1
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Bello A, Hirth G, Voigt S, Tepper S, Jungnickel B. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle 2023; 22:2070-2087. [PMID: 37909747 PMCID: PMC10761156 DOI: 10.1080/15384101.2023.2275397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize the current knowledge on the mechanism and regulation of secondary immunoglobulin diversification and discuss known mechanisms of physiological targeting to immunoglobulin genes and mistargeting to other cellular genes. We summarize open questions in the field and provide an outlook on future research.
Collapse
Affiliation(s)
- Amanda Bello
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Gianna Hirth
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefanie Voigt
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sandra Tepper
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Schrader CE, Williams T, Pechhold K, Linehan EK, Tsuchimoto D, Nakabeppu Y. APE2 Promotes AID-Dependent Somatic Hypermutation in Primary B Cell Cultures That Is Suppressed by APE1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1804-1814. [PMID: 37074207 PMCID: PMC10234595 DOI: 10.4049/jimmunol.2100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.
Collapse
Affiliation(s)
- Carol E. Schrader
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Travis Williams
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Klaus Pechhold
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Daisuke Tsuchimoto
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Spanjaard A, Stratigopoulou M, de Groot D, Aslam M, van den Berk PCM, Stappenbelt C, Ayidah M, Catsman JJI, Pardieck IN, Kreft M, Arens R, Guikema JEJ, Jacobs H. Huwe1 supports B-cell development, B-cell-dependent immunity, somatic hypermutation and class switch recombination by regulating proliferation. Front Immunol 2023; 13:986863. [PMID: 36700204 PMCID: PMC9869049 DOI: 10.3389/fimmu.2022.986863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
The development and differentiation of B cells is intimately linked to cell proliferation and the generation of diverse immunoglobulin gene (Ig) repertoires. The ubiquitin E3 ligase HUWE1 controls proliferation, DNA damage responses, and DNA repair, including the base excision repair (BER) pathway. These processes are of crucial importance for B-cell development in the bone marrow, and the germinal center (GC) response, which results in the clonal expansion and differentiation of B cells expressing high affinity immunoglobulins. Here, we re-examined the role of HUWE1 in B-cell proliferation and Ig gene diversification, focusing on its involvement in somatic hypermutation (SHM) and class switch recombination (CSR). B-cell-specific deletion of Huwe1 resulted in impaired development, differentiation and maturation of B cells in the bone marrow and peripheral lymphoid organs. HUWE1 deficiency diminished SHM and CSR by impairing B-cell proliferation and AID expression upon activation in vitro and in vivo, and was unrelated to the HUWE1-dependent regulation of the BER pathway. Interestingly, we found that HUWE1-deficient B cells showed increased mRNA expression of Myc target genes upon in vitro activation despite diminished proliferation. Our results confirm that the E3 ligase HUWE1 is an important contributor in coordinating the rapid transition of antigen naïve, resting B cells into antigen-activated B cells and regulates mutagenic processes in B cells by controlling AID expression and the post-transcriptional output of Myc target genes.
Collapse
Affiliation(s)
- Aldo Spanjaard
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maria Stratigopoulou
- Department of Pathology, Amsterdam University Medical Centers, Location Academic Medical Center (AMC), Lymphoma and Myeloma center Amsterdam (LYMMCARE), Amsterdam, Netherlands
| | - Daniël de Groot
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Muhammad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Paul C. M. van den Berk
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chantal Stappenbelt
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Matilda Ayidah
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joyce J. I. Catsman
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Iris N. Pardieck
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike Kreft
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen E. J. Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location Academic Medical Center (AMC), Lymphoma and Myeloma center Amsterdam (LYMMCARE), Amsterdam, Netherlands,*Correspondence: Heinz Jacobs, ; Jeroen E. J. Guikema,
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands,*Correspondence: Heinz Jacobs, ; Jeroen E. J. Guikema,
| |
Collapse
|
5
|
Rogier M, Moritz J, Robert I, Lescale C, Heyer V, Abello A, Martin O, Capitani K, Thomas M, Thomas-Claudepierre AS, Laffleur B, Jouan F, Pinaud E, Tarte K, Cogné M, Conticello SG, Soutoglou E, Deriano L, Reina-San-Martin B. Fam72a enforces error-prone DNA repair during antibody diversification. Nature 2021; 600:329-333. [PMID: 34819671 DOI: 10.1038/s41586-021-04093-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Efficient humoral responses rely on DNA damage, mutagenesis and error-prone DNA repair. Diversification of B cell receptors through somatic hypermutation and class-switch recombination are initiated by cytidine deamination in DNA mediated by activation-induced cytidine deaminase (AID)1 and by the subsequent excision of the resulting uracils by uracil DNA glycosylase (UNG) and by mismatch repair proteins1-3. Although uracils arising in DNA are accurately repaired1-4, how these pathways are co-opted to generate mutations and double-strand DNA breaks in the context of somatic hypermutation and class-switch recombination is unknown1-3. Here we performed a genome-wide CRISPR-Cas9 knockout screen for genes involved in class-switch recombination and identified FAM72A, a protein that interacts with the nuclear isoform of UNG (UNG2)5 and is overexpressed in several cancers5. We show that the FAM72A-UNG2 interaction controls the levels of UNG2 and that class-switch recombination is defective in Fam72a-/- B cells due to the upregulation of UNG2. Moreover, we show that somatic hypermutation is reduced in Fam72a-/- B cells and that its pattern is skewed upon upregulation of UNG2. Our results are consistent with a model in which FAM72A interacts with UNG2 to control its physiological level by triggering its degradation, regulating the level of uracil excision and thus the balance between error-prone and error-free DNA repair. Our findings have potential implications for tumorigenesis, as reduced levels of UNG2 mediated by overexpression of Fam72a would shift the balance towards mutagenic DNA repair, rendering cells more prone to acquire mutations.
