1
|
Hasegawa H, Wang S, Kast E, Chou HT, Kaur M, Janlaor T, Mostafavi M, Wang YL, Li P. Understanding the biosynthesis of human IgM SAM-6 through a combinatorial expression of mutant subunits that affect product assembly and secretion. PLoS One 2024; 19:e0291568. [PMID: 38848420 PMCID: PMC11161108 DOI: 10.1371/journal.pone.0291568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Polymeric IgMs are secreted from plasma cells abundantly despite their structural complexity and intricate multimerization steps. To gain insights into IgM's assembly mechanics that underwrite such high-level secretion, we characterized the biosynthetic process of a natural human IgM, SAM-6, using a heterologous HEK293(6E) cell platform that allowed the production of IgMs both in hexameric and pentameric forms in a controlled fashion. By creating a series of mutant subunits that differentially disrupt secretion, folding, and specific inter-chain disulfide bond formation, we assessed their effects on various aspects of IgM biosynthesis in 57 different subunit chain combinations, both in hexameric and pentameric formats. The mutations caused a spectrum of changes in steady-state subcellular subunit distribution, ER-associated inclusion body formation, intracellular subunit detergent solubility, covalent assembly, secreted IgM product quality, and secretion output. Some mutations produced differential effects on product quality depending on whether the mutation was introduced to hexameric IgM or pentameric IgM. Through this systematic combinatorial approach, we consolidate diverse overlapping knowledge on IgM biosynthesis for both hexamers and pentamers, while unexpectedly revealing that the loss of certain inter-chain disulfide bonds, including the one between μHC and λLC, is tolerated in polymeric IgM assembly and secretion. The findings highlight the differential roles of underlying non-covalent protein-protein interactions in hexamers and pentamers when orchestrating the initial subunit interactions and maintaining the polymeric IgM product integrity during ER quality control steps, secretory pathway trafficking, and secretion.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Songyu Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Eddie Kast
- Molecular Analytics, Department of Biologic Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Hui-Ting Chou
- Structural Biology, Department of Small Molecule Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Mehma Kaur
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Tanakorn Janlaor
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Mina Mostafavi
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Yi-Ling Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Peng Li
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| |
Collapse
|
2
|
Leighton PA, Ching K, Reynolds K, Vuong CN, Zeng B, Zhang Y, Gupta A, Morales J, Rivera GS, Srivastava DB, Cotter R, Pedersen D, Collarini E, Izquierdo S, van de Lavoir MC, Harriman W. Chickens with a Truncated Light Chain Transgene Express Single-Domain H Chain-Only Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1744-1753. [PMID: 38629917 PMCID: PMC11102025 DOI: 10.4049/jimmunol.2300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.
Collapse
|
3
|
Choi J, Jeon Y, Roh Y, Jang J, Lee E, Villamante L, Kim M, Kwon MH. The dispensability of V H-V L pairing and the indispensability of V L domain integrity in the IgG1 secretion process. Front Mol Biosci 2024; 11:1346259. [PMID: 38756530 PMCID: PMC11096469 DOI: 10.3389/fmolb.2024.1346259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: The CH1 domain of IgG antibodies controls assembly and secretion, mediated by the molecular chaperone BiP via the endoplasmic reticulum protein quality control (ERQC) mechanism. However, it is not clear whether the variable domains are necessary for this process. Methods: Here, we generated IgG1 antibodies in which the V domain (VH and/or VL) was either removed or replaced, and then assessed expression, assembly, and secretion in HEK293 cells. Results: All Ig variants formed a covalent linkage between the Cγ1 and Cκ, were successfully secreted in an assembled form. Replacement of the cognate Vκ with a non-secretory pseudo Vκ (ψVκ) hindered secretion of individual or assembled secretion of neither heavy chains (HCs) nor light chains (LCs). The ψLC (ψVκ-Cκ) exhibited a less folded structure compared to the wild type (wt) LC, as evidenced by enhanced stable binding to the molecular chaperone BiP and susceptibility to proteolytic degradation. Molecular dynamics simulation demonstrated dramatic alterations in overall structure of ψFab (Fd-ψLC) from wt Fab. Discussion: These findings suggest that V domains do not initiate HC:LC assembly and secretion; instead, the critical factor governing IgG assembly and secretion is the CH-CL pairing. Additionally, the structural integrity of the VL domain is crucial for IgG secretion. These data offer valuable insight into the design of bioactive molecules based on an IgG backbone.
