1
|
Nawa H, Murakami M. Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling. Neuropsychopharmacol Rep 2025; 45:e12520. [PMID: 39754403 PMCID: PMC11702486 DOI: 10.1002/npr2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process. In agreement, the anticancer drugs targeting EGFR such as Nimotuzumab and tyrosine kinase inhibitors are markedly effective on COVID-19. However, these data might raise a provisional caution regarding implication of psychiatric disorder such as schizophrenia. The author's group has been investigating the etiologic and neuropathologic associations of EGFR signaling with schizophrenia. There are significant molecular associations between schizophrenia and EGFR ligand levels in blood as well as in the brain. In addition, perinatal challenges of EGFR ligands and intraventricular administration of EGF to rodents and monkeys both resulted in severe behavioral and/or electroencephalographic endophenotypes relevant to this disorder. These animal models also display postpubertal abnormality in soliloquy-like self-vocalization as well as in intercortical functional connectivity. Here, we discuss neuropsychiatric implication of coronavirus infection and its interaction with the EGFR system, by searching related literatures in PubMed database as of the end of 2023.
Collapse
Affiliation(s)
- Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical SciencesWakayama Medical UniversityWakayamaJapan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute for Genetic MedicineHokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
2
|
Rahlf CR, Tarakanova VL. Role of Interferon Regulatory Factor 1 in acute and chronic virus infections. Virology 2025; 603:110386. [PMID: 39754861 PMCID: PMC11788042 DOI: 10.1016/j.virol.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host. Taking advantage of mouse models of global or cell type-specific IRF-1 deficiency, recent studies demonstrate intriguing virus- and cell type-specific functions of IRF-1 during in vivo infection, underlining the complexity of this ancient transcription factor. Here, we review the role of IRF-1 during acute and chronic viral infections of an intact host, with particular focus on relating observations found in mouse models to those observed in a recent study of pediatric patients with IRF-1 insufficiency. By appreciating the complexity of IRF-1 in the immune response, we highlight several virus- and cell type-specific functions of IRF-1 in contributing to host antiviral immunity.
Collapse
Affiliation(s)
- Cade R Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Strobl K, Klufa J, Jin R, Artner-Gent L, Krauß D, Novoszel P, Strobl J, Stary G, Vujic I, Griss J, Holcmann M, Farlik M, Homey B, Sibilia M, Bauer T. JAK-STAT1 as therapeutic target for EGFR deficiency-associated inflammation and scarring alopecia. EMBO Mol Med 2024; 16:3142-3168. [PMID: 39521937 PMCID: PMC11628629 DOI: 10.1038/s44321-024-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The hair follicle stem cell niche is an immune-privileged microenvironment, characterized by reduced antigen presentation, thus shielding against permanent immune-mediated tissue damage. In this study, we demonstrated the protective role of hair follicle-specific epidermal growth factor receptor (EGFR) against scarring hair follicle destruction. Mechanistically, disruption of EGFR signaling generated a cell-intrinsic hypersensitivity within the JAK-STAT1 pathway, which, synergistically with interferon gamma expressing CD8 T-cell and NK-cell-mediated inflammation, compromised the stem cell niche. Hair follicle-specific genetic depletion of either JAK1/2 or STAT1 or therapeutic inhibition of JAK1/2 ameliorated the inflammation, restored skin barrier function and activated the residual stem cells to resume hair growth in mouse models of epidermal and hair follicle-specific EGFR deletion. Skin biopsies from EGFR inhibitor-treated and cicatricial alopecia patients revealed an active JAK-STAT1 signaling signature along with upregulation of antigen presentation and downregulation of key components of the EGFR pathway. Our findings offer molecular insights and highlight a mechanism-based therapeutic strategy for addressing chronic folliculitis associated with EGFR-inhibitor anti-cancer therapy and cicatricial alopecia.
Collapse
Affiliation(s)
- Karoline Strobl
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Jörg Klufa
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Regina Jin
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Lena Artner-Gent
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Dana Krauß
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Igor Vujic
- Department of Dermatology, Venereology and Allergy, Clinical Center Landstrasse, Vienna, 1030, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria.
| | - Thomas Bauer
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria.
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Djeddi S, Fernandez-Salinas D, Huang GX, Aguiar VRC, Mohanty C, Kendziorski C, Gazal S, Boyce JA, Ober C, Gern JE, Barrett NA, Gutierrez-Arcelus M. Rhinovirus infection of airway epithelial cells uncovers the non-ciliated subset as a likely driver of genetic risk to childhood-onset asthma. CELL GENOMICS 2024; 4:100636. [PMID: 39197446 PMCID: PMC11480861 DOI: 10.1016/j.xgen.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Asthma is a complex disease caused by genetic and environmental factors. Studies show that wheezing during rhinovirus infection correlates with childhood asthma development. Over 150 non-coding risk variants for asthma have been identified, many affecting gene regulation in T cells, but the effects of most risk variants remain unknown. We hypothesized that airway epithelial cells could also mediate genetic susceptibility to asthma given they are the first line of defense against respiratory viruses and allergens. We integrated genetic data with transcriptomics of airway epithelial cells subject to different stimuli. We demonstrate that rhinovirus infection significantly upregulates childhood-onset asthma-associated genes, particularly in non-ciliated cells. This enrichment is also observed with influenza infection but not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or cytokine activation. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.