Collapse
Affiliation(s)
- Mélanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jacques Moritz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre Le Cancer, INSERM U1223, Institut Pasteur, Paris, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Arthur Abello
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Ophélie Martin
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katia Capitani
- Core Research Laboratory, ISPRO, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Morgane Thomas
- Centre National de la Recherche Scientifique (CNRS), UMR7276, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Anne-Sophie Thomas-Claudepierre
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Brice Laffleur
- Institut national de la santé et de la recherche médicale (INSERM), UMR1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Florence Jouan
- Institut national de la santé et de la recherche médicale (INSERM), UMR1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Eric Pinaud
- Centre National de la Recherche Scientifique (CNRS), UMR7276, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
| | - Karin Tarte
- Institut national de la santé et de la recherche médicale (INSERM), UMR1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique (CNRS), UMR7276, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1262-Contrôle de la Réponse Immune B et Lymphoproliférations, Université de Limoges, Limoges, France
- Institut national de la santé et de la recherche médicale (INSERM), UMR1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO, Firenze, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre Le Cancer, INSERM U1223, Institut Pasteur, Paris, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.
- Université de Strasbourg, Illkirch, France.
| |
Collapse
|
6
|
DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair (Amst) 2021; 105:103152. [PMID: 34186496 DOI: 10.1016/j.dnarep.2021.103152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Polb gene encodes DNA polymerase beta (Pol β), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol β-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol β-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol β during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.
Collapse
|
7
|
Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst) 2020; 90:102866. [PMID: 32417669 PMCID: PMC7299775 DOI: 10.1016/j.dnarep.2020.102866] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple DNA lesion can have profound consequences to cellular function, genome stability, and disease. As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since they provide no coding information, they are potent sources of mutation. Due to their reactive chemistry, they are intermediates in the formation of lesions that are more challenging to repair including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their prevalence and deleterious consequences, cells have multiple mechanisms of repairing and tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been studied for decades, new interest in abasic site processing has come from more recent insights into how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, their biological consequences, tolerance mechanisms, and how they are repaired in double and single-stranded DNA.
Collapse
Affiliation(s)
- Petria S Thompson
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Heltzel JMH, Gearhart PJ. What Targets Somatic Hypermutation to the Immunoglobulin Loci? Viral Immunol 2019; 33:277-281. [PMID: 31770070 DOI: 10.1089/vim.2019.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most profound enigmas in B cell biology is how activation-induced deaminase (AID) is targeted to a very small region of DNA in the immunoglobulin loci. Two specific regions are singled out: the variable region of 2 kb that contains rearranged genes on the heavy, κ light, and λ light chain loci, and the switch region of ∼4 kb that contains an extensive stretch of G:C rich DNA on the heavy chain locus. Transcription is required for AID recruitment; however, many genes are also highly transcribed and do not undergo the catastrophic mutagenesis that occurs in variable and switch regions. The DNA sequences of these regions cause RNA polymerase II to accumulate for an extended distance of 2-4 kb. The stalled polymerases then recruit the transcription cofactor Spt5, and AID, which deaminates cytosines to uracils in exposed transcription bubbles. Thus, the immunoglobulin loci are unique in that a favorable combination of DNA sequences and 3' transcription enhancers make them the perfect storm for AID-induced somatic hypermutation.
Collapse
Affiliation(s)
- Justin M H Heltzel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
11
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
12
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
13
|
R-Loop Depletion by Over-expressed RNase H1 in Mouse B Cells Increases Activation-Induced Deaminase Access to the Transcribed Strand without Altering Frequency of Isotype Switching. J Mol Biol 2017; 429:3255-3263. [PMID: 28065739 DOI: 10.1016/j.jmb.2016.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
R-loops, three-strand structures consisting of mRNA hybridized to the complementary DNA and a single-stranded DNA loop, are formed in switch regions on the heavy-chain immunoglobulin locus. To determine if R-loops have a direct effect on any of the steps involved in isotype switching, we generated a transgenic mouse that over-expressed RNase H1, an enzyme that cleaves the RNA of RNA/DNA hybrids in B cells. R-loops in the switch μ region were depleted by 70% in ex vivo activated splenic B cells. Frequencies of isotype switching to IgG1, IgG2b, IgG2c, and IgG3 were the same as C57BL/6 control cells. However, somatic hypermutation was increased specifically on the transcribed strand from μ-γ joins, indicating that R-loops limit activation-induced (cytosine) deaminase access to the transcribed DNA strand. Our data suggest that, in the normal G+C-rich context of mammalian class switch recombination regions, R-loops are obligatory intermediates. Processing of the R-loops is needed to remove RNA allowing activation-induced (cytosine) deaminase to promote somatic hypermutation on both DNA strands to generate double-strand DNA breaks for efficient class switch recombination. One of the two cellular RNases H may assist in this process.
Collapse
|
14
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Prasad R, Poltoratsky V, Hou EW, Wilson SH. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Nucleic Acids Res 2016; 44:10824-10833. [PMID: 27683219 PMCID: PMC5159550 DOI: 10.1093/nar/gkw869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Vladimir Poltoratsky
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Esther W Hou
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Jones BG, Penkert RR, Xu B, Fan Y, Neale G, Gearhart PJ, Hurwitz JL. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression. Mol Immunol 2016; 77:97-102. [PMID: 27494228 DOI: 10.1016/j.molimm.2016.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022]
Abstract
Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Geoff Neale
- Hartwell Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
17
|
Hurwitz JL, Penkert RR, Xu B, Fan Y, Partridge JF, Maul RW, Gearhart PJ. Hotspots for Vitamin-Steroid-Thyroid Hormone Response Elements Within Switch Regions of Immunoglobulin Heavy Chain Loci Predict a Direct Influence of Vitamins and Hormones on B Cell Class Switch Recombination. Viral Immunol 2016; 29:132-6. [PMID: 26741514 DOI: 10.1089/vim.2015.0104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vitamin A deficiencies are common throughout the world and have a significant negative influence on immune protection against viral infections. Mouse models demonstrate that the production of IgA, a first line of defense against viruses at mucosal sites, is inhibited in the context of vitamin A deficiency. In vitro, the addition of vitamin A to activated B cells can enhance IgA expression, but downregulate IgE. Previous reports have demonstrated that vitamin A modifies cytokine patterns, and in so doing may influence antibody isotype expression by an indirect mechanism. However, we have now discovered hundreds of potential response elements among Sμ, Sɛ, and Sα switch sites within immunoglobulin heavy chain loci. These hotspots appear in both mouse and human loci and include targets for vitamin receptors and related proteins (e.g., estrogen receptors) in the nuclear receptor superfamily. Full response elements with direct repeats are relatively infrequent or absent in Sγ regions although half-sites are present. Based on these results, we pose a hypothesis that nuclear receptors have a direct effect on the immunoglobulin heavy chain class switch recombination event. We propose that vitamin A may alter S site accessibility to activation-induced deaminase and nonhomologous end-joining machinery, thereby influencing the isotype switch, antibody production, and protection against viral infections at mucosal sites.