Collapse
Affiliation(s)
- Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Yerin Jeon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Youngin Roh
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Jeongyun Jang
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Eunbin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Luigie Villamante
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
4
|
Dong H, Zhang Y, Wang J, Xiang H, Lv T, Wei L, Yang S, Liu X, Ren B, Zhang X, Liu L, Cao J, Wang M, Shi J, Yang N. Cas9-Based Local Enrichment and Genomics Sequence Revision of Megabase-Sized Shark IgNAR Loci. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:181-189. [PMID: 34880108 DOI: 10.4049/jimmunol.2100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The 0.8-Mb Ig new Ag receptor (IgNAR) region of the whitespotted bamboo shark (Chiloscyllium plagiosum) is incompletely assembled in Chr_44 of the reference genome. Here we used Cas9-assisted targeting of chromosome segments (CATCH) to enrich the 2 Mb region of the Chr_44 IgNAR loci and sequenced it by PacBio and next-generation sequencing. A fragment >3.13 Mb was isolated intact from the RBCs of sharks. The target was enriched 245.531-fold, and sequences had up to 94% coverage with a 255× mean depth. Compared with the previously published sequences, 20 holes were filled, with a total length of 3508 bp. In addition, we report five potential germline V alleles of IgNAR1 from six sharks that may belong to two clusters of the IgNAR. Our results provide a new method to research the germline of large Ig gene segments, as well as provide the enhanced bamboo shark IgNAR gene loci with fewer gaps.
Collapse
Affiliation(s)
- Hongming Dong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Yaolei Zhang
- Beijing Genomics Institution-Qingdao, Beijing Genomics Institution-Shenzhen, Qingdao, China
| | - Jiahao Wang
- Beijing Genomics Institution-Qingdao, Beijing Genomics Institution-Shenzhen, Qingdao, China
| | - Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Tianhang Lv
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Likun Wei
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shaosen Yang
- Beijing Genomics Institution Marine, Beijing Genomics Institution, Shenzhen, China
| | - Xiaopan Liu
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Bingzhao Ren
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Lirong Liu
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Jun Cao
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
| | - Meiniang Wang
- Beijing Genomics Institution-Shenzhen, Shenzhen, China;
| | - Jiahai Shi
- Synthetic Biology Translational Research Programmes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
| | - Naibo Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China;
- Beijing Genomics Institution-Shenzhen, Shenzhen, China
- Complete Genomics Inc., San Jose, CA
| |
Collapse
|
5
|
van Anken E, Bakunts A, Hu CCA, Janssens S, Sitia R. Molecular Evaluation of Endoplasmic Reticulum Homeostasis Meets Humoral Immunity. Trends Cell Biol 2021; 31:529-541. [PMID: 33685797 DOI: 10.1016/j.tcb.2021.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
The biosynthesis of about one third of the human proteome, including membrane receptors and secreted proteins, occurs in the endoplasmic reticulum (ER). Conditions that perturb ER homeostasis activate the unfolded protein response (UPR). An 'optimistic' UPR output aims at restoring homeostasis by reinforcement of machineries that guarantee efficiency and fidelity of protein biogenesis in the ER. Yet, once the UPR 'deems' that ER homeostatic readjustment fails, it transitions to a 'pessimistic' output, which, depending on the cell type, will result in apoptosis. In this article, we discuss emerging concepts on how the UPR 'evaluates' ER stress, how the UPR is repurposed, in particular in B cells, and how UPR-driven counter-selection of cells undergoing homeostatic failure serves organismal homeostasis and humoral immunity.
Collapse
Affiliation(s)
- Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Sophie Janssens
- Laboratory for Endoplasmic Reticulum (ER) Stress and Inflammation, VIB Center for Inflammation Research, and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Mieczkowski C, Bahmanjah S, Yu Y, Baker J, Raghunathan G, Tomazela D, Hsieh M, McCoy M, Strickland C, Fayadat-Dilman L. Crystal Structure and Characterization of Human Heavy-Chain Only Antibodies Reveals a Novel, Stable Dimeric Structure Similar to Monoclonal Antibodies. Antibodies (Basel) 2020; 9:antib9040066. [PMID: 33266498 PMCID: PMC7709113 DOI: 10.3390/antib9040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
We report the novel crystal structure and characterization of symmetrical, homodimeric humanized heavy-chain-only antibodies or dimers (HC2s). HC2s were found to be significantly coexpressed and secreted along with mAbs from transient CHO HC/LC cotransfection, resulting in an unacceptable mAb developability attribute. Expression of full-length HC2s in the absence of LC followed by purification resulted in HC2s with high purity and thermal stability similar to conventional mAbs. The VH and CH1 portion of the heavy chain (or Fd) was also efficiently expressed and yielded a stable, covalent, and reducible dimer (Fd2). Mutagenesis of all heavy chain cysteines involved in disulfide bond formation revealed that Fd2 intermolecular disulfide formation was similar to Fabs and elucidated requirements for Fd2 folding and expression. For one HC2, we solved the crystal structure of the Fd2 domain to 2.9 Å, revealing a highly symmetrical homodimer that is structurally similar to Fabs and is mediated by conserved (CH1) and variable (VH) contacts with all CDRs positioned outward for target binding. Interfacial dimer contacts revealed by the crystal structure were mutated for two HC2s and were found to dramatically affect HC2 formation while maintaining mAb bioactivity, offering a potential means to modulate novel HC2 formation through engineering. These findings indicate that human heavy-chain dimers can be secreted efficiently in the absence of light chains, may show good physicochemical properties and stability, are structurally similar to Fabs, offer insights into their mechanism of formation, and may be amenable as a novel therapeutic modality.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
- Correspondence: ; Tel.: +1-650-496-6501
| | - Soheila Bahmanjah
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (S.B.); (C.S.)
| | - Yao Yu
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Gopalan Raghunathan
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Mark Hsieh
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Mark McCoy
- Department of Pharmacology, Mass Spectrometry & Biophysics, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Corey Strickland
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (S.B.); (C.S.)