Collapse
Affiliation(s)
- Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Licenciatura en Ciencias Genómicas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - George X Huang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Steven Gazal
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - James E Gern
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Jahan E, Mazumder T, Hasan T, Ahmed KS, Amanat M, Hossain H, Supty SJ, Liya IJ, Shuvo MSR, Daula AFMSU. Metabolomic Approach to Identify the Potential Metabolites from Alpinia malaccensis for Treating SARS-CoV-2 Infection. Biochem Genet 2024:10.1007/s10528-024-10869-4. [PMID: 38955878 DOI: 10.1007/s10528-024-10869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.
Collapse
Affiliation(s)
- Esrat Jahan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Tanoy Mazumder
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Tarek Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Muhammed Amanat
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Sumaiya Jannat Supty
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh
| | - Israt Jahan Liya
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh.
| | - A F M Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh.
| |
Collapse
|
7
|
Shin HJ, Lee W, Ku KB, Yoon GY, Moon HW, Kim C, Kim MH, Yi YS, Jun S, Kim BT, Oh JW, Siddiqui A, Kim SJ. SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation. Signal Transduct Target Ther 2024; 9:125. [PMID: 38734691 PMCID: PMC11088672 DOI: 10.1038/s41392-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.
Collapse
Affiliation(s)
- Hye Jin Shin
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Keun Bon Ku
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gun Young Yoon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyun-Woo Moon
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chonsaeng Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Mi-Hwa Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Bum-Tae Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Aleem Siddiqui
- Division of Infectious Diseases, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
8
|
Zhong C, She G, Zhao Y, Liu Y, Li J, Wei X, Chen Z, Zhao K, Zhao Z, Xu Z, Zhang H, Cao Y, Xue C. Swine acute diarrhea syndrome coronavirus Nsp1 suppresses IFN-λ1 production by degrading IRF1 via ubiquitin-proteasome pathway. Vet Res 2024; 55:45. [PMID: 38589958 PMCID: PMC11003034 DOI: 10.1186/s13567-024-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.
Collapse
Affiliation(s)
- Chunhui Zhong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gaoli She
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yukun Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingmin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaona Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zexin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Keyu Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqing Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Sabourirad S, Dimitriadis E, Mantamadiotis T. Viruses exploit growth factor mechanisms to achieve augmented pathogenicity and promote tumorigenesis. Arch Microbiol 2024; 206:193. [PMID: 38526562 PMCID: PMC10963461 DOI: 10.1007/s00203-024-03855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 03/26/2024]
Abstract
Cellular homeostasis is regulated by growth factors (GFs) which orchestrate various cellular processes including proliferation, survival, differentiation, motility, inflammation and angiogenesis. Dysregulation of GFs in microbial infections and malignancies have been reported previously. Viral pathogens exemplify the exploitation of host cell GFs and their signalling pathways contributing to viral entry, virulence, and evasion of anti-viral immune responses. Viruses can also perturb cellular metabolism and the cell cycle by manipulation of GF signaling. In some cases, this disturbance may promote oncogenesis. Viral pathogens can encode viral GF homologues and induce the endogenous biosynthesis of GFs and their corresponding receptors or manipulate their activity to infect the host cells. Close investigation of how viral strategies exploit and regulate GFs, a will shed light on how to improve anti-viral therapy and cancer treatment. In this review, we discuss and provide insights on how various viral pathogens exploit different GFs to promote viral survival and oncogenic transformation, and how this knowledge can be leveraged toward the design of more efficient therapeutics or novel drug delivery systems in the treatment of both viral infections and malignancies.
