to the contact zone characterising canonical immunological synapses. This is most likely due to the targeting of intracellular vesicular trafficking by the bacterial type III secretion system (T3SS) effectors IpaJ and VirA. The collective impact of these cellular reshapings by Shigella eventually results in T cell activation dampening. Altogether, these results highlight the combined action of T3SS effectors leading to T cell defects upon Shigella infection.
Collapse
Affiliation(s)
- Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Mariana L Ferrari
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), Ecole polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | | | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | | | - Katja Brunner
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Teck-Hui Teo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | | | | | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | | | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| |
Collapse
|
9
|
Abstract
The human and animal pathogens Yersinia pestis, which causes bubonic and pneumonic plague, and Yersinia pseudotuberculosis and Yersinia enterocolitica, which cause gastroenteritis, share a type 3 secretion system which injects effector proteins, Yops, into host cells. This system is critical for virulence of all three pathogens in tissue infection. Neutrophils are rapidly recruited to infected sites and all three pathogens frequently interact with and inject Yops into these cells during tissue infection. Host receptors, serum factors, and bacterial adhesins appear to collaborate to promote neutrophil- Yersinia interactions in tissues. The ability of neutrophils to control infection is mixed depending on the stage of infection and points to the efficiency of Yops and other bacterial factors to mitigate bactericidal effects of neutrophils. Yersinia in close proximity to neutrophils has higher levels of expression from yop promoters, and neutrophils in close proximity to Yersinia express higher levels of pro-survival genes than migrating neutrophils. In infected tissues, YopM increases neutrophil survival and YopH targets a SKAP2/SLP-76 signal transduction pathway. Yet the full impact of these and other Yops and other Yersinia factors on neutrophils in infected tissues has yet to be understood.
Collapse
Affiliation(s)
- Joan Mecsas
- Department of Molecular Biology and Microbiology, 136 Harrison Ave, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
10
|
3,5-Diiodo-L-Thyronine Exerts Metabolically Favorable Effects on Visceral Adipose Tissue of Rats Receiving a High-Fat Diet. Nutrients 2019; 11:nu11020278. [PMID: 30691227 PMCID: PMC6412262 DOI: 10.3390/nu11020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
When administered to rats receiving a high-fat diet (HFD), 3,5-diiodo-L-thyronine (3,5-T2) [at a dose of 25 μg/100 g body weight (BW)] is known to increase energy expenditure and to prevent HFD-induced adiposity. Here, we investigated which cellular and molecular processes in visceral white adipose tissue (VAT) contributed to the beneficial effect of 3,5-T2 over time (between 1 day and 4 weeks following administration). 3,5-T2 programmed the adipocyte for lipolysis by rapidly inducing hormone sensitive lipase (HSL) phosphorylation at the protein kinase A-responsive site Ser563, accompanied with glycerol release at the 1-week time-point, contributing to the partial normalization of adipocyte volume with respect to control (N) animals. After two weeks, when the adipocyte volumes of HFD-3,5-T2 rats were completely normalized to those of the controls (N), 3,5-T2 consistently induced HSL phosphorylation at Ser563, indicative of a combined effect of 3,5-T2-induced adipose lipolysis and increasing non-adipose oxidative metabolism. VAT proteome analysis after 4 weeks of treatment revealed that 3,5-T2 significantly altered the proteomic profile of HFD rats and produced a marked pro-angiogenic action. This was associated with a reduced representation of proteins involved in lipid storage or related to response to oxidative stress, and a normalization of the levels of those involved in lipogenesis-associated mitochondrial function. In conclusion, the prevention of VAT mass-gain by 3,5-T2 occurred through different molecular pathways that, together with the previously reported stimulation of resting metabolism and liver fatty acid oxidation, are associated with an anti adipogenic/lipogenic potential and positively impact on tissue health.
Collapse
|
11
|
Elfiky A, Bonifacius A, Pezoldt J, Pasztoi M, Chaoprasid P, Sadana P, El-Sherbeeny N, Hagras M, Scrima A, Dersch P, Huehn J. Yersinia Pseudotuberculosis Modulates Regulatory T Cell Stability via Injection of Yersinia Outer Proteins in a Type III Secretion System-Dependent Manner. Eur J Microbiol Immunol (Bp) 2018; 8:101-106. [PMID: 30719325 PMCID: PMC6348704 DOI: 10.1556/1886.2018.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
Adaptive immunity is essentially required to control acute infection with enteropathogenic Yersinia pseudotuberculosis (Yptb). We have recently demonstrated that Yptb can directly modulate naïve CD4+ T cell differentiation. However, whether fully differentiated forkhead box protein P3 (Foxp3+) regulatory T cells (Tregs), fundamental key players to maintain immune homeostasis, are targeted by Yptb remains elusive. Here, we demonstrate that within the CD4+ T cell compartment Yptb preferentially targets Tregs and injects Yersinia outer proteins (Yops) in a process that depends on the type III secretion system and invasins. Remarkably, Yop-translocation into ex vivo isolated Foxp3+ Tregs resulted in a substantial downregulation of Foxp3 expression and a decreased capacity to express the immunosuppressive cytokine interleukin-10 (IL-10). Together, these findings highlight that invasins are critically required to mediate Yptb attachment to Foxp3+ Tregs, which allows efficient Yop-translocation and finally enables the modulation of the Foxp3+ Tregs' suppressive phenotype.
