1
|
Li HL, Go S, Chang JC, Verhoeven A, Elferink RO. Soluble adenylyl cyclase, the cell-autonomous member of the family. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166936. [PMID: 37951509 DOI: 10.1016/j.bbadis.2023.166936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Soluble adenylyl cyclase (sAC) is the evolutionarily most ancient of a set of 10 adenylyl cyclases (Adcys). While Adcy1 to Adcy9 are cAMP-producing enzymes that are activated by G-protein coupled receptors (GPCRs), Adcy10 (sAC) is an intracellular adenylyl cyclase. sAC plays a pivotal role in numerous cellular processes, ranging from basic physiological functions to complex signaling cascades. As a distinct member of the adenylyl cyclase family, sAC is not activated by GPCRs and stands apart due to its unique characteristics, regulation, and localization within cells. This minireview aims to honour Ulli Brandt, the outgoing Executive Editor of our journal, Biochimica Biophysica Acta (BBA), and longstanding Executive Editor of the BBA section Bioenergetics. We will therefore focus this review on bioenergetic aspects of sAC and, in addition, review some important recent general developments in the field of research on sAC.
Collapse
Affiliation(s)
- Hang Lam Li
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Arthur Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Ronald Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands.
| |
Collapse
|
2
|
Lai TH, Chen HT, Wu WB. Trophoblast Coculture Induces Intercellular Adhesion Molecule-1 Expression in Uterine Endometrial Epithelial Cells Through TNF-α Production: Implication of Role of FSH and ICAM-1 during Embryo Implantation. J Reprod Immunol 2022; 152:103650. [DOI: 10.1016/j.jri.2022.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022]
|
3
|
Bachmaier K, Stuart A, Singh A, Mukhopadhyay A, Chakraborty S, Hong Z, Wang L, Tsukasaki Y, Maienschein-Cline M, Ganesh BB, Kanteti P, Rehman J, Malik AB. Albumin Nanoparticle Endocytosing Subset of Neutrophils for Precision Therapeutic Targeting of Inflammatory Tissue Injury. ACS NANO 2022; 16:4084-4101. [PMID: 35230826 PMCID: PMC8945372 DOI: 10.1021/acsnano.1c09762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 05/30/2023]
Abstract
The complex involvement of neutrophils in inflammatory diseases makes them intriguing but challenging targets for therapeutic intervention. Here, we tested the hypothesis that varying endocytosis capacities would delineate functionally distinct neutrophil subpopulations that could be specifically targeted for therapeutic purposes. By using uniformly sized (∼120 nm in diameter) albumin nanoparticles (ANP) to characterize mouse neutrophils in vivo, we found two subsets of neutrophils, one that readily endocytosed ANP (ANPhigh neutrophils) and another that failed to endocytose ANP (ANPlow population). These ANPhigh and ANPlow subsets existed side by side simultaneously in bone marrow, peripheral blood, spleen, and lungs, both under basal conditions and after inflammatory challenge. Human peripheral blood neutrophils showed a similar duality. ANPhigh and ANPlow neutrophils had distinct cell surface marker expression and transcriptomic profiles, both in naive mice and in mice after endotoxemic challenge. ANPhigh and ANPlow neutrophils were functionally distinct in their capacities to kill bacteria and to produce inflammatory mediators. ANPhigh neutrophils produced inordinate amounts of reactive oxygen species and inflammatory chemokines and cytokines. Targeting this subset with ANP loaded with the drug piceatannol, a spleen tyrosine kinase (Syk) inhibitor, mitigated the effects of polymicrobial sepsis by reducing tissue inflammation while fully preserving neutrophilic host-defense function.
Collapse
Affiliation(s)
- Kurt Bachmaier
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Andrew Stuart
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Abhalaxmi Singh
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Amitabha Mukhopadhyay
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Sreeparna Chakraborty
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Zhigang Hong
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Li Wang
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Division
of Cardiology, Department of Medicine, The
University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Yoshikazu Tsukasaki
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Mark Maienschein-Cline
- Research
Resources Center, University of Illinois
at Chicago, Chicago, Illinois 60612, United States
| | - Balaji B. Ganesh
- Research
Resources Center, University of Illinois
at Chicago, Chicago, Illinois 60612, United States
| | - Prasad Kanteti
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Jalees Rehman
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Division
of Cardiology, Department of Medicine, The
University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Asrar B. Malik
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
5
|
Salmerón C, Harter TS, Kwan GT, Roa JN, Blair SD, Rummer JL, Shiels HA, Goss GG, Wilson RW, Tresguerres M. Molecular and biochemical characterization of the bicarbonate-sensing soluble adenylyl cyclase from a bony fish, the rainbow trout Oncorhynchus mykiss. Interface Focus 2021; 11:20200026. [PMID: 33633829 DOI: 10.1098/rsfs.2020.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Soluble adenylyl cyclase (sAC) is a HC O 3 - -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid-base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HC O 3 - at physiologically relevant levels for fish internal fluids (EC50 ∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid-base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals.
Collapse
Affiliation(s)
- Cristina Salmerón
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Till S Harter
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Jinae N Roa
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Salvatore D Blair
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Biology, Winthrop University, Rock Hill, SC, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rod W Wilson
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Rossetti T, Jackvony S, Buck J, Levin LR. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus 2021; 11:20200034. [PMID: 33633833 PMCID: PMC7898154 DOI: 10.1098/rsfs.2020.0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO3 -)-regulated enzyme responsible for the generation of cyclic adenosine monophosphate (cAMP). sAC is distributed throughout the cell and within organelles and, as such, plays a role in numerous cellular signalling pathways. Carbonic anhydrases (CAs) nearly instantaneously equilibrate HCO3 -, protons and carbon dioxide (CO2); because of the ubiquitous presence of CAs within cells, HCO3 --regulated sAC can respond to changes in any of these factors. Thus, sAC can function as a physiological HCO3 -/CO2/pH sensor. Here, we outline examples where we have shown that sAC responds to changes in HCO3 -, CO2 or pH to regulate diverse physiological functions.
Collapse
Affiliation(s)
- Tom Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Jackvony
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Soluble adenylyl cyclase regulates the cytosolic NADH/NAD + redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148367. [PMID: 33412125 DOI: 10.1016/j.bbabio.2020.148367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.