Collapse
Affiliation(s)
- Sarvenaz Sabourirad
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery RMH, The University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
11
|
Zhou L, Li C, Zhang R, Li Q, Sun Y, Feng Y, Lan T, Ma J. Identification of a receptor tyrosine kinase inhibitor CP-724714 inhibits SADS-CoV related swine diarrhea coronaviruses infection in vitro. Virol Sin 2023; 38:778-786. [PMID: 37406816 PMCID: PMC10590692 DOI: 10.1016/j.virs.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
The outbreak of the COVID-19 epidemic in 2020 has caused unprecedented panic among all mankind, pointing the major importance of effective treatment. Since the emergence of the swine acute diarrhea syndrome coronavirus (SADS-CoV) at the end of 2017, multiple reports have indicated that the bat-related SADS-CoV possesses a potential threat for cross-species transmission. Vaccines and antiviral drugs development deserve more attention. In this study, we found that the HER2 phosphorylation inhibitor (CP-724714) inhibited SADS-CoV infection in a dose-dependent manner. Further validation demonstrated that CP-724714 affected at the post-entry stage of SADS-CoV infection cycle. Also, efficient SADS-CoV infection required the activation of HER2 and its cascade Ras-Raf-Mek-Erk signaling pathway. In addition, CP-724714 has a broad-spectrum anti-swine diarrhea coronaviruses activity, and can dose-dependently combat SADS-CoV, porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) infection in vitro with a specificity index of greater than 21.98, 9.38, 95.23 and 31.62, respectively. These results highlight the potential utility of CP-724714 or antiviral drugs targeting with HER2 and its cascade Ras-Raf-Mek-Erk signaling pathway as host-targeted SADS-CoV and other related coronaviruses therapeutics.
Collapse
Affiliation(s)
- Ling Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Cheng Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ruiyu Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qianniu Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Tian Lan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jingyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Lee S, Kang S, Heo J, Hong Y, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:838-855. [PMID: 37970505 PMCID: PMC10640957 DOI: 10.5187/jast.2022.e127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 11/17/2023]
Abstract
The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.
Collapse
Affiliation(s)
- Sooyeon Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Suyeon Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jubi Heo
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeojin Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Thi Hao Vu
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology,
National Institute of Veterinary Research, Hanoi 100000, Viet
Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology
Laboratory, Agricultural Research Services, United States Department of
Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
13
|
Schrader JA, Burkard TL, Brüggemann Y, Gömer A, Meister TL, Fu RM, Mehnert AK, Dao Thi VL, Behrendt P, Durantel D, Broering R, Vondran FWR, Todt D, Kinast V, Steinmann E. EGF receptor modulates HEV entry in human hepatocytes. Hepatology 2023; 77:2104-2117. [PMID: 36745934 PMCID: PMC10187617 DOI: 10.1097/hep.0000000000000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Being the most common cause of acute viral hepatitis with >20 million cases per year and 70,000 deaths annually, HEV presents a long-neglected and underinvestigated health burden. Although the entry process of viral particles is an attractive target for pharmacological intervention, druggable host factors to restrict HEV entry have not been identified so far. APPROACH AND RESULTS Here we identify the EGF receptor (EGFR) as a novel host factor for HEV and reveal the significance of EGFR for the HEV entry process. By utilizing RNAi, chemical modulation with Food and Drug Administration-approved drugs, and ectopic expression of EGFR, we revealed that EGFR is critical for HEV infection without affecting HEV RNA replication or assembly of progeny virus. We further unveiled that EGFR itself and its ligand-binding domain, rather than its signaling function, is responsible for the proviral effect. Modulation of EGF expression in HepaRG cells and primary human hepatocytes affected HEV infection. CONCLUSIONS Taken together, our study provides novel insights into the life cycle of HEV and identified EGFR as a possible target for future antiviral strategies against HEV.
Collapse
Affiliation(s)
- Jil A. Schrader
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas L. Burkard
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Toni L. Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Rebecca M. Fu
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Ann-Kathrin Mehnert
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Viet L. Dao Thi
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Patrick Behrendt
- TWINCORE Center for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Center for Infection Research (HZI), Institute for Experimental Virology, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover - Braunschweig, Hannover, Germany
| | - David Durantel
- CIRI—International Center for Infectiology Research, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Volker Kinast
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
14
|
Li K, Mei X, Xu K, Jia L, Zhao P, Tian Y, Li J. Comparative study of cigarette smoke, Klebsiella pneumoniae, and their combination on airway epithelial barrier function in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1133-1142. [PMID: 36757011 DOI: 10.1002/tox.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The airway epithelium acts as a physical barrier to protect pulmonary airways against pathogenic microorganisms and toxic substances, such as cigarette smoke (CS), bacteria, and viruses. The disruption of the structural integrity and dysfunction of the airway epithelium is related to the occurrence and progression of chronic obstructive pulmonary disease. PURPOSE The aim of this study is to compare the effects of CS, Klebsiella pneumoniae (KP), and their combination on airway epithelial barrier function. METHODS The mice were exposed to CS, KP, and their combination from 1 to 8 weeks. After the cessation of CS and KP at Week 8, we observed the recovery of epithelial barrier function in mice for an additional 16 weeks. To compare the epithelial barrier function among different groups over time, the mice were sacrificed at Weeks 4, 8, 16, and 24 and then the lungs were harvested to detect the pulmonary pathology, inflammatory cytokines, and tight junction proteins. To determine the underlying mechanisms, the BEAS-2B cells were treated with an epidermal growth factor receptor (EGFR) inhibitor (AG1478). RESULTS The results of this study suggested that the decreased lung function, increased bronchial wall thickness (BWT), elevated inflammatory factors, and reduced tight junction protein levels were observed at Week 8 in CS-induced mice and these changes persisted until Week 16. In the KP group, increased BWT and elevated inflammatory factors were observed only at Week 8, whereas in the CS + KP group, decreased lung function, lung tissue injury, inflammatory cell infiltration, and epithelial barrier impairment were observed at Week 4 and persisted until Week 24. To further determine the mechanisms of CS, bacteria, and their combination on epithelial barrier injury, we investigated the changes of EGFR and its downstream protein in the lung tissues of mice and BEAS-2B cells. Our research indicated that CS, KP, or their combination could activate EGFR, which can phosphorylate and activate ERK1/2, and this effect was more pronounced in the CS + KP group. Furthermore, the EGFR inhibitor AG1478 suppressed the phosphorylation of ERK1/2 and subsequently upregulated the expression of ZO-1 and occludin. In general, these results indicated that the combination of CS and KP caused more severe and enduring damage to epithelial barrier function than CS or KP alone, which might be associated with EGFR/ERK1/2 signaling. CONCLUSION Epithelial barrier injury occurred earlier, was more severe, and had a longer duration when induced by the combination of CS and KP compared with the exposure to CS or KP alone, which might be associated with EGFR/ERK signaling.