Collapse
Affiliation(s)
- Ahmed Elfiky
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Pasztoi
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Paweena Chaoprasid
- Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pooja Sadana
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nagla El-Sherbeeny
- Department of Clinical Pharmacology, College of Medicine, Suez Canal University, Ismailia, Egypt
| | - Magda Hagras
- Department of Clinical Pharmacology, College of Medicine, Suez Canal University, Ismailia, Egypt
| | - Andrea Scrima
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
12
|
Monnappa AK, Bari W, Seo JK, Mitchell RJ. The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFy) is Carried on Extracellular Membrane Vesicles to Host Cells. Sci Rep 2018; 8:14186. [PMID: 30242257 PMCID: PMC6155089 DOI: 10.1038/s41598-018-32530-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 µg/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 ~ 10 ng per µg of total MV protein, a concentration that accounts for the cellular responses seen.
Collapse
Affiliation(s)
- Ajay K Monnappa
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Wasimul Bari
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
13
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|
14
|
Blevins LK, Parsonage D, Oliver MB, Domzalski E, Swords WE, Alexander-Miller MA. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling. Front Immunol 2017; 8:1610. [PMID: 29230212 PMCID: PMC5711787 DOI: 10.3389/fimmu.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN) was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Melissa B Oliver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Elizabeth Domzalski
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A 2017; 114:9954-9959. [PMID: 28847968 DOI: 10.1073/pnas.1707098114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enteroinvasive bacterium Shigella is a facultative intracellular bacterium known, in vitro, to invade a large diversity of cells through the delivery of virulence effectors into the cell cytoplasm via a type III secretion system (T3SS). Here, we provide evidence that the injection of T3SS effectors does not necessarily result in cell invasion. Indeed, we demonstrate through optimization of a T3SS injection reporter that effector injection without subsequent cell invasion, termed the injection-only mechanism, is the main strategy used by Shigella to target human immune cells. We show that in vitro-activated human peripheral blood B, CD4+ T, and CD8+ T lymphocytes as well as switched memory B cells are mostly targeted by the injection-only mechanism. B and T lymphocytes residing in the human colonic lamina propria, encountered by Shigella upon its crossing of the mucosal barrier, are also mainly targeted by injection-only. These findings reveal that cells refractory to invasion can still be injected, thus extending the panel of host cells manipulated to the benefit of the pathogen. Future analysis of the functional consequences of the injection-only mechanism toward immune cells will contribute to the understanding of the priming of adaptive immunity, which is known to be altered during the course of natural Shigella infection.
Collapse
|
16
|
Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. Galectin-1–Driven Tolerogenic Programs AggravateYersinia enterocoliticaInfection by Repressing Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:1382-1392. [DOI: 10.4049/jimmunol.1700579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
17
|
Pasztoi M, Bonifacius A, Pezoldt J, Kulkarni D, Niemz J, Yang J, Teich R, Hajek J, Pisano F, Rohde M, Dersch P, Huehn J. Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling. Cell Mol Life Sci 2017; 74:2839-2850. [PMID: 28378044 PMCID: PMC5491567 DOI: 10.1007/s00018-017-2516-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022]
Abstract
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.
Collapse
Affiliation(s)
- Maria Pasztoi
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Agnes Bonifacius
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Joern Pezoldt
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Devesha Kulkarni
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Jana Niemz
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Juhao Yang
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - René Teich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Janina Hajek
- Department Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Fabio Pisano
- Department Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Petra Dersch
- Department Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124, Brunswick, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| |
Collapse
|
18
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
19
|
Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain. Infect Immun 2016; 84:3172-3181. [PMID: 27550935 DOI: 10.1128/iai.00568-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023] Open
Abstract
Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.
Collapse
|
20
|
|
21
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
22
|
Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu Rev Microbiol 2015; 69:527-47. [DOI: 10.1146/annurev-micro-020415-111342] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andaleeb Sajid
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Gunjan Arora
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Anshika Singhal
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Vipin C. Kalia
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Yogendra Singh
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| |
Collapse
|
23
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
24
|
Rolán HG, Durand EA, Mecsas J. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 2014; 14:306-17. [PMID: 24034616 DOI: 10.1016/j.chom.2013.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/10/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
Abstract
Identifying molecular targets of Yersinia virulence effectors, or Yops, during animal infection is challenging because few cells are targeted by Yops in an infected organ, and isolating these sparse effector-containing cells is difficult. YopH, a tyrosine phosphatase, is essential for full virulence of Yersinia. Investigating the YopH-targeted signal transduction pathway(s) in neutrophils during infection of a murine host, we find that several host proteins, including the essential signaling adaptor SLP-76, are dephosphorylated in the presence of YopH in neutrophils isolated from infected tissues. YopH inactivated PRAM-1/SKAP-HOM and the SLP-76/Vav/PLCγ2 signal transduction axes, leading to an inhibition of calcium response in isolated neutrophils. Consistent with a failure to mount a calcium response, IL-10 production was reduced in neutrophils containing YopH from infected tissues. Finally, a yopH mutant survived better in the absence of neutrophils, indicating that neutrophil inactivation by YopH by targeting PRAM-1/SKAP-HOM and SLP-76/Vav/PLCγ2 signaling hubs may be critical for Yersinia survival.
