1
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2025; 51:399-416. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Ghadersoltani P, Shoraka S, Sadjadi A, Saniee P. Long-term assessment of Helicobacter pylori cagA EPIYA motif changes and pathology outcomes in gastric biopsies of dyspeptic patients: 10-year follow-up. BMC Gastroenterol 2024; 24:466. [PMID: 39702056 DOI: 10.1186/s12876-024-03516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Helicobacter pylori exhibit considerable genetic diversity, especially in the cagA gene, which is prone to rearrangement, affecting gastric pathology. This study aims to identify changes in the cagA EPIYA motif patterns and gastric pathology during long-term colonization and to explore how factors such as smoking, alcohol consumption, gender, and age influence these changes. METHODS Paired formalin-fixed paraffin-embedded (FFPE) gastric biopsies from 100 H. pylori-positive patients with digestive disorders obtained 10 years apart. After DNA extraction, the presence of H. pylori was detected by PCR amplification of the 16 S rRNA gene, and the cagA gene and its EPIYA motif patterns were identified by PCR using specific primers. RESULTS Our results showed that 90% and 91% of primary and secondary samples were cagA positive respectively. The most frequent patterns were AB and ABC, and in 52% of patients, notable changes occurred in the motif pattern of cagA. The most frequent gastric pathology was chronic inflammation in both sets of samplings and in 45% of patients, changes in pathology outcomes were reported. A significant association was found between changes in pathology outcomes and gender (P = 0.01), with alterations observed in 24 male patients and 21 female patients, and between changes in pathology outcomes and smoking (P = 0.00). Among those with changes in pathology outcomes, only 18 patients had smoking habits, indicating a potential inverse correlation between smoking and the observed changes. A logistic regression analysis was performed to examine the association between smoking, gender, changes in cagA and alterations in gastric pathology. The finding revealed no significant relationship with smoking (P = 0.978 OR = 1.012) and gender (P = 0.901, OR = 0.950), but identified a significant association with changes in the cagA gene (p = 0.001, OR = 0.296), CONCLUSION: he study highlights substantial heterogeneity in the cagA EPIYA motif patterns in long-term H. pylori colonization and notes an inverse relationship between pathology outcomes and smoking, warranting further investigation.
Collapse
Affiliation(s)
- Paria Ghadersoltani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Alireza Sadjadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
3
|
Hu Y, Wang Y, Hu X, Chao H, Li S, Ni Q, Zhu Y, Hu Y, Zhao Z, Chen M. T4SEpp: A pipeline integrating protein language models to predict bacterial type IV secreted effectors. Comput Struct Biotechnol J 2024; 23:801-812. [PMID: 38328004 PMCID: PMC10847861 DOI: 10.1016/j.csbj.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Many pathogenic bacteria use type IV secretion systems (T4SSs) to deliver effectors (T4SEs) into the cytoplasm of eukaryotic cells, causing diseases. The identification of effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but this remains a major challenge. In this study, we used the full-length embedding features generated by six pre-trained protein language models to train classifiers predicting T4SEs and compared their performance. We integrated three modules into a model called T4SEpp. The first module searched for full-length homologs of known T4SEs, signal sequences, and effector domains; the second module fine-tuned a machine learning model using data for a signal sequence feature; and the third module used the three best-performing pre-trained protein language models. T4SEpp outperformed other state-of-the-art (SOTA) software tools, achieving ∼0.98 accuracy at a high specificity of ∼0.99, based on the assessment of an independent validation dataset. T4SEpp predicted 13 T4SEs from Helicobacter pylori, including the well-known CagA and 12 other potential ones, among which eleven could potentially interact with human proteins. This suggests that these potential T4SEs may be associated with the pathogenicity of H. pylori. Overall, T4SEpp provides a better solution to assist in the identification of bacterial T4SEs and facilitates studies of bacterial pathogenicity. T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp.
Collapse
Affiliation(s)
- Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
- Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qinyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
| | - Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
5
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
6
|
Gong Y, Huang X, Wang M, Liang X. Intratumor microbiota: a novel tumor component. J Cancer Res Clin Oncol 2023; 149:6675-6691. [PMID: 36639531 DOI: 10.1007/s00432-023-04576-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Bacteria have been found in tumors for over 100 years, but the irreproducibility of experiments on bacteria, the limitations of science and technology, and the contamination of the host environment have severely hampered most research into the role of bacteria in carcinogenesis and cancer treatment. With the development of molecular tools and techniques (e.g., macrogenomics, metabolomics, lipidomics, and macrotranscriptomics), the complex relationships between hosts and different microorganisms are gradually being deciphered. In the past, attention has been focused on the impact of the gut microbiota, the site where the body's microbes gather most, on tumors. However, little is known about the role of microbes from other sites, particularly the intratumor microbiota, in cancer. In recent years, an increasing number of studies have identified the presence of symbiotic microbiota within a large number of tumors, bringing the intratumor microbiota into the limelight. In this review, we aim to provide a better understanding of the role of the intratumor microbiota in cancer, to provide direction for future experimental and translational research, and to offer new approaches to the treatment of cancer and the improvement of patient prognosis.
Collapse
Affiliation(s)
- Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Phuc BH, Tuan VP, Binh TT, Tung PH, Tri TD, Dung HDQ, Thuan NPM, Fauzia KA, Tshibangu-Kabamba E, Alfaray RI, Saruuljavkhlan B, Matsumoto T, Akada J, Yamaoka Y. Comparative genomics of two Vietnamese Helicobacter pylori strains, CHC155 from a non-cardia gastric cancer patient and VN1291 from a duodenal ulcer patient. Sci Rep 2023; 13:8869. [PMID: 37258611 DOI: 10.1038/s41598-023-35527-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Helicobacter pylori is involved in the etiology and severity of several gastroduodenal diseases; however, plasticity of the H. pylori genome makes complete genome assembly difficult. We report here the full genomes of H. pylori strains CHC155 and VN1291 isolated from a non-cardia gastric cancer patient and a duodenal ulcer patient, respectively, and their virulence demonstrated by in vitro infection. Whole-genome sequences were obtained by combining long- and short-reads with a hybrid-assembly approach. Both CHC155 and VN1291 genome possessed four kinds of genomic island: a cag pathogenicity island (cagPAI), two type 4 secretion system islands within an integrative and conjugative element (tfs ICE), and prophage. CHC155 and VN1291 carried East Asian-type cagA and vacA s1m1, and outer membrane protein genes, including two copies of oipA. Corresponded to genetic determinants of antibiotic resistance, chromosomal mutations were identified in CHC155 (rdxA, gyrA, and 23S rRNA) and VN1291 (rdxA, 23S rRNA, and pbp1A). In vitro infection of AGS cells by both strains induced the cell scattering phenotype, tyrosine phosphorylation of CagA, and promoted high levels of IL8 secretion, indicating fully intact phenotypes of the cagPAI. Virulence genes in CHC155 and VN1291 genomes are crucial for H. pylori pathogenesis and are risk factors in the development of gastric cancer and duodenal ulcer. Our in vitro studies indicate that the strains CHC155 and VN1291 carry the pathogenic potential.