Collapse
Affiliation(s)
- Kangchen Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kexin Xu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lidan Jia
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
15
|
Forst CV, Zeng L, Wang Q, Zhou X, Vatansever S, Xu P, Song W, Tu Z, Zhang B. Multiscale network analysis identifies potential receptors for SARS-CoV-2 and reveals their tissue-specific and age-dependent expression. FEBS Lett 2023; 597:1384-1402. [PMID: 36951513 PMCID: PMC10294276 DOI: 10.1002/1873-3468.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected tens of millions of individuals and caused hundreds of thousands of deaths worldwide. Here, we present a comprehensive, multiscale network analysis of the transcriptional response to the virus. In particular, we focused on key regulators, cell receptors, and host processes that were hijacked by the virus for its advantage. ACE2-controlled processes involved CD300e (a TYROBP receptor) as a key regulator and the activation of IL-2 pro-inflammatory cytokine signaling. We further investigated the age dependency of such receptors in different tissues. In summary, this study provides novel insights into the gene regulatory organization during the SARS-CoV-2 infection and the tissue-specific, age-dependent expression of the cell receptors involved in COVID-19.
Collapse
Affiliation(s)
- Christian V. Forst
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Lu Zeng
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qian Wang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Xianxiao Zhou
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Sezen Vatansever
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peng Xu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Won‐Min Song
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Zhidong Tu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
16
|
Martínez-Espinoza I, Guerrero-Plata A. Current Landscape of IFN-λ: Induction, Inhibition, and Potential Clinical Applications to Treat Respiratory Viral Infections. Immunohorizons 2023; 7:265-272. [PMID: 37071039 PMCID: PMC10579847 DOI: 10.4049/immunohorizons.2200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
IFN-λ or type III IFN is an important mediator of antiviral response. Several respiratory viruses induce the production of IFN-λ during their course of infection. However, they have also developed intricate mechanisms to inhibit its expression and activity. Despite a considerable amount of research on the regulatory mechanisms of respiratory viruses on the IFN-λ response, little is still known about the effect of this cytokine on immune cells and the antiviral effects of all IFN-λ isoforms, and a better understanding of the detrimental effects of IFN-λ treatment is required. Here we highlight the relevance of IFN-λ as an antiviral cytokine in the respiratory tract. Data from studies in vitro, ex vivo, experimental animal models, and ongoing clinical trials emphasize the therapeutic opportunity that IFN-λ represents to treat and prevent different types of respiratory viral infections.
Collapse
Affiliation(s)
- Iván Martínez-Espinoza
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
17
|
Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH, Liu FT, Lai MMC, Ling P, Wu CL, Shiau AL. Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 2023; 30:14. [PMID: 36823664 PMCID: PMC9948428 DOI: 10.1186/s12929-023-00901-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the β-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.
Collapse
Affiliation(s)
- Mei-Lin Yang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chung-Teng Wang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Hao-Earn Chong
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Nai-Hui Chung
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chia-Hsing Leu
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Fu-Tong Liu
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Michael M. C. Lai
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pin Ling
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan.