Collapse
Affiliation(s)
- Hortensia G Rolán
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| | | | | |
Collapse
|
25
|
New insights into the crosstalk between Shigella and T lymphocytes. Trends Microbiol 2014; 22:192-8. [PMID: 24613405 DOI: 10.1016/j.tim.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/22/2023]
Abstract
Subversion of host immune responses is the key infection strategy employed by most, if not all, human pathogens. Modulation of the host innate response by pathogens has been vastly documented. Yet, especially for bacterial infections, it was only recently that cells of the adaptive immune response were recognized as targets of bacterial weapons such as the type III secretion system (T3SS) and its effector proteins. In this review, we focus on the recent advances made in the understanding of how the enteroinvasive bacterium Shigella flexneri interferes with the host adaptive response by targeting T lymphocytes, especially their migration capacities.
Collapse
|
26
|
Rüter C, Hardwidge PR. ‘Drugs from Bugs’: bacterial effector proteins as promising biological (immune-) therapeutics. FEMS Microbiol Lett 2013; 351:126-32. [DOI: 10.1111/1574-6968.12333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023] Open
Affiliation(s)
- Christian Rüter
- Center for Molecular Biology of Inflammation (ZMBE); Institute of Infectiology; University of Münster; Münster Germany
| | | |
Collapse
|
27
|
Wolters M, Boyle EC, Lardong K, Trülzsch K, Steffen A, Rottner K, Ruckdeschel K, Aepfelbacher M. Cytotoxic necrotizing factor-Y boosts Yersinia effector translocation by activating Rac protein. J Biol Chem 2013; 288:23543-53. [PMID: 23803609 DOI: 10.1074/jbc.m112.448662] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogenic Yersinia spp. translocate the effectors YopT, YopE, and YopO/YpkA into target cells to inactivate Rho family GTP-binding proteins and block immune responses. Some Yersinia spp. also secrete the Rho protein activator cytotoxic necrotizing factor-Y (CNF-Y), but it has been unclear how the bacteria may benefit from Rho protein activation. We show here that CNF-Y increases Yop translocation in Yersinia enterocolitica-infected cells up to 5-fold. CNF-Y strongly activated RhoA and also delayed in time Rac1 and Cdc42, but when individually expressed, constitutively active mutants of Rac1, but not of RhoA, increased Yop translocation. Consistently, knock-out or knockdown of Rac1 but not of RhoA, -B, or -C inhibited Yersinia effector translocation in CNF-Y-treated and control cells. Activation or knockdown of Cdc42 also affected Yop translocation but much less efficiently than Rac. The increase in Yop translocation induced by CNF-Y was essentially independent of the presence of YopE, YopT, or YopO in the infecting Yersinia strain, indicating that none of the Yops reported to inhibit translocation could reverse the CNF-Y effect. In summary, the CNF-Y activity of Yersinia strongly enhances Yop translocation through activation of Rac.
Collapse
Affiliation(s)
- Manuel Wolters
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Koch I, Dach K, Heesemann J, Hoffmann R. Yersinia enterocolitica inactivates NK cells. Int J Med Microbiol 2013; 303:433-42. [PMID: 23810728 DOI: 10.1016/j.ijmm.2013.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/07/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells serve as an important source of proinflammatory cytokines early during infection. Hypothesizing that Yersinia enterocolitica might interact with and inactivate NK cells, we examined NK cell-Y. enterocolitica interactions in vitro and in vivo. Y. enterocolitica adheres to NK cells in an Invasin dependent manner and inhibits NK cell cytotoxicity and IFN-γ production induced by IL-12+IL-18 or IL-12 alone. YopP, an acetyltransferase known to inhibit MAPK and NFκB signaling, suppresses IL-12 and IL-12+IL-18 mediated IFN-γ production in NK cells by inhibiting phosphorylation of Tyk2 and STAT4 in addition to MAPK. YopP inhibits induction of all genes whose expression is induced by IL-12+IL-18 in NK cells. Y. enterocolitica-mediated adherence to and inactivation of NK cells also occurs after infection in vivo. Thus, we present the first report of a bacterial pathogen inactivating NK cells, and report interaction with Tyk2-STAT4 signaling as a novel function of YopP.
Collapse
Affiliation(s)
- Isabel Koch
- Ludwig Maximilians University, Max von Pettenkofer Institut, Department of Bacteriology, 80336 Munich, Germany
| | | | | | | |
Collapse
|
29
|
Sharma N, Akhade AS, Qadri A. Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells. J Leukoc Biol 2013; 93:521-8. [PMID: 23345392 DOI: 10.1189/jlb.0712328] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T cells produce a number of cytokines and chemokines upon stimulation with TLR agonists in the presence or absence of TCR signals. Here, we show that secretion of neutrophil chemoattractant CXCL8 from human T cell line Jurkat in response to stimulation with TLR agonists is reduced when cell stimulation is carried out in presence of serum. Serum does not, however, inhibit TCR-activated secretion of CXCL8 nor does it down-regulate TLR-costimulated IL-2 secretion from activated T cells. The molecule that can mimic the ability to bring about suppression in CXCL8 from TLR-activated T cells is serum-borne bioactive lipid, S1P. Serum and S1P-mediated inhibition require intracellular calcium. S1P also suppresses CXCL8 secretion from peripheral blood-derived human T cells activated ex vivo with various TLR ligands. Our findings reveal a previously unrecognized role for S1P in regulating TLR-induced CXCL8 secretion from human T cells.
