1
|
Leeman-Neill RJ, Bhagat G, Basu U. AID in non-Hodgkin B-cell lymphomas: The consequences of on- and off-target activity. Adv Immunol 2024; 161:127-164. [PMID: 38763700 DOI: 10.1016/bs.ai.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Dalloul I, Laffleur B, Dalloul Z, Wehbi B, Jouan F, Brauge B, Derouault P, Moreau J, Kracker S, Fischer A, Durandy A, Le Noir S, Cogné M. UnAIDed Class Switching in Activated B-Cells Reveals Intrinsic Features of a Self-Cleaving IgH Locus. Front Immunol 2021; 12:737427. [PMID: 34777346 PMCID: PMC8581400 DOI: 10.3389/fimmu.2021.737427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo "on-target" cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.
Collapse
Affiliation(s)
- Iman Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Brice Laffleur
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Zeinab Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Batoul Wehbi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Florence Jouan
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Baptiste Brauge
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Paco Derouault
- Centre Hospitalier Universitaire (CHU) Dupuytren, Limoges, France
| | - Jeanne Moreau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Sven Kracker
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Alain Fischer
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Anne Durandy
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Sandrine Le Noir
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Michel Cogné
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| |
Collapse
|
3
|
Aresu L, Agnoli C, Nicoletti A, Fanelli A, Martini V, Bertoni F, Marconato L. Phenotypical Characterization and Clinical Outcome of Canine Burkitt-Like Lymphoma. Front Vet Sci 2021; 8:647009. [PMID: 33816589 PMCID: PMC8010238 DOI: 10.3389/fvets.2021.647009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
In dogs, Burkitt-like lymphoma (B-LL) is rare tumor and it is classified as a high-grade B-cell malignancy. The diagnosis is challenging because of the similar histologic appearance with other histotypes, no defined phenotypical criteria and poorly described clinical aspects. The aim of the study was to provide a detailed description of clinical and morphological features, as well as immunophenotypical profile of B-LL in comparison with the human counterpart. Thirteen dogs with histologically proven B-LL, for which a complete staging and follow-up were available, were retrospectively selected. Immunohistochemical expression of CD20, PAX5, CD3, CD10, BCL2, BCL6, MYC, and caspase-3 was evaluated. Histologically, all B-LLs showed a diffuse architecture with medium to large-sized cells, high mitotic rate and diffuse starry sky appearance. B-phenotype of neoplastic cells was confirmed both by flow-cytometry and immunohistochemistry. Conversely, B-LLs were negative for BCL2 and MYC, whereas some cases co-expressed BCL6 and CD10, suggesting a germinal center B-cell origin. Disease stage was advanced in the majority of cases. All dogs received CHOP-based chemotherapy with or without immunotherapy. Despite treatment, prognosis was poor, with a median time to progression and survival of 130 and 228 days, respectively. Nevertheless, ~30% of dogs survived more than 1 year. An increased apoptotic index, a high turnover index and caspase-3 index correlated with shorter survival. In conclusion, canine B-LL shows phenotypical differences with the human counterpart along with features that might help to differentiate this entity from diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Chiara Agnoli
- Department of Medical Veterinary Science, University of Bologna, Bologna, Italy
| | - Arturo Nicoletti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Valeria Martini
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Laura Marconato
- Department of Medical Veterinary Science, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Delgado P, Álvarez-Prado ÁF, Marina-Zárate E, Sernandez IV, Mur SM, de la Barrera J, Sanchez-Cabo F, Cañamero M, de Molina A, Belver L, de Yébenes VG, Ramiro AR. Interplay between UNG and AID governs intratumoral heterogeneity in mature B cell lymphoma. PLoS Genet 2020; 16:e1008960. [PMID: 33362210 PMCID: PMC7790409 DOI: 10.1371/journal.pgen.1008960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/07/2021] [Accepted: 11/08/2020] [Indexed: 12/11/2022] Open
Abstract
Most B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GC B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supra-activity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.
Collapse
Affiliation(s)
- Pilar Delgado
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ángel F. Álvarez-Prado
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ester Marina-Zárate
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Isora V. Sernandez
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sonia M. Mur
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jorge de la Barrera
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fátima Sanchez-Cabo
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Antonio de Molina
- Comparative Medicine Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Laura Belver
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginia G. de Yébenes
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Almudena R. Ramiro
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
5
|
PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood 2019; 133:2401-2412. [PMID: 30975638 DOI: 10.1182/blood.2018889931] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.
Collapse
|
6
|
Kovalchuk AL, Sakai T, Qi CF, Du Bois W, Dunnick WA, Cogné M, Morse HC. 3' Igh enhancers hs3b/hs4 are dispensable for Myc deregulation in mouse plasmacytomas with T(12;15) translocations. Oncotarget 2018; 9:34528-34542. [PMID: 30349647 PMCID: PMC6195379 DOI: 10.18632/oncotarget.26160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-deregulating T(12;15) chromosomal translocations are the hallmark cytogenetic abnormalities of murine plasmacytomas (PCTs). In most PCTs, the immunoglobulin heavy chain (Igh) locus is broken between the Eμ enhancer and the 3’ regulatory region (3’RR), making the latter the major candidate for orchestrating Myc deregulation. To elucidate the role of the Igh3’RR in tumorigenesis, we induced PCTs in Bcl-xL-transgenic mice deficient for the major Igh3’RR enhancer elements, hs3b and hs4 (hs3b-4-/-). Contrary to previous observations using a mouse lymphoma model, which showed no tumors with peripheral B-cell phenotype in hs3b-4-/- mice, these animals developed T(12;15)-positive PCTs, although with a lower incidence than hs3b-4+/+ (wild-type, WT) controls. In heterozygous hs3b-4+/- mice there was no allelic bias in targeting Igh for T(12;15). Molecular analyses of Igh/Myc junctions revealed dominance of Sμ region breakpoints versus the prevalence of Sγ or Sα in WT controls. Myc expression and Ig secretion in hs3b-4-/- PCTs did not differ from WT controls. We also evaluated the effect of a complete Igh3’RR deletion on Myc expression in the context of an established Igh/Myc translocation in ARS/Igh11-transgenic PCT cell lines. Cre-mediated deletion of the Igh3’RR resulted in gradual reduction of Myc expression, loss of proliferative activity and increased cell death, confirming the necessity of the Igh3’RR for Myc deregulation by T(12;15).