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan. .,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.
| |
Collapse
|
18
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
19
|
Hagihara M, Yamashita M, Ariyoshi T, Eguchi S, Minemura A, Miura D, Higashi S, Oka K, Nonogaki T, Mori T, Iwasaki K, Hirai J, Shibata Y, Umemura T, Kato H, Asai N, Yamagishi Y, Ota A, Takahashi M, Mikamo H. Clostridium butyricum-induced ω-3 fatty acid 18-HEPE elicits anti-influenza virus pneumonia effects through interferon-λ upregulation. Cell Rep 2022; 41:111755. [PMID: 36516771 DOI: 10.1016/j.celrep.2022.111755] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
The precise mechanism by which butyrate-producing bacteria in the gut contribute to resistance to respiratory viral infections remains to be elucidated. Here, we describe a gut-lung axis mechanism and report that orally administered Clostridium butyricum (CB) enhances influenza virus infection resistance through upregulation of interferon (IFN)-λ in lung epithelial cells. Gut microbiome-induced ω-3 fatty acid 18-hydroxy eicosapentaenoic acid (18-HEPE) promotes IFN-λ production through the G protein-coupled receptor (GPR)120 and IFN regulatory factor (IRF)-1/-7 activations. CB promotes 18-HEPE production in the gut and enhances ω-3 fatty acid sensitivity in the lungs by promoting GPR120 expression. This study finds a gut-lung axis mechanism and provides insights into the treatments and prophylaxis for viral respiratory infections.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Shuhei Eguchi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Ayaka Minemura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Seiya Higashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Tsunemasa Nonogaki
- Department of Pharmacy, College of Pharmacy Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kenta Iwasaki
- Departments of Kidney Disease and Transplant Immunology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuichi Shibata
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute 480-1195, Japan
| | - Takumi Umemura
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; Department of Pharmacy, Mie University Hospital, Tsu, Mie, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan
| | - Akinobu Ota
- Departments of Biochemistry, Aichi Medical University, Nagakute 480-1195, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan; R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama 331-0804, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute 480-1195, Japan.
| |
Collapse
|
20
|
Wen B, Qi X, Lv D, Yang L, Tang P, Chang W, Han S, Yu S, Wei S, Xue Q, Wang J. Long noncoding RNA IRF1-AS is associated with peste des petits ruminants infection. Vet Res 2022; 53:89. [PMID: 36307867 PMCID: PMC9617334 DOI: 10.1186/s13567-022-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus (PPRV) infection has rarely been reported so far. Here, we first demonstrated that PPRV infection can induce an obvious innate immune response in caprine endometrial epithelial cells (EECs) at 48 h post-infection (hpi) with an MOI of 3. Subsequently, we determined that PPRV infection is associated with 191 significantly differentially expressed (SDE) lncRNAs, namely, 137 upregulated and 54 downregulated lncRNAs, in caprine EECs compared with mock control cells at 48 hpi by using deep sequencing technology. Importantly, bioinformatics preliminarily analyses revealed that these DE lncRNAs were closely related to the immune response. Furthermore, we identified a system of lncRNAs related to the immune response and focused on the role of lncRNA 10636385 (IRF1-AS) in regulating the innate immune response. Interestingly, we found that IRF1-AS was a potent positive regulator of IFN-β and ISG production, which can significantly inhibit PPRV replication in host cells. In addition, our data revealed that IRF1-AS was positively correlated with its potential target gene, IRF1, which enhanced the activation of IRF3 and the expression of ISGs and interacted with IRF3. This study suggests that IRF1-AS could be a new host factor target for developing antiviral therapies against PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengmeng Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaopeng Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100000, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Network Pharmacology and Molecular Docking Analyses Unveil the Mechanisms of Yiguanjian Decoction against Parkinson’s Disease from Inner/Outer Brain Perspective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4758189. [PMID: 36237735 PMCID: PMC9552692 DOI: 10.1155/2022/4758189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aims to explore the pharmacodynamic mechanism of Yiguanjian (YGJ) decoction against Parkinson's disease (PD) through integrating the central nervous (inner brain) and peripheral system (outer brain) relationship spectrum. Methods The active components of YGJ were achieved from the TCMSP, TCMID, and TCM@Taiwan databases. The blood-brain barrier (BBB) permeability of the active components along with their corresponding targets was evaluated utilizing the existing website, namely, SwissADME and SwissTargetPrediction. The targets of PD were determined through database retrieval. The interaction network was constructed upon the STRING database, followed by the visualization using Cytoscape software. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on potential targets. Finally, the molecular docking approach was employed to assess the binding affinity between key components and key targets. Results Overall, we identified 79 active components, 128 potential targets of YGJ, and 97 potential targets of YGJ-BBB potentially suitable for the treatment of PD. GO and KEGG analyses showed that the YGJ treatment of PD mainly relied on PI3K-Akt pathway while the YGJ-BBB was mostly involved in endocrine resistance. The molecular docking results displayed high affinity between multiple compounds and targets in accordance with previous observations. Conclusions Our study unveiled the potential mechanisms of YGJ against PD from a systemic perspective: (1) for the YGJ, they have potential exerting effects on the peripheral system and inhibiting neuronal apoptosis through regulating the PI3K-Akt pathway; (2) for the YGJ-BBB, they can directly modulate endocrine resistance of the central nervous and holistically enhance body resistance to PD along with YGJ on PI3K-Akt pathway.