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| |
Collapse
|
7
|
Li Z, Zhang M, Zheng S, Song Y, Cheng X, Yu D, Du L, Ren L, Han H, Zhao Y. Genetic removal of the CH1 exon leads to the production of hypofunctional heavy chain-only IgG2a in rats. Transgenic Res 2020; 29:199-213. [PMID: 32078126 DOI: 10.1007/s11248-020-00189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Despite great values in many applications, heavy chain-only antibodies (HcAbs) are naturally only produced in camelids and sharks, which are not easy to access and handle. Production of the type of antibodies in small laboratory animals would remarkably facilitate their applications. We previously reported a mouse line in which the CH1 exon of mouse γ1 was deleted that could express heavy chain-only IgG1 antibodies. However, these mice showed an extremely weak IgG1 response to specific antigens when immunized, and we could only achieve single VH domains with low affinity to antigens using these mice. One possibility is that the mouse germline VH repertoire was not sufficient to support the expression of functional heavy chain-only antibodies. In this study, we report the generation of a rat line in which the CH1 exon of the γ2a gene was removed and the γ1 and γ2b genes were silenced. Although the genetically modified rats expressed heavy chain-only IgG2a, they also exhibited a very weak IgG2a response to antigen immunization. Panning of a phage library constructed using IgG2a VH segments amplified from immunized rats identified antigen-specific single VH antibodies, which also exhibited much lower affinity than that of commercial mAbs. Together with our previous report, this study suggests that the simple genetic removal of the CH1 exon does not guarantee the successful expression of functional heavy chain-only antibodies.
Collapse
Affiliation(s)
- Zhenrong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Henry KA, van Faassen H, Harcus D, Marcil A, Hill JJ, Muyldermans S, MacKenzie CR. Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics 2019; 71:307-320. [PMID: 30656359 DOI: 10.1007/s00251-018-01102-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
Camelid ungulates produce homodimeric heavy chain-only antibodies (HCAbs) in addition to conventional antibodies consisting of paired heavy and light chains. In the llama, HCAbs are made up by at least two subclasses (long-hinge IgG2b and short-hinge IgG2c HCAbs vs. conventional heterotetrameric IgG1s). Here, we generated murine monoclonal antibodies (mAbs) specific for the hinge-CH2 boundary of llama IgG2b (mAb 1C10) and the Fc of llama IgG2c HCAbs (mAb 5E4). Flow cytometric analysis of llama peripheral blood lymphocytes revealed that IgG1+, IgG2b+ and IgG2c+ B cells could be distinguished using mAbs 1C10/5E4 but had equivalent expression of three other cell-surface markers. MiSeq sequencing of the peripheral B cell repertoires of three llamas showed that (i) IgG2b and IgG2c HCAbs were present in similar proportions in the repertoire, (ii) a subset of IgG2b and IgG2c HCAbs, but not IgG1s, entirely lacked a hinge exon and showed direct VHH-CH2 splicing; these "hingeless" HCAbs were clonally expanded, somatically mutated and derived from hinged HCAb precursors, (iii) substantial repertoire overlap existed between IgG subclasses, especially between IgG2b and IgG2c HCAbs, (iv) the complementarity-determining region (CDR)-H3 length distributions of IgG2b and IgG2c HCAbs were broader and biased towards longer lengths compared with IgG1s due to increased N-nucleotide addition, (v) IgG2b and IgG2c HCAbs used a more restricted set of IGHV genes compared with IgG1s, and (vi) IgG2b and IgG2c HCAbs had elevated somatic mutations rates of both CDRs and framework regions (FRs) compared with IgG1s, especially of CDR-H1 and FR3. The distinct molecular features of llama IgG1, IgG2b and IgG2c antibodies imply that these subclasses may have divergent immunological functions and suggest that specific mechanisms operate to diversify HCAb repertoires in the absence of a light chain.