Collapse
Grants
- 21K08010 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 21K07898 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 221S0002 Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
- Bui Hoang Phuc
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Faculty of Applied Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Thanh Binh
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Pham Huu Tung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Dinh Tri
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Ho Dang Quy Dung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | | | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Evariste Tshibangu-Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan.
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Nguyen QA, Schmitt L, Mejías-Luque R, Gerhard M. Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front Immunol 2023; 14:1113478. [PMID: 36891299 PMCID: PMC9986547 DOI: 10.3389/fimmu.2023.1113478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Helicobacter pylori has developed several strategies using its diverse virulence factors to trigger and, at the same time, limit the host's inflammatory responses in order to establish a chronic infection in the human stomach. One of the virulence factors that has recently received more attention is a member of the Helicobacter outer membrane protein family, the adhesin HopQ, which binds to the human Carcinoembryonic Antigen-related Cell Adhesion Molecules (CEACAMs) on the host cell surface. The HopQ-CEACAM interaction facilitates the translocation of the cytotoxin-associated gene A (CagA), an important effector protein of H. pylori, into host cells via the Type IV secretion system (T4SS). Both the T4SS itself and CagA are important virulence factors that are linked to many aberrant host signaling cascades. In the last few years, many studies have emphasized the prerequisite role of the HopQ-CEACAM interaction not only for the adhesion of this pathogen to host cells but also for the regulation of cellular processes. This review summarizes recent findings about the structural characteristics of the HopQ-CEACAM complex and the consequences of this interaction in gastric epithelial cells as well as immune cells. Given that the upregulation of CEACAMs is associated with many H. pylori-induced gastric diseases including gastritis and gastric cancer, these data may enable us to better understand the mechanisms of H. pylori's pathogenicity.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Leonard Schmitt
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
9
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Hatakeyama M. Impact of the Helicobacter pylori Oncoprotein CagA in Gastric Carcinogenesis. Curr Top Microbiol Immunol 2023; 444:239-257. [PMID: 38231221 DOI: 10.1007/978-3-031-47331-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.
Collapse
Affiliation(s)
- Masanori Hatakeyama
- Institute of Microbial Chemistry, Laboratory of Microbial Carcinogenesis, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-Ku, Tokyo, 141-0021, Japan.
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-0815, Japan.
| |
Collapse
|
11
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
12
|
Wang H, Zhao M, Shi F, Zheng S, Xiong L, Zheng L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front Cell Infect Microbiol 2023; 13:1062803. [PMID: 37124036 PMCID: PMC10140366 DOI: 10.3389/fcimb.2023.1062803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Gastric cancer (GC), a common and high-mortality disease, still occupies an important position in current cancer research, and Helicobacter pylori (H. pylori) infection as its important risk factor has been a hot and challenging research area. Among the numerous pathogenic factors of H. pylori, the virulence protein CagA has been widely studied as the only bacterial-derived oncoprotein. It was found that CagA entering into gastric epithelial cells (GECs) can induce the dysregulation of multiple cellular pathways such as MAPK signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, Wnt/β-catenin signaling pathway, JAK-STAT signaling pathway, Hippo signaling pathway through phosphorylation and non-phosphorylation. These disordered pathways cause pathological changes in morphology, adhesion, polarity, proliferation, movement, and other processes of GECs, which eventually promotes the occurrence of GC. With the deepening of H. pylori-related research, the research on CagA-induced abnormal signaling pathway has been updated and deepened to some extent, so the key signaling pathways activated by CagA are used as the main stem to sort out the pathogenesis of CagA in this paper, aiming to provide new strategies for the H. pylori infection and treatment of GC in the future.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
13
|
Choi S, Kim N, Park JH, Nam RH, Song CH, Lee HS. Effect of Helicobacter pylori infection and its eradication on the expression of tight junction proteins in the gastric epithelium in relation to gastric carcinogenesis. Helicobacter 2022; 27:e12929. [PMID: 36063450 DOI: 10.1111/hel.12929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Tight junction proteins (TJPs) play a role in epithelial defense mechanisms. However, the effect of Helicobacter pylori (Hp) on TJPs remains unclear. This study aimed to evaluate the expression of TJPs in relation to Hp infection and eradication in gastric carcinogenesis. METHODS In total, 510 subjects (284 controls and 226 gastric cancer [GC] patients) were prospectively enrolled in the study. The expression of claudin-1 and -2 (CLDN-1, -2), occludin (OCLN), and tight junction protein 1 (TJP1) was measured based on their Hp infection status in normal corpus mucosa and evaluated following Hp eradication using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC). RESULTS The expression of TJP1 in Hp+ controls was significantly lower than that in Hp- controls (p = 0.006), whereas it was higher in Hp+ than in Hp- GC patients (p = 0.001). Moreover, the increased expression of TJP1 in Hp+ GC patients was reduced to levels in Hp- within a year after Hp eradication and was maintained for more than 5 years. Furthermore, IHC results for TJP1 were similar to qPCR results. In particular, the higher IHC staining intensity of TJP1 in the cytosol of GC patients (p = 0.019) decreased after Hp eradication (p = 0.040). CONCLUSION Hp infection affects TJP expression. The high expression of TJP1 in Hp+ GC patients was restored to control levels after Hp eradication, suggesting that TJP1 plays a role in gastric carcinogenesis.
Collapse
Affiliation(s)
- SooIn Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Hartland EL, Ghosal D, Giogha C. Manipulation of epithelial cell architecture by the bacterial pathogens Listeria and Shigella. Curr Opin Cell Biol 2022; 79:102131. [PMID: 36215855 DOI: 10.1016/j.ceb.2022.102131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Subversion of the host cell cytoskeleton is a virulence attribute common to many bacterial pathogens. On mucosal surfaces, bacteria have evolved distinct ways of interacting with the polarised epithelium and manipulating host cell structure to propagate infection. For example, Shigella and Listeria induce cytoskeletal changes to induce their own uptake into enterocytes in order to replicate within an intracellular environment and then spread from cell-to-cell by harnessing the host actin cytoskeleton. In this review, we highlight some recent studies that advance our understanding of the role of the host cell cytoskeleton in the mechanical and molecular processes of pathogen invasion, cell-to-cell spread and the impact of infection on epithelial intercellular tension and innate mucosal defence.
