1
|
Tian M, Li X, Yu L, Qian J, Bai X, Yang J, Deng R, Lu C, Zhao H, Liu Y. Glycosylation as an intricate post-translational modification process takes part in glycoproteins related immunity. Cell Commun Signal 2025; 23:214. [PMID: 40325416 PMCID: PMC12051319 DOI: 10.1186/s12964-025-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Protein glycosylation, the most ubiquitous and diverse type of post-translational modification in eukaryotic cells, proteins are input into endoplasmic reticulum and Golgi apparatus for sorting and modification with intricate quality control, are then output for diverse functional glycoproteins that are utilized by cells to precisely regulate various biological processes. In order to maintain the precise spatial structure of glycoprotein, misfolded and unfolded glycoproteins are recognized, segregated and degraded to ensure the fidelity of protein folding and maturation. This review enumerates the role of five immune-related glycoproteins and reveals the relevance of glycosylation to their antigen presentation, immune effector function, immune recognition, receptor binding and activation, and cell adhesion and migration. With the knowledgement of glycoproteins in immune responses and etiologies, we propose several relevant therapeutic strategies on targeting glycosylation process for immunotherapy.
Collapse
Affiliation(s)
- Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - JinXiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiuYun Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - RongJun Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Anderson JL, Sandstrom K, Klenchin VA, Evans DT. Rhesus Macaque Killer Cell Ig-like Receptor Domain 0 Glycans Impact Surface Expression and Ligand Specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1787-1798. [PMID: 39465971 PMCID: PMC11625459 DOI: 10.4049/jimmunol.2400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Defining the MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as a model for infectious diseases and comparative immunogenetics. Several rhesus macaque KIRs belong to a phylogenetically distinct group with a three-amino acid deletion in domain 0 (D0). This deletion results in polymorphic differences in potential N-linked glycosylation (PNG) sites adjacent to a predicted KIR-MHC class I contact site. Whereas most KIRs have two tandem PNG sites in D0 (N36FTN39FT), the KIRs containing the deletion only have a single site in this region (N36FT). To discern the contribution of glycosylation to KIR expression and ligand recognition, we constructed PNG mutants for six lineage II KIR genes that eliminate or create sites for N-glycan addition at these locations. The impact of these mutations on total and surface expression was determined by immunoblotting and flow cytometry. Ligand engagement was assessed by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. We found that N36FT is glycosylated in KIR with a single site, and at least one site is glycosylated in KIRs with two tandem sites. In general, for rhesus KIRs with a single D0 glycosylation site, that site contributes to surface expression. For KIRs with two tandem sites, the first site can contribute to ligand specificity. This study establishes that D0 glycosylation of rhesus macaque KIRs modulates surface expression and contributes to ligand specificity.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Abdelbary M, Nolz JC. N-linked glycans: an underappreciated key determinant of T cell development, activation, and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00035. [PMID: 38027254 PMCID: PMC10662610 DOI: 10.1097/in9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Alvarez CA, Qian E, Glendenning LM, Reynero KM, Kukan EN, Cobb BA. Acute and chronic lung inflammation drives changes in epithelial glycans. Front Immunol 2023; 14:1167908. [PMID: 37283757 PMCID: PMC10239862 DOI: 10.3389/fimmu.2023.1167908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Asthma is the most common chronic inflammatory disease and it is characterized by leukocyte infiltration and tissue remodeling, with the latter generally referring to collagen deposition and epithelial hyperplasia. Changes in hyaluronin production have also been demonstrated, while mutations in fucosyltransferases reportedly limit asthmatic inflammation. Methods Given the importance of glycans in cellular communication and to better characterize tissue glycosylation changes associated with asthma, we performed a comparative glycan analysis of normal and inflamed lungs from a selection of murine asthma models. Results We found that among other changes, the most consistent was an increase in fucose-α1,3-N-acetylglucosamine (Fuc-α1,3-GlcNAc) and fucose-α1,2-galactose (Fuc-α1,2-Gal) motifs. Increases in terminal galactose and N-glycan branching were also seen in some cases, whereas no overall change in O-GalNAc glycans was observed. Increased Muc5AC was found in acute but not chronic models, and only the more human-like triple antigen model yielded increased sulfated galactose motifs. We also found that human A549 airway epithelial cells stimulated in culture showed similar increases in Fuc-α1,2-Gal, terminal galactose (Gal), and sulfated Gal, and this matched transcriptional upregulation of the α1,2-fucosyltransferase Fut2 and the α1,3-fucosyltransferases Fut4 and Fut7. Conclusions These data suggest that airway epithelial cells directly respond to allergens by increasing glycan fucosylation, a known modification important for the recruitment of eosinophils and neutrophils.
