1
|
Eisa M, Flores N, Khedr O, Gomez-Escobar E, Bédard N, Abdeltawab NF, Bruneau J, Grakoui A, Shoukry NH. Activation-Induced Marker Assay to Identify and Isolate HCV-Specific T Cells for Single-Cell RNA-Seq Analysis. Viruses 2024; 16:1623. [PMID: 39459954 PMCID: PMC11512294 DOI: 10.3390/v16101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identification and isolation of antigen-specific T cells for downstream transcriptomic analysis is key for various immunological studies. Traditional methods using major histocompatibility complex (MHC) multimers are limited by the number of predefined immunodominant epitopes and MHC matching of the study subjects. Activation-induced markers (AIM) enable highly sensitive detection of rare antigen-specific T cells irrespective of the availability of MHC multimers. Herein, we have developed an AIM assay for the detection, sorting and subsequent single-cell RNA sequencing (scRNA-seq) analysis of hepatitis C virus (HCV)-specific T cells. We examined different combinations of the activation markers CD69, CD40L, OX40, and 4-1BB at 6, 9, 18 and 24 h post stimulation with HCV peptide pools. AIM+ CD4 T cells exhibited upregulation of CD69 and CD40L as early as 6 h post-stimulation, while OX40 and 4-1BB expression was delayed until 18 h. AIM+ CD8 T cells were characterized by the coexpression of CD69 and 4-1BB at 18 h, while the expression of CD40L and OX40 remained low throughout the stimulation period. AIM+ CD4 and CD8 T cells were successfully sorted and processed for scRNA-seq analysis examining gene expression and T cell receptor (TCR) usage. scRNA-seq analysis from this one subject revealed that AIM+ CD4 T (CD69+ CD40L+) cells predominantly represented Tfh, Th1, and Th17 profiles, whereas AIM+ CD8 T (CD69+ 4-1BB+) cells primarily exhibited effector and effector memory profiles. TCR analysis identified 1023 and 160 unique clonotypes within AIM+ CD4 and CD8 T cells, respectively. In conclusion, this approach offers highly sensitive detection of HCV-specific T cells that can be applied for cohort studies, thus facilitating the identification of specific gene signatures associated with infection outcome and vaccination.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 3296121, Egypt
- School of Pharmacy, Newgiza University, Giza 3296121, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Médecine Familiale et Département d’Urgence, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Haga Y, Coates S, Ray R. Hepatitis C virus chronicity and oncogenic potential: Vaccine development progress. Mol Aspects Med 2024; 99:101305. [PMID: 39167987 DOI: 10.1016/j.mam.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Sydney Coates
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA; Department Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
3
|
Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on Hepatitis C Vaccine: Results and Challenges. Viruses 2024; 16:1337. [PMID: 39205311 PMCID: PMC11359353 DOI: 10.3390/v16081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Therapy against the Hepatitis C virus (HCV) has significantly improved with the introduction of direct-acting antiviral drugs (DAAs), achieving over 95% sustained virological response (SVR). Despite this, the development of an effective anti-HCV vaccine remains a critical challenge due to the low number of patients treated with DAAs and the occurrence of HCV reinfections in high-risk groups. Current vaccine strategies aim to stimulate either B-cell or T-cell responses. Vaccines based on E1 and E2 proteins can elicit broad cross-neutralizing antibodies against all major HCV genotypes, though with varying efficiencies and without full protection against infection. In humans, the neutralizing antibodies induced by such vaccines mainly target the AR3 region, but their levels are generally insufficient for broad neutralization. Various HCV proteins expressed through different viral vectors have been utilized to elicit T cell immune responses, showing sustained expansion of HCV-specific effector memory T cells and improved proliferation and polyfunctionality of memory T cells over time. However, despite these advancements, the frequency and effectiveness of T-cell responses remain limited.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00100 Rome, Italy;
| |
Collapse
|
4
|
Vasileiou S, Kuvalekar M, Velazquez Y, Watanabe A, Leen AM, Gilmore SA. Phenotypic and functional characterization of posoleucel, a multivirus-specific T cell therapy for the treatment and prevention of viral infections in immunocompromised patients. Cytotherapy 2024; 26:869-877. [PMID: 38597860 DOI: 10.1016/j.jcyt.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Deficits in T cell immunity translate into increased risk of severe viral infection in recipients of solid organ and hematopoietic cell transplants. Thus, therapeutic strategies that employ the adoptive transfer of virus-specific T cells are being clinically investigated to treat and prevent viral diseases in these highly immunocompromised patients. Posoleucel is an off-the-shelf multivirus-specific T cell investigational product for the treatment and prevention of infections due to adenovirus, BK virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus 6 or JC virus. METHODS Herein we perform extensive characterization of the phenotype and functional profile of posoleucel to illustrate the cellular properties that may contribute to its in vivo activity. RESULTS AND CONCLUSIONS Our results demonstrate that posoleucel is enriched for central and effector memory CD4+ and CD8+ T cells with specificity for posoleucel target viruses and expressing a broad repertoire of T cell receptors. Antigen-driven upregulation of cell-surface molecules and production of cytokine and effector molecules indicative of proliferation, co-stimulation, and cytolytic potential demonstrate the specificity of posoleucel and its potential to mount a broad, polyfunctional, and effective Th1-polarized antiviral response upon viral exposure. We also show the low risk for off-target and nonspecific effects as evidenced by the enrichment of posoleucel in memory T cells, low frequency of naive T cells, and lack of demonstrated alloreactivity in vitro. The efficacy of posoleucel is being explored in four placebo-controlled clinical trials in transplant recipients to treat and prevent viral infections (NCT05179057, NCT05305040, NCT04390113, NCT04605484).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | | |
Collapse
|
5
|
Woo J, Choi Y. Biomarkers in Detection of Hepatitis C Virus Infection. Pathogens 2024; 13:331. [PMID: 38668286 PMCID: PMC11054098 DOI: 10.3390/pathogens13040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The hepatitis C virus (HCV) infection affects 58 million people worldwide. In the United States, the incidence rate of acute hepatitis C has doubled since 2014; during 2021, this increased to 5% from 2020. Acute hepatitis C is defined by any symptom of acute viral hepatitis plus either jaundice or elevated serum alanine aminotransferase (ALT) activity with the detection of HCV RNA, the anti-HCV antibody, or hepatitis C virus antigen(s). However, most patients with acute infection are asymptomatic. In addition, ALT activity and HCV RNA levels can fluctuate, and a delayed detection of the anti-HCV antibody can occur among some immunocompromised persons with HCV infection. The detection of specific biomarkers can be of great value in the early detection of HCV infection at an asymptomatic stage. The high rate of HCV replication (which is approximately 1010 to 1012 virions per day) and the lack of proofreading by the viral RNA polymerase leads to enormous genetic diversity, creating a major challenge for the host immune response. This broad genetic diversity contributes to the likelihood of developing chronic infection, thus leading to the development of cirrhosis and liver cancer. Direct-acting antiviral (DAA) therapies for HCV infection are highly effective with a cure rate of up to 99%. At the same time, many patients with HCV infection are unaware of their infection status because of the mostly asymptomatic nature of hepatitis C, so they remain undiagnosed until the liver damage has advanced. Molecular mechanisms induced by HCV have been intensely investigated to find biomarkers for diagnosing the acute and chronic phases of the infection. However, there are no clinically verified biomarkers for patients with hepatitis C. In this review, we discuss the biomarkers that can differentiate acute from chronic hepatitis C, and we summarize the current state of the literature on the useful biomarkers that are detectable during acute and chronic HCV infection, liver fibrosis/cirrhosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329-4018, USA;
| |
Collapse
|
6
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Frumento N, Sinnis-Bourozikas A, Paul HT, Stavrakis G, Zahid MN, Wang S, Ray SC, Flyak AI, Shaw GM, Cox AL, Bailey JR. Neutralizing antibodies evolve to exploit vulnerable sites in the HCV envelope glycoprotein E2 and mediate spontaneous clearance of infection. Immunity 2024; 57:40-51.e5. [PMID: 38171362 PMCID: PMC10874496 DOI: 10.1016/j.immuni.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.