Collapse
|
8
|
Xu M, Jiang Z, Wang C, Li N, Bo L, Zha Y, Bian J, Zhang Y, Deng X. Acetate attenuates inflammasome activation through GPR43-mediated Ca 2+-dependent NLRP3 ubiquitination. Exp Mol Med 2019; 51:1-13. [PMID: 31337751 PMCID: PMC6802670 DOI: 10.1038/s12276-019-0276-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Acetate has been indicated to be elevated and to regulate inflammation in inflammatory and metabolic diseases. The inflammasome serves as a key component of immune homeostasis, and its dysregulation can lead to various inflammatory disorders. However, little is known about the effects of acetate on inflammasome activation and the underlying mechanism. Here, we demonstrate that acetate attenuates inflammasome activation via GPR43 in a Ca2+-dependent manner. Through binding to GPR43, acetate activates the Gq/11 subunit and subsequent phospholipase C-IP3 signaling to decrease Ca2+ mobilization. In addition, acetate activates soluble adenylyl cyclase (sAC), promotes NLRP3 inflammasome ubiquitination by PKA, and ultimately induces NLRP3 degradation through autophagy. In vivo, acetate protects mice from NLRP3 inflammasome-dependent peritonitis and LPS-induced endotoxemia. Collectively, our research demonstrates that acetate regulates the NLRP3 inflammasome via GPR43 and Ca2+-dependent mechanisms, which reveals the mechanism of metabolite-mediated NLRP3 inflammasome attenuation and highlights acetate as a possible therapeutic strategy for NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Mengda Xu
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China ,Department of Anesthesiology, Wuhan General Hospital, PLA, 430070 Wuhan, Hubei Province China
| | - Zhengyu Jiang
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Changli Wang
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Na Li
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Lulong Bo
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Yanping Zha
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Jinjun Bian
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Yan Zhang
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Xiaoming Deng
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| |
Collapse
|
9
|
Pozdniakova S, Ladilov Y. Functional Significance of the Adcy10-Dependent Intracellular cAMP Compartments. J Cardiovasc Dev Dis 2018; 5:E29. [PMID: 29751653 PMCID: PMC6023465 DOI: 10.3390/jcdd5020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence confirms the compartmentalized structure of evolutionarily conserved 3'⁻5'-cyclic adenosine monophosphate (cAMP) signaling, which allows for simultaneous participation in a wide variety of physiological functions and ensures specificity, selectivity and signal strength. One important player in cAMP signaling is soluble adenylyl cyclase (sAC). The intracellular localization of sAC allows for the formation of unique intracellular cAMP microdomains that control various physiological and pathological processes. This review is focused on the functional role of sAC-produced cAMP. In particular, we examine the role of sAC-cAMP in different cellular compartments, such as cytosol, nucleus and mitochondria.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| | - Yury Ladilov
- Institute of Gender in Medicine, Center for Cardiovascular Research, Charite, 10115 Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, 10115 Berlin, Germany.
| |
Collapse
|
10
|
Chang JC, Go S, Verhoeven AJ, Beuers U, Oude Elferink RP. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1232-1239. [DOI: 10.1016/j.bbadis.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
|
11
|
Chen H, Chan HC. Amplification of FSH signalling by CFTR and nuclear soluble adenylyl cyclase in the ovary. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:78-85. [PMID: 28345252 DOI: 10.1111/1440-1681.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is one of the most important signalling pathways widely distributed in most eukaryotic cells. The activation of the canonical cAMP/PKA pathway depends on transmembrane adenylyl cyclase (tmAC). Recently, soluble adenylyl cyclase (sAC), which is activated by HCO3- or Ca2+ , emerges to provide an alternative way to activate cAMP/PKA pathway with the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- /HCO3- -conducting anion channel, as a key player. This review summarizes new progress in the investigation of the CFTR/HCO3- -dependent sAC signalling and its essential role in various reproductive processes, particularly in ovarian functions. We present the evidence for a CFTR/HCO3- -dependent nuclear sAC signalling cascade that amplifies the FSH-stimulated cAMP/PKA pathway, traditionally thought to involve tmAC, in granulosa for the regulation of oestrogen production and granulosa cell proliferation. The implication of the CFTR/HCO3- /sAC pathway in amplifying other receptor-activated cAMP/PKA signalling in a wide variety of cell types and pathophysiological processes, including aging, is also discussed.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| |
Collapse
|
12
|
Chang JC, Beuers U, Oude Elferink RP. The Emerging Role of Soluble Adenylyl Cyclase in Primary Biliary Cholangitis. Dig Dis 2017; 35:217-223. [PMID: 28249274 PMCID: PMC5516404 DOI: 10.1159/000450914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC; previously referred to as primary biliary cirrhosis) is a chronic fibrosing cholangiopathy with the signature of an autoimmune disease and features of intrahepatic cholestasis. Immunosuppressing treatments are largely unsuccessful. Responsiveness to ursodeoxycholic acid and reduced expression of anion exchanger 2 (AE2) on canalicular membranes and small bile ducts underline the importance of bicarbonate transportation in its disease mechanism. Soluble adenylyl cyclase (sAC; ADCY10) is an evolutionarily conserved bicarbonate sensor that regulates apoptosis, barrier function and TNF signaling. Key Messages: The biliary epithelium defends against the toxic bile by bicarbonate secretion and by maintaining a tight barrier. Passive diffusion of weak acid conjugates (e.g. bile salts and other toxins) across plasma membrane is pH-dependent. Reduced AE2 expression results in both reduced bicarbonate secretion and accumulation of bicarbonate in the cells. Increased intracellular bicarbonate leads to increased sAC activity, which regulates bile salt-induced apoptosis. Reduced bicarbonate secretion causes more bile salts to enter cells, which further increase sAC activity by releasing intracellular Ca2+ store. In vitro studies demonstrate that inhibition of sAC not only corrects sensitization to bile salt-induced apoptosis as a result of AE2 down-regulation but also prevents bile salt-induced apoptosis altogether. Targeting sAC is also likely to slow down disease progression by strengthening the barrier function of biliary epithelia and by reducing oxidative stress as a result of chronic inflammation. CONCLUSIONS sAC is a potential therapeutic target for PBC. More in vitro and in vivo studies are needed to understand how sAC regulates bile salt-induced apoptosis and to establish its therapeutic value in PBC and other cholestatic cholangiopathies.