Collapse
Affiliation(s)
- Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Rhiannon R Penkert
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Beisi Xu
- 3 Department of Computational Biology, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Yiping Fan
- 3 Department of Computational Biology, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Janet F Partridge
- 4 Department of Pathology, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Robert W Maul
- 5 National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | - Patricia J Gearhart
- 5 National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| |
Collapse
|
18
|
Parp3 negatively regulates immunoglobulin class switch recombination. PLoS Genet 2015; 11:e1005240. [PMID: 26000965 PMCID: PMC4441492 DOI: 10.1371/journal.pgen.1005240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR. During infections, B cells diversify the antibodies they produce by two mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM mutates the regions encoding the antigen-binding site, generating high-affinity antibodies. CSR allows B cells to switch the class of antibody they produce (from IgM to IgA, IgG or IgE), providing novel effector functions. Together, SHM and CSR establish highly specific and pathogen-adapted antibody responses. SHM and CSR are initiated by the recruitment of the activation-induced cytidine deaminase (AID) enzyme to antibody genes. Once recruited, AID induces DNA lesions that are processed into mutations during SHM or chromosomal DNA breaks during CSR. These breaks activate multiple DNA repair proteins and are resolved by replacing the IgM gene segments by those encoding IgA, IgG or IgE. AID carries a significant oncogenic potential that needs to be controlled to preserve genome integrity. Nevertheless, the underlying mechanisms remain poorly understood. Here we show that Poly(ADP)ribose polymerase 3 (Parp3), an enzyme recently implicated in DNA repair, contributes to antibody diversification by negatively regulating CSR without affecting SHM. We show that Parp3 facilitates the repair of AID-induced DNA damage and controls AID levels on chromatin. We propose that Parp3 protects antibody genes from sustained AID-dependent DNA damage.
Collapse
|
19
|
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. THE JOURNAL OF IMMUNOLOGY 2015; 193:5370-8. [PMID: 25411432 DOI: 10.4049/jimmunol.1401849] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
20
|
Zanotti KJ, Maul RW, Castiblanco DP, Yang W, Choi YJ, Fox JT, Myung K, Saribasak H, Gearhart PJ. ATAD5 deficiency decreases B cell division and Igh recombination. THE JOURNAL OF IMMUNOLOGY 2014; 194:35-42. [PMID: 25404367 DOI: 10.4049/jimmunol.1401158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian ATPase family AAA domain-containing protein 5 (ATAD5) and its yeast homolog enhanced level of genomic instability 1 are responsible for unloading proliferating cell nuclear antigen from newly synthesized DNA. Prior work in HeLa and yeast cells showed that a decrease in ATAD5 protein levels resulted in accumulation of chromatin-bound proliferating cell nuclear antigen, slowed cell division, and increased genomic instability. In this study, B cells from heterozygous (Atad5(+/m)) mice were used to examine the effects of decreased cell proliferation on Ab diversity. ATAD5 haploinsufficiency did not change the frequency or spectrum of somatic hypermutation in Ab genes, indicating that DNA repair and error-prone DNA polymerase η usage were unaffected. However, immunized Atad5(+/m) mice had decreased serum IgG1 Abs, demonstrating a functional effect on class switch recombination. The mechanism of this altered immune response was then examined following ex vivo stimulation of splenic B cells, where Atad5(+/m) cells accumulated in the S phase of the cell cycle and had reduced proliferation compared with wild-type cells. These haploinsufficient cells underwent a significant decline in activation-induced deaminase expression, resulting in decreased switch region DNA double-strand breaks and interchromosomal translocations in the Igh locus. Class switch recombination to several isotypes was also reduced in Atad5(+/m) cells, although the types of end-joining pathways were not affected. These results describe a defect in DNA replication that affects Igh recombination via reduced cell division.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Diana P Castiblanco
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Yong Jun Choi
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer T Fox
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kyungjae Myung
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| |
Collapse
|
21
|
Maul RW, Gearhart PJ. Refining the Neuberger model: Uracil processing by activated B cells. Eur J Immunol 2014; 44:1913-6. [PMID: 24920531 PMCID: PMC4126077 DOI: 10.1002/eji.201444813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/07/2023]
Abstract
During the immune response, B cells undergo a programed mutagenic cascade to promote increased affinity and expanded antibody function. The two processes, somatic hypermutation (SHM) and class switch recombination (CSR), are initiated by the protein activation-induced deaminase (AID), which converts cytosine to uracil in the immunoglobulin loci. The presence of uracil in DNA promotes DNA mutagenesis though a subset of DNA repair proteins. Two distinct mechanisms have been proposed to control uracil processing. The first is through base removal by uracil DNA glycosylase (UNG), and the second is through detection by the mismatch repair (MMR) complex MSH2/6. In a study published in this issue of European Journal of Immunology, Dingler et al. [Eur. J. Immunol. 2014. 44: 1925-1935] examine uracil processing in B cells in the absence of UNG and SMUG1 glycosylases. Similar to UNG, SMUG1 is an uracil glycosylase which can remove the uracil base. While Smug1(-/-) mice show no clear deficiency in SHM or CSR, Ung(-/-) Smug1(-/-) mice display exacerbated phenotypes, suggesting a back-up role for SMUG1 in antibody diversity. This new information expands the model of uracil processing in B cells and raises several interesting questions about the dynamic relationship between base excision repair and MMR.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|
22
|
Fear DJ. Mechanisms regulating the targeting and activity of activation induced cytidine deaminase. Curr Opin Immunol 2014; 25:619-28. [PMID: 24209594 DOI: 10.1016/j.coi.2013.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 01/03/2023]
Abstract
Activation induced cytidine deaminase (AID) plays a central role in the vertebrate adaptive immune response, initiating immunoglobulin (Ig) somatic hypermutation (SHM) and class-switch recombination (CSR). AID converts deoxycytosine (dC) in the DNA to deoxyuridine (dU), causing a DNA base-pairing mismatch. How this mismatch is recognised and resolved determines whether the site will undergo mutation, recombination or high-fidelity repair. Although AID action is essential for antibody diversification it is also known to act upon many non-Ig genes where it can cause tumourigenic mutations and translocations. Although much is known about the pathways of Ig diversification, there is still very little known about the mechanisms that target AID to its sites of action and regulate the different repair processes that can participate at these sites.