Collapse
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
16
|
Abstract
Helicobacter pylori infection remains one of the most prevalent infections worldwide, causing significant morbidity and mortality from gastric malignancies and peptic ulcers. This article provides a summary of the microbiology and pathogenesis of this bacterium, emphasizing the complex and protean effects of H pylori on gastric epithelial cells, including stem and progenitor populations, and evasion of host immune defenses. Increasing antibiotic resistance has made management more challenging. This article discusses the appropriate diagnostic modality for different clinical scenarios, and the evolving treatment of H pylori infections, including the use of antibiotic susceptibility testing to aid regimen selection.
Collapse
Affiliation(s)
- Jaehoon Cho
- Division of Gastroenterology, Brown University, 593 Eddy Street, POB 240, Providence, RI 02903, USA
| | - Akriti Prashar
- Department of Gastroenterology, Hepatology and Nutrition, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G0A4, Canada
| | - Nicola L Jones
- Department of Gastroenterology, Hepatology and Nutrition, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Steven F Moss
- Division of Gastroenterology, Brown University, 593 Eddy Street, POB 240, Providence, RI 02903, USA.
| |
Collapse
|
17
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
18
|
Hatakeyama M. The role of Helicobacter pylori CagA oncoprotein in neoplastic transformation of gastric epithelial cells. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:119-144. [DOI: 10.1016/b978-0-323-85563-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J Clin Med 2020; 9:jcm9113699. [PMID: 33217986 PMCID: PMC7698755 DOI: 10.3390/jcm9113699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during H. pylori infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon H. pylori stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, H. pylori LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells. The HGF/SF-MET signaling plays a major role in promoting cellular proliferation, motility, migration, survival, and angiogenesis, all of which are essential factors for cancer progression. H. pylori infection may facilitate MET downstream signaling in gastric cancer cells through its CagA protein via phosphorylation-dependent and/or phosphorylation-independent pathways. Other signaling pathways involved in H. pylori infection include EGFR, FAK, and Wnt/β-Catenin. These pathways function in the inflammatory process of gastric epithelial mucosa, as well as the progression of gastric cancer cells. Thus, H. pylori infection-mediated chronic inflammation plays an important role in the development and progression of gastric cancer.
Collapse
|
20
|
Kim SH, Kim H. Transcriptome Analysis of the Inhibitory Effect of Astaxanthin on Helicobacter pylori-Induced Gastric Carcinoma Cell Motility. Mar Drugs 2020; 18:md18070365. [PMID: 32679742 PMCID: PMC7404279 DOI: 10.3390/md18070365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection promotes the metastasis of gastric carcinoma cells by modulating signal transduction pathways that regulate cell proliferation, motility, and invasion. Astaxanthin (ASTX), a xanthophyll carotenoid, is known to inhibit cancer cell migration and invasion, however the mechanism of action of ASTX in H. pylori-infected gastric epithelial cells is not well understood. To gain insight into this process, we carried out a comparative RNA sequencing (RNA-Seq) analysis of human gastric cancer AGS (adenocarcinoma gastric) cells as a function of H. pylori infection and ASTX administration. The results were used to identify genes that are differently expressed in response to H. pylori and ASTX. Gene ontology (GO) analysis identified differentially expressed genes (DEGs) to be associated with cell cytoskeleton remodeling, motility, and/or migration. Among the 20 genes identified, those encoding c-MET, PI3KC2, PLCγ1, Cdc42, and ROCK1 were selected for verification by real-time PCR analysis. The verified genes were mapped, using signaling networks contained in the KEGG database, to create a signaling pathway through which ASTX might mitigate the effects of H. pylori-infection. We propose that H. pylori-induced upregulation of the upstream regulator c-MET, and hence, its downstream targets Cdc42 and ROCK1, is suppressed by ASTX. ASTX is also suggested to counteract H. pylori-induced activation of PI3K and PLCγ. In conclusion, ASTX can suppress H. pylori-induced gastric cancer progression by inhibiting cytoskeleton reorganization and reducing cell motility through downregulation of c-MET, EGFR, PI3KC2, PLCγ1, Cdc42, and ROCK1.
Collapse
|
21
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Haddadi MH, Negahdari B, Asadolahi R, Bazargani A. Helicobacter pylori antibiotic resistance and correlation with cagA motifs and homB gene. Postgrad Med 2020; 132:512-520. [PMID: 32281451 DOI: 10.1080/00325481.2020.1753406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: Helicobacter pylori (H. pylori) infection caused by antibiotic-resistant strains represents a major public health threat that aggressively promotes gastric cancer progression. Antibiotic resistance evaluation is immensely important to counteract its emergence. Here we merely determine the prevalence of antibiotic resistance in H. pylori isolates and its correlation with cagA motifs and the homB gene. Methods: The antibiotic resistance pattern was investigated on 128 H. pylori isolated strains utilizing the disk diffusion method and study the correlation between it and the presence of pathogenic genes, cagA EPIYA motifs and homB gene, were accurately detected using the PCR. Results: The resistance rates to four antibiotics were 70.1% for metronidazole, 35.5% for amoxicillin, 7.2% for clarithromycin and 8.2% for tetracycline. Resistance phenotypes were separated into two groups, single resistance (63.2%) and multi-resistance (12.5%). The prevalence of cagA-ABCC resistant strains and homB+ resistant strains was significantly higher in cancer (p = 0.04 and p = 0.01, respectively) than those of other diseases. The prevalence of cagA-homB + resistance strains was 21.8% and had a significant correlation with PUD. A significant relationship was observed between amoxicillin resistant rate with ABC-homB (p = 0.0006). Conclusion: The Resistance rate to selected antibiotics in Shiraz is higher than years ago. The presence of cagA-homB + is associated with antibiotic resistance and also homB can be used as a marker to antibiotic resistance status prediction in H. pylori isolated in this area.