Collapse
Affiliation(s)
| | | | - Ronald P.J. Oude Elferink
- *Ronald P.J. Oude Elferink, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center S1-162, Meibergdreef 69-71, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
13
|
Shaw PX, Fang J, Sang A, Wang Y, Kapiloff MS, Goldberg JL. Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation. Invest Ophthalmol Vis Sci 2016; 57:5083-5092. [PMID: 27679853 PMCID: PMC5053116 DOI: 10.1167/iovs.16-19465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose We have previously demonstrated that soluble adenylyl cyclase (sAC) is necessary for retinal ganglion cell (RGC) survival and axon growth. Here, we further investigate the role of sAC in neuronal differentiation during retinal development. Methods Chx10 or Math5 promoter-driven Cre-Lox recombination were used to conditionally delete sAC from early and intermediate retinal progenitor cells during retinal development. We examined cell type–specific markers expressed by retinal cells to estimate their relative numbers and characterize retinal laminar morphology by immunofluorescence in adult and newborn mice. Results Retinal ganglion cell and amacrine cell markers were significantly lower in the retinas of adult Math5cre/sACfl/fl and Chx10cre/sACfl/fl mice than in those of wild-type controls. The effect on RGC development was detectable as early as postnatal day 1 and deleting sAC in either Math5- or Chx10-expressing retinal progenitor cells also reduced nerve fiber layer thickness into adulthood. The thickness of the photoreceptor layer was slightly but statistically significantly decreased in both the newborn Chx10cre/sACfl/fl and Math5cre/sACfl/fl mice, but this reduction and abnormal morphology persisted in the adults in only the Chx10cre/sACfl/fl mice. Conclusions sAC plays an important role in the early retinal development of RGCs as well as in the development of amacrine cells and to a lesser degree photoreceptors.
Collapse
Affiliation(s)
- Peter X Shaw
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Jiahua Fang
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States 2Department of Ophthalmology, First Hospital of Changsha, Changsha, Hunan Province, China
| | - Alan Sang
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Yan Wang
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Jeffrey L Goldberg
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States 4Byers Eye Institute, Stanford University, Palo Alto, California, United States
| |
Collapse
|
14
|
The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment. Mol Cell Biol 2016; 36:2583-95. [PMID: 27503855 DOI: 10.1128/mcb.00161-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca(2+), and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R.
Collapse
|
15
|
Inda C, Dos Santos Claro PA, Bonfiglio JJ, Senin SA, Maccarrone G, Turck CW, Silberstein S. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol 2016; 214:181-95. [PMID: 27402953 PMCID: PMC4949449 DOI: 10.1083/jcb.201512075] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP.
Collapse
Affiliation(s)
- Carolina Inda
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Juan J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Sergio A Senin
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
16
|
Kuwano Y, Adler M, Zhang H, Groisman A, Ley K. Gαi2 and Gαi3 Differentially Regulate Arrest from Flow and Chemotaxis in Mouse Neutrophils. THE JOURNAL OF IMMUNOLOGY 2016; 196:3828-33. [PMID: 26976957 DOI: 10.4049/jimmunol.1500532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/22/2016] [Indexed: 01/13/2023]
Abstract
Leukocyte recruitment to inflammation sites progresses in a multistep cascade. Chemokines regulate multiple steps of the cascade, including arrest, transmigration, and chemotaxis. The most important chemokine receptor in mouse neutrophils is CXCR2, which couples through Gαi2- and Gαi3-containing heterotrimeric G proteins. Neutrophils arrest in response to CXCR2 stimulation. This is defective in Gαi2-deficient neutrophils. In this study, we show that Gαi3-deficient neutrophils showed reduced transmigration but normal arrest in mice. We also tested Gαi2- or Gαi3-deficient neutrophils in a CXCL1 gradient generated by a microfluidic device. Gαi3-, but not Gαi2-, deficient neutrophils showed significantly reduced migration and directionality. This was confirmed in a model of sterile inflammation in vivo. Gαi2-, but not Gαi3-, deficient neutrophils showed decreased Ca(2+) flux in response to CXCR2 stimulation. Conversely, Gαi3-, but not Gαi2-, deficient neutrophils exhibited reduced AKT phosphorylation upon CXCR2 stimulation. We conclude that Gαi2 controls arrest and Gαi3 controls transmigration and chemotaxis in response to chemokine stimulation of neutrophils.
Collapse
Affiliation(s)
- Yoshihiro Kuwano
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Micha Adler
- Department of Physics, University of California, San Diego, La Jolla, CA 92093; and
| | - Hong Zhang
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093; and
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Stiles TL, Kapiloff MS, Goldberg JL. The role of soluble adenylyl cyclase in neurite outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2561-8. [PMID: 25064589 PMCID: PMC4262618 DOI: 10.1016/j.bbadis.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
Axon regeneration in the mature central nervous system is limited by extrinsic inhibitory signals and a postnatal decline in neurons' intrinsic growth capacity. Neuronal levels of the second messenger cAMP are important in regulating both intrinsic growth capacity and neurons' responses to extrinsic factors. Approaches which increase intracellular cAMP in neurons enhance neurite outgrowth and facilitate regeneration after injury. Thus, understanding the factors which affect cAMP in neurons is of potential therapeutic importance. Recently, soluble adenylyl cyclase (sAC, ADCY10), the ubiquitous, non-transmembrane adenylyl cyclase, was found to play a key role in neuronal survival and axon growth. sAC is activated by bicarbonate and cations and may translate physiologic signals from metabolism and electrical activity into a neuron's decision to survive or regenerate. Here we critically review the literature surrounding sAC and cAMP signaling in neurons to further elucidate the potential role of sAC signaling in neurite outgrowth and regeneration. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Travis L Stiles
- Shiley Eye Center, University of California, San Diego, CA 92093, USA
| | - Michael S Kapiloff
- Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
18
|
Buffone MG, Wertheimer EV, Visconti PE, Krapf D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2610-20. [PMID: 25066614 DOI: 10.1016/j.bbadis.2014.07.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cyclases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Mariano G Buffone
- Instituto de Biología y Medicina Experimental, National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Eva V Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, MA 01003, USA.
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET), UNR, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| |
Collapse
|
19
|
Rahman N, Buck J, Levin LR. pH sensing via bicarbonate-regulated "soluble" adenylyl cyclase (sAC). Front Physiol 2013; 4:343. [PMID: 24324443 PMCID: PMC3838963 DOI: 10.3389/fphys.2013.00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/06/2013] [Indexed: 01/03/2023] Open
Abstract
Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role.
Collapse
Affiliation(s)
- Nawreen Rahman
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | | | | |
Collapse
|
20
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291-331. [PMID: 24281338 PMCID: PMC3816672 DOI: 10.3390/ph5121291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
22
|
Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 2012; 32:7734-44. [PMID: 22649251 DOI: 10.1523/jneurosci.5288-11.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
cAMP is a critical second messenger mediating activity-dependent neuronal survival and neurite growth. We investigated the expression and function of the soluble adenylyl cyclase (sAC, ADCY10) in CNS retinal ganglion cells (RGCs). We found sAC protein expressed in multiple RGC compartments including the nucleus, cytoplasm and axons. sAC activation increased cAMP above the level seen with transmembrane adenylate cyclase (tmAC) activation. Electrical activity and bicarbonate, both physiologic sAC activators, significantly increased survival and axon growth, whereas pharmacologic or siRNA-mediated sAC inhibition dramatically decreased RGC survival and axon growth in vitro, and survival in vivo. Conversely, RGC survival and axon growth were unaltered in RGCs from AC1/AC8 double knock-out mice or after specifically inhibiting tmACs. These data identify a novel sAC-mediated cAMP signaling pathway regulating RGC survival and axon growth, and suggest new neuroprotective or regenerative strategies based on sAC modulation.