Collapse
Affiliation(s)
- Carlos A. Alvarez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Emily Qian
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Hathaway Brown High School, Beachwood, OH, United States
| | - Leandre M. Glendenning
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kalob M. Reynero
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Emily N. Kukan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
5
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 PMCID: PMC10060418 DOI: 10.1038/s41419-023-05733-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
6
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 DOI: 10.1038/s41419-023-05733-z.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 10/14/2024]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
7
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
9
|
Ravindranath MH, Ravindranath NM, Selvan SR, Filippone EJ, Amato-Menker CJ, El Hilali F. Four Faces of Cell-Surface HLA Class-I: Their Antigenic and Immunogenic Divergence Generating Novel Targets for Vaccines. Vaccines (Basel) 2022; 10:vaccines10020339. [PMID: 35214796 PMCID: PMC8878457 DOI: 10.3390/vaccines10020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Leukocyte cell-surface HLA-I molecules, involved in antigen presentation of peptides to CD8+ T-cells, consist of a heavy chain (HC) non-covalently linked to β2-microglobulin (β2m) (Face-1). The HC amino acid composition varies across all six isoforms of HLA-I, while that of β2m remains the same. Each HLA-allele differs in one or more amino acid sequences on the HC α1 and α2 helices, while several sequences among the three helices are conserved. HCs without β2m (Face-2) are also observed on human cells activated by malignancy, viral transformation, and cytokine or chemokine-mediated inflammation. In the absence of β2m, the monomeric Face-2 exposes immunogenic cryptic sequences on these cells as confirmed by HLA-I monoclonal antibodies (LA45, L31, TFL-006, and TFL-007). Furthermore, such exposure enables dimerization between two Face-2 molecules by SH-linkage, salt linkage, H-bonding, and van der Waal forces. In HLA-B27, the linkage between two heavy chains with cysteines at position of 67 of the amino acid residues was documented. Similarly, several alleles of HLA-A, B, C, E, F and G express cysteine at 67, 101, and 164, and additionally, HLA-G expresses cysteine at position 42. Thus, the monomeric HC (Face-2) can dimerize with another HC of its own allele, as homodimers (Face-3), or with a different HC-allele, as heterodimers (Face-4). The presence of Face-4 is well documented in HLA-F. The post-translational HLA-variants devoid of β2m may expose several cryptic linear and non-linear conformationally altered sequences to generate novel epitopes. The objective of this review, while unequivocally confirming the post-translational variants of HLA-I, is to highlight the scientific and clinical importance of the four faces of HLA and to prompt further research to elucidate their functions and their interaction with non-HLA molecules during inflammation, infection, malignancy and transplantation. Indeed, these HLA faces may constitute novel targets for passive and active specific immunotherapy and vaccines.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist at Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Fatiha El Hilali
- The Faculty of Medicine and Pharmacy of Laayoune, Ibn Zohr University, Agadir 70000, Morocco;
| |
Collapse
|
10
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
11
|
Hallfors N, Shanti A, Sapudom J, Teo J, Petroianu G, Lee S, Planelles L, Stefanini C. Multi-Compartment Lymph-Node-on-a-Chip Enables Measurement of Immune Cell Motility in Response to Drugs. Bioengineering (Basel) 2021; 8:bioengineering8020019. [PMID: 33572571 PMCID: PMC7912616 DOI: 10.3390/bioengineering8020019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Organs On-a-Chip represent novel platforms for modelling human physiology and disease. The lymph node (LN) is a relevant immune organ in which B and T lymphocytes are spatially organized in a complex architecture, and it is the place where the immune response initiates. The present study addresses the utility of a recently designed LN-on-a-chip to dissect and understand the effect of drugs delivered to cells in a fluidic multicellular 3D setting that mimics the human LN. To do so, we analyzed the motility and viability of human B and T cells exposed to hydroxychloroquine (HCQ). We show that the innovative LN platform, which operates at a microscale level, allows real-time monitoring of co-cultured B and T cells by imaging, and supports cellular random movement. HCQ delivered to cells through a constant and continuous flow induces a reduction in T cell velocity while promotes persistent rotational motion. We also find that HCQ increases the production of reactive oxygen species in T cells. Taken together, these results highlight the potential of the LN-on-a-chip to be applied in drug screening and development, and in cellular dynamics studies.
Collapse
Affiliation(s)
- Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
| | - Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (J.S.); (J.T.)
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (J.S.); (J.T.)
- Department of Mechanical Engineering, New York University, P.O. Box 903, New York, NY 10276-0903, USA
| | - Georg Petroianu
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - SungMun Lee
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Khalifa University’s Center for Biotechnology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Lourdes Planelles
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Correspondence: (C.S.); (L.P.); Tel.: +971-2-501-8472 (C.S. & L.P.)
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Correspondence: (C.S.); (L.P.); Tel.: +971-2-501-8472 (C.S. & L.P.)
| |
Collapse
|
12
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
13
|
Gómez-Henao W, Tenorio EP, Sanchez FRC, Mendoza MC, Ledezma RL, Zenteno E. Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. Int Rev Immunol 2020; 40:274-288. [PMID: 33205679 DOI: 10.1080/08830185.2020.1845331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunological synapse promotes receptors and ligands interaction in the contact interface between the T lymphocyte and the antigen presenting cell; glycosylation of the proteins involved in this biological process favors regulation of molecular interactions and development of the T lymphocyte effector response. Glycans in the immunological synapse influence cellular and molecular processes such as folding, expression, and structural stability of proteins, they also mediate ligand-receptor interaction and propagation of the intracellular signaling or inhibition of uncontrolled cellular activation that could lead to the development of autoimmunity, among others. It has been suggested that altered glycosylation of proteins that participate in the immunological synapse affects the signaling processes and cell proliferation, as well as exacerbation of the effector mechanisms of T cells that trigger systemic damage and autoimmunity. Understanding the role of glycans in the immune response has allowed for advances in the development of immunotherapies in different fields through the controlled and specific activation of the immune response. This review describes the structural and biological aspects of glycans associated with some molecules present in the immunological synapse, providing information that allows understanding the function of glycosylation in the interaction between the T lymphocyte and the antigen-presenting cell, as well as its impact on signaling and development regulation of T lymphocytes effector response.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico.,Cell Growth, Tissue Repair and Regeneration (CRRET), CNRS ERL 9215, Université Paris Est Créteil (UPEC), Créteil, France
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | | | - Miguel Cuéllar Mendoza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Ricardo Lascurain Ledezma
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| |
Collapse
|
14
|
Alvarez CA, Jones MB, Hambor J, Cobb BA. Characterization of Polysaccharide A Response Reveals Interferon Responsive Gene Signature and Immunomodulatory Marker Expression. Front Immunol 2020; 11:556813. [PMID: 33193325 PMCID: PMC7649347 DOI: 10.3389/fimmu.2020.556813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polysaccharide A (PSA), a capsular carbohydrate from the commensal gut bacteria Bacteroides fragilis, has been shown to possess both potent T cell-dependent pro- and anti-inflammatory properties. PSA is able to induce abscess and adhesion formation in sepsis models, but can also inhibit asthma, inflammatory bowel disease (IBD) and experimental autoimmune encephalomyelitis (EAE) through MHCII-dependent activation of CD4+ T cells. Yet, despite decades of study, the ability of PSA to balance both these pro- and anti-inflammatory responses remains poorly understood. Here, we utilized an unbiased systems immunology approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, and Luminex analysis to characterize the full impact of PSA-mediated stimulation of CD4+ T cells. We found that exposure to PSA resulted in the upregulation and secretion of IFNγ, TNFα, IL-6, and CXCL10, consistent with an interferon responsive gene (IRG) signature. Importantly, PSA stimulation also led to expression of immune checkpoint markers Lag3, Tim3, and, especially, PD1, which were also enriched and sustained in the gut associated lymphoid tissue of PSA-exposed mice. Taken together, PSA responding cells display an unusual mixture of pro-inflammatory cytokines and anti-inflammatory surface receptors, consistent with the ability to both cause and inhibit inflammatory disease.