Collapse
|
30
|
Abraham L, Fackler OT. HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Commun Signal 2012; 10:39. [PMID: 23227982 PMCID: PMC3534016 DOI: 10.1186/1478-811x-10-39] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022] Open
Abstract
Nef, an accessory protein of the Human Immunodeficiency Virus type 1 (HIV-1), is dispensable for viral replication in cell culture, but promotes virus replication and pathogenesis in the infected host. Acting as protein-interaction adaptor, HIV-1 Nef modulates numerous target cell activities including cell surface receptor expression, cytoskeletal remodeling, vesicular transport, and signal transduction. In infected T-lymphocytes, altering T-cell antigen receptor (TCR) signaling has long been recognized as one key function of the viral protein. However, reported effects of Nef range from inhibition to activation of this cascade. Recent advances in the field begin to explain these seemingly contradictory observations and suggest that Nef alters intracellular trafficking of TCR proximal machinery to disrupt plasma membrane bound TCR signaling while at the same time, the viral protein induces localized signal transduction at the trans-Golgi network. This review summarizes these new findings on how HIV-1 Nef reprograms TCR signalling output from a broad response to selective activation of the RAS-Erk pathway. We also discuss the implications of these alterations in the context of HIV-1 infection and in light of current concepts of TCR signal transduction.
Collapse
Affiliation(s)
- Libin Abraham
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, INF 324, Heidelberg, 69120, Germany.
| | | |
Collapse
|
31
|
Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 2012; 488:384-8. [PMID: 22820255 PMCID: PMC3422413 DOI: 10.1038/nature11259] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signaling pathways, provide a mechanism to evade immune responses during infection1,2. Although these effectors are responsible for pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behavior. Here, we have exploited two effector proteins, the Shigella flexneri OspF protein3 and Yersinia pestis YopH protein4, to systematically rewire kinase-mediated responses in both yeast and mammalian immune cells. Bacterial effector proteins can be directed to selectively inhibit specific mitogen activated protein kinase (MAPK) pathways in yeast by artificially targeting them to pathway specific complexes. Moreover, we show that unique properties of the effectors generate novel pathway behaviors: OspF, which irreversibly inactivates MAPKs4, was used to construct a synthetic feedback circuit that displays novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to precisely tune the T cell response amplitude, or as an inducible pause switch that can temporarily disable T cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.
Collapse
|
32
|
Autenrieth SE, Linzer TR, Hiller C, Keller B, Warnke P, Köberle M, Bohn E, Biedermann T, Bühring HJ, Hämmerling GJ, Rammensee HG, Autenrieth IB. Immune evasion by Yersinia enterocolitica: differential targeting of dendritic cell subpopulations in vivo. PLoS Pathog 2010; 6:e1001212. [PMID: 21124820 PMCID: PMC2991265 DOI: 10.1371/journal.ppat.1001212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
CD4(+) T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4(+) T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4(+) T cells was markedly reduced when cultured with splenic CD8α(+) DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4(+) or CD4(-)CD8α(-) DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α(+) DCs, but not in CD4(+) and CD4(-)CD8α(-) DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α(+) DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α(+) DCs. Three days post infection with Ye the number of splenic CD8α(+) and CD4(+) DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4(+) and CD8α(+) DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye.
Collapse
Affiliation(s)
- Stella E Autenrieth
- Interfakultäres Institut für Zellbiologie, Universität Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hořejší V, Otáhal P, Brdička T. LAT - an important raft-associated transmembrane adaptor protein. Delivered on 6 July 2009 at the 34th FEBS Congress in Prague, Czech Republic. FEBS J 2010; 277:4383-97. [DOI: 10.1111/j.1742-4658.2010.07831.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun 2010; 78:5086-98. [PMID: 20876291 DOI: 10.1128/iai.00256-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.