Collapse
|
23
|
Kolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J, Gorelick FS. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acinar cells. PLoS One 2012; 7:e41320. [PMID: 22844459 PMCID: PMC3402497 DOI: 10.1371/journal.pone.0041320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/20/2012] [Indexed: 01/11/2023] Open
Abstract
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.
Collapse
Affiliation(s)
- Thomas R. Kolodecik
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Christine A. Shugrue
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Edwin C. Thrower
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
| | - Lonny R. Levin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Fred S. Gorelick
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
24
|
Dash-Koney M, Deevi RK, McFarlane C, Dib K. Exchange protein directly activated by cAMP 1 (Epac1) is expressed in human neutrophils and mediates cAMP-dependent activation of the monomeric GTPase Rap1. J Leukoc Biol 2011; 90:741-9. [PMID: 21750123 DOI: 10.1189/jlb.0211108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epac1 and Epac2 bind cAMP and mediate cAMP-dependent activation of Rap1. cAMP is produced in neutrophils in response to many chemoattractants. This second messenger plays a key role in the regulation of the functions of neutrophils. However, it is still not known whether Epacs are expressed in human neutrophils. We found that stimulation of PLB-985 cells differentiated into neutrophil-like cells, human neutrophils with 8CPT-2Me-cAMP (a selective activator of Epacs), or FK (a diterpene that augments the intracellular level of cAMP) led to GTP-loading of Rap1. Epac1 mRNA was expressed in UND and DF PLB-985 cells, but Epac1 protein was only detected in DF PLB-985 cells. In human neutrophils, the Epac1 transcript was present, and Epac1 protein could be detected by Western blot analysis if the cells had been treated with the serine protease inhibitor PMSF. FK induced adhesion of PLB-985 cells and human neutrophils on fibrinogen, a ligand for β2 integrins. Interestingly, in DF PLB-985 cells, but not in human neutrophils, 8CPT-2Me-cAMP induced β2 integrin-dependent adhesion. The failure of 8CPT-2Me-cAMP to induce β2 integrin-dependent human neutrophil adhesion could be explained by the fact that this compound did not induce a switch of the β2 integrins from a low-affinity to a high-affinity ligand-binding conformation. We concluded that Epac1 is expressed in human neutrophils and is involved in cAMP-dependent regulation of Rap1. However, the loading of GTP on Rap1 per se is not sufficient to promote activation of β2 integrins.
Collapse
Affiliation(s)
- Madhuri Dash-Koney
- Centre for Infection and Immunity, Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | | | | | | |
Collapse
|
25
|
Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol 2011; 38 Suppl 11:49-59. [PMID: 21323704 DOI: 10.1111/j.1600-051x.2010.01678.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neutrophils are the predominant cells responsible for host defence against bacterial infection. Loss of neutrophil defence, due either to deficient number or function, strongly predisposes to bacterial infections such as periodontitis. Yet, the neutrophil oxidative and proteolytic arsenal has also been implicated in perpetrating periodontal tissue damage in periodontitis. AIM In this review, we focus on recent developments that shed light on these two aspects of neutrophil function in periodontitis. METHODS Primary search: using PubMed search for "neutophil", "periodontal", and "periodontitis". Secondary search: using references from the articles found in the first stage. RESULTS Early histological studies showed that infiltrating neutrophils form a wall of cells abutting the junctional epithelium in periodontal inflammatory lesions. The chronic standoff between these neutrophils and the bacterial community suggests that bacterial evasion of neutrophil clearance is a major characteristic of periodontitis. Indeed, not all functional neutrophil deficiencies increase the risk of periodontitis, an observation that points the way towards identification of particular anti-bacterial pathways essential for protection against periodontal pathogens. The net result in the majority of periodontitis patients who exhibit normal neutrophil number and function, is that neutrophils accumulate in the periodontal tissue where they are available to participate in tissue destruction. Diminished neutrophil clearance further contributes to the persistence of activated neutrophils in the periodontal tissue. CONCLUSIONS Data on the role of neutrophils in the pathogenesis of periodontitis are mixed. Neutrophils are a critical arm of the defence against periodontitis, but bacterial evasion of the neutrophil microbicidal machinery coupled with delayed neutrophil apoptosis may transform the neutrophil from defender to perpetrator. At this stage of knowledge, attempts to induce host modulation through neutrophil suppression or activation are premature.
Collapse
Affiliation(s)
- Gabriel Nussbaum
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
26
|
Tresguerres M, Levin LR, Buck J. Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 2011; 79:1277-88. [PMID: 21490586 DOI: 10.1038/ki.2011.95] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems that are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
27
|
Sayner SL. Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 2011; 300:L667-78. [PMID: 21335524 DOI: 10.1152/ajplung.00433.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The presence of excess fluid in the interstitium and air spaces of the lung presents severe restrictions to gas exchange. The pulmonary endothelial barrier regulates the flux of fluid and plasma proteins from the vascular space into the underlying tissue. The integrity of this endothelial barrier is dynamically regulated by transitions in cAMP (3',5'-cyclic adenosine monophosphate), which are synthesized in discrete subcellular compartments. Cyclic AMP generated in the subplasma membrane compartment acts through PKA and Epac (exchange protein directly activated by cAMP) to tighten cell adhesions, strengthen cortical actin, reduce actomyosin contraction, and decrease permeability. Confining cAMP within the subplasma membrane space is critical to its barrier-protective properties. When cAMP escapes the near membrane compartment and gains access to the cytosolic compartment, or when soluble adenylyl cyclases generate cAMP within the cytosolic compartment, this second messenger activates established cytosolic cAMP signaling cascades to perturb the endothelial barrier through PKA-mediated disruption of microtubules. Thus the concept of cAMP compartmentalization in endothelial barrier regulation is gaining momentum and new possibilities are being unveiled for cytosolic cAMP signaling with the emergence of the bicarbonate-regulated mammalian soluble adenylyl cyclase (sAC or AC10).