Collapse
Affiliation(s)
- Mohammad-Hossein Haddadi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences , Ilam, Iran.,Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Roya Asadolahi
- Faculty Veterinary Medicine, Islamic Azad University , Sanandaj branch, Sanandaj, Iran
| | - Abdollah Bazargani
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
23
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
24
|
Yousefi B, Mohammadlou M, Abdollahi M, Salek Farrokhi A, Karbalaei M, Keikha M, Kokhaei P, Valizadeh S, Rezaiemanesh A, Arabkari V, Eslami M. Epigenetic changes in gastric cancer induction by Helicobacter pylori. J Cell Physiol 2019; 234:21770-21784. [PMID: 31169314 DOI: 10.1002/jcp.28925] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
Epigenetic disorder mechanisms are one of the causes of cancer. The most important of these changes is the DNA methylation, which leads to the spread of Helicobacter pylori and inflammatory processes followed by induction of DNA methylation disorder. Mutations and epigenetic changes are the two main agents of neoplasia. Epithelial cells infection by H. pylori associated with activating several intracellular pathways including: MAPK, NF-κB, Wnt/β-catenin, and PI3K are affects a variety of cells and caused to an increase in the production of inflammatory cytokines, changes in apoptosis, proliferation, differentiation, and ultimately leads to the transformation of epithelial cells into oncogenic. The arose of free radicals impose the DNA cytosine methylation, and NO can increase the activity of DNA methyltransferase. H. pylori infection causes an environment that mediates inflammation and signaling pathways that probably caused to stomach tumorigenicity. The main processes that change by decreasing or increasing the expression of various microRNAs expressions include immune responses, apoptosis, cell cycle, and autophagy. In this review will be describe a probably H. pylori roles in infection and mechanisms that have contribution in epigenetic changes in the promoter of genes.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Abdollahi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parviz Kokhaei
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Immune and Gene Therapy Lab, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Saeid Valizadeh
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Arabkari
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
25
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
26
|
Chichirau BE, Diechler S, Posselt G, Wessler S. Tyrosine Kinases in Helicobacter pylori Infections and Gastric Cancer. Toxins (Basel) 2019; 11:toxins11100591. [PMID: 31614680 PMCID: PMC6832112 DOI: 10.3390/toxins11100591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) has been identified as a leading cause of gastric cancer, which is one of the most frequent and malignant types of tumor. It is characterized by its rapid progression, distant metastases, and resistance to conventional chemotherapy. A number of receptor tyrosine kinases and non-receptor tyrosine kinases have been implicated in H. pylori-mediated pathogenesis and tumorigenesis. In this review, recent findings of deregulated EGFR, c-Met, JAK, FAK, Src, and c-Abl and their functions in H. pylori pathogenesis are summarized.
Collapse
Affiliation(s)
- Bianca E Chichirau
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Sebastian Diechler
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Silja Wessler
- Cancer Cluster Salzburg, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
27
|
Evolutionary mechanism leading to the multi-cagA genotype in Helicobacter pylori. Sci Rep 2019; 9:11203. [PMID: 31371778 PMCID: PMC6672019 DOI: 10.1038/s41598-019-47240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Infection with CagA+ Helicobacter pylori strains is linked to an increased risk for gastric diseases, including gastric cancer. Recent evidence indicates that dynamic expansion and contraction of cagA copy number may serve as a novel mechanism to enhance disease development. Herein, comparative genomic analysis divided hpEurope into two groups: hpEurope/type-A and type-B. Only hpEurope/type-B displayed the multi-cagA genotype. Further analysis showed that cagPAI appears to have been independently introduced into two different H. pylori types, termed pre-type-A and pre-type-B, which consequently evolved to cagPAI type-A and type-B, respectively; importantly, all multi-cagA genotype strains displayed cagPAI type-B. Two direct cagA-flanking repeats of a genetic element termed CHA-ud were essential for the multi-cagA genotype in strain PMSS1 (hpEurope/type-B and cagPAI type-B). Furthermore, introduction of this genetic element into strain G27 (hpEurope/type-A and cagPAI type-A) was sufficient to generate the multi-cagA genotype. The critical steps in the evolution of the multi-cagA genotype involved creation of CHA-ud at cagA upstream in cagPAI type-B strains followed by its duplication to cagA downstream. En masse, elucidation of the mechanism by which H. pylori evolved to carry multiple copies of cagA helps to provide a better understanding of how this ancient pathogen interacts with its host.
Collapse
|
28
|
Uotani T, Murakami K, Uchida T, Tanaka S, Nagashima H, Zeng XL, Akada J, Estes MK, Graham DY, Yamaoka Y. Changes of tight junction and interleukin-8 expression using a human gastroid monolayer model of Helicobacter pylori infection. Helicobacter 2019; 24:e12583. [PMID: 30950121 PMCID: PMC6918952 DOI: 10.1111/hel.12583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Lack of a model that mirrors Helicobacter pylori-induced gastric mucosal inflammation has hampered investigation of early host-bacterial interactions. We used an ex vivo model of human stomach, gastric epithelial organoid monolayers (gastroid monolayers) to investigate interactions of H pylori infection and the apical junctional complex and interleukin-8 (IL-8) expression. METHOD Morphology of human antral mucosal gastroid monolayers was evaluated using histology, immunohistochemical (IHC) staining, and transmission electron microscopy (TEM). Functional and gross changes in the apical junctional complexes were assessed using transepithelial electrical resistance (TEER), cytotoxicity assays, and confocal laser scanning microscopy. IL-8 expression was evaluated by real-time quantitative PCR and ELISA. RESULTS When evaluated by IHC and TEM, the morphology of gastroid monolayers closely resembled in vivo human stomach. Following inoculation of H pylori, TEER transiently declined (up to 51%) in an H pylori density-dependent manner. TEER recovered by 48 hours post-infection and remained normal despite continued presence and replication of H pylori. Confocal scanning microscopy showed minimal disruption of zonula occludens-1 or E-cadherin structure. IL-8 production was unchanged by infection with either CagA-positive or CagA-negative H pylori and JNK and MEK inhibitors did not suppress IL-8 production, whereas p38 and IKK inhibitor significantly did. CONCLUSION Human gastroid monolayers provide a model for experimental H pylori infection more consistent with in vivo human infections than seen with typical gastric epithelial cell lines. This ex vivo system should lead to better understanding of H pylori host-pathogen interactions.
Collapse
Affiliation(s)
- Takahiro Uotani
- Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Shingo Tanaka
- Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - David Y. Graham
- Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Yoshio Yamaoka
- Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| |
Collapse
|
29
|
Marques V, Cunha B, Couto A, Sampaio P, Fonseca LP, Aleixo S, Calado CRC. Characterization of gastric cells infection by diverse Helicobacter pylori strains through Fourier-transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:193-202. [PMID: 30453195 DOI: 10.1016/j.saa.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The infection of Helicobacter pylori, covering 50% of the world-population, leads to diverse gastric diseases as ulcers and cancer along the life-time of the human host. To promote the discovery of biomarkers of bacterial infection, in the present work, Fourier-transform infrared spectra were acquired from adenocarcinoma gastric cells, incubated with H. pylori strains presenting different genotypes concerning the virulent factors cytotoxin associated gene A and vacuolating cytotoxin A. Defined absorbance ratios were evaluated by diverse methods of statistical inference, according to the fulfillment of the tests assumptions. It was possible to define from the gastric cells, diverse absorbance ratios enabling to discriminate: i) The infection; ii) the bacteria genotype; and iii) the gastric disease of the patients from which the bacteria were isolated. These biomarkers could fasten the knowledge of the complex infection process while promoting a platform for a new diagnostic method, rapid but also specific and sensitive towards the diagnosis of both infection and bacterial virulence.