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chen-Feng Qi
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Wendy Du Bois
- Animal Model and Genotyping Core Facility, Laboratory of Cancer Biology and Genetics, NCI, National Institute of Health, Bethesda, MD, USA
| | - Wesley A Dunnick
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Michel Cogné
- Laboratory of Immunology, CNRS UMR 7276, Université de Limoges, Limoges, France
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
7
|
Jain S, Ward JM, Shin DM, Wang H, Naghashfar Z, Kovalchuk AL, Morse HC. Associations of Autoimmunity, Immunodeficiency, Lymphomagenesis, and Gut Microbiota in Mice with Knockins for a Pathogenic Autoantibody. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2020-2033. [PMID: 28727987 DOI: 10.1016/j.ajpath.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
A number of mouse strains transgenic for B-cell receptors specific for nucleic acids or other autoantigens have been generated to understand how autoreactive B cells are regulated in normal and autoimmune mice. Previous studies of nonautoimmune C57BL/6 mice heterozygous for both the IgH and IgL knockins of the polyreactive autoantibody, 564, produced high levels of autoantibodies in a largely Toll-like receptor 7-dependent manner. Herein, we describe studies of mice homozygous for the knockins that also expressed high levels of autoantibodies but, unlike the heterozygotes, exhibited a high incidence of mature B-cell lymphomas and enhanced susceptibility to bacterial infections. Microarray analyses and serological studies suggested that lymphomagenesis might be related to chronic B-cell activation promoted by IL-21. Strikingly, mice treated continuously with antibiotic-supplemented water did not develop lymphomas or abscesses and exhibited less autoimmunity. This mouse model may help us understand the reasons for enhanced susceptibility to lymphoma development exhibited by humans with a variety of autoimmune diseases, such as Sjögren syndrome, systemic lupus erythematosus, and highly active rheumatoid arthritis.
Collapse
Affiliation(s)
- Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Jerrold M Ward
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Zohreh Naghashfar
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland.
| |
Collapse
|
8
|
Simmons JK, Michalowski AM, Gamache BJ, DuBois W, Patel J, Zhang K, Gary J, Zhang S, Gaikwad S, Connors D, Watson N, Leon E, Chen JQ, Kuehl WM, Lee MP, Zingone A, Landgren O, Ordentlich P, Huang J, Mock BA. Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation. Mol Cancer Ther 2017; 16:2008-2021. [PMID: 28522584 DOI: 10.1158/1535-7163.mct-17-0171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Cancer treatments often require combinations of molecularly targeted agents to be effective. mTORi (rapamycin) and HDACi (MS-275/entinostat) inhibitors have been shown to be effective in limiting tumor growth, and here we define part of the cooperative action of this drug combination. More than 60 human cancer cell lines responded synergistically (CI<1) when treated with this drug combination compared with single agents. In addition, a breast cancer patient-derived xenograft, and a BCL-XL plasmacytoma mouse model both showed enhanced responses to the combination compared with single agents. Mice bearing plasma cell tumors lived an average of 70 days longer on combination treatment compared with single agents. A set of 37 genes cooperatively affected (34 downregulated; 3 upregulated) by the combination responded pharmacodynamically in human myeloma cell lines, xenografts, and a P493 model, and were both enriched in tumors, and correlated with prognostic markers in myeloma patient datasets. Genes downregulated by the combination were overexpressed in several untreated cancers (breast, lung, colon, sarcoma, head and neck, myeloma) compared with normal tissues. The MYC/E2F axis, identified by upstream regulator analyses and validated by immunoblots, was significantly inhibited by the drug combination in several myeloma cell lines. Furthermore, 88% of the 34 genes downregulated have MYC-binding sites in their promoters, and the drug combination cooperatively reduced MYC half-life by 55% and increased degradation. Cells with MYC mutations were refractory to the combination. Thus, integrative approaches to understand drug synergy identified a clinically actionable strategy to inhibit MYC/E2F activity and tumor cell growth in vivoMol Cancer Ther; 16(9); 2008-21. ©2017 AACR.
Collapse
Affiliation(s)
- John K Simmons
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | | | | | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Jyoti Patel
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Ke Zhang
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Joy Gary
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Daniel Connors
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Nicholas Watson
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Elena Leon
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Jin-Qiu Chen
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | | | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Adriana Zingone
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Ola Landgren
- Syndax Pharmaceuticals, Inc., Waltham, Massachusetts
| | | | - Jing Huang
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
9
|
Transgenic mouse model of IgM + lymphoproliferative disease mimicking Waldenström macroglobulinemia. Blood Cancer J 2016; 6:e488. [PMID: 27813533 PMCID: PMC5148059 DOI: 10.1038/bcj.2016.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is a low-grade incurable immunoglobulin M+ (IgM+) lymphoplasmacytic lymphoma for which a genetically engineered mouse model of de novo tumor development is lacking. On the basis of evidence that the pro-inflammatory cytokine, interleukin 6 (IL6), and the survival-enhancing oncoprotein, B cell leukemia 2 (BCL2), have critical roles in the natural history of WM, we hypothesized that the enforced expression of IL6 and BCL2 in mice unable to perform immunoglobulin class switch recombination may result in a lymphoproliferative disease that mimics WM. To evaluate this possibility, we generated compound transgenic BALB/c mice that harbored the human BCL2 and IL6 transgenes, EμSV-BCL2-22 and H2-Ld-hIL6, on the genetic background of activation-induced cytidine deaminase (AID) deficiency. We designated these mice BCL2+IL6+AID- and found that they developed-with full genetic penetrance (100% incidence) and suitably short latency (93 days median survival)-a severe IgM+ lymphoproliferative disorder that recapitulated important features of human WM. However, the BCL2+IL6+AID- model also exhibited shortcomings, such as low serum IgM levels and histopathological changes not seen in patients with WM, collectively indicating that further refinements of the model are required to achieve better correlations with disease characteristics of WM.