Collapse
Affiliation(s)
- Sarah L Sayner
- Dept. of Cell Biology and Neuroscience, Member, Center for Lung Biology, College of Medicine, Univ. of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
28
|
Salinthone S, Schillace RV, Tsang C, Regan JW, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via G protein-coupled receptor-dependent and -independent mechanisms. J Nutr Biochem 2010; 22:681-90. [PMID: 21036588 DOI: 10.1016/j.jnutbio.2010.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/14/2010] [Accepted: 05/28/2010] [Indexed: 01/03/2023]
Abstract
Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer's disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R-LA and S-LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study, we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, such as dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCs with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G protein-coupled receptors, including histamine and adenosine but not the β-adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases.
Collapse
Affiliation(s)
- Sonemany Salinthone
- Portland Veterans Affairs Medical Center, Portland, OR 97239, USA; Department of Neurology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schmid A, Sutto Z, Schmid N, Novak L, Ivonnet P, Horvath G, Conner G, Fregien N, Salathe M. Decreased soluble adenylyl cyclase activity in cystic fibrosis is related to defective apical bicarbonate exchange and affects ciliary beat frequency regulation. J Biol Chem 2010; 285:29998-30007. [PMID: 20639512 DOI: 10.1074/jbc.m110.113621] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human airway cilia contain soluble adenylyl cyclase (sAC) that produces cAMP upon HCO(3)(-)/CO(2) stimulation to increase ciliary beat frequency (CBF). Because apical HCO(3)(-) exchange depends on cystic fibrosis transmembrane conductance regulator (CFTR), malfunctioning CFTR might impair sAC-mediated CBF regulation in cells from patients with cystic fibrosis (CF). By Western blot, sAC isoforms are equally expressed in normal and CF airway epithelial cells, but CBF decreased more in CF than normal cells upon increased apical HCO(3)(-)/CO(2) exposure in part because of greater intracellular acidification from unbalanced CO(2) influx (estimated by 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence). Importantly, ciliated cell-specific cAMP production (estimated by FRET fluorescence ratio changes of tagged cAMP-dependent protein kinase (PKA) subunits expressed under a ciliated cell-specific promoter) in response to increased apical HCO(3)(-)/CO(2) perfusion was higher in normal compared with CF cells. Inhibition of bicarbonate influx via CFTR (CFTR(inh)172) and inhibition of sAC (KH7) and PKA activation (H89) led to larger CBF declines in normal cells, now comparable with changes seen in CF cells. These inhibitors also reduced FRET changes in normal cells to the level of CF cells with the expected exception of H89, which does not prevent dissociation of the fluorescently tagged PKA subunits. Basolateral permeabilization and subsequent perfusion with HCO(3)(-)/CO(2) rescued CBF and FRET changes in CF cells to the level of normal cells. These results suggest that CBF regulation by sAC-produced cAMP could be impaired in CF, thereby possibly contributing to mucociliary dysfunction in this disease, at least during disease exacerbations when airway acidification is common.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary and Critical Care, University of Miami, Miami, Florida 33136, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Nonresolving inflammation is a major driver of disease. Perpetuation of inflammation is an inherent risk because inflammation can damage tissue and necrosis can provoke inflammation. Nonetheless, multiple mechanisms normally ensure resolution. Cells like macrophages switch phenotypes, secreted molecules like reactive oxygen intermediates switch impact from pro- to anti-inflammatory, and additional mediators of resolution arise, including proteins, lipids, and gasses. Aside from persistence of initiating stimuli, nonresolution may result from deficiencies in these mechanisms when an inflammatory response begins either excessively or subnormally. This greatly complicates the development of anti-inflammatory therapies. The problem calls for conceptual, organizational, and statistical innovations.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
31
|
Zippin JH, Chadwick PA, Levin LR, Buck J, Magro CM. Soluble adenylyl cyclase defines a nuclear cAMP microdomain in keratinocyte hyperproliferative skin diseases. J Invest Dermatol 2010; 130:1279-87. [PMID: 20130594 DOI: 10.1038/jid.2009.440] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a nearly ubiquitous signaling molecule important for numerous signaling pathways in human skin. We studied a novel class of mammalian adenylyl cyclase, the soluble adenylyl cyclase (sAC). We examined sAC localization in normal human skin and found it to be present in keratinocytes, melanocytes, mononuclear cells, eccrine ducts, and nerves. In normal skin, sAC keratinocyte staining was evenly distributed throughout the cell. However, in certain hyperproliferative disorders of the skin, including psoriasis, verruca vulgaris, and SCCIS on sun-damaged skin, sAC keratinocyte staining was predominantly nuclear. In contrast, in other hyperproliferative disorders, such as basal cell carcinoma, sAC staining was similar to normal human skin. Using a model of epithelial differentiation, we established that sAC migrates into the nucleus when differentiated cells are induced to reenter the cell cycle. Previous work had determined that nuclear sAC activates the cAMP-response-element-binding (CREB) transcription factor, and we found that in psoriasis lesions, nuclear sAC occurs concomitantly with activation of CREB. Hence, sAC may play a role in the pathogenesis of certain hyperproliferative skin disorders via modulation of gene expression.
Collapse
Affiliation(s)
- Jonathan H Zippin
- Department of Dermatology, NYPH-Weill Cornell Medical Center, New York, New York, USA.
| | | | | | | | | |
Collapse
|
32
|
Chiang C, Chang C, Peh H, Chen S, Yu B, Chen M, Nagahata H. Calcium homeostasis and its relationship to superoxide production in blood and milk neutrophils of lactating goats. Vet Immunol Immunopathol 2010; 133:125-32. [DOI: 10.1016/j.vetimm.2009.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 05/18/2009] [Accepted: 07/21/2009] [Indexed: 01/17/2023]
|
33
|
Kilpatrick LE, Sun S, Li H, Vary TC, Korchak HM. Regulation of TNF-induced oxygen radical production in human neutrophils: role of delta-PKC. J Leukoc Biol 2009; 87:153-64. [PMID: 19801500 DOI: 10.1189/jlb.0408230] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In human neutrophils, TNF-elicited O(2)(-) production requires adherence and integrin activation. How this cooperative signaling between TNFRs and integrins regulates O(2)(-) generation has yet to be fully elucidated. Previously, we identified delta-PKC as a critical early regulator of TNF signaling in adherent neutrophils. In this study, we demonstrate that inhibition of delta-PKC with a dominant-negative delta-PKC TAT peptide resulted in a significant delay in the onset time of TNF-elicited O(2)(-) generation but had no effect on Vmax, indicating an involvement of delta-PKC in the initiation of O(2)(-) production. In contrast, fMLP-elicited O(2)(-) production in adherent and nonadherent neutrophils was delta-PKC-independent, suggesting differential regulation of O(2)(-) production. An important step in activation of the NADPH oxidase is phosphorylation of the cytosolic p47phox component. In adherent neutrophils, TNF triggered a time-dependent association of delta-PKC with p47phox, which was associated with p47phox phosphorylation, indicating a role for delta-PKC in regulating O(2)(-) production at the level of p47phox. Activation of ERK and p38 MAPK is also required for TNF-elicited O(2)(-) generation. TNF-mediated ERK but not p38 MAPK recruitment to p47phox was delta-PKC-dependent. delta-PKC activity is controlled through serine/threonine phosphorylation, and phosphorylation of delta-PKC (Ser643) and delta-PKC (Thr505) was increased significantly by TNF in adherent cells via a PI3K-dependent process. Thus, signaling for TNF-elicited O(2)(-) generation is regulated by delta-PKC. Adherence-dependent cooperative signaling activates PI3K signaling, delta-PKC phosphorylation, and delta-PKC recruitment to p47phox. delta-PKC activates p47phox by serine phosphorylation or indirectly through control of ERK recruitment to p47phox.