Collapse
Affiliation(s)
- Carlos A. Alvarez
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark B. Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - John Hambor
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States
| | - Brian A. Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
De Bousser E, Meuris L, Callewaert N, Festjens N. Human T cell glycosylation and implications on immune therapy for cancer. Hum Vaccin Immunother 2020; 16:2374-2388. [PMID: 32186959 PMCID: PMC7644206 DOI: 10.1080/21645515.2020.1730658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification, giving rise to a diverse and abundant repertoire of glycans on the cell surface, collectively known as the glycome. When focusing on immunity, glycans are indispensable in virtually all signaling and cell-cell interactions. More specifically, glycans have been shown to regulate key pathophysiological steps within T cell biology such as T cell development, thymocyte selection, T cell activity and signaling as well as T cell differentiation and proliferation. They are of major importance in determining the interaction of human T cells with tumor cells. In this review, we will describe the role of glycosylation of human T cells in more depth, elaborate on the importance of glycosylation in the interaction of human T cells with tumor cells and discuss the potential of cancer immunotherapies that are based on manipulating the glycome functions at the tumor immune interface.1,2
Collapse
Affiliation(s)
- Elien De Bousser
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Leander Meuris
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Nele Festjens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| |
Collapse
|
16
|
de Haas P, Hendriks WJAJ, Lefeber DJ, Cambi A. Biological and Technical Challenges in Unraveling the Role of N-Glycans in Immune Receptor Regulation. Front Chem 2020; 8:55. [PMID: 32117881 PMCID: PMC7013033 DOI: 10.3389/fchem.2020.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation of membrane receptors is important for a wide variety of cellular processes. In the immune system, loss or alteration of receptor glycosylation can affect pathogen recognition, cell-cell interaction, and activation as well as migration. This is not only due to aberrant folding of the receptor, but also to altered lateral mobility or aggregation capacity. Despite increasing evidence of their biological relevance, glycosylation-dependent mechanisms of receptor regulation are hard to dissect at the molecular level. This is due to the intrinsic complexity of the glycosylation process and high diversity of glycan structures combined with the technical limitations of the current experimental tools. It is still challenging to precisely determine the localization and site-occupancy of glycosylation sites, glycan micro- and macro-heterogeneity at the individual receptor level as well as the biological function and specific interactome of receptor glycoforms. In addition, the tools available to manipulate N-glycans of a specific receptor are limited. Significant progress has however been made thanks to innovative approaches such as glycoproteomics, metabolic engineering, or chemoenzymatic labeling. By discussing examples of immune receptors involved in pathogen recognition, migration, antigen presentation, and cell signaling, this Mini Review will focus on the biological importance of N-glycosylation for receptor functions and highlight the technical challenges for examination and manipulation of receptor N-glycans.
Collapse
Affiliation(s)
- Paola de Haas
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wiljan J A J Hendriks
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dirk J Lefeber
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
18
|
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Â, Dias AM, Pinho SS. Glycans as Key Checkpoints of T Cell Activity and Function. Front Immunol 2018; 9:2754. [PMID: 30538706 PMCID: PMC6277680 DOI: 10.3389/fimmu.2018.02754] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The immune system is highly controlled and fine-tuned by glycosylation, through the addition of a diversity of carbohydrates structures (glycans) to virtually all immune cell receptors. Despite a relative backlog in understanding the importance of glycans in the immune system, due to its inherent complexity, remarkable findings have been highlighting the essential contributions of glycosylation in the regulation of both innate and adaptive immune responses with important implications in the pathogenesis of major diseases such as autoimmunity and cancer. Glycans are implicated in fundamental cellular and molecular processes that regulate both stimulatory and inhibitory immune pathways. Besides being actively involved in pathogen recognition through interaction with glycan-binding proteins (such as C-type lectins), glycans have been also shown to regulate key pathophysiological steps within T cell biology such as T cell development and thymocyte selection; T cell activity and signaling as well as T cell differentiation and proliferation. These effects of glycans in T cells functions highlight their importance as determinants of either self-tolerance or T cell hyper-responsiveness which ultimately might be implicated in the creation of tolerogenic pathways in cancer or loss of immunological tolerance in autoimmunity. This review discusses how specific glycans (with a focus on N-linked glycans) act as regulators of T cell biology and their implications in disease.
Collapse
Affiliation(s)
- Márcia S Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Inês Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Manuel Vicente
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Ana Campar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal.,Centro Hospitalar do Porto Porto, Portugal
| | - Mariana C Silva
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Nuno A Padrão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Vanda Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| |
Collapse
|
19
|
Park C, Kim TJ. Expansion and Sub-Classification of T Cell-Dependent Antibody Responses to Encompass the Role of Innate-Like T Cells in Antibody Responses. Immune Netw 2018; 18:e34. [PMID: 30402329 PMCID: PMC6215906 DOI: 10.4110/in.2018.18.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to T cell-dependent (TD) Ab responses, T cells can also regulate T cell-independent (TI) B cell responses in the absence of a specific major histocompatibility complex (MHC) class II and antigenic peptide-based interaction between T and B cells. The elucidation of T cells capable of supporting TI Ab responses is important for understanding the cellular mechanism of different types of TI Ab responses. Natural killer T (NKT) cells represent 1 type of helper T cells involved in TI Ab responses and more candidate helper T cells responsible for TI Ab responses may also include γδ T cells and recently reported B-1 helper CD4+ T cells. Marginal zone (MZ) B and B-1 cells, 2 major innate-like B cell subsets considered to function independently of T cells, interact with innate-like T cells. Whereas MZ B and NKT cells interact mutually for a rapid response to blood-borne infection, peritoneal memory phenotype CD49dhighCD4+ T cells support natural Ab secretion by B-1 cells. Here the role of innate-like T cells in the so-called TI Ab response is discussed. To accommodate the involvement of T cells in the TI Ab responses, we suggest an expanded classification of TD Ab responses that incorporate cognate and non-cognate B cell help by innate-like T cells.