Collapse
|
35
|
Repertoire of HLA-DR1-restricted CD4 T-cell responses to capsular Caf1 antigen of Yersinia pestis in human leukocyte antigen transgenic mice. Infect Immun 2010; 78:4356-62. [PMID: 20660611 DOI: 10.1128/iai.00195-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in "humanized" HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Collapse
|
36
|
Kundu S, Fan K, Cao M, Lindner DJ, Zhao ZJ, Borden E, Yi T. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6529-36. [PMID: 20421638 PMCID: PMC3049920 DOI: 10.4049/jimmunol.0903562] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP-1) has been implicated as a potential cancer therapeutic target by its negative regulation of immune cell activation and the activity of the SHP-1 inhibitor sodium stibogluconate that induced IFN-gamma(+) cells for anti-tumor action. To develop more potent SHP-1-targeted anti-cancer agents, inhibitory leads were identified from a library of 34,000 drug-like compounds. Among the leads and active at low nM for recombinant SHP-1, tyrosine phosphatase inhibitor-1 (TPI-1) selectively increased SHP-1 phospho-substrates (pLck-pY394, pZap70, and pSlp76) in Jurkat T cells but had little effects on pERK1/2 or pLck-pY505 regulated by phosphatases SHP-2 or CD45, respectively. TPI-1 induced mouse splenic-IFN-gamma(+) cells in vitro, approximately 58-fold more effective than sodium stibogluconate, and increased mouse splenic-pLck-pY394 and -IFN-gamma(+) cells in vivo. TPI-1 also induced IFN-gamma(+) cells in human peripheral blood in vitro. Significantly, TPI-1 inhibited ( approximately 83%, p < 0.002) the growth of B16 melanoma tumors in mice at a tolerated oral dose in a T cell-dependent manner but had little effects on B16 cell growth in culture. TPI-1 also inhibited B16 tumor growth and prolonged tumor mice survival as a tolerated s.c. agent. TPI-1 analogs were identified with improved activities in IFN-gamma(+) cell induction and in anti-tumor actions. In particular, analog TPI-1a4 as a tolerated oral agent completely inhibited the growth of K1735 melanoma tumors and was more effective than the parental lead against MC-26 colon cancer tumors in mice. These results designate TPI-1 and the analogs as novel SHP-1 inhibitors with anti-tumor activity likely via an immune mechanism, supporting SHP-1 as a novel target for cancer treatment.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Cancer Biology of Lerner Research Institute
| | - Keke Fan
- Department of Cancer Biology of Lerner Research Institute
| | - Mingli Cao
- Department of Cancer Biology of Lerner Research Institute
| | - Daniel J. Lindner
- Taussig Cancer Center
- Center for Hematology and Oncology Molecular Therapeutics, The Cleveland Clinic
| | | | - Ernest Borden
- Department of Cancer Biology of Lerner Research Institute
- Taussig Cancer Center
- Center for Hematology and Oncology Molecular Therapeutics, The Cleveland Clinic
| | - Taolin Yi
- Department of Cancer Biology of Lerner Research Institute
- Taussig Cancer Center
| |
Collapse
|
37
|
Mahon RN, Rojas RE, Fulton SA, Franko JL, Harding CV, Boom WH. Mycobacterium tuberculosis cell wall glycolipids directly inhibit CD4+ T-cell activation by interfering with proximal T-cell-receptor signaling. Infect Immun 2009; 77:4574-83. [PMID: 19651854 PMCID: PMC2747961 DOI: 10.1128/iai.00222-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/14/2009] [Accepted: 07/29/2009] [Indexed: 01/22/2023] Open
Abstract
Immune evasion is required for Mycobacterium tuberculosis to survive in the face of robust adaptive CD4(+) T-cell responses. We have previously shown that M. tuberculosis can indirectly inhibit CD4(+) T cells by suppressing the major histocompatibility complex class II antigen-presenting cell function of macrophages. This study was undertaken to determine if M. tuberculosis could directly inhibit CD4(+) T-cell activation. Murine CD4(+) T cells were purified from spleens by negative immunoaffinity selection followed by flow sorting. Purified CD4(+) T cells were activated for 16 to 48 h with CD3 and CD28 monoclonal antibodies in the presence or absence of M. tuberculosis and its subcellular fractions. CD4(+) T-cell activation was measured by interleukin 2 production, proliferation, and expression of activation markers, all of which were decreased in the presence of M. tuberculosis. Fractionation identified that M. tuberculosis cell wall glycolipids, specifically, phosphatidylinositol mannoside and mannose-capped lipoarabinomannan, were potent inhibitors. Glycolipid-mediated inhibition was not dependent on Toll-like receptor signaling and could be bypassed through stimulation with phorbol 12-myristate 13-acetate and ionomycin. ZAP-70 phosphorylation was decreased in the presence of M. tuberculosis glycolipids, indicating that M. tuberculosis glycolipids directly inhibited CD4(+) T-cell activation by interfering with proximal T-cell-receptor signaling.
Collapse
Affiliation(s)
- Robert N Mahon
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, 10900 Euclid Avenue, BRB 1010B, Cleveland, OH 44106-4984, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Sun J. Pathogenic Bacterial Proteins and their Anti-Inflammatory Effects in the Eukaryotic Host. Antiinflamm Antiallergy Agents Med Chem 2009; 8:214-227. [PMID: 20090866 DOI: 10.2174/187152309789151986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria use multiple strategies to bypass the inflammatory responses in order to survive in the host cells. In this review, we discuss the mechanism of the bacerial proteins in inhibiting inflammation. We highlight the anti-inflammatory roles of the type three secretion proteins including Salmonella AvrA, Enteropathogenic Escherichia coli Cif, and Yersinia YopJ, Staphylococcus aureus extracellular adherence protein, and Chlamydia proteins. We also discuss the research progress on the structures of these anti-inflammatory bacterial proteins. The current therapeutic methods for diseases, such as inflammatory bowel diseases, sclerosis, lack influence on the course of chronic inflammation and infection. Therefore, based on the molecular mechanism of the anti-inflammatory bacterial proteins and their 3-Dimension structure, we can design new peptides or non-peptidic molecules that serve as anti-inflammatory drugs without the possible side effect of promoting bacterial infection.