Collapse
|
23
|
Differential regulation of S-region hypermutation and class-switch recombination by noncanonical functions of uracil DNA glycosylase. Proc Natl Acad Sci U S A 2014; 111:E1016-24. [PMID: 24591630 DOI: 10.1073/pnas.1402391111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential to class-switch recombination (CSR) and somatic hypermutation (SHM) in both V region SHM and S region SHM (s-SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair (BER) complex, is required for CSR. Strikingly, however, UNG deficiency causes augmentation of SHM, suggesting involvement of distinct functions of UNG in SHM and CSR. Here, we show that noncanonical scaffold functions of UNG regulate s-SHM negatively and CSR positively. The s-SHM suppressive function of UNG is attributed to the recruitment of faithful BER components at the cleaved DNA locus, with competition against error-prone polymerases. By contrast, the CSR-promoting function of UNG enhances AID-dependent S-S synapse formation by recruiting p53-binding protein 1 and DNA-dependent protein kinase, catalytic subunit. Several loss-of-catalysis mutants of UNG discriminated CSR-promoting activity from s-SHM suppressive activity. Taken together, the noncanonical function of UNG regulates the steps after AID-induced DNA cleavage: error-prone repair suppression in s-SHM and end-joining promotion in CSR.
Collapse
|
24
|
Wyatt MD. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair. Adv Cancer Res 2014; 119:63-106. [PMID: 23870509 DOI: 10.1016/b978-0-12-407190-2.00002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes some of the recent, exciting developments that have characterized and connected processes that modify DNA bases with DNA repair pathways. It begins with AID/APOBEC or TET family members that covalently modify bases within DNA. The modified bases, such as uracil or 5-formylcytosine, are then excised by DNA glycosylases including UNG or TDG to initiate base excision repair (BER). BER is known to preserve genome integrity by removing damaged bases. The newer studies underscore the necessity of BER following enzymes that deliberately damage DNA. This includes the role of BER in antibody diversification and more recently, its requirement for demethylation of 5-methylcytosine in mammalian cells. The recent advances have shed light on mechanisms of DNA demethylation, and have raised many more questions. The potential hazards of these processes have also been revealed. Dysregulation of the activity of base modifying enzymes, and resolution by unfaithful or corrupt means can be a driver of genome instability and tumorigenesis. The understanding of both DNA and histone methylation and demethylation is now revealing the true extent to which epigenetics influence normal development and cancer, an abnormal development.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
25
|
Senejani AG, Liu Y, Kidane D, Maher SE, Zeiss CJ, Park HJ, Kashgarian M, McNiff JM, Zelterman D, Bothwell ALM, Sweasy JB. Mutation of POLB causes lupus in mice. Cell Rep 2014; 6:1-8. [PMID: 24388753 DOI: 10.1016/j.celrep.2013.12.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/16/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
A replication study of a previous genome-wide association study (GWAS) suggested that a SNP linked to the POLB gene is associated with systemic lupus erythematosus (SLE). This SNP is correlated with decreased expression of Pol β, a key enzyme in the base excision repair (BER) pathway. To determine whether decreased Pol β activity results in SLE, we constructed a mouse model of POLB that encodes an enzyme with slow DNA polymerase activity. We show that mice expressing this hypomorphic POLB allele develop an autoimmune pathology that strongly resembles SLE. Of note, the mutant mice have shorter immunoglobulin heavy-chain junctions and somatic hypermutation is dramatically increased. These results demonstrate that decreased Pol β activity during the generation of immune diversity leads to lupus-like disease in mice, and suggest that decreased expression of Pol β in humans is an underlying cause of SLE.