Collapse
Affiliation(s)
- Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Doreen Harcus
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Jennifer J Hill
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
9
|
Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, Clarke SC, Dang K, Harris KE, Iyer S, Jorgensen B, Pratap PP, Rangaswamy US, Ugamraj HS, Vafa O, Wiita AP, van Schooten W, Buelow R, Force Aldred S. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 2019; 11:639-652. [PMID: 30698484 PMCID: PMC6601548 DOI: 10.1080/19420862.2019.1574521] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
T-cell-recruiting bispecific antibodies (T-BsAbs) have shown potent tumor killing activity in humans, but cytokine release-related toxicities have affected their clinical utility. The use of novel anti-CD3 binding domains with more favorable properties could aid in the creation of T-BsAbs with improved therapeutic windows. Using a sequence-based discovery platform, we identified new anti-CD3 antibodies from humanized rats that bind to multiple epitopes and elicit varying levels of T-cell activation. In T-BsAb format, 12 different anti-CD3 arms induce equivalent levels of tumor cell lysis by primary T-cells, but potency varies by a thousand-fold. Our lead CD3-targeting arm stimulates very low levels of cytokine release, but drives robust tumor antigen-specific killing in vitro and in a mouse xenograft model. This new CD3-targeting antibody underpins a next-generation T-BsAb platform in which potent cytotoxicity is uncoupled from high levels of cytokine release, which may lead to a wider therapeutic window in the clinic.
Collapse
Affiliation(s)
| | - Duy Pham
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | - Ben Buelow
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | - Priya Choudhry
- b Department of Laboratory Medicine , University of California , San Francisco , CA , USA
| | | | - Kevin Dang
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | | | | | | | | | | | - Omid Vafa
- a Teneobio, Inc ., Menlo Park , CA , USA
| | - Arun P Wiita
- b Department of Laboratory Medicine , University of California , San Francisco , CA , USA
| | | | | | | |
Collapse
|
10
|
Clarke SC, Ma B, Trinklein ND, Schellenberger U, Osborn MJ, Ouisse LH, Boudreau A, Davison LM, Harris KE, Ugamraj HS, Balasubramani A, Dang KH, Jorgensen B, Ogana HAN, Pham DT, Pratap PP, Sankaran P, Anegon I, van Schooten WC, Brüggemann M, Buelow R, Force Aldred S. Multispecific Antibody Development Platform Based on Human Heavy Chain Antibodies. Front Immunol 2019; 9:3037. [PMID: 30666250 PMCID: PMC6330309 DOI: 10.3389/fimmu.2018.03037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023] Open
Abstract
Heavy chain-only antibodies (HCAbs) do not associate with light chains and their VH regions are functional as single domains, forming the smallest active antibody fragment. These VH regions are ideal building blocks for a variety of antibody-based biologics because they tolerate fusion to other molecules and may also be attached in series to construct multispecific antibodies without the need for protein engineering to ensure proper heavy and light chain pairing. Production of human HCAbs has been impeded by the fact that natural human VH regions require light chain association and display poor biophysical characteristics when expressed in the absence of light chains. Here, we present an innovative platform for the rapid development of diverse sets of human HCAbs that have been selected in vivo. Our unique approach combines antibody repertoire analysis with immunization of transgenic rats, called UniRats, that produce chimeric HCAbs with fully human VH domains in response to an antigen challenge. UniRats express HCAbs from large transgenic loci representing the entire productive human heavy chain V(D)J repertoire, mount robust immune responses to a wide array of antigens, exhibit diverse V gene usage and generate large panels of stable, high affinity, antigen-specific molecules.
Collapse
Affiliation(s)
| | - Biao Ma
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | | | - Laure-Hélène Ouisse
- Centre de Recherche en Transplantation et Immunologie, Inserm UMR 1064, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | - Duy T Pham
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, Inserm UMR 1064, Université de Nantes, Nantes, France
| | | | | | | | | |
Collapse
|
11
|
Zhang T, Cheng X, Yu D, Lin F, Hou N, Cheng X, Hao S, Wei J, Ma L, Fu Y, Ma Y, Ren L, Han H, Yu S, Yang X, Zhao Y. Genetic Removal of the CH1 Exon Enables the Production of Heavy Chain-Only IgG in Mice. Front Immunol 2018; 9:2202. [PMID: 30319646 PMCID: PMC6167435 DOI: 10.3389/fimmu.2018.02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
Nano-antibodies possess great potential in many applications. However, they are naturally derived from heavy chain-only antibodies (HcAbs), which lack light chains and the CH1 domain, and are only found in camelids and sharks. In this study, we investigated whether the precise genetic removal of the CH1 exon of the γ1 gene enabled the production of a functional heavy chain-only IgG1 in mice. IgG1 heavy chain dimers lacking associated light chains were detected in the sera of the genetically modified mice. However, the genetic modification led to decreased expression of IgG1 but increased expression of other IgG subclasses. The genetically modified mice showed a weaker immune response to specific antigens compared with wild type mice. Using a phage-display approach, antigen-specific, single domain VH antibodies could be screened from the mice but exhibited much weaker antigen binding affinity than the conventional monoclonal antibodies. Although the strategy was only partially successful, this study confirms the feasibility of producing desirable nano-bodies with appropriate genetic modifications in mice.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Fuyu Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shanshan Hao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jingjing Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Li Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yanbin Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Bender S, Ayala MV, Javaugue V, Bonaud A, Cogné M, Touchard G, Jaccard A, Bridoux F, Sirac C. Comprehensive molecular characterization of a heavy chain deposition disease case. Haematologica 2018; 103:e557-e560. [PMID: 30026336 DOI: 10.3324/haematol.2018.196113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sébastien Bender
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges
| | - Maria Victoria Ayala
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges
| | - Vincent Javaugue
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges.,Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Poitiers
| | - Amélie Bonaud
- Institut national de la santé et de la recherche médicale INSERM UMR996 - Cytokines, Chimiokines, Immunopathologie, Université Paris-Sud et Université Paris-Saclay
| | - Michel Cogné
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges
| | - Guy Touchard
- Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Poitiers
| | - Arnaud Jaccard
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges.,Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Limoges, France
| | - Frank Bridoux
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges.,Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Poitiers
| | - Christophe Sirac
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges .,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges
| |
Collapse
|
13
|
IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design. Biochem J 2017; 474:3179-3188. [PMID: 28784690 PMCID: PMC5590090 DOI: 10.1042/bcj20170342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here, we show that some humanised heavy chains (HCs) can fold, form dimers and be secreted even in the absence of a light chain (LC). Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the HC CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the LC CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent on the HC variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will have an impact on the efficient production of both humanised antibodies and the design of novel antibody formats.