Collapse
|
10
|
Pérez-García A, Pérez-Durán P, Wossning T, Sernandez IV, Mur SM, Cañamero M, Real FX, Ramiro AR. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway. EMBO Mol Med 2016; 7:1327-36. [PMID: 26282919 PMCID: PMC4604686 DOI: 10.15252/emmm.201505348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.
Collapse
Affiliation(s)
- Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Thomas Wossning
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isora V Sernandez
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sonia M Mur
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
11
|
Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol 2016; 16:164-76. [PMID: 26898111 DOI: 10.1038/nri.2016.2] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As B cells engage in the immune response, they express activation-induced cytidine deaminase (AID) to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens. However, AID must be tightly controlled in B cells to minimize off-target mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the mechanisms of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity.
Collapse
|
12
|
AID-associated DNA repair pathways regulate malignant transformation in a murine model of BCL6-driven diffuse large B-cell lymphoma. Blood 2015; 127:102-12. [PMID: 26385350 DOI: 10.1182/blood-2015-02-628164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Somatic hypermutation and class-switch recombination of the immunoglobulin (Ig) genes occur in germinal center (GC) B cells and are initiated through deamination of cytidine to uracil by activation-induced cytidine deaminase (AID). Resulting uracil-guanine mismatches are processed by uracil DNA glycosylase (UNG)-mediated base-excision repair and MSH2-mediated mismatch repair (MMR) to yield mutations and DNA strand lesions. Although off-target AID activity also contributes to oncogenic point mutations and chromosome translocations associated with GC and post-GC B-cell lymphomas, the role of downstream AID-associated DNA repair pathways in the pathogenesis of lymphoma is unknown. Here, we show that simultaneous deficiency of UNG and MSH2 or MSH2 alone causes genomic instability and a shorter latency to the development of BCL6-driven diffuse large B-cell lymphoma (DLBCL) in a murine model. The additional development of several BCL6-independent malignancies in these mice underscores the critical role of MMR in maintaining general genomic stability. In contrast, absence of UNG alone is highly protective and prevents the development of BCL6-driven DLBCL. We further demonstrate that clonal and nonclonal mutations arise within non-Ig AID target genes in the combined absence of UNG and MSH2 and that DNA strand lesions arise in an UNG-dependent manner but are offset by MSH2. These findings lend insight into a complex interplay whereby potentially deleterious UNG activity and general genomic instability are opposed by the protective influence of MSH2, producing a net protective effect that promotes immune diversification while simultaneously attenuating malignant transformation of GC B cells.
Collapse
|
13
|
Dominguez PM, Shaknovich R. Epigenetic function of activation-induced cytidine deaminase and its link to lymphomagenesis. Front Immunol 2014; 5:642. [PMID: 25566255 PMCID: PMC4270259 DOI: 10.3389/fimmu.2014.00642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of immunoglobulin (Ig) genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years, a new epigenetic function of AID and its link to DNA demethylation came to light in several developmental systems. In this review, we summarize existing evidence linking deamination of unmodified and modified cytidine by AID to base-excision repair and mismatch repair machinery resulting in passive or active removal of DNA methylation mark, with the focus on B cell biology. We also discuss potential contribution of AID-dependent DNA hypomethylation to lymphomagenesis.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA
| | - Rita Shaknovich
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College , New York, NY , USA
| |
Collapse
|
14
|
Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W, Liang G, Tang Z, Mathé E, Benner C, Dubois W, Nelson S, Vian L, Oliveira TY, Jankovic M, Hakim O, Gazumyan A, Pavri R, Awasthi P, Song B, Liu G, Chen L, Zhu S, Feigenbaum L, Staudt L, Murre C, Ruan Y, Robbiani DF, Pan-Hammarström Q, Nussenzweig MC, Casellas R. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 2014; 159:1524-37. [PMID: 25483777 DOI: 10.1016/j.cell.2014.11.013] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/26/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.
Collapse
Affiliation(s)
- Jason Qian
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marei Dose
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA.
| | | | | | - Wolfgang Resch
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Genqing Liang
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Zhonghui Tang
- Department of Genetic and Development Biology, Jackson Laboratory for Genomic Medicine, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Ewy Mathé
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Christopher Benner
- The Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wendy Dubois
- Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Laura Vian
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ofir Hakim
- Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Rushad Pavri
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Doktor Bohr Gasse 7, Vienna 1030, Austria
| | - Parirokh Awasthi
- Science Applications International Corporation/Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Bin Song
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Geng Liu
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Longyun Chen
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Shida Zhu
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Lionel Feigenbaum
- Science Applications International Corporation/Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Louis Staudt
- Metabolism Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Cornelis Murre
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yijun Ruan
- Department of Genetic and Development Biology, Jackson Laboratory for Genomic Medicine, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qiang Pan-Hammarström
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; HHMI, The Rockefeller University, New York, NY 10065, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA; Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Waldenström macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN HEMATOLOGY 2013; 2013:815325. [PMID: 24106612 PMCID: PMC3782845 DOI: 10.1155/2013/815325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare and currently incurable neoplasm of IgM-expressing B-lymphocytes that is characterized by the occurrence of a monoclonal IgM (mIgM) paraprotein in blood serum and the infiltration of the hematopoietic bone marrow with malignant lymphoplasmacytic cells. The symptoms of patients with WM can be attributed to the extent and tissue sites of tumor cell infiltration and the magnitude and immunological specificity of the paraprotein. WM presents fascinating clues on neoplastic B-cell development, including the recent discovery of a specific gain-of-function mutation in the MYD88 adapter protein. This not only provides an intriguing link to new findings that natural effector IgM+IgD+ memory B-cells are dependent on MYD88 signaling, but also supports the hypothesis that WM derives from primitive, innate-like B-cells, such as marginal zone and B1 B-cells. Following a brief review of the clinical aspects and natural history of WM, this review discusses the thorny issue of WM's cell of origin in greater depth. Also included are emerging, genetically engineered mouse models of human WM that may enhance our understanding of the biologic and genetic underpinnings of the disease and facilitate the design and testing of new approaches to treat and prevent WM more effectively.