Collapse
Affiliation(s)
- Vanda Marques
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Bernardo Cunha
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Andreia Couto
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Pedro Sampaio
- Faculty of Engineering, Lusophone University of Humanities and Technology, Campo Grande, 376, 1749-019 Lisbon, Portugal
| | - Luís P Fonseca
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra Aleixo
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal; Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cecília R C Calado
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal.
| |
Collapse
|
30
|
Zamperone A, Cohen D, Stein M, Viard C, Müsch A. Inhibition of polarity-regulating kinase PAR1b contributes to Helicobacter pylori inflicted DNA Double Strand Breaks in gastric cells. Cell Cycle 2019; 18:299-311. [PMID: 30580666 DOI: 10.1080/15384101.2018.1560121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The serine/threonine kinase Par1 is a core component of the machinery that sets up polarity in the embryo and regulates cell fate decisions but its role in the homeostasis of adult tissues is poorly understood. Inhibition of Par1 by the bacterium Helicobacter pylori (H. pylori) represents the only established pathology that affects Par1 function in an adult epithelium. Thus, during chronic H. pylori infection of the gastric mucosa Par1 is one of the targets of the non-obligate H.pylori cytotoxic protein and oncogene CagA, which stimulates inflammation and triggers morphological changes, both believed to contribute to the gastric cancer risk imposed by H. pylori infection. Based on Par1's role in cell polarity, it has been speculated that Par1 inhibition affects epithelial polarity. Here we report the unexpected finding that CagA-mediated Par1-inhibition promotes the generation of DNA Double Strand Breaks in primary gastric epithelial cells, which likely contributes to the reported accumulation of mutations in chronically infected mucosal cells. Abbreviations: AGS: human gastric adenocarcinoma cell line; CM: CagA Multimerization (and Par1 binding) domain; H. pylori: Helicobacter pylori; DSB: Double Strand Break; HGECs: human (primary) gastric epithelial cells; IB: immunoblot; IF: immunofluorescence; MOI: Multiplicity of Infection; ROS: reactive oxygen species; Par1: Partitioning Defective 1 kinase; WT: wild type.
Collapse
Affiliation(s)
- Andrea Zamperone
- a Department of Developmental & Molecular Biology , Albert Einstein College Medicine , Bronx , NY , USA
| | - David Cohen
- a Department of Developmental & Molecular Biology , Albert Einstein College Medicine , Bronx , NY , USA
| | - Markus Stein
- b Department of Health Sciences , Albany College of Pharmacy and Health Sciences , Albany , NY , USA
| | - Charlotte Viard
- a Department of Developmental & Molecular Biology , Albert Einstein College Medicine , Bronx , NY , USA
| | - Anne Müsch
- a Department of Developmental & Molecular Biology , Albert Einstein College Medicine , Bronx , NY , USA
| |
Collapse
|
31
|
VacA promotes CagA accumulation in gastric epithelial cells during Helicobacter pylori infection. Sci Rep 2019; 9:38. [PMID: 30631092 PMCID: PMC6328614 DOI: 10.1038/s41598-018-37095-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the causative agent of gastric cancer, making it the only bacterium to be recognized as a Class I carcinogen by the World Health Organization. The virulence factor cytotoxin associated gene A (CagA) is a known oncoprotein that contributes to the development of gastric cancer. The other major virulence factor vacuolating cytotoxin A (VacA), disrupts endolysosomal vesicular trafficking and impairs the autophagy pathway. Studies indicate that there is a functional interplay between these virulence factors by unknown mechanisms. We show that in the absence of VacA, both host-cell autophagy and the proteasome degrade CagA during infection with H. pylori. In the presence of VacA, CagA accumulates in gastric epithelial cells. However, VacA does not affect proteasome function during infection with H. pylori suggesting that VacA−disrupted autophagy is the predominant means by which CagA accumulates. Our studies support a model where in the presence of VacA, CagA accumulates in dysfunctional autophagosomes providing a possible explanation for the functional interplay of VacA and CagA.
Collapse
|
32
|
Hatakeyama M. Malignant Helicobacter pylori-Associated Diseases: Gastric Cancer and MALT Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:135-149. [DOI: 10.1007/5584_2019_363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Feng R, Li J, Sah BK, Yuan F, Jin X, Yan M, Liu B, Li C, Zhu Z. Overexpression of CrkL as a novel biomarker for poor prognosis in gastric cancer. Cancer Biomark 2019; 26:131-138. [PMID: 31356198 DOI: 10.3233/cbm-192435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The signaling adapter protein CrkL plays vital roles in multiple cancers. However, the expression pattern of CrkL protein and its clinical significance have not been well characterized in human gastric cancer (GC) so far. OBJECTIVE To investigate the association of tissue-based CrkL protein expression level with the clinicopathological characteristics and prognosis of GC patients. METHODS The expression level of CrkL protein in 380 GC patients was analyzed by immunohistochemistry. The associations of CrkL protein expression level with clinicopathologicalal characteristics and clinical outcome were evaluated. RESULTS Compared with the matched adjacent non-tumor tissues, CrkL protein expression level was significantly up-regulated in tumor tissues. In addition, there was a positive correlation between CrkL and Ki67 expression levels in GC patients. An elevated CrkL level statistically correlated with aggressive clinicopathologicalal characteristics, such as larger tumor size, deeper local invasion, more lymph node metastasis, advanced TNM stage, and poorer prognosis. Notably, multivariate analysis identified tissue-based CrkL level as an independent predictor for the unfavorable prognosis of GC. CONCLUSIONS These results indicate that CrkL protein may serve as a novel prognostic biomarker in GC.
Collapse
Affiliation(s)
- Runhua Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Birendra K Sah
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Jin
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Structural Analysis of Variability and Interaction of the N-terminal of the Oncogenic Effector CagA of Helicobacter pylori with Phosphatidylserine. Int J Mol Sci 2018; 19:ijms19103273. [PMID: 30360352 PMCID: PMC6214045 DOI: 10.3390/ijms19103273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori cytotoxin-associated gene A protein (CagA) has been associated with the increase in virulence and risk of cancer. It has been demonstrated that CagA’s translocation is dependent on its interaction with phosphatidylserine. We evaluated the variability of the N-terminal CagA in 127 sequences reported in NCBI, by referring to molecular interaction forces with the phosphatidylserine and the docking of three mutations chosen from variations in specific positions. The major sites of conservation of the residues involved in CagA–Phosphatidylserine interaction were 617, 621 and 626 which had no amino acid variation. Position 636 had the lowest conservation score; mutations in this position were evaluated to observe the differences in intermolecular forces for the CagA–Phosphatidylserine complex. We evaluated the docking of three mutations: K636A, K636R and K636N. The crystal and mutation models presented a ΔG of −8.919907, −8.665261, −8.701923, −8.515097 Kcal/mol, respectively, while mutations K636A, K636R, K636N and the crystal structure presented 0, 3, 4 and 1 H-bonds, respectively. Likewise, the bulk effect of the ΔG and amount of H-bonds was estimated in all of the docking models. The type of mutation affected both the ΔG (χ2(1)=93.82, p-value <2.2×10−16) and the H-bonds (χ2(1)=91.93, p-value <2.2×10−16). Overall, 76.9% of the strains that exhibit the K636N mutation produced a severe pathology. The average H-bond count diminished when comparing the mutations with the crystal structure of all the docking models, which means that other molecular forces are involved in the CagA–Phosphatidylserine complex interaction.