Collapse
Affiliation(s)
- Laurie E Kilpatrick
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
34
|
Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VEP, Treviño CL, Darszon A, Mayorga LS, Tomes CN. Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 2009; 284:24825-39. [PMID: 19546222 DOI: 10.1074/jbc.m109.015362] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2'-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kumar S, Kostin S, Flacke JP, Reusch HP, Ladilov Y. Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 2009; 284:14760-8. [PMID: 19336406 DOI: 10.1074/jbc.m900925200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cAMP signaling pathway plays an essential role in modulating the apoptotic response to various stress stimuli. Until now, it was attributed exclusively to the activity of the G-protein-responsive transmembrane adenylyl cyclase. In addition to transmembrane AC, mammalian cells possess a second source of cAMP, the ubiquitously expressed soluble adenylyl cyclase (sAC). However, the role of this cyclase in apoptosis was unknown. A mitochondrial localization of this cyclase has recently been demonstrated, which led us to the hypothesis that sAC may play a role in apoptosis through modulation of mitochondria-dependent apoptosis. To prove this hypothesis, apoptosis was induced by simulated in vitro ischemia or by acidosis, which is an important component of ischemia. Suppression of sAC activity with the selective inhibitor KH7 or sAC knockdown by small interfering RNA transfection abolished endothelial apoptosis. Furthermore, pharmacological inhibition or knockdown of protein kinase A, an important cAMP target, demonstrated a significant anti-apoptotic effect. Analysis of the underlying mechanisms revealed (i) the translocation of sAC to mitochondria under acidic stress and (ii) activation of the mitochondrial pathway of apoptosis, i.e. cytochrome c release and caspase-9 cleavage. sAC inhibition or knockdown abolished the activation of the mitochondrial pathway of apoptosis. Analysis of mitochondrial co-localization of Bcl-2 family proteins demonstrated sAC- and protein kinase A-dependent translocation of Bax to mitochondria. Taken together, these results suggest the important role of sAC in modulating the mitochondria-dependent pathway of apoptosis in endothelial cells.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Abteilung für Klinische Pharmakologie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | | | | | | | | |
Collapse
|
36
|
Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. ACTA ACUST UNITED AC 2009; 184:205-13. [PMID: 19153223 PMCID: PMC2654299 DOI: 10.1083/jcb.200806072] [Citation(s) in RCA: 1137] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral blood neutrophils form highly decondensed chromatin structures, termed neutrophil extracellular traps (NETs), that have been implicated in innate immune response to bacterial infection. Neutrophils express high levels of peptidylarginine deiminase 4 (PAD4), which catalyzes histone citrullination. However, whether PAD4 or histone citrullination plays a role in chromatin structure in neutrophils is unclear. In this study, we show that the hypercitrullination of histones by PAD4 mediates chromatin decondensation. Histone hypercitrullination is detected on highly decondensed chromatin in HL-60 granulocytes and blood neutrophils. The inhibition of PAD4 decreases histone hypercitrullination and the formation of NET-like structures, whereas PAD4 treatment of HL-60 cells facilitates these processes. The loss of heterochromatin and multilobular nuclear structures is detected in HL-60 granulocytes after PAD4 activation. Importantly, citrullination of biochemically defined avian nucleosome arrays inhibits their compaction by the linker histone H5 to form higher order chromatin structures. Together, these results suggest that histone hypercitrullination has important functions in chromatin decondensation in granulocytes/neutrophils.
Collapse
Affiliation(s)
- Yanming Wang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice. PLoS One 2008; 3:e3251. [PMID: 18806876 PMCID: PMC2532759 DOI: 10.1371/journal.pone.0003251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022] Open
Abstract
Background Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacytm1Lex/Sacytm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. Principal Findings We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which ‘escapes’ the design of the Sacytm1Lex knockout allele. Conclusions/Significance These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.
Collapse
Affiliation(s)
- Jeanne Farrell
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. ACTA ACUST UNITED AC 2008; 132:329-38. [PMID: 18695009 PMCID: PMC2518727 DOI: 10.1085/jgp.200810044] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In β cells, both glucose and hormones, such as GLP-1, stimulate production of the second messenger cAMP, but glucose and GLP-1 elicit distinct cellular responses. We now show in INS-1E insulinoma cells that glucose and GLP-1 produce cAMP with distinct kinetics via different adenylyl cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein–responsive transmembrane adenylyl cyclases (tmAC). In contrast, glucose elicits a delayed cAMP rise mediated by bicarbonate, calcium, and ATP-sensitive soluble adenylyl cyclase (sAC). This glucose-induced, sAC-dependent cAMP rise is dependent upon calcium influx and is responsible for the glucose-induced activation of the mitogen-activated protein kinase (ERK1/2) pathway. These results demonstrate that sAC-generated and tmAC-generated cAMP define distinct signaling cascades.
Collapse
Affiliation(s)
- Lavoisier S Ramos
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
39
|
Moore SW, Lai Wing Sun K, Xie F, Barker PA, Conti M, Kennedy TE. Soluble adenylyl cyclase is not required for axon guidance to netrin-1. J Neurosci 2008; 28:3920-4. [PMID: 18400890 PMCID: PMC6670467 DOI: 10.1523/jneurosci.0547-08.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 02/27/2008] [Indexed: 11/21/2022] Open
Abstract
During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1.