Collapse
|
16
|
Zhang S, Pruitt M, Tran D, Du Bois W, Zhang K, Patel R, Hoover S, Simpson RM, Simmons J, Gary J, Snapper CM, Casellas R, Mock BA. B cell-specific deficiencies in mTOR limit humoral immune responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:1692-703. [PMID: 23858034 DOI: 10.4049/jimmunol.1201767] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Generation of high-affinity Abs in response to Ags/infectious agents is essential for developing long-lasting immune responses. B cell maturation and Ab responses to Ag stimulation require Ig somatic hypermutation (SHM) and class-switch recombination (CSR) for high-affinity responses. Upon immunization with either the model Ag 4-hydroxy-3-nitrophenylacetyl hapten (NP) conjugated to chicken γ globulin lysine (NP-CGG) or heat-killed Streptococcus pneumoniae capsular type 14 protein (Pn14), knock-in (KI) mice hypomorphic for mTOR function had a decreased ability to form germinal centers, develop high-affinity anti-NP-specific or anti-Pn14-specific Abs, and perform SHM/CSR. Hypomorphic mTOR mice also had a high mortality (40%) compared with wild-type (WT) (0%) littermates and had lower pneumococcal surface protein A-specific Ab titers when immunized and challenged with live S. pneumoniae infection. Mice with mTOR deleted in their B cell lineage (knockout [KO]) also produced fewer splenic germinal centers and decreased high-affinity Ab responses to NP-CGG than did their WT littermates. CSR rates were lower in mTOR KI and KO mice, and pharmacologic inhibition of mTOR in WT B cells resulted in decreased rates of ex vivo CSR. RNA and protein levels of activation-induced cytidine deaminase (AID), a protein essential for SHM and CSR, were lower in B cells from both KI and B cell-specific KO mice, concomitant with increases in phosphorylated AKT and FOXO1. Rescue experiments increasing AID expression in KI B cells restored CSR levels to those in WT B cells. Thus, mTOR plays an important immunoregulatory role in the germinal center, at least partially through AID signaling, in generating high-affinity Abs.
Collapse
Affiliation(s)
- Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:79-103. [PMID: 22974238 DOI: 10.1146/annurev-pathol-020712-164004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of B cell lymphomas in the early 1980s led to the cloning of genes (c-MYC and IGH) at a chromosome translocation breakpoint. A rush followed to identify recurrently translocated genes in all types of cancer, which led to remarkable advances in our understanding of cancer genetics. B lymphocyte tumors commonly bear chromosome translocations to immunoglobulin genes, which points to a role for antibody gene diversification processes in tumorigenesis. The discovery of activation-induced cytidine deaminase (AID) and the use of murine models to study translocation have led to a new understanding of how these events contribute to the genesis of lymphomas. Here, we review these advances with a focus on AID and insights gained from the study of translocations in primary cells.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
18
|
Oncogenic Myc translocations are independent of chromosomal location and orientation of the immunoglobulin heavy chain locus. Proc Natl Acad Sci U S A 2012; 109:13728-32. [PMID: 22869734 DOI: 10.1073/pnas.1202882109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many tumors are characterized by recurrent translocations between a tissue-specific gene and a proto-oncogene. The juxtaposition of the Ig heavy chain gene and Myc in Burkitt's lymphoma and in murine plasmacytoma is a classic example. Regulatory elements within the heavy chain constant region locus are required for Myc translocation and/or deregulation. However, many genes are regulated by cis-acting elements at distances up to 1,000 kb outside the locus. Such putative distal elements have not been examined for the heavy chain locus, particularly in the context of Myc translocations. We demonstrate that a transgene containing the Ig heavy chain constant region locus, inserted into five different chromosomal locations, can undergo translocations involving Myc. Furthermore, these translocations are able to generate plasmacytomas in each transgenic line. We conclude that the heavy chain constant region locus itself includes all of the elements necessary for both the translocation and the deregulation of the proto-oncogene.
Collapse
|
19
|
Wang JH. Mechanisms and impacts of chromosomal translocations in cancers. Front Med 2012; 6:263-74. [PMID: 22865120 DOI: 10.1007/s11684-012-0215-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
Abstract
Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago. Chromosomal translocations, a type of particular structural changes involving heterologous chromosomes, have made a critical impact on diagnosis, prognosis and treatment of cancers. For example, the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia. In the past few decades, tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations. This review focuses on the basic mechanisms underlying the generation of chromosomal translocations. In particular, the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.
Collapse
Affiliation(s)
- Jing H Wang
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
20
|
Mouse model of endemic Burkitt translocations reveals the long-range boundaries of Ig-mediated oncogene deregulation. Proc Natl Acad Sci U S A 2012; 109:10972-7. [PMID: 22711821 DOI: 10.1073/pnas.1200106109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human Burkitt lymphomas are divided into two main clinical variants: the endemic form, affecting African children infected with malaria and the Epstein-Barr virus, and the sporadic form, distributed across the rest of the world. However, whereas sporadic translocations decapitate Myc from 5' proximal regulatory elements, most endemic events occur hundreds of kilobases away from Myc. The origin of these rearrangements and how they deregulate oncogenes at such distances remain unclear. We here recapitulate endemic Burkitt lymphoma-like translocations in plasmacytomas from uracil N-glycosylase and activation-induced cytidine deaminase-deficient mice. Mapping of translocation breakpoints using an acetylated histone H3 lysine 9 chromatin immunoprecipitation sequencing approach reveals Igh fusions up to ∼350 kb upstream of Myc or the related oncogene Mycn. A comprehensive analysis of epigenetic marks, PolII recruitment, and transcription in tumor cells demonstrates that the 3' Igh enhancer (Eα) vastly remodels ∼450 kb of chromatin into translocated sequences, leading to significant polymerase occupancy and constitutive oncogene expression. We show that this long-range epigenetic reprogramming is directly proportional to the physical interaction of Eα with translocated sites. Our studies thus uncover the extent of epigenetic remodeling by Ig 3' enhancers and provide a rationale for the long-range deregulation of translocated oncogenes in endemic Burkitt lymphomas. The data also shed light on the origin of endemic-like chromosomal rearrangements.