Collapse
Affiliation(s)
- Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ariadne Sinnis-Bourozikas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry T Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Stavrakis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad N Zahid
- University of Bahrain, Department of Biology, College of Science, Sakhir Campus, Sakhir, Bahrain
| | - Shuyi Wang
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew I Flyak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - George M Shaw
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Adhikari A, Abayasingam A, Brasher NA, Kim HN, Lord M, Agapiou D, Maher L, Rodrigo C, Lloyd AR, Bull RA, Tedla N. Characterization of antibody-dependent cellular phagocytosis in patients infected with hepatitis C virus with different clinical outcomes. J Med Virol 2024; 96:e29381. [PMID: 38235622 PMCID: PMC10953302 DOI: 10.1002/jmv.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Early neutralizing antibodies against hepatitis C virus (HCV) and CD8 + T cell effector responses can lead to viral clearance. However, these functions alone are not sufficient to protect patients against HCV infection, thus undefined additional antiviral immune mechanisms are required. In recent years, Fc-receptor-dependent antibody effector functions, particularly, antibody-dependent cellular phagocytosis (ADCP) were shown to offer immune protection against several RNA viruses. However, its development and clinical role in patients with HCV infection remain unknown. In this study, we found that patients with chronic GT1a or GT3a HCV infection had significantly higher concentrations of anti-envelope 2 (E2) antibodies, predominantly IgG1 subclass, than patients that cleared the viruses while the latter had antibodies with higher affinities. 97% of the patients with HCV had measurable ADCP of whom patients with chronic disease showed significantly higher ADCP than those who naturally cleared the virus. Epitope mapping studies showed that patients with antibodies that target antigenic domains on the HCV E2 protein that are known to associate with neutralization function are also strongly associated with ADCP, suggesting antibodies with overlapping/dual functions. Correlation studies showed that ADCP significantly correlated with plasma anti-E2 antibody levels and neutralization function regardless of clinical outcome and genotype of infecting virus, while a significant correlation between ADCP and affinity was only evident in patients that cleared the virus. These results suggest ADCP was mostly driven by antibody titer in patients with chronic disease while maintained in clearers due to the quality (affinity) of their anti-E2 antibodies despite having lower antibody titers.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- Department of Infection and ImmunologyKathmandu Research Institute for Biological SciencesLalitpurNepal
| | - Arunasingam Abayasingam
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicholas A. Brasher
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
- Graduate School of Biomedical Engineering, Faculty of EngineeringUNSW SydneySydneyNew South WalesAustralia
| | - David Agapiou
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Lisa Maher
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Andrew R. Lloyd
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
9
|
Mondelli MU, Ottolini S, Oliviero B, Mantovani S, Cerino A, Mele D, Varchetta S. Hepatitis C Virus and the Host: A Mutual Endurance Leaving Indelible Scars in the Host's Immunity. Int J Mol Sci 2023; 25:268. [PMID: 38203436 PMCID: PMC10779088 DOI: 10.3390/ijms25010268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis C virus (HCV) has spread worldwide, and it is responsible for potentially severe chronic liver disease and primary liver cancer. Chronic infection remains for life if not spontaneously eliminated and viral persistence profoundly impairs the efficiency of the host's immunity. Attempts have been made to develop an effective vaccine, but efficacy trials have met with failure. The availability of highly efficacious direct-acting antivirals (DAA) has created hope for the progressive elimination of chronic HCV infections; however, this approach requires a monumental global effort. HCV elicits a prompt innate immune response in the host, characterized by a robust production of interferon-α (IFN-α), although interference in IFN-α signaling by HCV proteins may curb this effect. The late appearance of largely ineffective neutralizing antibodies and the progressive exhaustion of T cells, particularly CD8 T cells, result in the inability to eradicate the virus in most infected patients. Moreover, an HCV cure resulting from DAA treatment does not completely restore the normal immunologic homeostasis. Here, we discuss the main immunological features of immune responses to HCV and the epigenetic scars that chronic viral persistence leaves behind.
Collapse
Affiliation(s)
- Mario U. Mondelli
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Ottolini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Barbara Oliviero
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Antonella Cerino
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Dalila Mele
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Stefania Varchetta
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| |
Collapse
|
10
|
Bela-Ong DB, Thompson KD, Kim HJ, Park SB, Jung TS. CD4 + T lymphocyte responses to viruses and virus-relevant stimuli in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109007. [PMID: 37625734 DOI: 10.1016/j.fsi.2023.109007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Fish diseases caused by viruses are a major threat to aquaculture. Development of disease protection strategies for sustainable fish aquaculture requires a better understanding of the immune mechanisms involved in antiviral defence. The innate and adaptive arms of the vertebrate immune system collaborate to mount an effective defence against viral pathogens. The T lymphocyte components of the adaptive immune system, comprising two major classes (helper T, Th or CD4+ and cytotoxic T lymphocytes, CTLs or CD8+ T cells), are responsible for cell-mediated immune responses. In particular, CD4+ T cells and their different subsets orchestrate the actions of various other immune cells during immune responses, making CD4+ T cells central drivers of responses to pathogens and vaccines. CD4+ T cells are also present in teleost fish. Here we review the literature that reported the use of antibodies against CD4 in a few teleost fish species and transcription profiling of Th cell-relevant genes in the context of viral infections and virus-relevant immunomodulation. Studies reveal massive CD4+ T cell proliferation and expression of key cytokines, transcription factors, and effector molecules that evoke mammalian Th cell responses. We also discuss gaps in the current understanding and evaluation of teleost CD4+ T cell responses and how development and application of novel tools and approaches to interrogate such responses could bridge these gaps. A greater understanding of fish Th cell responses will further illuminate the evolution of vertebrate adaptive immunity, inform strategies to address viral infections in aquaculture, and could further foster fish as model organisms.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-Ong
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, United Kingdom
| | - Hyoung Jun Kim
- WOAH Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Seong Bin Park
- Coastal Research and Extension Center, Mississippi State University, Pascagula, MS, 39567, USA
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| |
Collapse
|
11
|
Malyshkina A, Brüggemann A, Paschen A, Dittmer U. Cytotoxic CD4 + T cells in chronic viral infections and cancer. Front Immunol 2023; 14:1271236. [PMID: 37965314 PMCID: PMC10642198 DOI: 10.3389/fimmu.2023.1271236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alicia Brüggemann
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
13
|
Dravid P, Murthy S, Attia Z, Cassady C, Chandra R, Trivedi S, Vyas A, Gridley J, Holland B, Kumari A, Grakoui A, Cullen JM, Walker CM, Sharma H, Kapoor A. Phenotype and fate of liver-resident CD8 T cells during acute and chronic hepacivirus infection. PLoS Pathog 2023; 19:e1011697. [PMID: 37812637 PMCID: PMC10602381 DOI: 10.1371/journal.ppat.1011697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Immune correlates of hepatitis C virus (HCV) clearance and control remain poorly defined due to the lack of an informative animal model. We recently described acute and chronic rodent HCV-like virus (RHV) infections in lab mice. Here, we developed MHC class I and class II tetramers to characterize the serial changes in RHV-specific CD8 and CD4 T cells during acute and chronic infection in C57BL/6J mice. RHV infection induced rapid expansion of T cells targeting viral structural and nonstructural proteins. After virus clearance, the virus-specific T cells transitioned from effectors to long-lived liver-resident memory T cells (TRM). The effector and memory CD8 and CD4 T cells primarily produced Th1 cytokines, IFN-γ, TNF-α, and IL-2, upon ex vivo antigen stimulation, and their phenotype and transcriptome differed significantly between the liver and spleen. Rapid clearance of RHV reinfection coincided with the proliferation of virus-specific CD8 TRM cells in the liver. Chronic RHV infection was associated with the exhaustion of CD8 T cells (Tex) and the development of severe liver diseases. Interestingly, the virus-specific CD8 Tex cells continued proliferation in the liver despite the persistent high-titer viremia and retained partial antiviral functions, as evident from their ability to degranulate and produce IFN-γ upon ex vivo antigen stimulation. Thus, RHV infection in mice provides a unique model to study the function and fate of liver-resident T cells during acute and chronic hepatotropic infection.