Collapse
Affiliation(s)
- Simon W. Moore
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Karen Lai Wing Sun
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Fang Xie
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Philip A. Barker
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Timothy E. Kennedy
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| |
Collapse
|
40
|
Young JJ, Mehdi A, Stohl LL, Levin LR, Buck J, Wagner JA, Stessin AM. "Soluble" adenylyl cyclase-generated cyclic adenosine monophosphate promotes fast migration in PC12 cells. J Neurosci Res 2008; 86:118-24. [PMID: 17680672 PMCID: PMC2587045 DOI: 10.1002/jnr.21458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In a model for neuronal movement, PC12 cells undergo fast migration in response to nerve growth factor (NGF) and phorbol ester (PMA). We previously showed that NGF increases intracellular cAMP via activation of soluble adenylyl cyclase (sAC). In this report, we demonstrate that sAC activation is an essential component of NGF- + PMA-induced fast migration in PC12 cells. Interestingly, PMA also raises intracellular cAMP but does so by stimulating transmembrane adenylyl cyclases (tmAC); however, this tmAC-generated cAMP does not contribute to fast migration. Therefore, cells must possess independent pools of cAMP capable of modulating distinct functions.
Collapse
Affiliation(s)
- Jennifer J. Young
- Gateways to the Laboratory Program, Weill Medical College of Cornell University, New York, New York
| | - Amna Mehdi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York
| | - Lori L. Stohl
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York
| | - Lonny R. Levin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
- Correspondence to: Lonny R. Levin, Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10026. E-mail:
| | - Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
| | - John A. Wagner
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York
| | - Alexander M. Stessin
- Tri-Institutional MD/PhD Program, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
41
|
Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. ACTA ACUST UNITED AC 2007; 130:99-109. [PMID: 17591988 PMCID: PMC2154360 DOI: 10.1085/jgp.200709784] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO(2)/HCO(3)(-)-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO(2)/HCO(3)(-)-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO(2)/HCO(3)(-) increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent advances in our understanding of the structure-function relationship of motile cilia with the 9 + 2 microtubular arrangement have helped explain some of the mechanisms of ciliary beat regulation by intracellular second messengers. These second messengers include cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) as well as calcium and pH. cAMP activates protein kinase A (PKA), which is localized to the axoneme. The cAMP-dependent phosphorylation of PKA's main target, originally described as p29 in Paramecium, seems to increase ciliary beat frequency (CBF) directly. The mechanism by which cGMP increases CBF is less well defined but involves protein kinase G and possibly PKA. Protein kinase C inhibits ciliary beating. The regulation mechanisms of CBF by calcium remain somewhat controversial, favoring an immediate, direct action of calcium on ciliary beating and a second cyclic nucleotide-dependent phase. Finally, intracellular pH likely affects CBF through direct influences on dynein arms.
Collapse
Affiliation(s)
- Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
43
|
Steinckwich N, Frippiat JP, Stasia MJ, Erard M, Boxio R, Tankosic C, Doignon I, Nüsse O. Potent inhibition of store-operated Ca2+ influx and superoxide production in HL60 cells and polymorphonuclear neutrophils by the pyrazole derivative BTP2. J Leukoc Biol 2007; 81:1054-64. [PMID: 17261548 DOI: 10.1189/jlb.0406248] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Store-operated calcium entry (SOCE) is a key regulator in the activation of leukocytes. 3,5-Bistrifluoromethyl pyrazole (BTP) derivatives have been identified recently as inhibitors of T lymphocyte activation. The inhibitory effect of one of these compounds, N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2), appears to be a result of inhibition of SOC influx. Polymorphonuclear neutrophils provide effective protection against bacterial infection, but they are also involved in tissue damage during chronic inflammation. As for T lymphocytes, their activation relies on SOCE. We therefore investigated the effect of BTP2 on calcium homeostasis and functional responses of human neutrophils. BTP2 significantly inhibited the calcium influx after stimulation with thapsigargin or fMLF. This inhibition was seen after 5 min of incubation with 10 microM BTP2 and after 24 h with lower concentrations. With 24 h incubation, the effect appeared irreversible, as the removal of BTP2 3 h before the experiment did not reduce this inhibition in granulocyte-differentiated HL60 cells. In human neutrophils, BTP2 reduced superoxide anion production by 82% after 24 h of incubation. On the contrary, phagocytosis, intraphagosomal radical production, and bacterial killing by neutrophils were not reduced significantly, even after 24 h treatment with 10 microM BTP2. This work suggests that BTP2 could become an important tool to characterize calcium signaling in neutrophils. Furthermore, BTP2 or related compounds could constitute a new approach to the down-regulation of neutrophils in chronic inflammatory disease without compromising antibacterial host defense.
Collapse
Affiliation(s)
- Natacha Steinckwich
- Université Henri Poincaré Nancy 1, Faculté des Sciences, BP239, 54506 Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mahadeo DC, Janka-Junttila M, Smoot RL, Roselova P, Parent CA. A chemoattractant-mediated Gi-coupled pathway activates adenylyl cyclase in human neutrophils. Mol Biol Cell 2006; 18:512-22. [PMID: 17135293 PMCID: PMC1783842 DOI: 10.1091/mbc.e06-05-0418] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neutrophils and Dictyostelium use conserved signal transduction pathways to decipher chemoattractant gradients and migrate directionally. In both cell types, addition of chemoattractants stimulates the production of cAMP, which has been suggested to regulate chemotaxis. We set out to define the mechanism by which chemoattractants increase cAMP levels in human neutrophils. We show that chemoattractants elicit a rapid and transient activation of adenylyl cyclase (AC). This activation is sensitive to pertussis toxin treatment but independent of phosphoinositide-3 kinase activity and an intact cytoskeleton. Remarkably, and in sharp contrast to Galpha(s)-mediated activation, chemoattractant-induced AC activation is lost in cell lysates. Of the nine, differentially regulated transmembrane AC isoforms in the human genome, we find that isoforms III, IV, VII, and IX are expressed in human neutrophils. We conclude that the signal transduction cascade used by chemoattractants to activate AC is conserved in Dictyostelium and human neutrophils and is markedly different from the canonical Galpha(s)-meditated pathway.