Collapse
Affiliation(s)
- Alireza G Senejani
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yanfeng Liu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Dawit Kidane
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen E Maher
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caroline J Zeiss
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hong-Jae Park
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | - Daniel Zelterman
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Schrader CE, Linehan EK, Ucher AJ, Bertocci B, Stavnezer J. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations. DNA Repair (Amst) 2013; 12:1087-93. [PMID: 24084171 DOI: 10.1016/j.dnarep.2013.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 11/28/2022]
Abstract
During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3' flanking region in Peyer's patch germinal center (GC) B cells from polβ(-/-)polλ(-/-), polλ(-/-), and polβ(-/-) mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | | | | | | | | |
Collapse
|
27
|
Zan H, White CA, Thomas LM, Mai T, Li G, Xu Z, Zhang J, Casali P. Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class switch DNA recombination. Cell Rep 2012; 2:1220-32. [PMID: 23140944 DOI: 10.1016/j.celrep.2012.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/29/2012] [Accepted: 09/24/2012] [Indexed: 02/03/2023] Open
Abstract
By diversifying the biological effector functions of antibodies, class switch DNA recombination (CSR) plays a critical role in the maturation of the immune response. It is initiated by activation-induced cytidine deaminase (AID)-mediated deoxycytosine deamination, yielding deoxyuridine (dU), and dU glycosylation by uracil DNA glycosylase (Ung) in antibody switch (S) region DNA. Here we showed that the translesion DNA synthesis polymerase Rev1 directly interacted with Ung and targeted in an AID-dependent and Ung-independent fashion the S regions undergoing CSR. Rev1(-/-)Ung(+/+) B cells reduced Ung recruitment to S regions, DNA-dU glycosylation, and CSR. Together with an S region spectrum of mutations similar to that of Rev1(+/+)Ung(-/-) B cells, this suggests that Rev1 operates in the same pathway as Ung, as emphasized by further decreased CSR in Rev1(-/-)Msh2(-/-) B cells. Rescue of CSR in Rev1(-/-) B cells by a catalytically inactive Rev1 mutant shows that the important role of Rev1 in CSR is mediated by Rev1's scaffolding function, not its enzymatic function.
Collapse
Affiliation(s)
- Hong Zan
- Institute for Immunology and School of Medicine, University of California, 3028 Hewitt Hall, Irvine, CA 92697-4120, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Saribasak H, Gearhart PJ. Does DNA repair occur during somatic hypermutation? Semin Immunol 2012; 24:287-92. [PMID: 22728014 DOI: 10.1016/j.smim.2012.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/18/2012] [Indexed: 11/25/2022]
Abstract
Activation-induced deaminase (AID) initiates a flood of DNA damage in the immunoglobulin loci, leading to abasic sites, single-strand breaks and mismatches. It is compelling that some proteins in the canonical base excision and mismatch repair pathways have been hijacked to increase mutagenesis during somatic hypermutation. Thus, the AID-induced mutagenic pathways involve a mix of DNA repair proteins and low fidelity DNA polymerases to create antibody diversity. In this review, we analyze the roles of base excision repair, mismatch repair, and mutagenesis during somatic hypermutation of rearranged variable genes. The emerging view is that faithful base excision repair occurs simultaneously with mutagenesis, whereas faithful mismatch repair is mostly absent.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | | |
Collapse
|
29
|
Orthwein A, Di Noia JM. Activation induced deaminase: how much and where? Semin Immunol 2012; 24:246-54. [PMID: 22687198 DOI: 10.1016/j.smim.2012.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/18/2012] [Indexed: 11/28/2022]
Abstract
Activation induced deaminase (AID) plays a central role in adaptive immunity by initiating the processes of somatic hypermutation (SHM) and class switch recombination (CSR). On the other hand, AID also predisposes to lymphoma and plays a role in some autoimmune diseases, for which reasons AID expression and activity are regulated at various levels. Post-translational mechanisms regulating the amount and subcellular localization of AID are prominent in balancing AID physiological and pathological functions in B cells. Mechanisms regulating AID protein levels include stabilizing chaperones in the cytoplasm and proteins efficiently targeting AID to the proteasome within the nucleus. Nuclear export and cytoplasmic retention contribute to limit the amount of AID accessing the genome. Additionally, a number of factors have been implicated in AID active nuclear import. We review these intertwined mechanisms proposing two scenarios in which they could interact as a network or as a cycle for defining the optimal amount of AID protein. We also comparatively review the expression levels of AID necessary for its function during the immune response, present in different cancers as well as in those tissues in which AID has been implicated in epigenetic remodeling of the genome by demethylating DNA.
Collapse
Affiliation(s)
- Alexandre Orthwein
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada
| | | |
Collapse
|
30
|
Sharbeen G, Yee CWY, Smith AL, Jolly CJ. Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. ACTA ACUST UNITED AC 2012; 209:965-74. [PMID: 22529268 PMCID: PMC3348097 DOI: 10.1084/jem.20112379] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As revealed using an UNG2 inhibitor peptide fused to cell cycle–regulated degradation motifs, the cell cycle phase during which uracil residues are processed determines the fidelity of repair. Immunoglobulin (Ig) affinity maturation requires the enzyme AID, which converts cytosines (C) in Ig genes into uracils (U). This alone produces C:G to T:A transition mutations. Processing of U:G base pairs via U N-glycosylase 2 (UNG2) or MutSα generates further point mutations, predominantly at G:C or A:T base pairs, respectively, but it is unclear why processing is mutagenic. We aimed to test whether the cell cycle phase of U processing determines fidelity. Accordingly, we ectopically restricted UNG2 activity in vivo to predefined cell cycle phases by fusing a UNG2 inhibitor peptide to cell cycle–regulated degradation motifs. We found that excision of AID-induced U by UNG2 occurs predominantly during G1 phase, inducing faithful repair, mutagenic processing, and class switching. Surprisingly, UNG2 does not appear to process U:G base pairs at all in Ig genes outside G1 phase.
Collapse
Affiliation(s)
- George Sharbeen
- Centenary Institute, the University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
31
|
X-ray repair cross-complementing protein 1 (XRCC1) deficiency enhances class switch recombination and is permissive for alternative end joining. Proc Natl Acad Sci U S A 2012; 109:4604-8. [PMID: 22392994 DOI: 10.1073/pnas.1120743109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA double-strand breaks (DSBs) are essential intermediates in Ig gene rearrangements: V(D)J and class switch recombination (CSR). In contrast to V(D)J recombination, which is almost exclusively dependent on nonhomologous end joining (NHEJ), CSR can occur in NHEJ-deficient cells via a poorly understand backup pathway (or pathways) often termed alternative end joining (A-EJ). Recently, several components of the single-strand DNA break (SSB) repair machinery, including XRCC1, have been implicated in A-EJ. To determine its role in A-EJ and CSR, Xrcc1 was deleted by targeted mutation in the CSR proficient mouse B-cell line, CH12F3. Here we demonstrate that XRCC1 deficiency slightly increases the efficiency of CSR. More importantly, Lig4 and XRCC1 double-deficient cells switch as efficiently as Lig4-deficient cells, clearly indicating that XRCC1 is dispensable for A-EJ in CH12F3 cells during CSR.