Collapse
|
35
|
Zhang Y, Li D, Dai Y, Li R, Gao Y, Hu L. The Role of E-cadherin in Helicobacter pylori-Related Gastric Diseases. Curr Drug Metab 2018; 20:23-28. [PMID: 29938616 DOI: 10.2174/1389200219666180625113010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori)-related gastric diseases are a series of gastric mucosal disorders associated with H. pylori infection. Gastric cancer (GC) is widely believed to evolve from gastritis and gastric ulcer. As an important adhesion molecule of epithelial cells, E-cadherin plays a key role in the development of gastric diseases. In this review, we aim to seek the characteristic of E-cadherin expression at different stages of gastric diseases. METHODS We searched plenty of databases for research literature about E-cadherin expression in H. pylori-related gastric diseases, and reviewed the relationship of E-cadherin and H. pylori, and the role of E-cadherin at different stages of gastric diseases. RESULTS H. pylori was shown to decrease E-cadherin expression by various ways in vitro, while most of clinical studies have not found the relationship between H. pylori and E-cadherin expression. It is defined that poor outcome of GC is related to loss expression of E-cadherin, but it is still unclear when qualitative change of E-cadherin expression in gastric mucosa emerges. CONCLUSION Expression level of E-cadherin in gastric cells may be a consequence of injury factors and body's selfrepairing ability. More studies on E-cadherin expression in gastric mucosa with precancerous lesions need to be performed, which may be potential and useful for early detection, prevention and treatment of GC.
Collapse
Affiliation(s)
- Yunzhan Zhang
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Danyan Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yunkai Dai
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ruliu Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yong Gao
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ling Hu
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
36
|
Kralicek SE, Nguyen M, Rhee KJ, Tapia R, Hecht G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. J Transl Med 2018; 98:477-488. [PMID: 29396422 PMCID: PMC5920738 DOI: 10.1038/s41374-017-0016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a foodborne pathogen that uses a type III secretion system to translocate effector molecules into host intestinal epithelial cells (IECs) subverting several host cell processes and signaling cascades. Interestingly, EPEC infection induces only modest intestinal inflammation in the host. The homologous EPEC effector proteins, NleH1 and NleH2, suppress the nuclear factor-κB (NF-κB) pathway and apoptosis in vitro. Increased apoptosis and activation of NF-κB and MAP kinases (MAPK) contribute to the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to determine if NleH1 and NleH2 also block MAPK pathways in vitro and in vivo, and to compare the effects of these bacterial proteins on a murine model of colitis. Cultured IECs were infected with various strains of EPEC expressing NleH1 and NleH2, or not, and the activation of ERK1/2 and p38 was determined. In addition, the impact of infection with various strains of EPEC on murine DSS colitis was assessed by change in body weight, colon length, histology, and survival. Activation of apoptosis and MAPK signaling were also evaluated. Our data show that NleH1, but not NleH2, suppresses ERK1/2 and p38 activation in vitro. Interestingly, NleH1 affords significantly greater protection against and hastens recovery from dextran sodium sulfate (DSS)-induced colitis compared to NleH2. Strikingly, colitis-associated mortality was abolished by infection with EPEC strains expressing NleH1. Interestingly, in vivo NleH1 suppresses activation of ERK1/2 and p38 and blocks apoptosis independent of the kinase domain that inhibits NF-κB. In contrast, NleH2 suppresses only caspase-3 and p38, but not ERK1/2. We conclude that NleH1 affords greater protection against and improves recovery from DSS colitis compared to NleH2 due to its ability to suppress ERK1/2 in addition to NF-κB, p38, and apoptosis. These findings warrant further investigation of anti-inflammatory bacterial proteins as novel treatments for IBD.
Collapse
Affiliation(s)
- Sarah E. Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Mai Nguyen
- Cortexyme Inc, South San Francisco, CA, USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, Republic of Korea
| | - Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Gail Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
37
|
Guven-Maiorov E, Tsai CJ, Ma B, Nussinov R. Prediction of Host-Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer. J Mol Biol 2017; 429:3925-3941. [PMID: 29106933 PMCID: PMC7906438 DOI: 10.1016/j.jmb.2017.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
There is a strong correlation between some pathogens and certain cancer types. One example is Helicobacter pylori and gastric cancer. Exactly how they contribute to host tumorigenesis is, however, a mystery. Pathogens often interact with the host through proteins. To subvert defense, they may mimic host proteins at the sequence, structure, motif, or interface levels. Interface similarity permits pathogen proteins to compete with those of the host for a target protein and thereby alter the host signaling. Detection of host-pathogen interactions (HPIs) and mapping the re-wired superorganism HPI network-with structural details-can provide unprecedented clues to the underlying mechanisms and help therapeutics. Here, we describe the first computational approach exploiting solely interface mimicry to model potential HPIs. Interface mimicry can identify more HPIs than sequence or complete structural similarity since it appears more common than the other mimicry types. We illustrate the usefulness of this concept by modeling HPIs of H. pylori to understand how they modulate host immunity, persist lifelong, and contribute to tumorigenesis. H. pylori proteins interfere with multiple host pathways as they target several host hub proteins. Our results help illuminate the structural basis of resistance to apoptosis, immune evasion, and loss of cell junctions seen in H. pylori-infected host cells.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
38
|
The Middle Fragment of Helicobacter pylori CagA Induces Actin Rearrangement and Triggers Its Own Uptake into Gastric Epithelial Cells. Toxins (Basel) 2017; 9:toxins9080237. [PMID: 28788072 PMCID: PMC5577571 DOI: 10.3390/toxins9080237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/07/2017] [Accepted: 07/26/2017] [Indexed: 01/14/2023] Open
Abstract
Cytotoxin-associated gene product A (CagA) is a major virulence factor secreted by Helicobacter pylori. CagA activity in the gastric epithelium is associated with higher risk of gastric cancer development. Bacterial type IV secretion system (T4SS)-mediated translocation of CagA into the cytosol of human epithelial cells occurs via a poorly understood mechanism that requires CagA interaction with the host membrane lipid phosphatidylserine (PS) and host cell receptor integrin α5β1. Here we have characterized the isolated recombinant middle fragment of CagA (CagA-M) that contains the positively-charged PS-binding region (aa 613–636) and a putative β1 integrin binding site, but lacks the EPIYA region, secretion signal peptide and the CagA multimerization motif. We show that CagA-M, when immobilized on latex beads, is capable of binding to, and triggering its own uptake into, gastric epithelial cells in the absence of infection with cagA-positive H. pylori. Using site-directed mutagenesis, fluorescent and electron microscopy, and highly-specific inhibitors, we demonstrate that the cell-binding and endocytosis-like internalization of CagA-M are dependent on (1) binding to PS; (2) β1 integrin activity; and (3) actin dynamics. Interaction of CagA-M with the host cells is accompanied by the development of long filopodia-like protrusions (macrospikes). This novel morphology is different from the hummingbird phenotype induced by the translocation of full-length CagA. The determinants within CagA-M and within the host that are important for endocytosis-like internalization into host cells are very similar to those observed for T4SS-mediated internalization of full-length CagA, suggesting that the latter may involve an endocytic pathway.