Collapse
|
22
|
Harris ZM, Sun Y, Joerns J, Clark B, Hu B, Korde A, Sharma L, Shin HJ, Manning EP, Placek L, Unutmaz D, Stanley G, Chun H, Sauler M, Rajagopalan G, Zhang X, Kang MJ, Koff JL. Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia-Induced Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9518592. [PMID: 36193076 PMCID: PMC9526641 DOI: 10.1155/2022/9518592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
AIMS Studies have linked severe hyperoxia, or prolonged exposure to very high oxygen levels, with worse clinical outcomes. This study investigated the role of epidermal growth factor receptor (EGFR) in hyperoxia-induced lung injury at very high oxygen levels (>95%). RESULTS Effects of severe hyperoxia (100% oxygen) were studied in mice with genetically inhibited EGFR and wild-type littermates. Despite the established role of EGFR in lung repair, EGFR inhibition led to improved survival and reduced acute lung injury, which prompted an investigation into this protective mechanism. Endothelial EGFR genetic knockout did not confer protection. EGFR inhibition led to decreased levels of cleaved caspase-3 and poly (ADP-ribosyl) polymerase (PARP) and decreased terminal dUTP nick end labeling- (TUNEL-) positive staining in alveolar epithelial cells and reduced ERK activation, which suggested reduced apoptosis in vivo. EGFR inhibition decreased hyperoxia (95%)-induced apoptosis and ERK in murine alveolar epithelial cells in vitro, and CRISPR-mediated EGFR deletion reduced hyperoxia-induced apoptosis and ERK in human alveolar epithelial cells in vitro. Innovation. This work defines a protective role of EGFR inhibition to decrease apoptosis in lung injury induced by 100% oxygen. This further characterizes the complex role of EGFR in acute lung injury and outlines a novel hyperoxia-induced cell death pathway that warrants further study. CONCLUSION In conditions of severe hyperoxia (>95% for >24 h), EGFR inhibition led to improved survival, decreased lung injury, and reduced cell death. These findings further elucidate the complex role of EGFR in acute lung injury.
Collapse
Affiliation(s)
- Zachary M Harris
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Ying Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - John Joerns
- Division of Pulmonary and Critical Care; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brian Clark
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Buqu Hu
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Asawari Korde
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyeon Jun Shin
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Gail Stanley
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyung Chun
- Section of Cardiovascular Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Govindarajan Rajagopalan
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| |
Collapse
|
23
|
Meineke R, Stelz S, Busch M, Werlein C, Kühnel M, Jonigk D, Rimmelzwaan GF, Elbahesh H. FDA-Approved Inhibitors of RTK/Raf Signaling Potently Impair Multiple Steps of In Vitro and Ex Vivo Influenza A Virus Infections. Viruses 2022; 14:2058. [PMID: 36146864 PMCID: PMC9504178 DOI: 10.3390/v14092058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Maximilian Busch
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Christopher Werlein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
24
|
Islamie R, Iksen I, Buana BC, Gurning K, Syahputra HD, Winata HS. Construction of network pharmacology-based approach and potential mechanism from major components of Coriander sativum L. against COVID-19. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e84388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Despite the fact that various therapeutic compounds have shown potential prevention or treatment, no specific medicine has been developed for the COVID-19 pandemic. Natural products have recently been suggested as a possible treatment option for COVID-19 prevention and treatment. This study focused on the potential of Coriander sativum L. (CSL) against COVID-19 based on network pharmacology approach. Interested candidates of CSL were identified by searching accessible databases for protein–protein interactions with the COVID-19. An additional GO and KEGG pathway analysis was carried out in order to identify the related mechanism of action. In the end, 51 targets were obtained through network pharmacology analysis with EGFR, AR, JAK2, PARP1, and CTSB become the core target. CSL may have favorable effects on COVID-19 through a number of important pathways, according to GO and KEGG pathway analyses. These findings suggest that CSL may prevent and inhibit the several processes related to COVID-19.