Collapse
|
32
|
Saribasak H, Maul RW, Cao Z, McClure RL, Yang W, McNeill DR, Wilson DM, Gearhart PJ. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes. ACTA ACUST UNITED AC 2011; 208:2209-16. [PMID: 21967769 PMCID: PMC3201205 DOI: 10.1084/jem.20111135] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As revealed using mice heterozygous for the base excision repair (BER) protein XRCC1, BER and mutagenic repair pathways can simultaneously compete for access to single-strand breaks induced by activation-induced deaminase. Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer’s patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1+/− splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1+/− B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Staszewski O, Baker RE, Ucher AJ, Martier R, Stavnezer J, Guikema JEJ. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell 2011; 41:232-42. [PMID: 21255732 DOI: 10.1016/j.molcel.2011.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/19/2010] [Accepted: 11/24/2010] [Indexed: 11/17/2022]
Abstract
After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.
Collapse
Affiliation(s)
- Ori Staszewski
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655-0122, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bases R. Heat shock protein 70 (Hsp70)-stimulated deoxycytidine deaminases from a human lymphoma cell but not the activation-induced cytidine deaminase (AID) from Ramos 6.4 human Burkitt's lymphoma cells. Cell Stress Chaperones 2011; 16:91-6. [PMID: 20680536 PMCID: PMC3024086 DOI: 10.1007/s12192-010-0213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/27/2010] [Accepted: 07/15/2010] [Indexed: 11/27/2022] Open
Abstract
Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.
Collapse
Affiliation(s)
- Robert Bases
- Radiology and Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA.
| |
Collapse
|
35
|
Leduc C, Haddad D, Laviolette-Malirat N, Nguyen Huu NS, Khamlichi AA. Combined deficiency of MSH2 and Sμ region abolishes class switch recombination. Eur J Immunol 2010; 40:2925-31. [PMID: 20812239 DOI: 10.1002/eji.201040605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Class switch recombination (CSR) is mediated by G-rich tandem repeated sequences termed switch regions. Transcription of switch regions generates single-stranded R loops that provide substrates for activation-induced cytidine deaminase. Mice deficient in MSH2 have a mild defect in CSR and analysis of their switch junctions has led to a model in which MSH2 is more critical for switch recombination events outside than within the tandem repeats. It is also known that deletion of the whole Sμ region severely impairs but does not abrogate CSR despite the lack of detectable R loops. Here, we demonstrate that deficiency of both MSH2 and the Sμ region completely abolishes CSR and that the abrogation occurs at the genomic level. This finding further supports the crucial role of MSH2 outside the tandem repeats. It also indicates that during CSR, MSH2 has access to activation-induced cytidine deaminase targets in R-loop-deficient Iμ-Cμ sequences rarely used in CSR, suggesting an MSH2-dependent DNA processing activity at the Iμ exon that may decrease with transcription elongation across the Sμ region.
Collapse
Affiliation(s)
- Claire Leduc
- CNRS UMR5089, Institut de Pharmacologie et de Biologie Structurale, Equipe Instabilité génétique et régulation transcriptionnelle, Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Abstract
In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation-induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | |
Collapse
|
37
|
Guikema JEJ, Schrader CE, Brodsky MH, Linehan EK, Richards A, El Falaky N, Li DH, Sluss HK, Szomolanyi-Tsuda E, Stavnezer J. p53 represses class switch recombination to IgG2a through its antioxidant function. THE JOURNAL OF IMMUNOLOGY 2010; 184:6177-87. [PMID: 20483782 DOI: 10.4049/jimmunol.0904085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE, or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA ds breaks in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase initiates DNA ds break formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species (ROS) intermediates, such as hydroxyl radicals. In this study we show that the ROS scavenger N-acetylcysteine inhibits CSR. We also demonstrate that IFN-gamma treatment, which is used to induce IgG2a switching, increases intracellular ROS levels, and activates p53 in switching B cells, and show that p53 inhibits IgG2a class switching through its antioxidant-regulating function. Finally, we show that p53 inhibits DNA breaks and mutations in S regions in B cells undergoing CSR, suggesting that p53 inhibits the activity of activation-induced cytidine deaminase.