Collapse
Affiliation(s)
- Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zayed Attia
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cole Cassady
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Rahul Chandra
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ashish Vyas
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John Gridley
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Brantley Holland
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Anuradha Kumari
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
14
|
Charoenkwan P, Waramit S, Chumnanpuen P, Schaduangrat N, Shoombuatong W. TROLLOPE: A novel sequence-based stacked approach for the accelerated discovery of linear T-cell epitopes of hepatitis C virus. PLoS One 2023; 18:e0290538. [PMID: 37624802 PMCID: PMC10456195 DOI: 10.1371/journal.pone.0290538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a concerning health issue that causes chronic liver diseases. Despite many successful therapeutic outcomes, no effective HCV vaccines are currently available. Focusing on T cell activity, the primary effector for HCV clearance, T cell epitopes of HCV (TCE-HCV) are considered promising elements to accelerate HCV vaccine efficacy. Thus, accurate and rapid identification of TCE-HCVs is recommended to obtain more efficient therapy for chronic HCV infection. In this study, a novel sequence-based stacked approach, termed TROLLOPE, is proposed to accurately identify TCE-HCVs from sequence information. Specifically, we employed 12 different sequence-based feature descriptors from heterogeneous perspectives, such as physicochemical properties, composition-transition-distribution information and composition information. These descriptors were used in cooperation with 12 popular machine learning (ML) algorithms to create 144 base-classifiers. To maximize the utility of these base-classifiers, we used a feature selection strategy to determine a collection of potential base-classifiers and integrated them to develop the meta-classifier. Comprehensive experiments based on both cross-validation and independent tests demonstrated the superior predictive performance of TROLLOPE compared with conventional ML classifiers, with cross-validation and independent test accuracies of 0.745 and 0.747, respectively. Finally, a user-friendly online web server of TROLLOPE (http://pmlabqsar.pythonanywhere.com/TROLLOPE) has been developed to serve research efforts in the large-scale identification of potential TCE-HCVs for follow-up experimental verification.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Sajee Waramit
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
16
|
Liu CH, Kao JH. Acute hepatitis C virus infection: clinical update and remaining challenges. Clin Mol Hepatol 2023; 29:623-642. [PMID: 36800699 PMCID: PMC10366792 DOI: 10.3350/cmh.2022.0349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Acute hepatitis C virus (HCV) infection is a global health concern with substantial geographical variation in the incidence rate. People who have received unsafe medical procedures, used injection drugs, and lived with human immunodeficiency virus are reported to be most susceptible to acute HCV infection. The diagnosis of acute HCV infection is particularly challenging in immunocompromised, reinfected, and superinfected patients due to difficulty in detecting anti-HCV antibody seroconversion and HCV ribonucleic acid from a previously negative antibody response. With an excellent treatment effect on chronic HCV infection, recently, clinical trials investigating the benefit of direct-acting antivirals (DAAs) treatment for acute HCV infection have been conducted. Based on the results of cost-effectiveness analysis, DAAs should be initiated early in acute HCV infection prior to spontaneous viral clearance. Compared to the standard 8-12 week-course of DAAs for chronic HCV infection, DAAs treatment duration may be shortened to 6-8 weeks in acute HCV infection without compromising the efficacy. Standard DAA regimens provide comparable efficacy in treating HCV-reinfected patients and DAA-naïve ones. For cases contracting acute HCV infection from HCV-viremic liver transplant, a 12-week course of pangenotypic DAAs is suggested. While for cases contracting acute HCV infection from HCV-viremic non-liver solid organ transplants, a short course of prophylactic or pre-emptive DAAs is suggested. Currently, prophylactic HCV vaccines are unavailable. In addition to treatment scale-up for acute HCV infection, practice of universal precaution, harm reduction, safe sex, and vigilant surveillance after viral clearance remain critical in reducing HCV transmission.
Collapse
Affiliation(s)
- Chen-Hua Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, Taiwan
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Nadeem R, Maghraby AS, Abd-Elshafy DN, Barakat AB, Bahgat MM. Individual expression and processing of hepatitis C virus E1/E2 epitopes-based DNA vaccine candidate in healthy humans' peripheral blood mononuclear cells. Clin Exp Vaccine Res 2023; 12:47-59. [PMID: 36844691 PMCID: PMC9950224 DOI: 10.7774/cevr.2023.12.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Purpose The development and study of hepatitis C virus (HCV) vaccine candidates' individualized responses are of great importance. Here we report on an HCV DNA vaccine candidate based on selected envelope (E1/E2) epitopes. Besides, we assessed its expression and processing in human peripheral blood mononuclear cells (PBMCs) and in vivo cellular response in mice. Materials and Methods HCV E1/E2 DNA construct (EC) was designed. The antigen expression of EC was assayed in PBMCs of five HCV-uninfected donors via a real-time quantitative polymerase chain reaction. Serum samples from 20 HCV antibody-positive patients were used to detect each individual PBMCs expressed antigens via enzyme-linked immunosorbent assay. Two groups, five Swiss albino mice each, were immunized with the EC or a control construct. The absolute count of lymph nodes' CD4+ and CD8+ T-lymphocytes was assessed. Results Donors' PBMCs showed different levels of EC expression, ranging between 0.83-2.61-fold in four donors, while donor-3 showed 34.53-fold expression. The antigens expressed in PBMCs were significantly reactive to the 20 HCV antibody repertoire (all p=0.0001). All showed comparable reactivity except for donor-3 showing the lowest reactivity level. The absolute count % of the CD4+ T-cell significantly increased in four of the five EC-immunized mice compared to the control group (p=0.03). No significant difference in CD8+ T-cells % was observed (p=0.89). Conclusion The inter-individual variation in antigen expression and processing dominance was evident, showing independence in individuals' antigen expression and reactivity levels to antibodies. The described vaccine candidate might result in a promising natural immune response with a possibility of CD4+ T-cell early priming.