Collapse
|
25
|
Zhang YG, Chen HW, Zhang HX, Wang K, Su J, Chen YR, Wang XR, Fu ZF, Cui M. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection. Front Microbiol 2022; 13:894356. [PMID: 35847084 PMCID: PMC9279666 DOI: 10.3389/fmicb.2022.894356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood–brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- *Correspondence: Min Cui
| |
Collapse
|
26
|
Dependency of EGFR activation in vanadium-based sensitization to oncolytic virotherapy. Mol Ther Oncolytics 2022; 25:146-159. [PMID: 35572196 PMCID: PMC9065483 DOI: 10.1016/j.omto.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is a clinically validated approach to treat cancers such as melanoma; however, tumor resistance to virus makes its efficacy variable. Compounds such as sodium orthovanadate (vanadate) can overcome viral resistance and synergize with RNA-based oncolytic viruses. In this study, we explored the basis of vanadate mode of action and identified key cellular components in vanadate’s oncolytic virus-enhancing mechanism using a high-throughput kinase inhibitor screen. We found that several kinase inhibitors affecting signaling downstream of the epidermal growth factor receptor (EGFR) pathway abrogated the oncolytic virus-enhancing effects of vanadate. EGFR pathway inhibitors such as gefitinib negated vanadate-associated changes in the phosphorylation and localization of STAT1/2 as well as NF-κB signaling. Moreover, gefitinib treatment could abrogate the viral sensitizing response of vanadium compounds in vivo. Together, we demonstrate that EGFR signaling plays an integral role in vanadium viral sensitization and that pharmacological EGFR blockade can counteract vanadium/oncolytic virus combination therapy.
Collapse
|
27
|
Abstract
Viruses are intracellular pathogen that exploit host cellular machinery for their propagation. Extensive research on virus-host interaction have shed light on an alternative antiviral strategy that targets host cell factors. Epidermal growth factor receptor (EGFR) is a versatile signal transducer that is involved in a range of cellular processes. Numerous studies have revealed how viruses exploit the function of EGFR in different stages of viral life cycle. In general, viruses attach onto the host cell surface and interacts with EGFR to facilitate viral entry, viral replication and spread as well as evasion from host immunosurveillance. Moreover, virus-induced activation of EGFR signalling is associated with mucin expression, tissue damage and carcinogenesis that contribute to serious complications. Herein, we review our current understanding of roles of EGFR in viral infection and its potential as therapeutic target in managing viral infection. We also discuss the available EGFR-targeted therapies and their limitations.
Collapse
Affiliation(s)
- Kah Man Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
28
|
AG1478 Elicits a Novel Anti-Influenza Function via an EGFR-Independent, GBF1-Dependent Pathway. Int J Mol Sci 2022; 23:ijms23105557. [PMID: 35628375 PMCID: PMC9145774 DOI: 10.3390/ijms23105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Current options for preventing or treating influenza are still limited, and new treatments for influenza viral infection are urgently needed. In the present study, we serendipitously found that a small-molecule inhibitor (AG1478), previously used for epidermal growth factor receptor (EGFR) inhibition, demonstrated a potent activity against influenza both in vitro and in vivo. Surprisingly, the antiviral effect of AG1478 was not mediated by its EGFR inhibitory activity, as influenza virus was insensitive to EGFR blockade by other EGFR inhibitors or by siRNA knockdown of EGFR. Its antiviral activity was also interferon independent as demonstrated by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout approach. Instead, AG1478 was found to target the Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1)–ADP-ribosylation factor 1 (ARF1) system by reversibly inhibiting GBF1 activity and disrupting its Golgi-cytoplasmic trafficking. Compared to known GBF1 inhibitors, AG1478 demonstrated lower cellular toxicity and better preservation of Golgi structure. Furthermore, GBF1 was found to interact with a specific set of viral proteins including M1, NP, and PA. Additionally, the alternation of GBF1 distribution induced by AG1478 treatment disrupted these interactions. Because targeting host factors, instead of the viral component, imposes a higher barrier for developing resistance, GBF1 modulation may be an effective approach to treat influenza infection.
Collapse
|
29
|
Kountz TS, Biyasheva A, Schleimer RP, Prakriya M. Extracellular Nucleotides and Histamine Suppress TLR3- and RIG-I-Mediated Release of Antiviral IFNs from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2390-2402. [PMID: 35459743 PMCID: PMC9444327 DOI: 10.4049/jimmunol.2101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/03/2022] [Indexed: 05/17/2023]
Abstract
Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
| | - Assel Biyasheva
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
30
|
Singanayagam A, Footitt J, Marczynski M, Radicioni G, Cross MT, Finney LJ, Trujillo-Torralbo MB, Calderazzo M, Zhu J, Aniscenko J, Clarke TB, Molyneaux PL, Bartlett NW, Moffatt MF, Cookson WO, Wedzicha J, Evans CM, Boucher RC, Kesimer M, Lieleg O, Mallia P, Johnston SL. Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. J Clin Invest 2022; 132:e120901. [PMID: 35239513 PMCID: PMC9012283 DOI: 10.1172/jci120901] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The respiratory tract surface is protected from inhaled pathogens by a secreted layer of mucus rich in mucin glycoproteins. Abnormal mucus accumulation is a cardinal feature of chronic respiratory diseases, but the relationship between mucus and pathogens during exacerbations is poorly understood. We identified elevations in airway mucin 5AC (MUC5AC) and MUC5B concentrations during spontaneous and experimentally induced chronic obstructive pulmonary disease (COPD) exacerbations. MUC5AC was more sensitive to changes in expression during exacerbation and was therefore more predictably associated with viral load, inflammation, symptom severity, decrements in lung function, and secondary bacterial infections. MUC5AC was functionally related to inflammation, as Muc5ac-deficient (Muc5ac-/-) mice had attenuated RV-induced (RV-induced) airway inflammation, and exogenous MUC5AC glycoprotein administration augmented inflammatory responses and increased the release of extracellular adenosine triphosphate (ATP) in mice and human airway epithelial cell cultures. Hydrolysis of ATP suppressed MUC5AC augmentation of RV-induced inflammation in mice. Therapeutic suppression of mucin production using an EGFR antagonist ameliorated immunopathology in a mouse COPD exacerbation model. The coordinated virus induction of MUC5AC and MUC5B expression suggests that non-Th2 mechanisms trigger mucin hypersecretion during exacerbations. Our data identified a proinflammatory role for MUC5AC during viral infection and suggest that MUC5AC inhibition may ameliorate COPD exacerbations.