Collapse
|
14
|
Schusser B, Collarini EJ, Pedersen D, Yi H, Ching K, Izquierdo S, Thoma T, Lettmann S, Kaspers B, Etches RJ, van de Lavoir MC, Harriman W, Leighton PA. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens. Eur J Immunol 2016; 46:2137-48. [PMID: 27392810 PMCID: PMC5113765 DOI: 10.1002/eji.201546171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022]
Abstract
Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.
Collapse
Affiliation(s)
- Benjamin Schusser
- Reproductive Biotechnology, Technische Universität München, WZW Center of Life Science, Freising-Weihenstephan, Germany
| | | | | | - Henry Yi
- Crystal Bioscience Inc, Emeryville, CA, USA
| | | | | | - Theresa Thoma
- Reproductive Biotechnology, Technische Universität München, WZW Center of Life Science, Freising-Weihenstephan, Germany
| | - Sarah Lettmann
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Bernd Kaspers
- Department of Veterinary Science, Institute for Animal Physiology, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | | | | | | | | |
Collapse
|
15
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
16
|
Cohen C, Javaugue V, Joly F, Arnulf B, Fermand JP, Jaccard A, Sirac C, Knebelmann B, Bridoux F, Touchard G. Maladie de dépôts d’immunoglobulines monoclonales de type Randall : du diagnostic au traitement. Nephrol Ther 2016; 12:131-9. [DOI: 10.1016/j.nephro.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022]
|
17
|
A mouse model recapitulating human monoclonal heavy chain deposition disease evidences the relevance of proteasome inhibitor therapy. Blood 2015; 126:757-65. [PMID: 26113545 DOI: 10.1182/blood-2015-03-630277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022] Open
Abstract
Randall-type heavy chain deposition disease (HCDD) is a rare disorder characterized by glomerular and peritubular amorphous deposits of a truncated monoclonal immunoglobulin heavy chain (HC) bearing a deletion of the first constant domain (CH1). We created a transgenic mouse model of HCDD using targeted insertion in the immunoglobulin κ locus of a human HC extracted from a HCDD patient. Our strategy allows the efficient expression of the human HC in mouse B and plasma cells, and conditional deletion of the CH1 domain reproduces the major event underlying HCDD. We show that the deletion of the CH1 domain dramatically reduced serum HC levels. Strikingly, even with very low serum level of truncated monoclonal HC, histologic studies revealed typical Randall-type renal lesions that were absent in mice expressing the complete human HC. Bortezomib-based treatment resulted in a strong decrease of renal deposits. We further demonstrated that this efficient response to proteasome inhibitors mostly relies on the presence of the isolated truncated HC that sensitizes plasma cells to bortezomib through an elevated unfolded protein response (UPR). This new transgenic model of HCDD efficiently recapitulates the pathophysiologic features of the disease and demonstrates that the renal damage in HCDD relies on the production of an isolated truncated HC, which, in the absence of a LC partner, displays a high propensity to aggregate even at very low concentration. It also brings new insights into the efficacy of proteasome inhibitor-based therapy in this pathology.
Collapse
|
18
|
Baral TN, MacKenzie R, Arbabi Ghahroudi M. Single-domain antibodies and their utility. ACTA ACUST UNITED AC 2013; 103:2.17.1-2.17.57. [PMID: 24510545 DOI: 10.1002/0471142735.im0217s103] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Engineered monoclonal antibody fragments have gained market attention due to their versatility and tailor-made potential and are now considered to be an important part of future immunobiotherapeutics. Single-domain antibodies (sdAbs), also known as nanobodies, are derived from VHHs [variable domains (V) of heavy-chain-only antibodies (HCAb)] of camelid heavy-chain antibodies. These nature-made sdAbs are well suited for various applications due to their favorable characteristics such as small size, ease of genetic manipulation, high affinity and solubility, overall stability, resistance to harsh conditions (e.g., low pH, high temperature), and low immunogenicity. Most importantly, sdAbs have the feature of penetrating into cavities and recognizing hidden epitopes normally inaccessible to conventional antibodies, mainly due to their protruding CDR3/H3 loops. In this unit, we will present and discuss comprehensive and step-by-step protocols routinely practiced in our laboratory for isolating sdAbs from immunized llamas (or other members of the Camelidae family) against target antigens using phage-display technology. Expression, purification, and characterization of the isolated sdAbs will then be described, followed by presentation of several examples of applications of sdAbs previously characterized in our laboratory and elsewhere.