Collapse
Affiliation(s)
- Rola Nadeem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt.,Department of Water Pollution Research, Environmental Research Institute, National Research Center, Dokki, Cairo, Egypt
| | | | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| |
Collapse
|
19
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:vaccines10101673. [PMID: 36298538 PMCID: PMC9611078 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
21
|
Madsen LW, Christensen PB, Øvrehus A, Bryde DMS, Holm DK, Lillevang ST, Nielsen C. Immunological Characteristics of Patients Receiving Ultra-Short Treatment for Chronic Hepatitis C. Front Cell Infect Microbiol 2022; 12:885824. [PMID: 35832377 PMCID: PMC9271618 DOI: 10.3389/fcimb.2022.885824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Reducing the treatment duration for chronic hepatitis C could be an important tool in the effort to reach the elimination goals set by the World Health Organization. The current challenge is to predict the target group who will achieve sustained virological response at week 12 (SVR12) with shorter treatment duration. The aim of this exploratory study was to characterize immune subsets with focus on inhibitory receptors in patients who experienced SVR12 or virological relapse following four weeks treatment with glecaprevir/pibrentasvir with or without ribavirin. A total of 32 patients were included in this study of whom 21 achieved SVR12 and 11 had virological relapse. All available samples at baseline (n = 31) and end of treatment (EOT) (n = 30) were processed for flow cytometric analysis in order to measure the expression of PD-1, 2B4, BY55, CTLA-4, TIM-3 and LAG-3 on 12 distinct T cell subsets. At baseline, patients with SVR12 (n=21) had numerically lower frequencies of inhibitory receptors for 83% (60/72) of the investigated T-cell subtypes. The most significant difference observed between the two groups was a lower frequency of stem cell-like memory T-cells CD4+PD1+ in the SVR group (p = 0.007). Furthermore, we observed a significant positive correlation between baseline viral load and the expression of PD-1 on the total CD8+ T-cells and effector memory T-cells CD4+ and CD8+ for patients with virological relapse. This study suggests a measurable immunologic phenotype at baseline of patients achieving SVR12 after short treatment compared to patients with virological relapse.
Collapse
Affiliation(s)
- Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- *Correspondence: Lone Wulff Madsen,
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | - Dorte Kinggaard Holm
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Søren Thue Lillevang
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Nielsen
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
22
|
Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology 2022; 77:1757-1772. [PMID: 35736236 DOI: 10.1002/hep.32632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/08/2022]
Abstract
Hepatitis C virus (HCV) remains a major global health concern. Directly acting antiviral (DAA) drugs have transformed the treatment of HCV. However, it has become clear that, without an effective HCV vaccine, it will not be possible to meet the World Health Organization targets of HCV viral elimination. Promising new vaccine technologies that generate high magnitude antiviral T and B cell immune responses and significant new funding have recently become available, stimulating the HCV vaccine pipeline. In the absence of an immune competent animal model for HCV, the major block in evaluating new HCV vaccine candidates will be the assessment of vaccine efficacy in humans. The development of a controlled human infection model (CHIM) for HCV could overcome this block, enabling the head-to-head assessment of vaccine candidates. The availability of highly effective DAA means that a CHIM for HCV is possible for the first time. In this review, we highlight the challenges and issues with currently available strategies to assess HCV vaccine efficacy including HCV "at-risk" cohorts and animal models. We describe the development of CHIM in other infections that are increasingly utilized by trialists and explore the ethical and safety concerns specific for an HCV CHIM. Finally, we propose an HCV CHIM study design including the selection of volunteers, the development of an infectious inoculum, the evaluation of host immune and viral parameters, and the definition of study end points for use in an HCV CHIM. Importantly, the study design (including number of volunteers required, cost, duration of study, and risk to volunteers) varies significantly depending on the proposed mechanism of action (sterilizing/rapid viral clearance vs. delayed viral clearance) of the vaccine under evaluation. We conclude that an HCV CHIM is now realistic, that safety and ethical concerns can be addressed with the right study design, and that, without an HCV CHIM, it is difficult to envisage how the development of an HCV vaccine will be possible.
Collapse
Affiliation(s)
- Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, Oxford, UK
| | - Georg M Lauer
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Cords L, Knapp M, Woost R, Schulte S, Kummer S, Ackermann C, Beisel C, Peine S, Johansson AM, Kwok WWH, Günther T, Fischer N, Wittner M, Addo MM, Huber S, Schulze zur Wiesch J. High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4 + T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses 2022; 14:1265. [PMID: 35746736 PMCID: PMC9228841 DOI: 10.3390/v14061265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145-164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA- CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127- virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell-T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection.
Collapse
Affiliation(s)
- Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Robin Woost
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Silke Kummer
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Christin Ackermann
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Claudia Beisel
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | | | - William Wai-Hung Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA; (A.M.J.); (W.W.-H.K.)
| | - Thomas Günther
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
| | - Nicole Fischer
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| |
Collapse
|
24
|
Wildner NH, Walker A, Brauneck F, Ditt V, Peine S, Huber S, Haag F, Beisel C, Timm J, Schulze zur Wiesch J. Transcriptional Pattern Analysis of Virus-Specific CD8+ T Cells in Hepatitis C Infection: Increased Expression of TOX and Eomesodermin During and After Persistent Antigen Recognition. Front Immunol 2022; 13:886646. [PMID: 35734162 PMCID: PMC9207347 DOI: 10.3389/fimmu.2022.886646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Thymocyte selection-associated high mobility group box (TOX) has been described to be a key regulator in the formation of CD8+ T cell exhaustion. Hepatitis C virus (HCV) infection with different lengths of antigen exposure in acute, chronic, and after resolution of HCV infection is the ideal immunological model to study the expression of TOX in HCV-specific CD8+ T cells with different exposure to antigen. HCV-specific CD8+ T cells from 35 HLA-A*01:01, HLA-A*02:01, and HLA-A*24:02 positive patients were analyzed with a 16-color FACS-panel evaluating the surface expression of lineage markers (CD3, CD8), ectoenzymes (CD39, CD73), markers of differentiation (CD45RO, CCR7, CD127), and markers of exhaustion and activation (TIGIT, PD-1, KLRG1, CD226) and transcription factors (TOX, Eomesodermin, T-bet). Here, we defined on-target T cells as T cells against epitopes without escape mutations and off-target T cells as those against a "historical" antigen mutated in the autologous sequence. TOX+HCV-specific CD8+ T cells from patients with chronic HCV and on-target T cells displayed co-expression of Eomesodermin and were associated with the formation of terminally