Collapse
Affiliation(s)
- Chanho Park
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
20
|
Baum LG, Cobb BA. The direct and indirect effects of glycans on immune function. Glycobiology 2018; 27:619-624. [PMID: 28460052 DOI: 10.1093/glycob/cwx036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
The biological impact of glycans is as diverse and complex as the impact of proteins on biology. Familiar roles include those as a protein folding checkpoint in the endoplasmic reticulum and as a modulator of the serum half-life of secreted glycoproteins, but it has become clear over the last several decades that glycans are key signaling moieties, participate in cell-cell interactions and modulate the function of individual proteins, to name but a few examples. In the immune system, the majority of microbial "patterns" are glycans or glycoconjugates, while virtually all cell surface receptors are glycoproteins, and antibody glycosylation critically influences antibody function. In order to provide a simple contextual framework to understand the myriad roles, glycans play in immunity, we propose that glycan effects are considered direct or indirect, depending on their direct participation or their indirect effects on other components in a given biological process or pathway. Here, we present the published evidence that supports this framework, which ultimately leads to the conclusion that we should learn to embrace the complexity inherent to the glycome and its potential as a largely uncharted but target rich area of new therapeutic investigation.
Collapse
Affiliation(s)
- Linda G Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol 2018. [DOI: 10.1016/j.chembiol.2018.02.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Emerging glycobiology tools: A renaissance in accessibility. Cell Immunol 2018; 333:2-8. [PMID: 29759530 DOI: 10.1016/j.cellimm.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
The glycobiology of the immune response is a topic that has garnered increased attention due to a number of key discoveries surrounding IgG function, the specificity of some broadly neutralizing anti-HIV antibodies, cancer immunoregulation by galectin molecules and others. This review is the opening article in a Special Edition of Cellular Immunology focused on glycoimmunology, and has the goal of setting the context for these articles by providing a mini-review of how glycans impact immunity. We also focus on some of the technological and methodological advances in the field of glycobiology that are being deployed to lower the barrier of entry into the glycosciences, and to more fully interrogate the glycome and its function.
Collapse
|
23
|
Jones MB, Ryan SO, Johnson JL, Cobb BA. Dendritic cell-specific Mgat2 knockout mice show antigen presentation defects but reveal an unexpected CD11c expression pattern. Glycobiology 2016; 26:1007-1013. [PMID: 27146521 DOI: 10.1093/glycob/cww056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 01/11/2023] Open
Abstract
Zwitterionic polysaccharide antigens such as polysaccharide A (PSA) from Bacteroides fragilis have been shown to activate CD4+ T cells upon presentation by class II major histocompatibility complex (MHCII) on professional antigen presenting cells. For T cell recognition and activation, high affinity binding between MHCII and PSA is required, and complex N-glycans on conserved MHCII asparagine residues play a central role in controlling this interaction. By truncating these glycans in a myeloid-specific knockout of Mgat2, created using the LyzM-CRE mouse (M-cKO), we previously reported defects in PSA responses in vivo. Unfortunately, the M-cKO also showed a propensity to develop common variable immunodeficiency with autoimmune hemolytic anemia features. Here, we describe a novel murine model in which Mgat2 was targeted for ablation using the dendritic cell (DC)-specific CD11c-CRE-GFP strain in order to develop a more specific and robust in vivo model of PSA presentation defects (DC-cKO). This study shows that Mgat2 deficient DCs from DC-cKO mice show ablation of PSA presentation and downstream T cell activation in vitro. However, the CD11c promoter was unexpectedly active and triggered Mgat2 deletion within multiple hematopoietic lineages, showed remarkably poor penetrance within native DC populations, and produced almost undetectable levels of green fluorescent protein signal. These findings show that the CD11c promoter is not DC-specific, and extreme care should be taken in the interpretation of data using any mouse created using the CD11c-CRE model.