Collapse
Affiliation(s)
- Jun Sun
- Department of Medicine, Gastroenterology & Hepatology Division and Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave., Rochester, New York 14642, USA
| |
Collapse
|
39
|
Köberle M, Klein-Günther A, Schütz M, Fritz M, Berchtold S, Tolosa E, Autenrieth IB, Bohn E. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog 2009; 5:e1000551. [PMID: 19680448 PMCID: PMC2718809 DOI: 10.1371/journal.ppat.1000551] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 07/22/2009] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops. An important strategy of Yersinia enterocolitica (Ye) to suppress the immune defense is to inject bacterial proteins (Yersinia outer proteins, Yops) after cell contact directly into host cells, which affects their functions. However, tracking of cells in which Yop injection occurred has only been described for Yersinia pestis thus far. We adapted the described reporter system specifically for the use of infections with Ye and report the usefulness and limitations of this system. Using cell culture experiments, we demonstrated that β1-integrins and the RhoGTPases RhoA and Rac1 are involved in Yop injection. Since cell culture experiments also revealed that Yop injection is detectable in a similar manner into all subpopulations of the spleen, the system can be used to detect interaction of bacteria with host cells in vivo. In a mouse infection model we found that follicular B cells, granulocytes, macrophages, and dendritic cells are the main targets of Yop injection. Interestingly, Yop-injected B cells displayed an increased activation as indicated by increased CD69 expression. In contrast, interaction of bacteria with T cells seems to be rather a rare event. In immunocompromised gene-targeted mice we found increased frequencies of Yop-injected host cells for yet unknown reasons. Taken together, this novel reporter system represents a powerful tool to further study interaction of host cells with Ye.
Collapse
Affiliation(s)
- Martin Köberle
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annegret Klein-Günther
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michaela Fritz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Eva Tolosa
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen, Germany
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Ingo B. Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
40
|
Maia JML, Monnazzi LGS, Medeiros BMM. Role of Yersinia pseudotuberculosis outer proteins (Yops) in murine humoral immune response. Folia Microbiol (Praha) 2009; 54:239-45. [PMID: 19649742 DOI: 10.1007/s12223-009-0038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 02/12/2009] [Indexed: 11/28/2022]
Abstract
The infection of mice with the wild-type (WT) strain of Y. pseudotuberculosis did not induce polyclonal activation of B lymphocytes. Suppression in the production of certain isotypes of Ig was observed, provoked mainly by YopH, YopJ and YpkA. The WT strain induced a progressive increase in the serum-specific IgG, which peaked after 4 weeks after infection, IgM being produced only after 1 week. Autoantibodies against phosphorylcholine, myelin, thyroglobulin and cardiolipin could be detected in the serum of mice infected with the WT strain. The infection of mice provoked suppression in the production of immunoglobulins by splenic B cells and that YopH, YopJ and YpkA must be involved here.
Collapse
Affiliation(s)
- J M L Maia
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, SP, Brazil
| | | | | |
Collapse
|
41
|
Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 2009; 11:521-6. [PMID: 19404331 DOI: 10.1038/ncb0509-521] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Host defence against microbial pathogens requires appropriate coordination of multiple signalling pathways. These pathways are triggered by innate immune recognition of conserved microbial molecules, and initiate an inflammatory cascade that involves recruitment of leukocytes to the site of infection, activation of antimicrobial effector mechanisms and induction of an adaptive immune response that promotes clearance of infection and long-term immune memory. Microbial pathogens possess specialized proteins termed virulence factors, which interfere with host defence at several levels. Many virulence factors from diverse pathogens have been identified in recent years and their functions linked to disruption of essential processes of immune defence, from signalling to phagocytosis. Although the diversity of pathogens and virulence factors is immense, common themes have emerged with regard to how microbial pathogens interfere with immune responses. Here we discuss recent advances in our understanding of how virulence factors target innate and adaptive immune responses, focusing on bacterial pathogens. We also propose that pathogens responsible for causing acute infection tend to target central components (hubs) of cellular signalling pathways, causing global disruption of the host response. By contrast, pathogens that cause chronic or persistent infections tend to target more peripheral signalling network components (nodes) to promote pathogen persistence.
Collapse
Affiliation(s)
- Igor E Brodsky
- Section of Immunobiology, Yale University School of Medicine New Haven, CT 06520, USA
| | | |
Collapse
|
42
|
Lancioni CL, Thomas JJ, Rojas RE. Activation requirements and responses to TLR ligands in human CD4+ T cells: comparison of two T cell isolation techniques. J Immunol Methods 2009; 344:15-25. [PMID: 19272393 PMCID: PMC2674982 DOI: 10.1016/j.jim.2009.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/21/2009] [Accepted: 02/24/2009] [Indexed: 12/31/2022]
Abstract
Direct regulation of T cell function by microbial ligands through Toll-like receptors (TLR) is an emerging area of T cell biology. Currently either immunomagnetic cell sorting (IMACS) or fluorescence-activated cell sorting (FACS), are utilized to isolate T-cell subsets for such studies. However, it is unknown to what extent differences in T cell purity between these isolation techniques influence T cell functional assays. We compared the purity, response to mitogen, activation requirements, and response to TLR ligands between human CD4(+) T cells isolated either by IMACS (IMACS-CD4(+)) or by IMACS followed by FACS (IMACS/FACS-CD4(+)). As expected, IMACS-CD4(+) were less pure than IMACS/FACS-CD4(+) (92.5%+/-1.4% versus 99.7%+/-0.2%, respectively). Consequently, IMACS-CD4(+) proliferated and produced cytokines in response to mitogen alone and had lower activation requirements compared to IMACS/FACS-CD4(+). In addition IMACS-CD4(+) but not IMACS/FACS-CD4(+) responses were upregulated by the TLR-4 ligand lipopolysaccharide (LPS). On the other hand, TLR-2 and TLR-5 engagement induced costimulation in both IMACS-CD4(+) and highly purified IMACS-/FACS-CD4(+). Altogether these results indicate that small differences in cell purity can significantly alter T cell responses to TLR ligands. This study stresses the importance of a stringent purification method when investigating the role of microbial ligands in T cell function.