exhausted CD127-PD1hi, CD39hi, CD73low CD8+ T cells. In contrast, TOX+HCV-specific CD8+ T cells in patients with off-target T cells represented a progenitor memory Tex phenotype characterized by CD127hi expression and a CD39low and CD73hi phenotype. TOX+HCV-specified CD8+ T cells in patients with a sustained virologic response were characterized by a memory phenotype (CD127+, CD73hi) and co-expression of immune checkpoints and Eomesodermin, indicating a key structure in priming of HCV-specific CD8+ T cells in the chronic stage, which persisted as a residual after therapy. Overall, the occurrence of TOX+HCV-specific CD8+ T cells was revealed at each disease stage, which impacted the development of progenitor Tex, intermediate Tex, and terminally exhausted T cell through an individual molecular footprint. In sum, TOX is induced early during acute infection but is modulated by changes in viral sequence and antigen recognition. In the case of antigen persistence, the interaction with Eomesodermin leads to the formation of terminally exhausted virus-specific CD8+ T cells, and there was a direct correlation of the co-expression of TOX and Eomes and terminally exhausted phenotype of virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Nils H. Wildner
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Walker
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Franziska Brauneck
- II. Department of Medicine, Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Ditt
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Beisel
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Joerg Timm
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Julian Schulze zur Wiesch
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
25
|
Modified E2 Glycoprotein of Hepatitis C Virus Enhances Proinflammatory Cytokines and Protective Immune Response. J Virol 2022; 96:e0052322. [PMID: 35612312 DOI: 10.1128/jvi.00523-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) is characterized by a high number of chronic cases owing to an impairment of innate and adaptive immune responses. CD81 on the cell surface facilitates HCV entry by interacting with the E2 envelope glycoprotein. In addition, CD81/E2 binding on immunity-related cells may also influence host response outcome to HCV infection. Here, we performed site-specific amino acid substitution in the front layer of E2 sequence to reduce CD81 binding and evaluate the potential of the resulting immunogen as an HCV vaccine candidate. The modified sE2 protein (F442NYT), unlike unmodified sE2, exhibited a significant reduction in CD81 binding, induced higher levels of proinflammatory cytokines, repressed anti-inflammatory response in primary monocyte-derived macrophages as antigen-presenting cells, and stimulated CD4+ T cell proliferation. Immunization of BALB/c mice with an E1/sE2F442NYT nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine resulted in improved IgG1-to-IgG2a isotype switching, an increase in neutralizing antibodies against HCV pseudotype virus, a B and T cell proliferative response to antigens, and improved protection against infection with a surrogate recombinant vaccinia virus-expressing HCV E1-E2-NS2aa134-966 challenge model compared to E1/unmodified sE2 mRNA-LNP vaccine. Further investigation of the modified E2 antigen may provide helpful information for HCV vaccine development. IMPORTANCE Hepatitis C virus (HCV) E2-CD81 binding dampens protective immune response. We have identified that an alteration of amino acids in the front layer of soluble E2 (sE2) disrupts CD81 interaction and alters the cytokine response. Immunization with modified sE2F442NYT (includes an added potential N-linked glycosylation site and reduces CD81 binding activity)-mRNA-LNP candidate vaccine generates improved proinflammatory response and protective efficacy against a surrogate HCV vaccinia challenge model in mice. The results clearly suggested that HCV E2 exhibits immunoregulatory activity that inhibits induction of robust protective immune responses. Selection of engineered E2 antigen in an mRNA-LNP platform amenable to nucleic acid sequence alterations may open a novel approach for multigenotype HCV vaccine development.
Collapse
|
26
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
27
|
Giadans CG, Ríos DA, Ameigeiras B, Haddad L, De Matteo EN, Valva P, Preciado MV. Intrahepatic immune infiltrate in chronic hepatitis B and chronic hepatitis C: Similar but not the same. J Viral Hepat 2022; 29:124-134. [PMID: 34820942 DOI: 10.1111/jvh.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/09/2022]
Abstract
In chronic hepatitis B (CHB) and C (CHC) infections, the composition of the immune cell microenvironment at the site of infection is poorly understood. Thus, our aim was to characterize and compare liver infiltrates to identify shared and exclusive hepatic immune components. Immunohistochemistry was performed on 26 CHB and 42 CHC liver biopsies to determine Th (CD4+), Th1 (T-bet+), Th17 (IL-17A+), Treg (Foxp3+) and CTL (CD8+) cells frequency in portal/periportal and intralobular areas and relate them to liver damage. CHB and CHC cases shared a portal/periportal CD4+ lymphocyte predominance and a lobular CD8+ lymphocyte majority. However, CHC exhibited a concomitant lobular T-bet+ cell dominance while in CHB FoxP3+ cells prevail. CHC disclosed higher frequencies of P/P FoxP3+, IL-17A+ and T-bet+ cells and intralobular CD4+, IL-17A+ and T-bet+ lymphocytes. HBeAg+ chronic hepatitis and CHC cell frequencies were similar except for lobular T-bet+ that remained higher among CHC cases. Comparison among cases with less severe liver disease revealed lower lymphocyte frequencies in CHB samples, while no differences were observed between patients with more severe stages. Interestingly, in CHB portal/periportal CD4+ and lobular CD4+, CD8+ and IL-17A+ cells were associated with severe hepatitis. Even when all studied populations were identified in both infections preferential lymphocyte frequencies and prevalence at different areas along with their association with liver damage highlighted that CHB and CHC immune responses are not the same.
Collapse
Affiliation(s)
- Cecilia Graciela Giadans
- Pathology Division, Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, CABA, Argentina
| | - Daniela Alejandra Ríos
- Pathology Division, Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, CABA, Argentina
| | | | - Leila Haddad
- Liver Unit, Ramos Mejía Hospital, CABA, Argentina
| | - Elena Noemí De Matteo
- Pathology Division, Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, CABA, Argentina
| | - Pamela Valva
- Pathology Division, Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, CABA, Argentina
| | - María Victoria Preciado
- Pathology Division, Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, CABA, Argentina
| |
Collapse
|
28
|
Xu R, Wang H, Huang J, Wang M, Liao Q, Shan Z, Zhong H, Rong X, Fu Y. Complete genome sequencing and evolutionary analysis of hepatitis C virus subtype 6a, including strains from Guangdong Province, China. Arch Virol 2022; 167:591-596. [PMID: 35050401 PMCID: PMC8771652 DOI: 10.1007/s00705-021-05358-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
We performed an evolutionary analysis using whole genome sequence isolates of hepatitis C virus (HCV) 6a from Guangdong Province and reference sequences from various countries. Less than 5% of the HCV genome was found to be under positive selection. The E1 and E2 proteins had the highest proportion of positively selected sites both within and outside of CD8 T cell epitopes in all of the strains. Regions corresponding to CD8 T cell epitopes were under negative selection except in the isolates from Guangdong. Furthermore, we found evidence of three introductions of the virus into Guangdong from Vietnam and other Southeast Asian countries. Thus, this study provides information about the transmission of HCV 6a by comparison of full-length sequences, indicating the impact of selective constraints in Guangdong and across China.