Collapse
Affiliation(s)
- Mark B Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, WRB 5132, Cleveland, OH 44106-7288 Cleveland, OH, USA
| | - Sean O Ryan
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, WRB 5132, Cleveland, OH 44106-7288 Cleveland, OH, USA
| | - Jenny L Johnson
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, WRB 5132, Cleveland, OH 44106-7288 Cleveland, OH, USA
| | - Brian A Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, WRB 5132, Cleveland, OH 44106-7288 Cleveland, OH, USA
| |
Collapse
|
24
|
Zhao J, Bulek K, Gulen MF, Zepp JA, Karagkounis G, Martin BN, Zhou H, Yu M, Liu X, Huang E, Fox PL, Kalady MF, Markowitz SD, Li X. Human Colon Tumors Express a Dominant-Negative Form of SIGIRR That Promotes Inflammation and Colitis-Associated Colon Cancer in Mice. Gastroenterology 2015; 149:1860-1871.e8. [PMID: 26344057 PMCID: PMC5308447 DOI: 10.1053/j.gastro.2015.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Single immunoglobulin and toll-interleukin 1 receptor (SIGIRR), a negative regulator of the Toll-like and interleukin-1 receptor (IL-1R) signaling pathways, controls intestinal inflammation and suppresses colon tumorigenesis in mice. However, the importance of SIGIRR in human colorectal cancer development has not been determined. We investigated the role of SIGIRR in development of human colorectal cancer. METHODS We performed RNA sequence analyses of pairs of colon tumor and nontumor tissues, each collected from 68 patients. Immunoblot and immunofluorescence analyses were used to determine levels of SIGIRR protein in primary human colonic epithelial cells, tumor tissues, and colon cancer cell lines. We expressed SIGIRR and mutant forms of the protein in Vaco cell lines. We created and analyzed mice that expressed full-length (control) or a mutant form of Sigirr (encoding SIGIRR(N86/102S), which is not glycosylated) specifically in the intestinal epithelium. Some mice were given azoxymethane (AOM) and dextran sulfate sodium to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by immunohistochemical and gene expression profile analyses. RESULTS RNA sequence analyses revealed increased expression of a SIGIRR mRNA isoform, SIGIRR(ΔE8), in colorectal cancer tissues compared to paired nontumor tissues. SIGIRR(ΔE8) is not modified by complex glycans and is therefore retained in the cytoplasm-it cannot localize to the cell membrane or reduce IL1R signaling. SIGIRR(ΔE8) interacts with and has a dominant-negative effect on SIGIRR, reducing its glycosylation, localization to the cell surface, and function. Most SIGIRR detected in human colon cancer tissues was cytoplasmic, whereas in nontumor tissues it was found at the cell membrane. Mice that expressed SIGIRR(N86/102S) developed more inflammation and formed larger tumors after administration of azoxymethane and dextran sulfate sodium than control mice; colon tissues from these mutant mice expressed higher levels of the inflammatory cytokines IL-17A and IL-6 had activation of the transcription factors STAT3 and NFκB. SIGIRR(N86/102S) expressed in colons of mice did not localize to the epithelial cell surface. CONCLUSION Levels of SIGIRR are lower in human colorectal tumors, compared with nontumor tissues; tumors contain the dominant-negative isoform SIGIRR(ΔE8). This mutant protein blocks localization of full-length SIGIRR to the surface of colon epithelial cells and its ability to downregulate IL1R signaling. Expression of SIGIRR(N86/102S) in the colonic epithelium of mice increases expression of inflammatory cytokines and formation and size of colitis-associated tumors.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Muhammet Fatih Gulen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jarod A. Zepp
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Georgio Karagkounis
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bradley N Martin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Minjia Yu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Emina Huang
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Matthew F. Kalady
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sanford D. Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
25
|
Johnson JL, Jones MB, Cobb BA. Polysaccharide A from the capsule of Bacteroides fragilis induces clonal CD4+ T cell expansion. J Biol Chem 2014; 290:5007-5014. [PMID: 25540199 DOI: 10.1074/jbc.m114.621771] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For 3 decades, the view of MHCII-dependent antigen presentation has been completely dominated by peptide antigens despite our 2004 discovery in which MHCII was shown to present processed fragments of zwitterionic capsular polysaccharides to T cells. Published findings further demonstrate that polysaccharide A (PSA) from the capsule of Bacteroides fragilis is a potent activator of CD4(+) T cells and that these T cells have important biological functions, especially in the maintenance of immunological homeostasis. However, little is known about the nature of T cell recognition of the polysaccharide-MHCII complex or the phenotype of the resulting activated cells. Here, we use next-generation sequencing of the αβT cell receptor of CD4(+) T cells from mice stimulated with PSA in comparison with protein antigen simulation and non-immunized controls and found that PSA immunization induced clonal expansion of a small subset of suppressive CD4(+)CD45RB(low) effector/memory T cells. Moreover, the sequences of the complementarity-determining region 3 (CDR3) loop from top clones indicate a lack of specific variable β and joining region use and average CDR3 loop length. There was also a preference for a zwitterionic motif within the CDR3 loop sequences, aligning well with the known requirement for a similar motif within PSA to enable T cell activation. These data support a model in which PSA, and possibly other T cell-dependent polysaccharide antigens, elicits a clonal and therefore specific CD4(+) T cell response often characterized by pairing dual-charged CDR3 loop sequences with dual-charged PSA.
Collapse
Affiliation(s)
- Jenny L Johnson
- From the Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Mark B Jones
- From the Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Brian A Cobb
- From the Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.
| |
Collapse
|
26
|
Li J, Hsu HC, Ding Y, Li H, Wu Q, Yang P, Luo B, Rowse AL, Spalding DM, Bridges SL, Mountz JD. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 2014; 66:2368-79. [PMID: 24838610 DOI: 10.1002/art.38711] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Fucosylation catalyzed by fucosyltransferases (FUTs) is an important posttranslational modification involved in a variety of biologic processes. This study was undertaken to determine the roles of fucosylation in rheumatoid arthritis (RA) and to assess the efficacy of reestablishing immune homeostasis with the use of 2-deoxy-d-galactose (2-d-gal), a fucosylation inhibitor. METHODS Quantitative polymerase chain reaction was performed to determine the expression of FUT genes in synovial tissue from RA and osteoarthritis (OA) patients and in fluorescence-activated cell-sorted cells from RA synovial fluid. The in vivo inhibitory effect of 2-d-gal was evaluated in a murine collagen-induced arthritis (CIA) model. The in vitro effects of 2-d-gal on differentiation of inflammatory macrophages, production of cytokines, and antigen uptake, processing, and presentation functions were analyzed. RESULTS FUTs that are involved in terminal or subterminal fucosylation, but not those involved in core fucosylation or O-fucosylation, were up-regulated in RA compared to OA synovial tissue. The expression of terminal FUTs was highly positively correlated with the expression of TNF (encoding for tumor necrosis factor α). Terminal FUTs were predominantly expressed in M1 macrophages. In vivo, 2-d-gal treatment of mice precluded the development of CIA by reducing inflammatory macrophages and Th17 cells in the draining lymph nodes and decreasing the levels of TNFα, interleukin-6 (IL-6), and antibodies to type II collagen in the serum. In vitro, treatment with 2-d-gal skewed the differentiation of M1 macrophages to IL-10-producing M2 macrophages. Furthermore, 2-d-gal significantly inhibited the antigen-presenting function of M1 macrophages. CONCLUSION Terminal fucosylation is a novel hallmark of inflammatory macrophages. Inhibition of terminal FUTs reshapes the differentiation and functions of M1 macrophages, leading to resolution of inflammation in arthritis.