Collapse
Affiliation(s)
- Jeroen E J Guikema
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
39
|
Saribasak H, Rajagopal D, Maul RW, Gearhart PJ. Hijacked DNA repair proteins and unchained DNA polymerases. Philos Trans R Soc Lond B Biol Sci 2009; 364:605-11. [PMID: 19008198 DOI: 10.1098/rstb.2008.0188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic hypermutation of immunoglobulin (Ig) genes occurs at a frequency that is a million times greater than the mutation in other genes. Mutations occur in variable genes to increase antibody affinity, and in switch regions before constant genes to cause switching from IgM to IgG. Hypermutation is initiated in activated B cells when the activation-induced deaminase protein deaminates cytosine in DNA to uracil. Uracils can be processed by either a mutagenic pathway to produce mutations or a non-mutagenic pathway to remove mutations. In the mutagenic pathway, we first studied the role of mismatch repair proteins, MSH2, MSH3, MSH6, PMS2 and MLH1, since they would recognize mismatches. The MSH2-MSH6 heterodimer is involved in hypermutation by binding to U:G and other mismatches generated during repair synthesis, but the other proteins are not necessary. Second, we analysed the role of low-fidelity DNA polymerases eta, iota and theta in synthesizing mutations, and conclude that polymerase eta is the dominant participant by generating mutations at A:T base pairs. In the non-mutagenic pathway, we examined the role of the Cockayne syndrome B protein that interacts with other repair proteins. Mice deficient in this protein had normal hypermutation and class switch recombination, showing that it is not involved.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
40
|
Schrader CE, Guikema JEJ, Wu X, Stavnezer J. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci 2009; 364:645-52. [PMID: 19010771 DOI: 10.1098/rstb.2008.0200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunoglobulin class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded DNA breaks (DSBs) in immunoglobulin switch region DNA. The initial steps of DSB formation have been elucidated: cytosine deamination by activation-induced cytidine deaminase (AID) and the generation of abasic sites by uracil-DNA glycosylase (UNG). We show that abasic sites are converted into single-strand breaks (SSBs) by apurinic/apyrimidinic endonucleases (APE1 and APE2). If SSBs are near to each other on opposite strands, they will generate DSBs; but if distal from each other, mismatch repair appears to be required to generate DSBs. The resulting S region DSBs occur at dC residues that are preferentially targeted by AID. We also investigate whether DNA polymerase beta, which correctly repairs SSBs resulting from APE activity, attempts to repair the breaks during CSR. We find that although polymerase beta does attempt to repair S region DNA breaks in switching B cells, the frequency of AID-instigated breaks appears to outnumber the SSBs repaired correctly by polymerase beta, and thus some DSBs and mutations are generated. We also show that the S region DSBs are introduced and resolved during the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01545, USA
| | | | | | | |
Collapse
|
41
|
Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 2009; 30:173-81. [PMID: 19303358 DOI: 10.1016/j.it.2009.01.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 11/25/2022]
Abstract
Somatic hypermutation (SHM) of Ig genes in B cells is crucial for antibody affinity maturation. The reaction is initiated by cytosine deamination of Ig loci by activation induced deaminase (AID) and is completed by error-prone DNA repair enzyme processing of AID-generated uracils. The mechanisms that target SHM specifically to Ig loci are poorly understood. Recently, it has been demonstrated that although AID preferentially targets Ig loci, it acts surprisingly widely on non-Ig loci, many of which are protected from mutation accumulation by high-fidelity DNA repair. We propose that breakdown of this high fidelity repair process helps explain oncogene mutations observed in B-cell tumors, and further, that many oncogenes are vulnerable to AID-mediated DNA breaks and translocations in normal activated B cells.
Collapse
Affiliation(s)
- Man Liu
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
42
|
Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression. Proc Natl Acad Sci U S A 2008; 105:16248-53. [PMID: 18854411 DOI: 10.1073/pnas.0808182105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes are dependent upon activation-induced cytidine deaminase (AID)-induced mutations. The scaffolding properties of proliferating cell nuclear antigen (PCNA) and ubiquitylation of its residue K164 have been suggested to play an important role organizing the error-prone repair events that contribute to the AID-induced diversification of the Ig locus. We generated knockout mice for PCNA (Pcna(-/-)), which were embryonic lethal. Expression of PCNA with the K164R mutation rescued the lethal phenotype, but the mice (Pcna(-/-)tg(K164R)) displayed a meiotic defect in early pachynema and were sterile. B cells proliferated normally in Pcna(-/-)tg(K164R) mice, but a PCNA-K164R mutation resulted in impaired ex vivo CSR to IgG1 and IgG3, which was associated with reduced mutation frequency at the switch regions and a bias toward blunt junctions. Analysis of the heavy chain V186.2 region after NP-immunization showed in Pcna(-/-)tg(K164R) mice a significant reduction in the mutation frequency of A:T residues in WA motifs preferred by polymerase-eta (Poleta), and a strand-biased increase in the mutation frequency of G residues, preferentially in the context of AID-targeted GYW motifs. The phenotype of Pcna(-/-)tg(K164R) mice supports the idea that ubiquitylation of PCNA participates directly in the meiotic process and the diversification of the Ig locus through class-switch recombination (CSR) and somatic hypermutation (SHM).
Collapse
|
43
|
Martomo SA, Saribasak H, Yokoi M, Hanaoka F, Gearhart PJ. Reevaluation of the role of DNA polymerase theta in somatic hypermutation of immunoglobulin genes. DNA Repair (Amst) 2008; 7:1603-8. [PMID: 18485835 PMCID: PMC2561943 DOI: 10.1016/j.dnarep.2008.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/02/2023]
Abstract
DNA polymerase theta has been implicated in the process of somatic hypermutation in immunoglobulin variable genes based on several reports of alterations in the frequency and spectra of mutations from Polq(-/-) mice. However, these studies have contrasting results on mutation frequencies and the types of nucleotide substitutions, which question the role of polymerase theta in hypermutation. DNA polymerase eta has a dominant effect on mutation and may substitute in the absence of polymerase theta to affect the pattern. Therefore, we have examined mutation in mice deficient for both polymerases theta and eta. The mutation frequencies in rearranged variable genes from Peyer's patches were similar in wild type, Polq(-/-), Polh(-/-), and Polq(-/-)Polh(-/-) mice. The types of substitutions were also similar between wild type and Polq(-/-) clones, and between Polh(-/-) and Polq(-/-)Polh(-/-) clones. Furthermore, there was no difference in heavy chain class switching in splenic B cells from the four groups of mice. These results indicate that polymerase theta does not play a significant role in the generation of somatic mutation in immunoglobulin genes.