Collapse
Affiliation(s)
- Ru Xu
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Hao Wang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Jieting Huang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Min Wang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Qiao Liao
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Huishan Zhong
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China.,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Xia Rong
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China. .,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China. .,School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yongshui Fu
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, 31 Lu yuan Rd, Guangzhou, Guangdong, China. .,The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China. .,School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China. .,Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Ogega CO, Skinner NE, Flyak AI, Clark KE, Board NL, Bjorkman PJ, Crowe JE, Cox AL, Ray SC, Bailey JR. B cell overexpression of FCRL5 and PD-1 is associated with low antibody titers in HCV infection. PLoS Pathog 2022; 18:e1010179. [PMID: 34990486 PMCID: PMC8769295 DOI: 10.1371/journal.ppat.1010179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Antibodies targeting the hepatitis C virus (HCV) envelope glycoprotein E2 are associated with delayed disease progression, and these antibodies can also facilitate spontaneous clearance of infection in some individuals. However, many infected people demonstrate low titer and delayed anti-E2 antibody responses. Since a goal of HCV vaccine development is induction of high titers of anti-E2 antibodies, it is important to define the mechanisms underlying these suboptimal antibody responses. By staining lymphocytes with a cocktail of soluble E2 (sE2) glycoproteins, we detected HCV E2-specific (sE2+) B cells directly ex vivo at multiple acute infection timepoints in 29 HCV-infected subjects with a wide range of anti-E2 IgG titers, including 17 persistently infected subjects and 12 subjects with spontaneous clearance of infection. We performed multi-dimensional flow cytometric analysis of sE2+ and E2-nonspecific (sE2-) class-switched B cells (csBC). In sE2+ csBC from both persistence and clearance subjects, frequencies of resting memory B cells (rMBC) were reduced, frequencies of activated MBC (actMBC) and tissue-like MBC (tlMBC) were increased, and expression of FCRL5, an IgG receptor, was significantly upregulated. Across all subjects, plasma anti-E2 IgG levels were positively correlated with frequencies of sE2+ rMBC and sE2+ actMBC, while anti-E2 IgG levels were negatively correlated with levels of FCRL5 expression on sE2+ rMBC and PD-1 expression on sE2+ actMBC. Upregulation of FCRL5 on sE2+ rMBC and upregulation of PD-1 on sE2+ actMBC may limit anti-E2 antibody production in vivo. Strategies that limit upregulation of these molecules could potentially generate higher titers of protective antibodies against HCV or other pathogens. Antiviral immunity relies on production of protective immunoglobulin G (IgG) by B cells, but many hepatitis C virus (HCV)-infected individuals have very low levels of HCV-specific IgG in their serum. Elucidating mechanisms underlying this suboptimal IgG expression remains paramount in guiding therapeutic and vaccine strategies. In this study, we developed a highly specific method to capture HCV-specific B cells and characterized their surface protein expression. Two proteins analyzed were Fc receptor-like protein 5 (FCRL5), a cell surface receptor for IgG, and programmed cell death protein-1 (PD-1), a marker of lymphocyte activation and exhaustion. We measured serum levels of anti-HCV IgG in these subjects and demonstrated that overexpression of FCRL5 and PD-1 on memory B cells was associated with reduced anti-E2 IgG levels. This study uses HCV as a viral model, but the findings may be applicable to many viral infections, and they offer new potential targets to enhance antiviral IgG production.
Collapse
Affiliation(s)
- Clinton O. Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
| | - Nicole E. Skinner
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
| | - Andrew I. Flyak
- Division of Biology and Biological Engineering, California Institute of Technology; Pasadena, California, United States of America
| | - Kaitlyn E. Clark
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
| | - Nathan L. Board
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology; Pasadena, California, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, Tennessee, United States of America
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
| | - Stuart C. Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
| | - Justin R. Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine; Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
31
|
Zoldan K, Ehrlich S, Killmer S, Wild K, Smits M, Russ M, Globig AM, Hofmann M, Thimme R, Boettler T. Th1-Biased Hepatitis C Virus-Specific Follicular T Helper-Like Cells Effectively Support B Cells After Antiviral Therapy. Front Immunol 2021; 12:742061. [PMID: 34659236 PMCID: PMC8514946 DOI: 10.3389/fimmu.2021.742061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Circulating Th1-biased follicular T helper (cTfh1) cells have been associated with antibody responses to viral infection and after vaccination but their B cell helper functionality is less understood. After viral elimination, Tfh1 cells are the dominant subset within circulating Hepatitis C Virus (HCV)-specific CD4 T cells, but their functional capacity is currently unknown. To address this important point, we established a clone-based system to evaluate CD4 T cell functionality in vitro to overcome experimental limitations associated with their low frequencies. Specifically, we analyzed the transcription factor expression, cytokine secretion and B cell help in co-culture assays of HCV- (n = 18) and influenza-specific CD4 T cell clones (n = 5) in comparison to Tfh (n = 26) and Th1 clones (n = 15) with unknown antigen-specificity derived from healthy donors (n = 4) or direct-acting antiviral (DAA)-treated patients (n = 5). The transcription factor expression and cytokine secretion patterns of HCV-specific CD4 T cell clones indicated a Tfh1 phenotype, with expression of T-bet and Bcl6 and production of IFN-γ and IL-21. Their B helper capacity was superior compared to influenza-specific or Tfh and Th1 clones. Moreover, since Tfh cells are enriched in the IFN-rich milieu of the HCV-infected liver, we investigated the impact of IFN exposure on Tfh phenotype and function. Type I IFN exposure was able to introduce similar phenotypic and functional characteristics in the Tfh cell population within PBMCs or Tfh clones in vitro in line with our finding that Tfh cells are elevated in HCV-infected patients shortly after initiation of IFN-α therapy. Collectively, we were able to functionally characterize HCV-specific CD4 T cells in vitro and not only confirmed a Tfh1 phenotype but observed superior Tfh functionality despite their Th1 bias. Furthermore, our results suggest that chronic type I IFN exposure supports the enrichment of highly functional HCV-specific Tfh-like cells during HCV infection. Thus, HCV-specific Tfh-like cells after DAA therapy may be a promising target for future vaccination design aiming to introduce a neutralizing antibody response.
Collapse
Affiliation(s)
- Katharina Zoldan
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Ehrlich
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Saskia Killmer
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Maike Smits
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marissa Russ
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Anna-Maria Globig
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Shoukry NH, Walker CM. T cell responses during HBV and HCV infections: similar but not quite the same? Curr Opin Virol 2021; 51:80-86. [PMID: 34619514 DOI: 10.1016/j.coviro.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
The hepatitis B and C viruses persist by evasion of T cell immunity. Persistence depends upon premature failure of CD4+ T cell help and loss of CD8+ T cell control because of epitope mutational escape and/or functional exhaustion. Powerful new immunological and transcriptomic tools provide insight into the mechanisms of T cell silencing by HBV and HCV. Similarities are apparent, including dysregulated expression of common inhibitory/immune checkpoint receptors and transcription factors. There are also differences. T cell exhaustion is uniform in HCV infection, but varies in HBV infection depending on disease stage and/or protein target. Here, we review recent advances defining similarities and differences in T cell evasion by HBV and HCV, and the potential for reversal following antiviral therapy.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Shoukry NH. Towards a Systems Immunology Approach to Understanding Correlates of Protective Immunity against HCV. Viruses 2021; 13:1871. [PMID: 34578451 PMCID: PMC8473057 DOI: 10.3390/v13091871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decade, tremendous progress has been made in systems biology-based approaches to studying immunity to viral infections and responses to vaccines. These approaches that integrate multiple facets of the immune response, including transcriptomics, serology and immune functions, are now being applied to understand correlates of protective immunity against hepatitis C virus (HCV) infection and to inform vaccine development. This review focuses on recent progress in understanding immunity to HCV using systems biology, specifically transcriptomic and epigenetic studies. It also examines proposed strategies moving forward towards an integrated systems immunology approach for predicting and evaluating the efficacy of the next generation of HCV vaccines.