Collapse
Affiliation(s)
- Toya Nath Baral
- Human Health Therapeutics, Life Sciences Division, National Research Council Canada, Ottawa, Ontario, Canada
| | - Roger MacKenzie
- Human Health Therapeutics, Life Sciences Division, National Research Council Canada, Ottawa, Ontario, Canada.,University of Guelph, Guelph, Ontario, Canada
| | - Mehdi Arbabi Ghahroudi
- Human Health Therapeutics, Life Sciences Division, National Research Council Canada, Ottawa, Ontario, Canada.,University of Guelph, Guelph, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Aggregates, crystals, gels, and amyloids: intracellular and extracellular phenotypes at the crossroads of immunoglobulin physicochemical property and cell physiology. Int J Cell Biol 2013; 2013:604867. [PMID: 23533417 PMCID: PMC3603282 DOI: 10.1155/2013/604867] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/27/2013] [Indexed: 12/20/2022] Open
Abstract
Recombinant immunoglobulins comprise an important class of human therapeutics. Although specific immunoglobulins can be purposefully raised against desired antigen targets by various methods, identifying an immunoglobulin clone that simultaneously possesses potent therapeutic activities and desirable manufacturing-related attributes often turns out to be challenging. The variable domains of individual immunoglobulins primarily define the unique antigen specificities and binding affinities inherent to each clone. The primary sequence of the variable domains also specifies the unique physicochemical properties that modulate various aspects of individual immunoglobulin life cycle, starting from the biosynthetic steps in the endoplasmic reticulum, secretory pathway trafficking, secretion, and the fate in the extracellular space and in the endosome-lysosome system. Because of the diverse repertoire of immunoglobulin physicochemical properties, some immunoglobulin clones' intrinsic properties may manifest as intriguing cellular phenotypes, unusual solution behaviors, and serious pathologic outcomes that are of scientific and clinical importance. To gain renewed insights into identifying manufacturable therapeutic antibodies, this paper catalogs important intracellular and extracellular phenotypes induced by various subsets of immunoglobulin clones occupying different niches of diverse physicochemical repertoire space. Both intrinsic and extrinsic factors that make certain immunoglobulin clones desirable or undesirable for large-scale manufacturing and therapeutic use are summarized.
Collapse
|
20
|
Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLoS One 2012; 7:e48241. [PMID: 23133621 PMCID: PMC3487907 DOI: 10.1371/journal.pone.0048241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/21/2012] [Indexed: 01/03/2023] Open
Abstract
A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1(-) knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1(-)/2(-)). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway.
Collapse
Affiliation(s)
- Debora Karali
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| | - David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, United Kingdom
| | - John Runions
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| |
Collapse
|
21
|
Stoops J, Byrd S, Hasegawa H. Russell body inducing threshold depends on the variable domain sequences of individual human IgG clones and the cellular protein homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1643-57. [PMID: 22728328 DOI: 10.1016/j.bbamcr.2012.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 01/05/2023]
Abstract
Russell bodies are intracellular aggregates of immunoglobulins. Although the mechanism of Russell body biogenesis has been extensively studied by using truncated mutant heavy chains, the importance of the variable domain sequences in this process and in immunoglobulin biosynthesis remains largely unknown. Using a panel of structurally and functionally normal human immunoglobulin Gs, we show that individual immunoglobulin G clones possess distinctive Russell body inducing propensities that can surface differently under normal and abnormal cellular conditions. Russell body inducing predisposition unique to each immunoglobulin G clone was corroborated by the intrinsic physicochemical properties encoded in the heavy chain variable domain/light chain variable domain sequence combinations that define each immunoglobulin G clone. While the sequence based intrinsic factors predispose certain immunoglobulin G clones to be more prone to induce Russell bodies, extrinsic factors such as stressful cell culture conditions also play roles in unmasking Russell body propensity from immunoglobulin G clones that are normally refractory to developing Russell bodies. By taking advantage of heterologous expression systems, we dissected the roles of individual subunit chains in Russell body formation and examined the effect of non-cognate subunit chain pair co-expression on Russell body forming propensity. The results suggest that the properties embedded in the variable domain of individual light chain clones and their compatibility with the partnering heavy chain variable domain sequences underscore the efficiency of immunoglobulin G biosynthesis, the threshold for Russell body induction, and the level of immunoglobulin G secretion. We propose that an interplay between the unique properties encoded in variable domain sequences and the state of protein homeostasis determines whether an immunoglobulin G expressing cell will develop the Russell body phenotype in a dynamic cellular setting.