Collapse
|
21
|
Orthwein A, Di Noia JM. Activation induced deaminase: how much and where? Semin Immunol 2012; 24:246-54. [PMID: 22687198 DOI: 10.1016/j.smim.2012.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/18/2012] [Indexed: 11/28/2022]
Abstract
Activation induced deaminase (AID) plays a central role in adaptive immunity by initiating the processes of somatic hypermutation (SHM) and class switch recombination (CSR). On the other hand, AID also predisposes to lymphoma and plays a role in some autoimmune diseases, for which reasons AID expression and activity are regulated at various levels. Post-translational mechanisms regulating the amount and subcellular localization of AID are prominent in balancing AID physiological and pathological functions in B cells. Mechanisms regulating AID protein levels include stabilizing chaperones in the cytoplasm and proteins efficiently targeting AID to the proteasome within the nucleus. Nuclear export and cytoplasmic retention contribute to limit the amount of AID accessing the genome. Additionally, a number of factors have been implicated in AID active nuclear import. We review these intertwined mechanisms proposing two scenarios in which they could interact as a network or as a cycle for defining the optimal amount of AID protein. We also comparatively review the expression levels of AID necessary for its function during the immune response, present in different cancers as well as in those tissues in which AID has been implicated in epigenetic remodeling of the genome by demethylating DNA.
Collapse
Affiliation(s)
- Alexandre Orthwein
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada
| | | |
Collapse
|
22
|
Pérez-Durán P, Belver L, de Yébenes VG, Delgado P, Pisano DG, Ramiro AR. UNG shapes the specificity of AID-induced somatic hypermutation. ACTA ACUST UNITED AC 2012; 209:1379-89. [PMID: 22665573 PMCID: PMC3405504 DOI: 10.1084/jem.20112253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNG activity repairs activation-induced deaminase-generated U:G mismatches via error-prone or error-free repair, depending on the sequence context of the deaminated cytosine. Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Collapse
Affiliation(s)
- Pablo Pérez-Durán
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
24
|
Activation-induced cytidine deaminase expression in CD4+ T cells is associated with a unique IL-10-producing subset that increases with age. PLoS One 2011; 6:e29141. [PMID: 22216188 PMCID: PMC3247255 DOI: 10.1371/journal.pone.0029141] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/21/2011] [Indexed: 12/04/2022] Open
Abstract
Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4+ T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4+ and B220+ cell populations. ExAID B cells remained IgM+, suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis.
Collapse
|
25
|
Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR, Choi VW, Compagno M, Malkin DJ, Neuberg D, Monti S, Giallourakis CC, Gostissa M, Alt FW. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 2011; 147:107-19. [PMID: 21962511 DOI: 10.1016/j.cell.2011.07.049] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
Whereas chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high-throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated DNA double-strand breaks (DSBs) within the c-myc oncogene or IgH locus of B lymphocytes induced for activation-induced cytidine deaminase (AID)-dependent IgH class switching. DSBs translocated widely across the genome but were preferentially targeted to transcribed chromosomal regions. Additionally, numerous AID-dependent and AID-independent hot spots were targeted, with the latter comprising mainly cryptic I-SceI targets. Comparison of translocation junctions with genome-wide nuclear run-ons revealed a marked association between transcription start sites and translocation targeting. The majority of translocation junctions were formed via end-joining with short microhomologies. Our findings have implications for diverse fields, including gene therapy and cancer genomics.
Collapse
Affiliation(s)
- Roberto Chiarle
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Proc Natl Acad Sci U S A 2011; 108:19305-10. [PMID: 22080610 DOI: 10.1073/pnas.1114522108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Somatic hypermutation (SHM) and class-switch recombination (CSR) of the Ig gene require both the transcription of the locus and the expression of activation-induced cytidine deaminase (AID). During CSR, AID decreases the amount of topoisomerase I (Top1); this decrease alters the DNA structure and induces cleavage in the S region. Similarly, Top1 is involved in transcription-associated mutation at dinucleotide repeats in yeast and in triplet-repeat contraction in mammals. Here, we report that the AID-induced decrease in Top1 is critical for SHM. Top1 knockdown or haploinsufficiency enhanced SHM, whereas Top1 overexpression down-regulated it. A specific Top1 inhibitor, camptothecin, suppressed SHM, indicating that Top1's activity is required for DNA cleavage. Nonetheless, suppression of transcription abolished SHM, even in cells with Top1 knockdown, suggesting that transcription is critical. These results are consistent with a model proposed for CSR and triplet instability, in which transcription-induced non-B structure formation is enhanced by Top1 reduction and provides the target for irreversible cleavage by Top1. We speculate that the mechanism for transcription-coupled genome instability was adopted to generate immune diversity when AID evolved.
Collapse
|
27
|
Shansab M, Eccleston JM, Selsing E. Translocation of an antibody transgene requires AID and occurs by interchromosomal switching to all switch regions except the mu switch region. Eur J Immunol 2011; 41:1456-64. [PMID: 21469111 DOI: 10.1002/eji.201041077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 11/06/2022]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) occurs most often by intrachromosomal recombinations between switch (S) regions located on a single chromosome, but it can also occur by interchomosomal recombinations between Ig heavy chain (Igh) S regions located on chomosomal homologs. Interchromosomal recombinations have also been found between chromosomes that are not homologs; examples are Igh/c-myc and Igh/transgene translocations. Most, but not all, studies have indicated that activation-induced cytidine deaminase (AID) is important in Igh/c-myc translocations. The role of AID has not been determined for Igh/transgene translocations. We now show that the majority of Igh/transgene translocations between non-homologs from an Ig transgenic mouse are dependent on AID, but we also find a small number of these translocations that can occur in the absence of AID. Surprisingly, our results also indicate that, although Sγ switch sequences in the endogenous Igh locus participate in chromosomal translocations with the non-homolog transgene-bearing chromosome, Sμ switch sequences do not. This contrasts with the fact that both endogenous Sμ and Sγ sequences participate in intrachromosomal CSR. Our findings suggest the operation of a regulatory mechanism that can differentially control the accessibility of Sμ and Sγ regions for non-homolog translocations even when both are accessible for intrachromosomal recombination.