Collapse
Affiliation(s)
- Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 Rue St-Denis, Montréal, QC H2X 0A9, Canada;
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
34
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
35
|
Mutational escape from cellular immunity in viral hepatitis: variations on a theme. Curr Opin Virol 2021; 50:110-118. [PMID: 34454351 DOI: 10.1016/j.coviro.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Approx. 320 million individuals worldwide are chronically infected with hepatitis viruses, contributing to viral hepatitis being one of the 10 leading causes of death. Cellular adaptive immunity, namely CD4+ and CD8+ T cells, plays an important role in viral clearance and control. Two main mechanisms, however, may lead to failure of the virus-specific T-cell response: T-cell exhaustion and mutational viral escape. Viral escape has been studied in detail in hepatitis C virus (HCV) infection, where it is thought to affect approx. 50% of virus-specific CD8+ T-cell responses in persistent infection, to influence natural infection outcome and to contribute to failure of preventive vaccination strategies. In hepatitis B virus (HBV) as well as HBV/hepatitis D virus (HDV) co-infection, the impact of viral escape has been studied in detail only recently.
Collapse
|
36
|
Chromatin Modifications in 22q11.2 Deletion Syndrome. J Clin Immunol 2021; 41:1853-1864. [PMID: 34435264 DOI: 10.1007/s10875-021-01123-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/11/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Chromosome 22q11.2 deletion syndrome is a common inborn error of immunity. The early consequences of thymic hypoplasia are low T cell numbers. Later in life, atopy, autoimmunity, inflammation, and evolving hypogammaglobulinemia can occur and the causes of these features are not understood. This study utilized an unbiased discovery approach to define alterations in histone modifications. Our goal was to identify durable chromatin changes that could influence cell behavior. METHODS CD4 T cells and CD19 B cells underwent ChIP-seq analysis using antibodies to H3K4me3, H3K27ac, and H4ac. RNA effects were defined in CD4 T cells by RNA-seq. Serum cytokines were examined by Luminex. RESULTS Histone marks of transcriptional activation at CD4 T cell promoters and enhancers were globally increased. The promoter activation signature had elements related to T cell activation and inflammation, concordant with effects seen in the transcriptome. B cells, in contrast, had a minimally altered epigenetic landscape in 22q11.2. Both cell types had an "edge" effect with markedly altered chromatin adjacent to the deletion. CONCLUSIONS People with 22q11.2 deletion have altered CD4 T cell chromatin and a transcriptome concordant with the changes in the epigenome. These effects support a disease model where qualitative changes to T cells occur in addition to quantitative defects that have been well characterized. This study offers unique insight into qualitative differences in the T cells in 22q11.2 deletion, an aspect that has received limited attention.
Collapse
|
37
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
38
|
Where to Next? Research Directions after the First Hepatitis C Vaccine Efficacy Trial. Viruses 2021; 13:v13071351. [PMID: 34372558 PMCID: PMC8310243 DOI: 10.3390/v13071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver disease worldwide. Given that many countries continue to experience high rates of transmission despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies of the vaccine candidate and then discuss three key research directions expected to be important in ongoing and future HCV vaccine development. These include the following: 1. design of novel immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes, 2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform development and early immunogenicity trials.
Collapse
|
39
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Intra-host evolutionary dynamics of the hepatitis C virus among people who inject drugs. Sci Rep 2021; 11:9986. [PMID: 33976241 PMCID: PMC8113533 DOI: 10.1038/s41598-021-88132-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Most individuals chronically infected with hepatitis C virus (HCV) are asymptomatic during the initial stages of infection and therefore the precise timing of infection is often unknown. Retrospective estimation of infection duration would improve existing surveillance data and help guide treatment. While intra-host viral diversity quantifications such as Shannon entropy have previously been utilized for estimating duration of infection, these studies characterize the viral population from only a relatively short segment of the HCV genome. In this study intra-host diversities were examined across the HCV genome in order to identify the region most reflective of time and the degree to which these estimates are influenced by high-risk activities including those associated with HCV acquisition. Shannon diversities were calculated for all regions of HCV from 78 longitudinally sampled individuals with known seroconversion timeframes. While the region of the HCV genome most accurately reflecting time resided within the NS3 gene, the gene region with the highest capacity to differentiate acute from chronic infections was identified within the NS5b region. Multivariate models predicting duration of infection from viral diversity significantly improved upon incorporation of variables associated with recent public, unsupervised drug use. These results could assist the development of strategic population treatment guidelines for high-risk individuals infected with HCV and offer insights into variables associated with a likelihood of transmission.
Collapse
|
41
|
Hartlage AS, Dravid P, Walker CM, Kapoor A. Adenovirus-vectored T cell vaccine for hepacivirus shows reduced effectiveness against a CD8 T cell escape variant in rats. PLoS Pathog 2021; 17:e1009391. [PMID: 33735321 PMCID: PMC8009437 DOI: 10.1371/journal.ppat.1009391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines. The hepatitis C virus is one of the leading causes of chronic liver disease and cancer worldwide. A vaccine is not yet available and the first phase II clinical trial in humans using a T cell-based immunization strategy recently failed to prevent chronic infection in high risk individuals for unclear reasons. In this study we evaluated how immune escape mutations at major histocompatibility complex (MHC) class I-restricted viral epitopes influence the effectiveness of an adenoviral-vectored T cell vaccine in a rat model of chronic HCV-related rodent hepacivirus infection, currently the only animal model available for evaluation of HCV vaccine strategies. We show that vaccine efficacy is markedly diminished when challenge virus contains naturally-acquired escape mutations at dominant MHC class I-restricted viral epitopes that render a subset of vaccine-generated CD8 T cell responses ineffective. We also identify CD4 T cell help as a critical correlate of vaccine success against heterologous virus challenge. Our results have important implications for human vaccination programs that aim to induce broad protective immunity against heterogeneous HCV strains.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
43
|
Trefzer A, Kadam P, Wang SH, Pennavaria S, Lober B, Akçabozan B, Kranich J, Brocker T, Nakano N, Irmler M, Beckers J, Straub T, Obst R. Dynamic adoption of anergy by antigen-exhausted CD4 + T cells. Cell Rep 2021; 34:108748. [PMID: 33567282 DOI: 10.1016/j.celrep.2021.108748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Exhausted immune responses to chronic diseases represent a major challenge to global health. We study CD4+ T cells in a mouse model with regulatable antigen presentation. When the cells are driven through the effector phase and are then exposed to different levels of persistent antigen, they lose their T helper 1 (Th1) functions, upregulate exhaustion markers, resemble naturally anergic cells, and modulate their MAPK, mTORC1, and Ca2+/calcineurin signaling pathways with increasing dose and time. They also become unable to help B cells and, at the highest dose, undergo apoptosis. Transcriptomic analyses show the dynamic adjustment of gene expression and the accumulation of T cell receptor (TCR) signals over a period of weeks. Upon antigen removal, the cells recover their functionality while losing exhaustion and anergy markers. Our data suggest an adjustable response of CD4+ T cells to different levels of persisting antigen and contribute to a better understanding of chronic disease.
Collapse
Affiliation(s)
- Anne Trefzer
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Pallavi Kadam
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Lober
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
44
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
45
|
Kervevan J, Chakrabarti LA. Role of CD4+ T Cells in the Control of Viral Infections: Recent Advances and Open Questions. Int J Mol Sci 2021; 22:E523. [PMID: 33430234 PMCID: PMC7825705 DOI: 10.3390/ijms22020523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.