Collapse
|
39
|
Abstract
Helicobacter pylori is the most common bacterial infection worldwide, and virtually all infected persons develop co-existing gastritis. H. pylori is able to send and receive signals from the gastric mucosa, which enables both host and microbe to engage in a dynamic equilibrium. In order to persist within the human host, H. pylori has adopted dichotomous strategies to both induce inflammation as a means of liberating nutrients while simultaneously tempering the immune response to augment its survival. Toll-like receptors (TLRs) and Nod proteins are innate immune receptors that are present in epithelial cells and represent the first line of defense against pathogens. To ensure persistence, H. pylori manipulates TLR-mediated defenses using strategies that include rendering its LPS and flagellin to be non-stimulatory to TLR4 and TLR5, respectively; translocating peptidoglycan into host cells to induce NOD1-mediated anti-inflammatory responses; and translocating DNA into host cells to induce TLR9 activation.
Collapse
|
40
|
Ruch TR, Engel JN. Targeting the Mucosal Barrier: How Pathogens Modulate the Cellular Polarity Network. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027953. [PMID: 28193722 DOI: 10.1101/cshperspect.a027953] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mucosal barrier is composed of polarized epithelial cells with distinct apical and basolateral surfaces separated by tight junctions and serves as both a physical and immunological barrier to incoming pathogens. Specialized polarity proteins are critical for establishment and maintenance of polarity. Many human pathogens have evolved virulence mechanisms that target the polarity network to enhance binding, create replication niches, move through the barrier by transcytosis, or bypass the barrier by disrupting cell-cell junctions. This review summarizes recent advances and compares and contrasts how three important human pathogens that colonize mucosal surfaces, Pseudomonas aeruginosa, Helicobacter pylori, and Neisseria meningitidis, subvert the host cell polarization machinery during infection.
Collapse
Affiliation(s)
- Travis R Ruch
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
41
|
Tegtmeyer N, Neddermann M, Asche CI, Backert S. Subversion of host kinases: a key network in cellular signaling hijacked byHelicobacter pyloriCagA. Mol Microbiol 2017; 105:358-372. [DOI: 10.1111/mmi.13707] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Matthias Neddermann
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Carmen Isabell Asche
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| |
Collapse
|
42
|
Nishikawa H, Hatakeyama M. Sequence Polymorphism and Intrinsic Structural Disorder as Related to Pathobiological Performance of the Helicobacter pylori CagA Oncoprotein. Toxins (Basel) 2017; 9:toxins9040136. [PMID: 28406453 PMCID: PMC5408210 DOI: 10.3390/toxins9040136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
CagA, an oncogenic virulence factor produced by Helicobacter pylori, is causally associated with the development of gastrointestinal diseases such as chronic gastritis, peptic ulcers, and gastric cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA interacts with a number of host proteins through the intrinsically disordered C-terminal tail, which contains two repeatable protein-binding motifs, the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif and the CagA multimerization (CM) motif. The EPIYA motif, upon phosphorylation by host kinases, binds and deregulates Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2), a bona fide oncoprotein, inducing pro-oncogenic mitogenic signaling and abnormal cell morphology. Through the CM motif, CagA inhibits the kinase activity of polarity regulator partitioning-defective 1b (PAR1b), causing junctional and polarity defects while inducing actin cytoskeletal rearrangements. The magnitude of the pathobiological action of individual CagA has been linked to the tandem repeat polymorphisms of these two binding motifs, yet the molecular mechanisms by which they affect disease outcome remain unclear. Recent studies using quantitative techniques have provided new insights into how the sequence polymorphisms in the structurally disordered C-terminal region determine the degree of pro-oncogenic action of CagA in the gastric epithelium.
Collapse
Affiliation(s)
- Hiroko Nishikawa
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| |
Collapse
|
43
|
Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040134. [PMID: 28398251 PMCID: PMC5408208 DOI: 10.3390/toxins9040134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
Persistent infections with the human pathogen and class-I carcinogen Helicobacter pylori (H. pylori) are closely associated with the development of acute and chronic gastritis, ulceration, gastric adenocarcinoma and lymphoma of the mucosa-associated lymphoid tissue (MALT) system. Disruption and depolarization of the epithelium is a hallmark of H. pylori-associated disorders and requires extensive modulation of epithelial cell surface structures. Hence, the complex network of controlled proteolysis which facilitates tissue homeostasis in healthy individuals is deregulated and crucially contributes to the induction and progression of gastric cancer through processing of extracellular matrix (ECM) proteins, cell surface receptors, membrane-bound cytokines, and lateral adhesion molecules. Here, we summarize the recent reports on mechanisms how H. pylori utilizes a variety of extracellular proteases, involving the proteases Hp0169 and high temperature requirement A (HtrA) of bacterial origin, and host matrix-metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and tissue inhibitors of metalloproteinases (TIMPs). H. pylori-regulated proteases represent predictive biomarkers and attractive targets for therapeutic interventions in gastric cancer.
Collapse
|
44
|
Dynamic Expansion and Contraction of cagA Copy Number in Helicobacter pylori Impact Development of Gastric Disease. mBio 2017; 8:mBio.01779-16. [PMID: 28223454 PMCID: PMC5358911 DOI: 10.1128/mbio.01779-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infection with Helicobacter pylori is a major risk factor for development of gastric disease, including gastric cancer. Patients infected with H. pylori strains that express CagA are at even greater risk of gastric carcinoma. Given the importance of CagA, this report describes a new molecular mechanism by which the cagA copy number dynamically expands and contracts in H. pylori. Analysis of strain PMSS1 revealed a heterogeneous population in terms of numbers of cagA copies; strains carried from zero to four copies of cagA that were arranged as direct repeats within the chromosome. Each of the multiple copies of cagA was expressed and encoded functional CagA; strains with more cagA repeats exhibited higher levels of CagA expression and increased levels of delivery and phosphorylation of CagA within host cells. This concomitantly resulted in more virulent phenotypes as measured by cell elongation and interleukin-8 (IL-8) induction. Sequence analysis of the repeat region revealed three cagA homologous areas (CHAs) within the cagA repeats. Of these, CHA-ud flanked each of the cagA copies and is likely important for the dynamic variation of cagA copy numbers. Analysis of a large panel of clinical isolates showed that 7.5% of H. pylori strains isolated in the United States harbored multiple cagA repeats, while none of the tested Korean isolates carried more than one copy of cagA. Finally, H. pylori strains carrying multiple cagA copies were differentially associated with gastric disease. Thus, the dynamic expansion and contraction of cagA copy numbers may serve as a novel mechanism by which H. pylori modulates gastric disease development. Severity of H. pylori-associated disease is directly associated with carriage of the CagA toxin. Though the sequences of the CagA protein can differ across strains, previous analyses showed that virtually all H. pylori strains carry one or no copies of cagA. This study showed that H. pylori can carry multiple tandem copies of cagA that can change dynamically. Isolates harboring more cagA copies produced more CagA, thus enhancing toxicity to host cells. Analysis of 314 H. pylori clinical strains isolated from patients in South Korea and the United States showed that 7.5% of clinical strains in the United States carried multiple cagA copies whereas none of the South Korean strains did. This study demonstrated a novel molecular mechanism by which H. pylori dynamically modulates cagA copy number, which affects CagA expression and activity and may impact downstream development of gastric disease.