Collapse
Affiliation(s)
- Stella A. Martomo
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, United States
| | - Huseyin Saribasak
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, United States
| | - Masayuki Yokoi
- Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Patricia J. Gearhart
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, United States
| |
Collapse
|
44
|
Zan H, Casali P. AID- and Ung-dependent generation of staggered double-strand DNA breaks in immunoglobulin class switch DNA recombination: a post-cleavage role for AID. Mol Immunol 2008; 46:45-61. [PMID: 18760480 DOI: 10.1016/j.molimm.2008.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
Class switch DNA recombination (CSR) substitutes an immunoglobulin (Ig) constant heavy chain (C(H)) region with a different C(H) region, thereby endowing an antibody with different biological effector functions. CSR requires activation-induced cytidine deaminase (AID) and occurrence of double-strand DNA breaks (DSBs) in S regions of upstream and downstream C(H) region genes. DSBs are critical for CSR and would be generated through deamination of dC by AID, subsequent dU deglycosylation by uracil DNA glycosylase (Ung) and nicking by apurinic/apyrimidic endonuclease (APE) of nearby abasic sites on opposite DNA strands. We show here that in human and mouse B cells, S region DSBs can be generated in an AID- and Ung-independent fashion. These DSBs are blunt and 5'-phosphorylated. In B cells undergoing CSR, blunt and 5'-phosphorylated DSBs are processed in an AID- and Ung-dependent fashion to yield staggered DNA ends. Blunt and 5'-phosphorylated DSBs can be readily detected in human and mouse AID- or Ung-deficient B cells. These B cells are CSR defective, but show evidence of intra-S region recombination. Forced expression of AID in AID-negative B cells converts blunt S region DSBs to staggered DSBs. Conversely, forced expression of dominant negative AID or inhibition of Ung by Ung inhibitor (Ugi) in switching B cells abrogates the emergence of staggered DSBs and concomitant CSR. Thus, AID and Ung generate staggered DSBs not only by cleaving intact double-strand DNA, but also by processing blunt DSB ends, whose generation is AID- and Ung-independent, thereby outlining a post-cleavage role for AID in CSR.
Collapse
Affiliation(s)
- Hong Zan
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, 3028 Hewitt Hall, Irvine, CA 92697-4120, United States
| | | |
Collapse
|
45
|
Takizawa M, Tolarová H, Li Z, Dubois W, Lim S, Callen E, Franco S, Mosaico M, Feigenbaum L, Alt FW, Nussenzweig A, Potter M, Casellas R. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. ACTA ACUST UNITED AC 2008; 205:1949-57. [PMID: 18678733 PMCID: PMC2526190 DOI: 10.1084/jem.20081007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunoglobulin (Ig) isotype switching is a recombination event that changes the constant domain of antibody genes and is catalyzed by activation-induced cytidine deaminase (AID). Upon recruitment to Ig genes, AID deaminates cytidines at switch (S) recombination sites, leading to the formation of DNA breaks. In addition to their role in isotype switching, AID-induced lesions promote Igh-cMyc chromosomal translocations and tumor development. However, cMyc translocations are also present in lymphocytes from healthy humans and mice, and thus, it remains unclear whether AID directly contributes to the dynamics of B cell transformation. Using a plasmacytoma mouse model, we show that AID(+/-) mice have reduced AID expression levels and display haploinsufficiency both in the context of isotype switching and plasmacytomagenesis. At the Ig loci, AID(+/-) lymphocytes show impaired intra- and inter-switch recombination, and a substantial decrease in the frequency of S mutations and chromosomal breaks. In AID(+/-) mice, these defects correlate with a marked decrease in the accumulation of B cell clones carrying Igh-cMyc translocations during tumor latency. These results thus provide a causality link between the extent of AID enzymatic activity, the number of emerging Igh-cMyc-translocated cells, and the incidence of B cell transformation.
Collapse
Affiliation(s)
- Makiko Takizawa
- Genomic Integrity and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012, USA.
| | | | | |
Collapse
|
47
|
Abstract
To cope with an unpredictable variety of potential pathogenic insults, the immune system must generate an enormous diversity of recognition structures, and it does so by making stepwise modifications at key genetic loci in each lymphoid cell. These modifications proceed through the action of lymphoid-specific proteins acting together with the general DNA-repair machinery of the cell. Strikingly, these general mechanisms are usually diverted from their normal functions, being used in rather atypical ways in order to privilege diversity over accuracy. In this Review, we focus on the contribution of a set of DNA polymerases discovered in the past decade to these unique DNA transactions.
Collapse
|
48
|
Bhattacharya P, Grigera F, Rogozin IB, McCarty T, Morse HC, Kenter AL. Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues. Eur J Immunol 2008; 38:227-39. [PMID: 18081040 DOI: 10.1002/eji.200737664] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation-induced deaminase (AID) is the master regulator of class switch recombination (CSR) and somatic hypermutation (SHM), but the mechanisms regulating AID function are obscure. The differential pattern of switch plasmid activity in three IgM(+)/AID(+) and two IgG(+)/AID(+) B cell lines prompted an analysis of global gene expression to discover the origin of these cells. Gene profiling suggested that the IgG(+)/AID(+) B cell lines derived from germinal center B cells. Analysis of SHM potential demonstrates that the IgVkappa domains are inducibly diversified at high rate during in vitro culture. The mutation spectra focused to A:T base pairs, revealing a component of the hypermutation program that occurs preferentially during phase 2 of SHM. The A:T error spectra were analyzed and were not characteristic of polymerase eta activity. A differential pattern of three consensus motifs used for A:T base substitutions was observed in WT and Poleta-, Msh2- and Msh6-deficient B cells. Strikingly, mutations in our B cell lines recapitulated the mutable motif profile for Poleta and Msh2 deficiency, respectively, and suggest that an additional pathway for the generation of A:T mutations in SHM is conserved in mouse and human.
Collapse
Affiliation(s)
- Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | | | | | | | | | | |
Collapse
|
49
|
Guikema JEJ, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR, Stavnezer J, Schrader CE. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. ACTA ACUST UNITED AC 2007; 204:3017-26. [PMID: 18025127 PMCID: PMC2118529 DOI: 10.1084/jem.20071289] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in DSB formation have been elucidated, involving cytosine deamination by activation-induced cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is not known how abasic sites are converted into single-stranded breaks and, subsequently, DSBs. Apurinic/apyrimidinic endonuclease (APE) efficiently nicks DNA at abasic sites, but it is unknown whether APE participates in CSR. We address the roles of the two major mammalian APEs, APE1 and APE2, in CSR. APE1 deficiency causes embryonic lethality in mice; we therefore examined CSR and DSBs in mice deficient in APE2 and haploinsufficient for APE1. We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR and thereby describing a novel in vivo function for APE2.
Collapse
Affiliation(s)
- Jeroen E J Guikema
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|