Collapse
Affiliation(s)
- Christina L Lancioni
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Case Western Reserve University & University Hospitals, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
43
|
Woolard MD, Frelinger JA. Outsmarting the host: bacteria modulating the immune response. Immunol Res 2009; 41:188-202. [PMID: 18592144 DOI: 10.1007/s12026-008-8021-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pathogenic bacteria and their hosts have had a two-way conversation for millions of years. This interaction has led to many measure/counter-measure responses by the host and bacteria. The host immune response has developed many mechanisms to neutralize and remove pathogen bacteria. In turn pathogenic bacteria have developed mechanisms to alter and evade the host immune response. We will review some of the mechanisms utilized by bacteria to accomplish this goal. We will also examine the current state of understanding of Francisella tularensis mediated immune evasion.
Collapse
Affiliation(s)
- Matthew D Woolard
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290, USA
| | | |
Collapse
|
44
|
de la Puerta ML, Trinidad AG, Rodríguez MDC, Bogetz J, Sánchez Crespo M, Mustelin T, Alonso A, Bayón Y. Characterization of new substrates targeted by Yersinia tyrosine phosphatase YopH. PLoS One 2009; 4:e4431. [PMID: 19221593 PMCID: PMC2637541 DOI: 10.1371/journal.pone.0004431] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/17/2008] [Indexed: 12/24/2022] Open
Abstract
YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2, p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates.
Collapse
Affiliation(s)
| | - Antonio G. Trinidad
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | | | - Jori Bogetz
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Tomas Mustelin
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Andrés Alonso
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Bayón
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
- * E-mail:
| |
Collapse
|
45
|
Matteoli G, Fahl E, Warnke P, Müller S, Bonin M, Autenrieth IB, Bohn E. Role of IFN-gamma and IL-6 in a protective immune response to Yersinia enterocolitica in mice. BMC Microbiol 2008; 8:153. [PMID: 18803824 PMCID: PMC2556677 DOI: 10.1186/1471-2180-8-153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/19/2008] [Indexed: 12/20/2022] Open
Abstract
Background Yersinia outer protein (Yop) H is a secreted virulence factor of Yersinia enterocolitica (Ye), which inhibits phagocytosis of Ye and contributes to the virulence of Ye in mice. The aim of this study was to address whether and how YopH affects the innate immune response to Ye in mice. Results For this purpose, mice were infected with wild type Ye (pYV+) or a YopH-deficient Ye mutant strain (ΔyopH). CD11b+ cells were isolated from the infected spleen and subjected to gene expression analysis using microarrays. Despite the attenuation of ΔyopH in vivo, by variation of infection doses we were able to achieve conditions that allow comparison of gene expression in pYV+ and ΔyopH infection, using either comparable infection courses or splenic bacterial burden. Gene expression analysis provided evidence that expression levels of several immune response genes, including IFN-γ and IL-6, are high after pYV+ infection but low after sublethal ΔyopH infection. In line with these findings, infection of IFN-γR-/- and IL-6-/- mice with pYV+ or ΔyopH revealed that these cytokines are not necessarily required for control of ΔyopH, but are essential for defense against infection with the more virulent pYV+. Consistently, IFN-γ pretreatment of bone marrow derived macrophages (BMDM) strongly enhanced their ability in killing intracellular Ye bacteria. Conclusion In conclusion, this data suggests that IFN-γ-mediated effector mechanisms can partially compensate virulence exerted by YopH. These results shed new light on the protective role of IFN-γ in Ye wild type infections.
Collapse
Affiliation(s)
- Gianluca Matteoli
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Burkholderia pseudomallei infection of T cells leads to T-cell costimulation partially provided by flagellin. Infect Immun 2008; 76:2541-50. [PMID: 18347031 DOI: 10.1128/iai.01310-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. While adaptive immunity has been shown to be important for host resistance to B. pseudomallei, the direct interaction of the bacteria with adaptive immune cells such as T and B cells is not well known. To address this question, we infected Jurkat T cells, as well as human primary CD4(+) and CD8(+) T cells, with live B. pseudomallei. We found that live bacterial infection could costimulate T cells to produce interleukin-2 (IL-2) and gamma interferon (IFN-gamma) in the presence of anti-CD3 cross-linking antibodies. Bacterial supernatant could also costimulate T cells, and this was due to the presence of flagellin in the supernatant. However, T cells infected with bacterial mutants lacking flagellin showed strong impairment in IL-2 but only a slight impairment in IFN-gamma production. When cross-linking of CD3 is replaced by IL-2, live bacterial infection was still able to costimulate human primary T cells to produce IFN-gamma and flagellin is only a minor ligand contributing to this costimulation. Thus, live B. pseudomallei could potentially costimulate T cells not only in an antigen-specific manner but also in a nonspecific manner through bystander activation via IL-2.