Collapse
|
45
|
Butcher LD, den Hartog G, Ernst PB, Crowe SE. Oxidative Stress Resulting From Helicobacter pylori Infection Contributes to Gastric Carcinogenesis. Cell Mol Gastroenterol Hepatol 2017; 3:316-322. [PMID: 28462373 PMCID: PMC5404027 DOI: 10.1016/j.jcmgh.2017.02.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/11/2017] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a gram-negative, microaerophilic bacterium that infects the stomach and can lead to, among other disorders, the development of gastric cancer. The inability of the host to clear the infection results in a chronic inflammatory state with continued oxidative stress within the tissue. Reactive oxygen species and reactive nitrogen species produced by the immune and epithelial cells damage the host cells and can result in DNA damage. H pylori has evolved to evoke this damaging response while blunting the host's efforts to kill the bacteria. This long-lasting state with inflammation and oxidative stress can result in gastric carcinogenesis. Continued efforts to better understand the bacterium and the host response will serve to prevent or provide improved early diagnosis and treatment of gastric cancer.
Collapse
Key Words
- AP Endonuclease
- APE1, apurinic/apyrimidinic endonuclease 1
- BabA, blood group antigen binding adhesion
- CagA, cytotoxin-associated gene A
- DNA Damage
- Gastric Cancer
- H pylori
- IL, interleukin
- NADPH, nicotinamide adenine dinucleotide phosphate
- NapA, neutrophil activating factor A
- Nox, nicotinamide adenine dinucleotide phosphate oxidase
- O2-, superoxide
- OH, hydroxyl radical
- Oxidative Stress
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- TGF-β, transforming growth factor β
- VacA, vacuolating cytotoxin A
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Lindsay D. Butcher
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Gerco den Hartog
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Peter B. Ernst
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Sheila E. Crowe
- Department of Medicine, University of California, San Diego, La Jolla, California
- Correspondence Address correspondence to: Sheila E. Crowe, MD, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.Department of MedicineUniversity of CaliforniaSan Diego9500 Gilman DriveLa JollaCalifornia 92093-0063
| |
Collapse
|
46
|
Helicobacter pylori, Cancer, and the Gastric Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 908:393-408. [PMID: 27573782 DOI: 10.1007/978-3-319-41388-4_19] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric adenocarcinoma is one of the leading causes of cancer-related death worldwide and Helicobacter pylori infection is the strongest known risk factor for this disease. Although the stomach was once thought to be a sterile environment, it is now known to house many bacterial species leading to a complex interplay between H. pylori and other residents of the gastric microbiota. In addition to the role of H. pylori virulence factors, host genetic polymorphisms, and diet, it is now becoming clear that components of the gastrointestinal microbiota may also influence H. pylori-induced pathogenesis. In this chapter, we discuss emerging data regarding the gastric microbiota in humans and animal models and alterations that occur to the composition of the gastric microbiota in the presence of H. pylori infection that may augment the risk of developing gastric cancer.
Collapse
|
47
|
Backert S, Schmidt TP, Harrer A, Wessler S. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions. Curr Top Microbiol Immunol 2017; 400:195-226. [PMID: 28124155 DOI: 10.1007/978-3-319-50520-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Thomas P Schmidt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020, Salzburg, Austria
| | - Aileen Harrer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Silja Wessler
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020, Salzburg, Austria.
| |
Collapse
|
48
|
HATAKEYAMA M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:196-219. [PMID: 28413197 PMCID: PMC5489429 DOI: 10.2183/pjab.93.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor of gastric cancer. The cagA gene-encoded CagA protein is delivered into gastric epithelial cells via bacterial type IV secretion, where it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs. Delivered CagA then acts as a non-physiological scaffold/hub protein by interacting with multiple host signaling molecules, most notably the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1/MARK, in both tyrosine phosphorylation-dependent and -independent manners. CagA-mediated manipulation of intracellular signaling promotes neoplastic transformation of gastric epithelial cells. Transgenic expression of CagA in experimental animals has confirmed the oncogenic potential of the bacterial protein. Structural polymorphism of CagA influences its scaffold function, which may underlie the geographic difference in the incidence of gastric cancer. Since CagA is no longer required for the maintenance of established gastric cancer cells, studying the role of CagA during neoplastic transformation will provide an excellent opportunity to understand molecular processes underlying "Hit-and-Run" carcinogenesis.
Collapse
Affiliation(s)
- Masanori HATAKEYAMA
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: M. Hatakeyama, Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (e-mail: )
| |
Collapse
|
49
|
Chen SY, Zhang RG, Duan GC. Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep 2016; 36:3087-3094. [PMID: 27748858 DOI: 10.3892/or.2016.5145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
Infection with Helicobacter pylori is the strongest risk factor for the development of chronic gastritis, gastric ulcer and gastric carcinoma. The majority of the H. pylori-infected population remains asymptomatic, and only 1% of individuals may progress to gastric cancer. The clinical outcomes caused by H. pylori infection are considered to be associated with bacterial virulence, genetic polymorphism of hosts as well as environmental factors. Most H. pylori strains possess a cytotoxin-associated gene (cag) pathogenicity island (cagPAI), encoding a 120-140 kDa CagA protein, which is the most important bacterial oncoprotein. CagA is translocated into host cells via T4SS system and affects the expression of signaling proteins in a phosphorylation-dependent and independent manner. Thus, this review summarizes the results of relevant studies, discusses the pathogenesis of CagA-mediated gastric cancer.
Collapse
Affiliation(s)
- Shuai-Yin Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Rong-Guang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guang-Cai Duan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
50
|
Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b. Sci Rep 2016; 6:30031. [PMID: 27445265 PMCID: PMC4957108 DOI: 10.1038/srep30031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer.
Collapse
|