Collapse
Affiliation(s)
- Jun Li
- University of Alabama at, Birmingham
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnson JL, Jones MB, Cobb BA. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology 2014; 25:368-75. [PMID: 25347992 DOI: 10.1093/glycob/cwu117] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over the last four decades, increases in the incidence of immune-mediated diseases in the Western world have been linked to changes in microbial exposure. It is becoming increasingly clear that the normal microbiota in the gut can profoundly alter susceptibility to a wide range of diseases, such as asthma, in which immune homeostasis is disrupted, yet the mechanisms governing this microbial influence remains poorly defined. In this study, we show that gastrointestinal exposure to PSA, a capsular polysaccharide derived from the commensal bacterium Bacteroides fragilis, significantly limits susceptibility to the induction of experimental asthma. We report that direct treatment of mice with PSA generates protection from asthma, and this effect can be given to a naïve recipient by adoptive transfer of CD4(+) T cells from PSA-exposed mice. Remarkably, we found that these PSA-induced T cells are not canonical FoxP3(+) regulatory T cells, but that they potently inhibit both Th1 and Th2 models of asthma in an IL-10-dependent fashion. These findings reveal that bacterial polysaccharides link the microbiota with the peripheral immune system by activating CD4(+)Foxp3(-) T cells upon exposure in the gut, and they facilitate resistance to unnecessary inflammatory responses via the production of IL-10.
Collapse
Affiliation(s)
- Jenny L Johnson
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mark B Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Brian A Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Ryan SO, Abbott DW, Cobb BA. Myeloid glycosylation defects lead to a spontaneous common variable immunodeficiency-like condition with associated hemolytic anemia and antilymphocyte autoimmunity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5561-70. [PMID: 24795453 DOI: 10.4049/jimmunol.1400385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Common variable immunodeficiency (CVID), the most frequent symptomatic primary immune deficiency in humans, is a heterogeneous group of immunologic disorders estimated to affect 1:10,000-1:50,000. Although a clear disease etiology remains elusive, a common characteristic of CVID is deficient IgG Ab production in response to infection or vaccination. Patients often also exhibit autoimmune cytopenias with symptoms of abnormal T cell function, including reductions in naive T cells, which correlate with clinical severity. In this study, we discovered that targeted alterations in the glycome of the myeloid lineage lead to spontaneous immunodeficiency characteristic of both humoral and T cell dysfunction regularly found in human CVID. Mice carrying a myeloid-specific knockout of the Mgat2 gene encoding UDP-GlcNAc:α-6-d-mannoside β-1,2-N-acetylglucosaminyltransferase II enzyme exhibit deficiencies in IgG responses to both protein and polysaccharide conjugate vaccines. Interestingly, the immunodeficiency is associated with decreased T cell activity because of a persistent autoimmune-mediated depletion of naive T cells, which is induced by changes in erythrocyte surface glycosylation. The N-glycosylation dependent autoepitopes that emerge on erythrocytes lead to autoimmune hemolytic anemia, and the causative auto-IgM cross-reacts with naive T cells despite the lack of glycan change on T cells. These findings demonstrate that alterations in erythrocyte glycosylation trigger the development of autoantibodies directed at both erythrocytes and naive T cells, revealing a possible mechanistic link between the induction of autoimmune hemolytic anemia, the reduction in naive T cells, and poor Ab responses to vaccine in severe CVID patients.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
29
|
Cobb BA. Is donor glycosylation the gatekeeper for xenotransplantation? Am J Transplant 2014; 14:745-7. [PMID: 24433496 DOI: 10.1111/ajt.12637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/26/2013] [Accepted: 12/11/2013] [Indexed: 01/25/2023]
Affiliation(s)
- B A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
30
|
Ryan SO, Leal SM, Abbott DW, Pearlman E, Cobb BA. Mgat2 ablation in the myeloid lineage leads to defective glycoantigen T cell responses. Glycobiology 2013; 24:262-71. [PMID: 24310166 DOI: 10.1093/glycob/cwt107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
N-linked glycosylation is a central regulatory factor that influences the immune system in varied and profound ways, including leukocyte homing, T cell receptor signaling and others. Moreover, N-glycan branching has been demonstrated to change as a function of infection and inflammation. Our previous findings suggest that complex-type N-glycans on the class II major histocompatibility complex play an important role in antigen selection within antigen presenting cells (APCs) such that highly branched N-glycans promote polysaccharide (glycoantigen, GlyAg) presentation following Toll-like receptor 2 (TLR2)-dependent antigen processing. In order to explore the impact of N-glycan branching on the myeloid-derived APC population without the confounding problems of altering the branching of lymphocytes and non-hematopoietic cells, we created a novel myeloid-specific knockout of the β-1,2-N-acetylglucosaminyltransferase II (Mgat2) enzyme. Using this novel mouse, we found that the reduction in multi-antennary N-glycans characteristic of Mgat2 ablation had no impact on GlyAg-mediated TLR2 signaling. Likewise, no deficits in antigen uptake or cellular homing to lymph nodes were found. However, we discovered that Mgat2 ablation prevented GlyAg presentation and T cell activation in vitro and in vivo without apparent alterations in protein antigen response or myeloid-mediated protection from infection. These findings demonstrate that GlyAg presentation can be regulated by the N-glycan branching pattern of APCs, thereby establishing an in vivo model where the T cell-dependent activity of GlyAgs can be experimentally distinguished from GlyAg-mediated stimulation of the innate response through TLR2.