Collapse
|
47
|
Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 2008; 11:21-9. [PMID: 18299249 DOI: 10.1016/j.mib.2008.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/11/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
Abstract
Yersinia uses a type III secretion system (TTSS) to deliver six effector proteins into host cells. These six proteins harbor distinct activities that are mimicries of host functions but often have acquired unique biochemical features. The host targets for these effectors appear to be limited to a few key signaling components such as G proteins and kinases, whereas their models of action are diverse and sophisticated. The functions of these effectors are to subvert the host immune defense response, including alterations of the cytoskeleton structure, inhibition of phagocytic clearance, blockage of cytokine production, and induction of apoptosis. These effectors also interfere with communications between the innate and the adaptive immune response, thus aiding the establishment of a systemic infection.
Collapse
Affiliation(s)
- Feng Shao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China.
| |
Collapse
|
48
|
Rogers JV, Choi YW, Giannunzio LF, Sabourin PJ, Bornman DM, Blosser EG, Sabourin CLK. Transcriptional responses in spleens from mice exposed to Yersinia pestis CO92. Microb Pathog 2007; 43:67-77. [PMID: 17531433 DOI: 10.1016/j.micpath.2007.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2007] [Indexed: 12/11/2022]
Abstract
Yersinia pestis is one of the most threatening biological agents due to the associated high mortality and history of plague pandemics. Identifying molecular players in the host response to infection may enable the development of medical countermeasures against Y. pestis. In this study, microarrays were used to identify the host splenic response mechanisms to Y. pestis infection. Groups of Balb/c mice were injected intraperitoneally with 2-257CFU of Y. pestis strain CO92 or vehicle. One group was assessed for mortality rates and another group for transcriptional analysis. The time to death at the 8 and 257CFU challenge doses were 5.0+/-2.3 and 3.8+/-0.4 days, respectively. Gene profiling using Affymetrix Mouse Genome 430 2.0 Arrays revealed no probe sets were significantly altered for all five mice in the low-dose group when compared to the vehicle controls. However, 534 probe sets were significantly altered in the high dose versus vehicle controls; 384 probe sets were down-regulated and 150 probe sets were up-regulated. The predominant biological processes identified were immune function, cytoskeletal, apoptosis, cell cycle, and protein degradation. This study provides new information on the underlying transcriptional mechanisms in mice to Y. pestis infection.
Collapse
Affiliation(s)
- James V Rogers
- Battelle Memorial Institute, 505 King Avenue, JM-7, Columbus, OH 43201, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Philipovskiy AV, Smiley ST. Vaccination with live Yersinia pestis primes CD4 and CD8 T cells that synergistically protect against lethal pulmonary Y. pestis infection. Infect Immun 2007; 75:878-85. [PMID: 17118978 PMCID: PMC1828512 DOI: 10.1128/iai.01529-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/01/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022] Open
Abstract
Vaccination with live attenuated Yersinia pestis confers protection against pneumonic plague but is not considered safe for general use. Subunit plague vaccines containing the Y. pestis F1 and LcrV proteins prime robust antibody responses but may not provide sufficient protection. To aid the development of a safe and effective plague vaccine, we are investigating roles for T cells during defense against Y. pestis infection. Here we demonstrate that vaccination of mice with live Y. pestis primes specific CD4 and CD8 T cells that, upon purification and direct transfer to naïve mice, synergistically protect against lethal intranasal Y. pestis challenge. While not preventing extrapulmonary dissemination, the coadministered T cells promote bacterial clearance and reduce bacteremia. These observations strongly suggest that development of pneumonic plague vaccines should strive to prime both CD4 and CD8 T cells. Finally, we demonstrate that vaccination with live Y. pestis primes CD4 and CD8 T cells that respond to Y. pestis strains lacking the capacity to express F1, LcrV, and all pCD1/pPCP-encoded proteins, suggesting that protective T cells likely recognize antigens distinct from those previously defined as targets for humoral immunity.
Collapse
|
50
|
Scorpio DG, von Loewenich FD, Göbel H, Bogdan C, Dumler JS. Innate immune response to Anaplasma phagocytophilum contributes to hepatic injury. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:806-9. [PMID: 16829620 PMCID: PMC1489578 DOI: 10.1128/cvi.00092-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mice, Anaplasma phagocytophilum control is independent of phagocyte oxidase (phox), inducible NO synthase (NOS2), tumor necrosis factor (TNF), and MyD88 Toll-like receptor signaling. We show that despite evasion of these host responses, phox, NOS2, TNF, and MyD88 are activated and contribute to inflammation and hepatic injury more than A. phagocytophilum itself.
Collapse
Affiliation(s)
- Diana G Scorpio
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, 720 Rutland Avenue, Ross 459, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|