Collapse
Affiliation(s)
- Maryam Shansab
- Program in Immunology and Department of Pathology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
28
|
Hancer VS, Kose M, Diz-Kucukkaya R, Yavuz AS, Aktan M. Activation-induced cytidine deaminase mRNA levels in chronic lymphocytic leukemia. Leuk Lymphoma 2010; 52:79-84. [PMID: 21133730 DOI: 10.3109/10428194.2010.531410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rai and Binet staging systems, which are used as standard methods for evaluating the prognosis of chronic lymphocytic leukemia (CLL), have some restrictions in identifying patients with early-stage CLL who will progress rapidly. To solve this defect, other prognostic parameters have become important in recent years. Intracellular up-regulation of the AID gene in the leukemic lymphocytes of patients with CLL may be an important parameter for predicting the progression of CLL. In this study, AID mRNA expression levels were evaluated in 50 patients with CLL and 50 healthy controls. AID mRNA expression was significantly higher in patients than in controls. We then evaluated AID mRNA levels according to the stages of CLL. Regarding AID mRNA levels, patients with Rai stages 0, I, and II were compared with patients with stages III and IV, whereas patients with Binet stage A were compared with patients with Binet stages B and C. In patients with higher-risk Rai stages III and IV and Binet stages B and C, activation-induced cytidine deaminase (AID) mRNA levels were also significantly higher. Additionally, we found that the mRNA levels of patients with AID in CLL were eight-fold higher than those in control patients, suggesting that AID overexpression promotes chromosomal abnormalities and is associated with CLL progression and survival. For this reason, and because of the simplicity of quantitative real-time PCR analysis, AID might be a useful clinical parameter after its importance is confirmed in larger and multivariate studies.
Collapse
Affiliation(s)
- Veysel Sabri Hancer
- Department of Medical Biology and Genetics, Istanbul Bilim University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
29
|
Matsumoto Y, Marusawa H, Kinoshita K, Niwa Y, Sakai Y, Chiba T. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology 2010; 139:1984-94. [PMID: 20637757 DOI: 10.1053/j.gastro.2010.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The DNA/RNA editing enzyme activation-induced cytidine deaminase (AID) is mutagenic and has been implicated in human tumorigenesis. Helicobacter pylori infection of gastric epithelial cells leads to aberrant expression of AID and somatic gene mutations. We investigated whether AID induces genetic aberrations at specific chromosomal loci that encode tumor-related proteins in gastric epithelial cells. METHODS Human gastric epithelial cell lines that express activated AID and gastric cells from AID transgenic mice were examined for DNA copy number changes and nucleotide alterations. Copy number aberrations in stomach cells of H pylori-infected mice and gastric tissues (normal and tumor) from H pylori-positive patients were also analyzed. RESULTS In human gastric cells, aberrant AID activity induced copy number changes at various chromosomal loci. In AID-expressing cells and gastric mucosa of AID transgenic mice, point mutations and reductions in copy number were observed frequently in the tumor suppressor genes CDKN2A and CDKN2B. Oral infection of wild-type mice with H pylori reduced the copy number of the Cdkn2b-Cdkn2a locus, whereas no such changes were observed in the gastric mucosa of H pylori-infected AID-deficient mice. In human samples, the relative copy numbers of CDKN2A and CDKN2B were reduced in a subset of gastric cancer tissues compared with the surrounding noncancerous region. CONCLUSIONS H pylori infection leads to aberrant expression of AID and might be a mechanism of the accumulation of submicroscopic deletions and somatic mutations in gastric epithelial cells. AID-mediated genotoxic effects appear to occur frequently at the CDKN2b-CDKN2a locus and contribute to malignant transformation of the gastric mucosa.
Collapse
Affiliation(s)
- Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol 2010; 12:62-9. [PMID: 21113164 DOI: 10.1038/ni.1964] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/02/2010] [Indexed: 12/13/2022]
Abstract
The cytidine deaminase AID hypermutates immunoglobulin genes but can also target oncogenes, leading to tumorigenesis. The extent of AID's promiscuity and its predilection for immunoglobulin genes are unknown. We report here that AID interacted broadly with promoter-proximal sequences associated with stalled polymerases and chromatin-activating marks. In contrast, genomic occupancy of replication protein A (RPA), an AID cofactor, was restricted to immunoglobulin genes. The recruitment of RPA to the immunoglobulin loci was facilitated by phosphorylation of AID at Ser38 and Thr140. We propose that stalled polymerases recruit AID, thereby resulting in low frequencies of hypermutation across the B cell genome. Efficient hypermutation and switch recombination required AID phosphorylation and correlated with recruitment of RPA. Our findings provide a rationale for the oncogenic role of AID in B cell malignancy.