Collapse
|
31
|
Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A, Beau R, Candoni A, Maertens J, Rossi G, Morselli M, Zanetti E, Quadrelli C, Codeluppi M, Guaraldi G, Pagano L, Caira M, Giovane CD, Maccaferri M, Stefani A, Morandi U, Tazzioli G, Girardis M, Delia M, Specchia G, Longo G, Marasca R, Narni F, Merli F, Imovilli A, Apolone G, Carvalho A, Comoli P, Romani L, Latgè JP, Luppi M. Characterization of specific immune responses to different Aspergillus antigens during the course of invasive Aspergillosis in hematologic patients. PLoS One 2013; 8:e74326. [PMID: 24023936 PMCID: PMC3762751 DOI: 10.1371/journal.pone.0074326] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 07/31/2013] [Indexed: 01/26/2023] Open
Abstract
Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned antigens. These findings may be exploited for immunotherapeutic purposes in patients with IA.
Collapse
Affiliation(s)
- Leonardo Potenza
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Daniela Vallerini
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Giovanni Riva
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Anne Beauvais
- Unitè des Aspergillus, Pasteur Institut, Paris, France
| | - Remi Beau
- Unitè des Aspergillus, Pasteur Institut, Paris, France
| | - Anna Candoni
- Hematology and Bone Marrow Transplantation, Udine, Italy
| | - Johan Maertens
- Department of Hematology, Universitaire Ziekenhuizen Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Giulio Rossi
- Section of Histopathology, IRCCS/Arcispedale S.Maria Nuova Reggio, Emilia, Italy
| | - Monica Morselli
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Eleonora Zanetti
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Chiara Quadrelli
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Mauro Codeluppi
- Infectious Diseases Clinics, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Livio Pagano
- Department of Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Morena Caira
- Department of Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cinzia Del Giovane
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Alessandro Stefani
- Division of Thoracic Surgery, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Giovanni Tazzioli
- Division of General Surgery, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Massimo Girardis
- Division of Anaesthesiology and Intensive Care, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Mario Delia
- Hematology Department, DAP, University of Bari, Bari, Italy
| | | | - Giuseppe Longo
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Franco Narni
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
| | - Francesco Merli
- Division of Hematology, IRCCS/Arcispedale S.Maria Nuova Reggio, Emilia, Italy
| | - Annalisa Imovilli
- Division of Hematology, IRCCS/Arcispedale S.Maria Nuova Reggio, Emilia, Italy
| | - Giovanni Apolone
- Division of Hematology, IRCCS/Arcispedale S.Maria Nuova Reggio, Emilia, Italy
| | - Agostinho Carvalho
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology and Transplantation, IRCCS S. Matteo Hospital, Pavia, Italy
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | - Mario Luppi
- Section of Hematology, Department of Surgical and Medical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliera Policlinico, Modena, Italy
- * E-mail:
| |
Collapse
|
32
|
Bloem K, García-Vallejo JJ, Vuist IM, Cobb BA, van Vliet SJ, van Kooyk Y. Interaction of the Capsular Polysaccharide A from Bacteroides fragilis with DC-SIGN on Human Dendritic Cells is Necessary for Its Processing and Presentation to T Cells. Front Immunol 2013; 4:103. [PMID: 23653626 PMCID: PMC3644800 DOI: 10.3389/fimmu.2013.00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/21/2013] [Indexed: 01/08/2023] Open
Abstract
The zwitterionic capsular polysaccharide A (PSA) of Bacteroides fragilis is the first carbohydrate antigen described to be presented in major histocompatibility complex (MHC) class II for the induction of CD4+ T cell responses. However, the identity of the receptor mediating binding and internalization of PSA in antigen presenting cells remains elusive. C-type lectins are glycan-binding receptors known for their capacity to target ligands for antigen presentation to T cells. Here, we investigated whether C-type lectins were involved in the internalization of PSA and identified dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as the main receptor for PSA on human dendritic cells (DC). The induction of PSA-specific T cell proliferation appeared to be completely dependent on DC-SIGN. These data reveal a crucial role for DC-SIGN in the endocytosis and routing of PSA in human DC for the efficient stimulation of PSA-specific CD4+ T cells.
Collapse
Affiliation(s)
- Karien Bloem
- Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Netherlands ; Centre for Specialized Nutrition, Danone Research Wageningen, Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
The regulatory power of glycans and their binding partners in immunity. Trends Immunol 2013; 34:290-8. [PMID: 23485517 DOI: 10.1016/j.it.2013.01.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Glycans and glycan-binding proteins are central to a properly functioning immune system. Perhaps the best known example of this is the selectin family of surface proteins that are primarily found on leukocytes, and which bind to endothelial glycans near sites of infection or inflammation and enable extravasation into tissues. In the past decade, however, several other immune pathways that are dependent on or sensitive to changes in glycan-mediated mechanisms have been revealed. These include antibody function, apoptosis, T helper (Th)1 versus Th2 skewing, T cell receptor signaling, and MHC class II antigen presentation. Here, we highlight how regulated changes in protein glycosylation both at the cell surface and on secreted glycoproteins can positively and negatively modulate the immune response.
Collapse
|
34
|
Garrido D, Nwosu C, Ruiz-Moyano S, Aldredge D, German JB, Lebrilla CB, Mills DA. Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol Cell Proteomics 2012; 11:775-85. [PMID: 22745059 DOI: 10.1074/mcp.m112.018119] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Breastfeeding is one of the main factors guiding the composition of the infant gut microbiota in the first months of life. This process is shaped in part by the high amounts of human milk oligosaccharides that serve as a carbon source for saccharolytic bacteria such as Bifidobacterium species. Infant-borne bifidobacteria have developed various molecular strategies for utilizing these oligosaccharides as a carbon source. We hypothesized that these species also interact with N-glycans found in host glycoproteins that are structurally similar to free oligosaccharides in human milk. Endo-β-N-acetylglucosaminidases were identified in certain isolates of Bifidobacterium longum subsp. longum, B. longum subsp. infantis, and Bifidobacterium breve, and their presence correlated with the ability of these strains to deglycosylate glycoproteins. An endoglycosidase from B. infantis ATCC 15697, EndoBI-1, was active toward all major types of N-linked glycans found in glycosylated proteins. Its activity was not affected by core fucosylation or extensive fucosylation, antenna number, or sialylation, releasing several N-glycans from human lactoferrin and immunoglobulins A and G. Extensive N-deglycosylation of whole breast milk was also observed after coincubation with this enzyme. Mutation of the active site of EndoBI-1 did not abolish binding to N-glycosylated proteins, and this mutant specifically recognized Man(3)GlcNAc(2)(α1-6Fuc), the core structure of human N-glycans. EndoBI-1 is constitutively expressed in B. infantis, and incubation of the bacterium with human or bovine lactoferrin led to the induction of genes associated to import and consumption of human milk oligosaccharides, suggesting linked regulatory mechanisms among these glycans. This work reveals an unprecedented interaction of bifidobacteria with host N-glycans and describes a novel endoglycosidase with broad specificity on diverse N-glycan types, potentially a useful tool for glycoproteomics studies.