Collapse
Affiliation(s)
- Janelle Stoops
- Department of Therapeutic Discovery, Amgen Inc., Seattle, WA 98119, USA
| | | | | |
Collapse
|
22
|
Monegal A, Olichon A, Bery N, Filleron T, Favre G, de Marco A. Single domain antibodies with VH hallmarks are positively selected during panning of llama (Lama glama) naïve libraries. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:150-156. [PMID: 21767565 DOI: 10.1016/j.dci.2011.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
Independent variable domains with VH hallmarks have been repeatedly identified in immune and pre-immune VHH libraries. In some cases, stable independent VH domains have been also isolated in mouse and human recombinant antibody repertoires. However, we have come to realize that VHs were selected with a higher efficiency than VHHs during biopanning of a pre-immune (VHH) library. The biochemical and biophysical comparison did not indicate a presence of any feature that would favor the VH binders during the selection process. In contrast, selected VHHs seemed to be more stable than the VHs, ruling out the existence of a thermodynamically - favored VH sub-class. Therefore, we reasoned that a certain degree of thermodynamic instability may be beneficial for both displaying and expression of VH(H)s when the Sec-pathway is used for their secretion to avoid the cytoplasmic trapping of fast-folding polypeptides. Indeed, VHHs, but not VHs, were accumulated at higher concentrations when expressed fused to the dsbA leader peptide, a sequence that drives the linked polypeptides to the co-translational SRP secretion machinery. These data suggest that the thermodynamically favored VHHs can be lost during biopanning, as previously observed for DARPins and in contrast to the recombinant antibodies in scFv format.
Collapse
Affiliation(s)
- Ana Monegal
- Cogentech - Protein Chemistry Unit, IFOM-IEO Campus, Via Adamello 16, 20139 Milano, Italy
| | | | | | | | | | | |
Collapse
|
23
|
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10:44. [PMID: 21658216 PMCID: PMC3123181 DOI: 10.1186/1475-2859-10-44] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. RESULTS The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. CONCLUSIONS Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.
Collapse
Affiliation(s)
- Ario de Marco
- University of Nova Gorica (UNG), Vipavska 13, PO Box 301-SI-5000, Rožna Dolina (Nova Gorica), Slovenia.
| |
Collapse
|
24
|
Abstract
Heavy chain diseases (HCDs) are B-cell proliferative disorders characterized by the production of monoclonal, incomplete, immunoglobulin (Ig) heavy chains (HCs) without associated light chains (LCs). These abnormal HCs are produced as a consequence of HC gene alterations in the neoplastic B cells. HC gene alterations will also impact on surface HC, which is part of the B-cell receptor (BCR), a crucial player in lymphocyte activation by antigen. The selective advantage conferred to mutant cells by abnormal BCR without an antigen-binding domain may be explained by activation of ligand-independent signaling, in analogy to what has been shown for mutated oncogenic growth factor receptors. Here we review data obtained from mouse models showing abnormal, constitutive activity of HCD-BCR, and we discuss the possible mechanism involved, namely, aberrant spontaneous self-aggregation. This self-aggregation might occur as a consequence of escape from the chaperone immunoglobulin binding protein (BiP) and from the anti-aggregation effect of LC association. The concept of misfolding-induced signaling elaborated here may extend to other pathologies termed conformational diseases.
Collapse
|
25
|
Corcos D. Immunoglobulin transport in the absence of light chains. Trends Biochem Sci 2010; 35:593; author reply 594. [PMID: 20728360 DOI: 10.1016/j.tibs.2010.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|
26
|
Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc Natl Acad Sci U S A 2009; 107:181-6. [PMID: 20018688 DOI: 10.1073/pnas.0912914107] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that some of the rare broadly reactive, HIV-1 neutralizing antibodies are polyreactive, leading to the hypothesis that induction of these types of neutralizing antibody may be limited by immunologic tolerance. However, the notion that such antibodies are sufficiently autoreactive to trigger B cell tolerance is controversial. To test directly whether rare neutralizing HIV-1 antibodies can activate immunologic tolerance mechanisms, we generated a knock-in mouse in which the Ig heavy chain (HC) variable region rearrangement (V(H)DJ(H)) from the polyreactive and broadly neutralizing human monoclonal antibody 2F5 was targeted into the mouse Igh locus. In vitro, this insertion resulted in chimeric human/mouse 2F5 antibodies that were functionally similar to the human 2F5 antibody, including comparable reactivity to human and murine self-antigens. In vivo, the 2F5 V(H)DJ(H) insertion supported development of large- and small pre-B cells that expressed the chimeric human/mouse Igmu chain but not the production of immature B cells expressing membrane IgM. The developmental arrest exhibited in 2F5 V(H)DJ(H) knock-in mice is characteristic of other knock-in strains that express the Ig HC variable region of autoreactive antibodies and is consistent with the loss of immature B cells bearing 2F5 chimeric antibodies to central tolerance mechanisms. Moreover, homozygous 2F5 V(H)DJ(H) knock-in mice support reduced numbers of residual splenic B cells with low surface IgM density, severely diminished serum IgM levels, but normal to elevated quantities of serum IgGs that did not react with autoantigens. These features are consistent with elimination of 2F5 HC autoreactivity by additional negative selection mechanism(s) in the periphery.