Collapse
|
31
|
Qi CF, Shin DM, Li Z, Wang H, Feng J, Hartley JW, Fredrickson TN, Kovalchuk AL, Morse HC. Anaplastic plasmacytomas: relationships to normal memory B cells and plasma cell neoplasms of immunodeficient and autoimmune mice. J Pathol 2010; 221:106-16. [PMID: 20217872 PMCID: PMC3415987 DOI: 10.1002/path.2692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/02/2010] [Indexed: 01/09/2023]
Abstract
Anaplastic plasmacytomas (APCTs) from NFS.V(+) congenic mice and pristane-induced plasmacytic PCTs from BALB/c mice were previously shown to be histologically and molecularly distinct subsets of plasma cell neoplasms (PCNs). Here we extended these comparisons, contrasting primary APCTs and PCTs by gene expression profiling in relation to the expression profiles of normal naïve, germinal centre, and memory B cells and plasma cells. We also sequenced immunoglobulin genes from APCT and APCT-derived cell lines and defined surface phenotypes and chromosomal features of the cell lines by flow cytometry and by spectral karyotyping and fluorescence in situ hybridization. The results indicate that APCTs share many features with normal memory cells and the plasma cell-related neoplasms (PLs) of FASL-deficient mice, suggesting that APCTs and PLs are related and that both derive from memory B cells. Published in 2010 by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chen-Feng Qi
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | - Zhaoyang Li
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Hongsheng Wang
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jianxum Feng
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Torgny N Fredrickson
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alexander L Kovalchuk
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Herbert C Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
32
|
Nagaoka H, Tran TH, Kobayashi M, Aida M, Honjo T. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int Immunol 2010; 22:227-35. [DOI: 10.1093/intimm/dxq023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, McBride KM, Klein IA, Stone G, Eisenreich TR, Ried T, Nussenzweig A, Nussenzweig MC. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 2009; 36:631-41. [PMID: 19941823 DOI: 10.1016/j.molcel.2009.11.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/08/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022]
Abstract
Cancer-initiating translocations such as those associated with lymphomas require the formation of paired DNA double-strand breaks (DSBs). Activation-induced cytidine deaminase (AID) produces widespread somatic mutation in mature B cells; however, the extent of "off-target" DSB formation and its role in translocation-associated malignancy is unknown. Here, we show that deregulated expression of AID causes widespread genome instability, which alone is insufficient to induce B cell lymphoma; transformation requires concomitant loss of the tumor suppressor p53. Mature B cell lymphomas arising as a result of deregulated AID expression are phenotypically diverse and harbor clonal reciprocal translocations involving a group of Immunoglobulin (Ig) and non-Ig genes that are direct targets of AID. This group includes miR-142, a previously unknown micro-RNA target that is translocated in human B cell malignancy. We conclude that AID produces DSBs throughout the genome, which can lead to lymphoma-associated chromosome translocations in mature B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/enzymology
- Cell Differentiation/genetics
- Cells, Cultured
- Chromosomal Instability/genetics
- Chromosomes, Mammalian/genetics
- Cytidine Deaminase/metabolism
- DNA Breaks, Double-Stranded
- DNA Damage
- Genes, Immunoglobulin/genetics
- Humans
- Immunoglobulin Class Switching/genetics
- Karyotyping
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Transgenic
- MicroRNAs/metabolism
- Phenotype
- Proto-Oncogene Proteins c-myc/genetics
- Somatic Hypermutation, Immunoglobulin/genetics
- Translocation, Genetic
- Tumor Suppressor Protein p53/deficiency
Collapse
|
34
|
Tran TH, Nakata M, Suzuki K, Begum NA, Shinkura R, Fagarasan S, Honjo T, Nagaoka H. B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat Immunol 2009; 11:148-54. [PMID: 19966806 DOI: 10.1038/ni.1829] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/28/2009] [Indexed: 01/17/2023]
Abstract
Activation-induced cytidine deaminase (AID) is essential for the generation of antibody memory but also targets oncogenes, among other genes. We investigated the transcriptional regulation of Aicda (which encodes AID) in class switch-inducible CH12F3-2 cells and found that Aicda regulation involved derepression by several layers of positive regulatory elements in addition to the 5' promoter region. The 5' upstream region contained functional motifs for the response to signaling by cytokines, the ligand for the costimulatory molecule CD40 or stimuli that activated the transcription factor NF-kappaB. The first intron contained functional binding elements for the ubiquitous silencers c-Myb and E2f and for the B cell-specific activator Pax5 and E-box-binding proteins. Our results show that Aicda is regulated by the balance between B cell-specific and stimulation-responsive elements and ubiquitous silencers.
Collapse
Affiliation(s)
- Thinh Huy Tran
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Role of the translocation partner in protection against AID-dependent chromosomal translocations. Proc Natl Acad Sci U S A 2009; 107:187-92. [PMID: 19966290 DOI: 10.1073/pnas.0908946107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome translocations between Ig (Ig) and non-Ig genes are frequently associated with B-cell lymphomas in humans and mice. The best characterized of these is c-myc/IgH translocation, which is associated with Burkitt's lymphoma. These translocations are caused by activation-induced cytidine deaminase (AID), which produces double-strand DNA breaks in both genes. c-myc/IgH translocations are rare events, in part because ATM, p53, and p19 actively suppress them. To further define the mechanism of protection against the accumulation of cells that bear c-myc/IgH translocation, we assayed B cells from mice that carry mutations in cell-cycle and apoptosis regulator proteins that act downstream of p53. We find that PUMA, Bim, and PKCdelta are required for protection against c-myc/IgH translocation, whereas Bcl-XL and BAFF enhance c-myc/IgH translocation. Whether these effects are general or specific to c-myc/IgH translocation and whether AID produces dsDNA breaks in genes other than c-myc and Ig is not known. To examine these questions, we developed an assay for translocation between IgH and Igbeta, both of which are somatically mutated by AID. Igbeta/IgH, like c-myc/IgH translocations, are AID-dependent, and AID is responsible for lesions on IgH and the non-IgH translocation partners. However, ATM, p53, and p19 do not protect against Igbeta/IgH translocations. Instead, B cells are protected against Igbeta/IgH translocations by a BAFF- and PKCdelta-dependent pathway. We conclude that AID-induced double-strand breaks in non-Ig genes other than c-myc lead to their translocation, and that at least two nonoverlapping pathways protect against translocations in primary B cells.