Collapse
Affiliation(s)
- Daniel Garrido
- Department of Viticulture & Enology, University of California Davis, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
HLA-DO (DO) is a nonclassic class II heterodimer that inhibits the action of the class II peptide exchange catalyst, HLA-DM (DM), and influences DM localization within late endosomes and exosomes. In addition, DM acts as a chaperone for DO and is required for its egress from the endoplasmic reticulum (ER). These reciprocal functions are based on direct DO/DM binding, but the topology of DO/DM complexes is not known, in part, because of technical limitations stemming from DO instability. We generated two variants of recombinant soluble DO with increased stability [zippered DOαP11A (szDOv) and chimeric sDO-Fc] and confirmed their conformational integrity and ability to inhibit DM. Notably, we found that our constructs, as well as wild-type sDO, are inhibitory in the full pH range where DM is active (4.7 to ∼6.0). To probe the nature of DO/DM complexes, we used intermolecular fluorescence resonance energy transfer (FRET) and mutagenesis and identified a lateral surface spanning the α1 and α2 domains of szDO as the apparent binding site for sDM. We also analyzed several sDM mutants for binding to szDOv and susceptibility to DO inhibition. Results of these assays identified a region of DM important for interaction with DO. Collectively, our data define a putative binding surface and an overall orientation of the szDOv/sDM complex and have implications for the mechanism of DO inhibition of DM.
Collapse
|
36
|
Surana NK, Kasper DL. The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol Rev 2012; 245:13-26. [PMID: 22168411 DOI: 10.1111/j.1600-065x.2011.01075.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past several years, there have been remarkable advances in our understanding of how commensal organisms shape host immunity. Although the full cast of immunogenic bacteria and their immunomodulatory molecules remains to be elucidated, lessons learned from the interactions between bacterial zwitterionic polysaccharides (ZPSs) and the host immune system represent an integral step toward better understanding how the intestinal microbiota effect immunologic changes. Somewhat paradoxically, ZPSs, which are found in numerous commensal organisms, are able to elicit both proinflammatory and immunoregulatory responses; both these outcomes involve fine-tuning the balance between T-helper 17 cells and interleukin-10-producing regulatory T cells. In this review, we discuss the immunomodulatory effects of the archetypal ZPS, Bacteroides fragilis PSA. In addition, we highlight some of the opportunities and challenges in applying these lessons in clinical settings.
Collapse
Affiliation(s)
- Neeraj K Surana
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Ryan SO, Cobb BA. Host glycans and antigen presentation. Microbes Infect 2012; 14:894-903. [PMID: 22580092 DOI: 10.1016/j.micinf.2012.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022]
Abstract
The cell-mediated adaptive immune response depends upon the activation of T cells via recognition of antigen in the context of a major histocompatibility complex (MHC) molecule. Although studies have shown that alterations in T cell receptor glycosylation reduces the activation threshold, the data on MHC is far less definitive. Here, we discuss the data on MHC glycosylation and the role the glycans might play during the adaptive host response.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, WRB Rm. 6532, Cleveland, OH 44106, USA
| | | |
Collapse
|
38
|
Kreisman LS, Cobb BA. Infection, inflammation and host carbohydrates: a Glyco-Evasion Hypothesis. Glycobiology 2012; 22:1019-30. [PMID: 22492234 DOI: 10.1093/glycob/cws070] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microbial immune evasion can be achieved through the expression, or mimicry, of host-like carbohydrates on the microbial cell surface to hide from detection. However, disparate reports collectively suggest that evasion could also be accomplished through the modulation of the host glycosylation pathways, a mechanism that we call the "Glyco-Evasion Hypothesis". Here, we will summarize the evidence in support of this paradigm by reviewing three separate bodies of work present in the literature. We review how infection and inflammation can lead to host glycosylation changes, how host glycosylation changes can increase susceptibility to infection and inflammation and how glycosylation impacts molecular and cellular function. Then, using these data as a foundation, we propose a unifying hypothesis in which microbial products can hijack host glycosylation to manipulate the immune response to the advantage of the pathogen. This model reveals areas of research that we believe could significantly improve our fight against infectious disease.
Collapse
Affiliation(s)
- Lori Sc Kreisman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
39
|
Abstract
Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
40
|
Ryan SO, Cobb BA. Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol 2012; 34:425-41. [PMID: 22461020 DOI: 10.1007/s00281-012-0309-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) glycoprotein family, also referred to as human leukocyte antigens, present endogenous and exogenous antigens to T lymphocytes for recognition and response. These molecules play a central role in enabling the immune system to distinguish self from non-self, which is the basis for protective immunity against pathogenic infections and disease while at the same time representing a serious obstacle for tissue transplantation. All known MHC family members, like the majority of secreted, cell surface, and other immune-related molecules, carry asparagine (N)-linked glycans. The immune system has evolved increasing complexity in higher-order organisms along with a more complex pattern of protein glycosylation, a relationship that may contribute to immune function beyond the early protein quality control events in the endoplasmic reticulum that are commonly known. The broad MHC family maintains peptide sequence motifs for glycosylation at sites that are highly conserved across evolution, suggesting importance, yet functional roles for these glycans remain largely elusive. In this review, we will summarize what is known about MHC glycosylation and provide new insight for additional functional roles for this glycoprotein modification in mediating immune responses.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|