Collapse
Affiliation(s)
- Dana C. Mahadeo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Mirkka Janka-Junttila
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Rory L. Smoot
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Pavla Roselova
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| |
Collapse
|
45
|
Wang XH, Jia DZ, Liang YJ, Yan SL, Ding Y, Chen LM, Shi Z, Zeng MS, Liu GF, Fu LW. Lgf-YL-9 induces apoptosis in human epidermoid carcinoma KB cells and multidrug resistant KBv200 cells via reactive oxygen species-independent mitochondrial pathway. Cancer Lett 2006; 249:256-70. [PMID: 17055640 DOI: 10.1016/j.canlet.2006.09.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/02/2006] [Accepted: 09/06/2006] [Indexed: 01/28/2023]
Abstract
Pyrazolon derivatives were reported to have cytotoxicity to some tumour cells. In the present study, we investigated the effect of Lgf-YL-9 on cytotoxicity and cell apoptosis in human epidermoid carcinoma drug-sensitive parental KB cells and multidrug resistant (MDR) KBv200 cells. Lgf-YL-9 exhibited potent cytotoxicity not only to KB cells but also to KBv200 cells, and the IC(50) were 3.81 and 3.45 microg/mL in KB cells and KBv200 cells, respectively. Importantly, Lgf-YL-9 effectively inhibited tumour growth of KB cell xenografts in nude mice. Lgf-YL-9-induced cell apoptosis was confirmed by chromatin condensation, DNA fragmentation, Annexin-V and propidium iodide (PI) double-staining assay and poly(ADP-ribose) polymerase (PARP) cleavage. Furthermore, Lgf-YL-9-mediated apoptosis in KB cells and KBv200 cells was accompanied by the loss of mitochondrial membrane potential (DeltaPsi(m)), the release of cytochrome c, and the activation of caspases-3, -7, and -9, but not by intercalating to DNA. Although Lgf-YL-9-induced apoptosis was associated with the decrease of DeltaPsi(m), reactive oxygen species (ROS) reduction was interestingly observed in both cell lines. The data suggest that Lgf-YL-9 has similar cytotoxicity to drug-sensitive parental KB cells and MDR KBv200 cells. Lgf-YL-9-induced apoptosis is involved in a new ROS-independent mitochondrial dysfunction pathway, but not in intercalating to DNA.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Risøe PK, Wang Y, Stuestøl JF, Aasen AO, Wang JE, Dahle MK. Lipopolysaccharide attenuates mRNA levels of several adenylyl cyclase isoforms in vivo. Biochim Biophys Acta Mol Basis Dis 2006; 1772:32-9. [PMID: 17008068 DOI: 10.1016/j.bbadis.2006.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/02/2006] [Accepted: 08/21/2006] [Indexed: 11/30/2022]
Abstract
Signals that elevate intracellular levels of cyclic adenosine monophosphate (cAMP) are among the factors that control lipopolysaccharide (LPS)-mediated inflammatory mediator production by macrophages. cAMP signaling is also involved in maintaining body functions that are commonly impaired in sepsis, including the endothelial cell barrier function and heart function. Several agents successfully used for sepsis intervention target cAMP signaling, and it was recently shown that liver and lung may be protected from inflammation injury by cAMP-elevating phosphodiesterase inhibitors. Here, we show that LPS attenuates adenylyl cyclase (AC) mRNA levels in liver, lung, heart, spleen and kidney in an animal model of endotoxemia, and in macrophages from liver and lung. In particular, AC5, AC6, AC7 and AC9 mRNA were reduced in most tissues examined and in tissue macrophages. In Kupffer cells, prostaglandin E2-mediated cAMP production was inhibited by LPS treatment. The reduction in AC mRNA by LPS would be expected to lead to a lowered potential for cAMP production in most organs, and in particular, changes in AC6 mRNA may affect endothelial cell barrier function and heart function. In contrast, AC4 mRNA was elevated in heart and lung. The present work indicates a possible mechanism for LPS-mediated alteration of cAMP signaling in vivo.
Collapse
Affiliation(s)
- Petter Kirkeby Risøe
- University of Oslo, Faculty Division Rikshospitalet, Institute for Surgical Research, Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006; 362:623-39. [PMID: 16934836 PMCID: PMC3662476 DOI: 10.1016/j.jmb.2006.07.045] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 01/05/2023]
Abstract
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.
Collapse
Affiliation(s)
- Margarita Kamenetsky
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Sabine Middelhaufe
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
| | - Erin M. Bank
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Lonny R. Levin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
- Corresponding authors: ;
| | - Jochen Buck
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Clemens Steegborn
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
- Corresponding authors: ;
| |
Collapse
|
48
|
Stessin AM, Zippin JH, Kamenetsky M, Hess KC, Buck J, Levin LR. Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1. J Biol Chem 2006; 281:17253-17258. [PMID: 16627466 PMCID: PMC3092367 DOI: 10.1074/jbc.m603500200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.
Collapse
Affiliation(s)
- Alexander M Stessin
- Department of Pharmacology, New York, New York 10021; Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021
| | - Jonathan H Zippin
- Department of Pharmacology, New York, New York 10021; Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021
| | | | | | - Jochen Buck
- Department of Pharmacology, New York, New York 10021.
| | - Lonny R Levin
- Department of Pharmacology, New York, New York 10021
| |
Collapse
|
49
|
Abstract
Scientists who study neutrophils often have backgrounds in cell biology, biochemistry, haematology, rheumatology or infectious disease. Paradoxically, immunologists seem to have a harder time incorporating these host-defence cells into the framework of their discipline. The recent literature discussed here indicates that it is appropriate for immunologists to take as much interest in neutrophils as in their lymphohaematopoietic cousins with smooth nuclei. Neutrophils inform and shape immune responses, contribute to the repair of tissue as well as its breakdown, use killing mechanisms that enrich our concepts of specificity, and offer exciting opportunities for the treatment of neoplastic, autoinflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, Weill Graduate School of Medical Sciences of Cornell University, Box 57, 1300 York Avenue, New York 10021, USA.
| |
Collapse
|
50
|
Han H, Roberts J, Lou O, Muller WA, Nathan N, Nathan C. Chemical inhibitors of TNF signal transduction in human neutrophils point to distinct steps in cell activation. J Leukoc Biol 2005; 79:147-54. [PMID: 16275893 DOI: 10.1189/jlb.0605308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chemical screening identified three small compounds that selectively inhibited activation of the respiratory burst (RB) of human neutrophils in response to tumor necrosis factor (TNF) and formylated peptide but not phorbol ester and spared the ability of neutrophils to kill bacteria. These compounds partially inhibited TNF-triggered cytoskeletal rearrangements without blocking adhesion or transmigation of polymorphonuclear neutrophils through TNF-activated monolayers of endothelial cells. The compounds were nontoxic to neutrophils and endothelial cells. They had no direct inhibitory effect on the tyrosine kinases Src, Syk, or Pyk2. However, their differential effects on cell spreading, bacteria-induced RB, TNF-induced degranulation, TNF-induced protein tyrosine phosphorylation, and TNF-induced Syk activation suggested that each may act on different elements of neutrophil signaling pathways.
Collapse
Affiliation(s)
- Hyunsil Han
- Department of Microbiology and Immunobiology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|