Collapse
Affiliation(s)
- Jérôme Kervevan
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group (CIVIC), Virus and Immunity Unit, Institut Pasteur, 75724 Paris, France;
- CNRS UMR, 3569 Paris, France
| |
Collapse
|
46
|
Thimme R. T cell immunity to hepatitis C virus: Lessons for a prophylactic vaccine. J Hepatol 2021; 74:220-229. [PMID: 33002569 DOI: 10.1016/j.jhep.2020.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
There is consensus that HCV-specific T cells play a central role in the outcome (clearance vs. persistence) of acute infection and that they contribute to protection against the establishment of persistence after reinfection. However, these T cells often fail and the virus can persist, largely as a result of T cell exhaustion and the emergence of viral escape mutations. Importantly, HCV cure by direct-acting antivirals does not lead to a complete reversion of T cell exhaustion and thus HCV reinfections can occur. The current lack of detailed knowledge about the immunological determinants of viral clearance, persistence and protective immunity is a major roadblock to the development of a prophylactic T cell vaccine. This minireview highlights the basic concepts of successful T cell immunity, major mechanisms of T cell failure and how our understanding of these concepts can be translated into a prophylactic vaccine.
Collapse
Affiliation(s)
- Robert Thimme
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, Germany.
| |
Collapse
|
47
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
48
|
Rome KS, Stein SJ, Kurachi M, Petrovic J, Schwartz GW, Mack EA, Uljon S, Wu WW, DeHart AG, McClory SE, Xu L, Gimotty PA, Blacklow SC, Faryabi RB, Wherry EJ, Jordan MS, Pear WS. Trib1 regulates T cell differentiation during chronic infection by restraining the effector program. J Exp Med 2020; 217:133863. [PMID: 32150623 PMCID: PMC7201917 DOI: 10.1084/jem.20190888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/02/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic infections, the immune response fails to control virus, leading to persistent antigen stimulation and the progressive development of T cell exhaustion. T cell effector differentiation is poorly understood in the context of exhaustion, but targeting effector programs may provide new strategies for reinvigorating T cell function. We identified Tribbles pseudokinase 1 (Trib1) as a central regulator of antiviral T cell immunity, where loss of Trib1 led to a sustained enrichment of effector-like KLRG1+ T cells, enhanced function, and improved viral control. Single-cell profiling revealed that Trib1 restrains a population of KLRG1+ effector CD8 T cells that is transcriptionally distinct from exhausted cells. Mechanistically, we identified an interaction between Trib1 and the T cell receptor (TCR) signaling activator, MALT1, which disrupted MALT1 signaling complexes. These data identify Trib1 as a negative regulator of TCR signaling and downstream function, and reveal a link between Trib1 and effector versus exhausted T cell differentiation that can be targeted to improve antiviral immunity.
Collapse
Affiliation(s)
- Kelly S Rome
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah J Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jelena Petrovic
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory W Schwartz
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ethan A Mack
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sacha Uljon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA.,Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA
| | - Winona W Wu
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anne G DeHart
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan E McClory
- Divisions of Hematology and Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lanwei Xu
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA.,Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Han W, Li J, Zhou H, Qian J, Tong Z, Wang W, Zhong J, Xue T, Chen Q, Yao Y, Shao S. Identification of the association of CD28 + CD244 + Tc17/IFN-γ cells with chronic hepatitis C virus infection. J Med Virol 2020; 92:3534-3544. [PMID: 32568409 DOI: 10.1002/jmv.26205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/16/2020] [Indexed: 11/08/2022]
Abstract
CD8+ T cells play multiple and complex immunological roles including antiviral, regulatory, and exhaustive effects in hepatitis C virus (HCV) infected patients. Some CD8+ T-cell subsets were confirmed to be closely related to HCV infection such as TCM , TEM , TEM RA, Tc17, and CD8+ Treg. Herein, we report a new subset of interleukin (IL)-17/interferon (IFN)-γ producing CD8+ T (Tc17/IFN-γ) cells that markedly correlate with CD28+ CD244+ cells, IL-17 levels, and HCV RNA in HCV patients. During early treatment with peg-IFN-a2a plus ribavirin, the imbalance of these Tc17/IFN-γ cells could be partially restored, together with normalized serum alanine aminotransferase but not aspartate transaminase. Also, we analyzed the dynamic change of the percentage of this T cells subset in patients with different outcome after 4-week course of treatment with peg-IFN-a2a plus ribavirin and found that the percentage of CD8+ CD28+ CD244+ T cells significantly decreased in recovered patients but not in nonrecovered patients. In vitro, CD28+ CD244+ T cells were the only CD8+ T-cell group that secreted both IL-17 and IFN-γ in this axis and blockade with anti-CD244 antibodies significantly reduced cytokine production. Taken together, this study demonstrates that the frequency and regulatory functions of CD28+ CD244+ Tc17/IFN-γ cells may play an important role in persistent HCV infection.
Collapse
Affiliation(s)
- Wenzheng Han
- Clinical Laboratory, First Affiliated Hospital of Wanan Medical College, Wuhu, Anhui, China
| | - Jiajia Li
- Clinical Laboratory, First Affiliated Hospital of Wanan Medical College, Wuhu, Anhui, China
| | - Hongchang Zhou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Jing Qian
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Zhaowei Tong
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Weihong Wang
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jianfeng Zhong
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Tao Xue
- Department of Medical Therapeutics, First People's Hospital Affiliated to Huzhou University, Huzhou, Zhejiang, China
| | - Qing Chen
- Clinical Laboratory, First Affiliated Hospital of Wanan Medical College, Wuhu, Anhui, China
| | - Yunliang Yao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Shengwen Shao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
50
|
Mekonnen ZA, Masavuli MG, Yu W, Gummow J, Whelan DM, Al-Delfi Z, Torresi J, Gowans EJ, Grubor-Bauk B. Enhanced T Cell Responses Induced by a Necrotic Dendritic Cell Vaccine, Expressing HCV NS3. Front Microbiol 2020; 11:559105. [PMID: 33343515 PMCID: PMC7739890 DOI: 10.3389/fmicb.2020.559105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
A vaccine that induces potent, broad and sustained cell-mediated immunity, resulting in effective memory has the potential to restrict hepatitis C (HCV) virus infection. Early, multi-functional CD4+ and CD8+ T cell responses against non-structural protein 3 (NS3) have been associated with HCV clearance. Necrotic cells generate strong immune responses and represent a major antigenic source used by dendritic cells (DC) for processing and presentation, but there is conflicting evidence as to their immunogenicity in vaccination. Immunization with DC loaded with viral antigens has been done in the past, but to date the immunogenicity of live vs. necrotic DC vaccines has not been investigated. We developed a DC2.4 cell line stably expressing HCV NS3, and compared the NS3-specific responses of live vs. necrotic NS3 DC. Vaccination of mice with necrotic NS3 DC increased the breadth of T-cell responses and enhanced the production of IL-2, TNF-α, and IFN-γ by effector memory CD4+ and CD8+T cells, compared to mice vaccinated with live NS3 DC. A single dose of necrotic NS3 DC vaccine induced a greater influx and activation of cross-presenting CD11c+ CD8α+ DC and necrosis-sensing Clec9A+ DC in the draining lymph nodes. Furthermore, using a hydrodynamic challenge model necrotic NS3 DC vaccination resulted in enhanced clearance of NS3-positive hepatocytes from the livers of vaccinated mice. Taken together, the data demonstrate that necrotic DC represent a novel and exciting vaccination strategy capable of inducing broad and multifunctional T cell memory.
Collapse
Affiliation(s)
- Zelalem A Mekonnen
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Wenbo Yu
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Laboratory, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Dawn M Whelan
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Eric J Gowans
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|