Collapse
|
27
|
Immunoglobulin aggregation leading to Russell body formation is prevented by the antibody light chain. Blood 2009; 115:282-8. [PMID: 19822901 DOI: 10.1182/blood-2009-07-234864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Russell bodies (RBs) are intracellular inclusions filled with protein aggregates. In diverse lymphoid disorders these occur as immunoglobulin (Ig) deposits, accumulating in abnormal plasma or Mott cells. In heavy-chain deposition disease truncated antibody heavy-chains (HCs) are found, which bear a resemblance to diverse polypeptides produced in Ig light-chain (LC)-deficient (L(-/-)) mice. In L(-/-) animals, the known functions of LC, providing part of the antigen-binding site of an antibody and securing progression of B-cell development, may not be required. Here, we show a novel function of LC in preventing antibody aggregation. L(-/-) mice produce truncated HC naturally, constant region (C)gamma and Calpha lack C(H)1, and Cmicro is without C(H)1 or C(H)1 and C(H)2. Most plasma cells found in these mice are CD138(+) Mott cells, filled with RBs, formed by aggregation of HCs of different isotypes. The importance of LC in preventing HC aggregation is evident in knock-in mice, expressing Cmicro without C(H)1 and C(H)2, which only develop an abundance of RBs when LC is absent. These results reveal that preventing antibody aggregation is a major function of LC, important for understanding the physiology of heavy-chain deposition disease, and in general recognizing the mechanisms, which initiate protein conformational diseases.
Collapse
|
28
|
Matheson LS, Osborn MJ, Smith JA, Corcos D, Hamon M, Chaouaf R, Coadwell J, Morgan G, Oxley D, Brüggemann M. Light chain-deficient mice produce novel multimeric heavy-chain-only IgA by faulty class switching. Int Immunol 2009; 21:957-66. [PMID: 19561045 DOI: 10.1093/intimm/dxp062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, we identified that diverse heavy chain (H-chain)-only IgG is spontaneously produced in light chain (L-chain)-deficient mice (L(-/-) with silenced kappa and lambda loci) despite a block in B cell development. In murine H-chain IgG, the first Cgamma exon, C(H)1, is removed after DNA rearrangement and secreted polypeptides are comparable with camelid-type H-chain IgG. Here we show that L(-/-) mice generate a novel class of H-chain Ig with covalently linked alpha chains, not identified in any other healthy mammal. Surprisingly, diverse H-chain-only IgA can be released from B cells at levels similar to conventional IgA and is found in serum and sometimes in milk and saliva. Surface IgA without L-chain is expressed in B220(+) spleen cells, which exhibited a novel B cell receptor, suggesting that associated conventional differentiation events occur. To facilitate the cellular transport and release of H-chain-only IgA, chaperoning via BiP association seems to be prevented as only alpha chains lacking C(H)1 are released from the cell. This appears to be accomplished by imprecise class-switch recombination (CSR) from Smu into the alpha constant region, which removes all or part of the Calpha1 exon at the genomic level.
Collapse
|
29
|
Zou X, Smith JA, Corcos D, Matheson LS, Osborn MJ, Brüggemann M. Removal of the BiP-retention domain in Cmicro permits surface deposition and developmental progression without L-chain. Mol Immunol 2008; 45:3573-9. [PMID: 18584871 DOI: 10.1016/j.molimm.2008.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/25/2008] [Accepted: 05/07/2008] [Indexed: 01/16/2023]
Abstract
Nascent, full length, immunoglobulin (Ig) heavy (H)-chains are post-translationally associated with H-chain-binding protein (BiP or GRP78) in the endoplasmic reticulum (ER). The first constant (C) domain, CH1 of a C gene (Cmu, Cgamma, Calpha), is important for this interaction. The contact is released upon BiP replacement by conventional Ig light (L)-chain (kappa or lambda). Incomplete or mutated H-chains with removed variable (VH) and/or C(H)1 domain, as found in H-chain disease (HCD), can preclude stable BiP interaction. Progression in development after the preB cell stage is dependent on surface expression of IgM when association of a micro H-chain with a L-chain overcomes the retention by BiP. We show that IgM lacking the BiP-binding domain is displayed on the cell surface and elicits a signal that allows developmental progression even without the presence of L-chain. The results are reminiscent of single chain Ig secretion in camelids where developmental processes leading to the generation of fully functional H-chain-only antibodies are not understood. Furthermore, in the mouse the largest secondary lymphoid organ, the spleen, is not required for H-chain-only Ig expression and the CD5 survival signal may be obsolete for cells expressing truncated IgM.
Collapse
Affiliation(s)
- Xiangang Zou
- The Babraham Institute, Babraham, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | |
Collapse
|