Collapse
|
36
|
Wang JH, Gostissa M, Yan CT, Goff P, Hickernell T, Hansen E, Difilippantonio S, Wesemann DR, Zarrin AA, Rajewsky K, Nussenzweig A, Alt FW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 2009; 460:231-6. [PMID: 19587764 DOI: 10.1038/nature08159] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/25/2009] [Indexed: 01/08/2023]
Abstract
Variable, diversity and joining gene segment (V(D)J) recombination assembles immunoglobulin heavy or light chain (IgH or IgL) variable region exons in developing bone marrow B cells, whereas class switch recombination (CSR) exchanges IgH constant region exons in peripheral B cells. Both processes use directed DNA double-strand breaks (DSBs) repaired by non-homologous end-joining (NHEJ). Errors in either V(D)J recombination or CSR can initiate chromosomal translocations, including oncogenic IgH locus (Igh) to c-myc (also known as Myc) translocations of peripheral B cell lymphomas. Collaboration between these processes has also been proposed to initiate translocations. However, the occurrence of V(D)J recombination in peripheral B cells is controversial. Here we show that activated NHEJ-deficient splenic B cells accumulate V(D)J-recombination-associated breaks at the lambda IgL locus (Igl), as well as CSR-associated Igh breaks, often in the same cell. Moreover, Igl and Igh breaks are frequently joined to form translocations, a phenomenon associated with specific Igh-Igl co-localization. Igh and c-myc also co-localize in these cells; correspondingly, the introduction of frequent c-myc DSBs robustly promotes Igh-c-myc translocations. Our studies show peripheral B cells that attempt secondary V(D)J recombination, and determine a role for mechanistic factors in promoting recurrent translocations in tumours.
Collapse
|
37
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
38
|
Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 2008; 135:1028-38. [PMID: 19070574 DOI: 10.1016/j.cell.2008.09.062] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/15/2008] [Accepted: 09/16/2008] [Indexed: 01/01/2023]
Abstract
Chromosomal translocation requires formation of paired double-strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy-chain locus (IgH) and is found in Burkitt's lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation-induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here, we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sernández IV, de Yébenes VG, Dorsett Y, Ramiro AR. Haploinsufficiency of activation-induced deaminase for antibody diversification and chromosome translocations both in vitro and in vivo. PLoS One 2008; 3:e3927. [PMID: 19079594 PMCID: PMC2592691 DOI: 10.1371/journal.pone.0003927] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/13/2008] [Indexed: 12/20/2022] Open
Abstract
The humoral immune response critically relies on the secondary diversification of antibodies. This diversification takes places through somatic remodelling of the antibody genes by two molecular mechanisms, Class Switch Recombination (CSR) and Somatic Hypermutation (SHM). The enzyme Activation Induced Cytidine Deaminase (AID) initiates both SHM and CSR by deaminating cytosine residues on the DNA of immunoglobulin genes. While crucial for immunity, AID-catalysed deamination is also the triggering event for the generation of lymphomagenic chromosome translocations. To address whether restricting the levels of AID expression in vivo contributes to the regulation of its function, we analysed mice harbouring a single copy of the AID gene (AID+/−). AID+/− mice express roughly 50% of normal AID levels, and display a mild hyperplasia, reminiscent of AID deficient mice and humans. Moreover, we found that AID+/− cells have an impaired competence for CSR and SHM, which indicates that AID gene dose is limiting for its physiologic function. We next evaluated the impact of AID reduction in AID+/− mice on the generation of chromosome translocations. Our results show that the frequency of AID-promoted c-myc/IgH translocations is reduced in AID+/− mice, both in vivo and in vitro. Therefore, AID is haploinsufficient for antibody diversification and chromosome translocations. These findings suggest that limiting the physiologic levels of AID expression can be a regulatory mechanism that ensures an optimal balance between immune proficiency and genome integrity.
Collapse
Affiliation(s)
- Isora V. Sernández
- DNA Hypermutation and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Virginia G. de Yébenes
- DNA Hypermutation and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Yair Dorsett
- The Rockefeller University, New York, New York, United States of America
| | - Almudena R. Ramiro
- DNA Hypermutation and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
40
|
Wang JH, Alt FW, Gostissa M, Datta A, Murphy M, Alimzhanov MB, Coakley KM, Rajewsky K, Manis JP, Yan CT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. ACTA ACUST UNITED AC 2008; 205:3079-90. [PMID: 19064702 PMCID: PMC2605230 DOI: 10.1084/jem.20082271] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre–mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of Igκ and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving Igκ or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro–B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy.
Collapse
Affiliation(s)
- Jing H Wang
- Howard Hughes Medical Institute, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Yébenes VG, Belver L, Pisano DG, González S, Villasante A, Croce C, He L, Ramiro AR. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. ACTA ACUST UNITED AC 2008; 205:2199-206. [PMID: 18762567 PMCID: PMC2556787 DOI: 10.1084/jem.20080579] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3′ untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- DNA Hypermutation and Cancer Group, Spanish National Cancer Research Center, Madrid 28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Takizawa M, Tolarová H, Li Z, Dubois W, Lim S, Callen E, Franco S, Mosaico M, Feigenbaum L, Alt FW, Nussenzweig A, Potter M, Casellas R. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. ACTA ACUST UNITED AC 2008; 205:1949-57. [PMID: 18678733 PMCID: PMC2526190 DOI: 10.1084/jem.20081007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunoglobulin (Ig) isotype switching is a recombination event that changes the constant domain of antibody genes and is catalyzed by activation-induced cytidine deaminase (AID). Upon recruitment to Ig genes, AID deaminates cytidines at switch (S) recombination sites, leading to the formation of DNA breaks. In addition to their role in isotype switching, AID-induced lesions promote Igh-cMyc chromosomal translocations and tumor development. However, cMyc translocations are also present in lymphocytes from healthy humans and mice, and thus, it remains unclear whether AID directly contributes to the dynamics of B cell transformation. Using a plasmacytoma mouse model, we show that AID(+/-) mice have reduced AID expression levels and display haploinsufficiency both in the context of isotype switching and plasmacytomagenesis. At the Ig loci, AID(+/-) lymphocytes show impaired intra- and inter-switch recombination, and a substantial decrease in the frequency of S mutations and chromosomal breaks. In AID(+/-) mice, these defects correlate with a marked decrease in the accumulation of B cell clones carrying Igh-cMyc translocations during tumor latency. These results thus provide a causality link between the extent of AID enzymatic activity, the number of emerging Igh-cMyc-translocated cells, and the incidence of B cell transformation.
Collapse
Affiliation(s)
- Makiko Takizawa
- Genomic Integrity and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|