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Joseph Footitt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthias Marczynski
- School of Engineering and Design, Department of Materials Engineering and
- Center for Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Giorgia Radicioni
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael T. Cross
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lydia J. Finney
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Maria Calderazzo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jie Zhu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Julia Aniscenko
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas B. Clarke
- Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W. Bartlett
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- College of Health, Medicine and Wellbeing, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - William O. Cookson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jadwiga Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard C. Boucher
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering and
- Center for Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
31
|
Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev 2022; 64:1-6. [PMID: 35090813 DOI: 10.1016/j.cytogfr.2022.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Many studies have been conducted over the last few decades to understand better the functions of IRF3 and IRF7 in antiviral immune responses. However, the precise underlying molecular mechanism of IRF1-mediated immune response remains largely unknown. Recent studies indicate that IRF1 exerts strong antiviral activities against several viral infections through diverse mechanisms, both in IFN-dependent and IFN-independent manners. Nevertheless, the efficacy and kinetics of inducing IFNs and ISGs remain unknown. Here we summarize the recent advances in IRF1 research and highlight its potential roles in initiating IFN immune responses and subsequent IRF1-triggering antiviral responses. Challenges regarding the IFN positive feedback mediated by IRF7 during infection will be discussed; this classical loop may also be mediated in part by IRF1. Therefore, we propose a revised model that may help decipher the functional roles of IRF1 in antiviral immunity.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Oliva AD, Gupta R, Issa K, Abi Hachem R, Jang DW, Wellford SA, Moseman EA, Matsunami H, Goldstein BJ. Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans. J Clin Invest 2022; 132:155506. [PMID: 34990409 PMCID: PMC8843745 DOI: 10.1172/jci155506] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUNDPresbyosmia, or aging-related olfactory loss, occurs in a majority of humans over age 65 years, yet remains poorly understood, with no specific treatment options. The olfactory epithelium (OE) is the peripheral organ for olfaction and is subject to acquired damage, suggesting a likely site of pathology in aging. Adult stem cells reconstitute the neuroepithelium in response to cell loss under normal conditions. In aged OE, patches of respiratory-like metaplasia have been observed histologically, consistent with a failure in normal neuroepithelial homeostasis.MethodsAccordingly, we have focused on identifying cellular and molecular changes in presbyosmic OE. The study combined psychophysical testing with olfactory mucosa biopsy analysis, single-cell RNA-Sequencing (scRNA-Seq), and culture studies.ResultsWe identified evidence for inflammation-associated changes in the OE stem cells of presbyosmic patients. The presbyosmic basal stem cells exhibited increased expression of genes involved in response to cytokines or stress or the regulation of proliferation and differentiation. Using a culture model, we found that cytokine exposure drove increased TP63, a transcription factor acting to prevent OE stem cell differentiation.ConclusionsOur data suggest aging-related inflammatory changes in OE stem cells may contribute to presbyosmia via the disruption of normal epithelial homeostasis. OE stem cells may represent a therapeutic target for restoration of olfaction.FundingNIH grants DC018371, NS121067, DC016224; Office of Physician-Scientist Development, Burroughs-Wellcome Fund Research Fellowship for Medical Students Award, Duke University School of Medicine.
Collapse
Affiliation(s)
- Allison D. Oliva
- Department of Head and Neck Surgery & Communication Sciences and
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences and
| | - Khalil Issa
- Department of Head and Neck Surgery & Communication Sciences and
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences and
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences and
| | | | | | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology,,Duke Institute for Brain Sciences,,Department of Neurobiology, and
| | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences and,Department of Neurobiology, and,Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
33
|
Abstract
The global coronavirus disease-19 (COVID-19) has affected more than 140 million and killed more than 3 million people worldwide as of April 20, 2021. The novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as an etiological agent for COVID-19. Several kinases have been proposed as possible mediators of multiple viral infections, including life-threatening coronaviruses like SARS-CoV-1, Middle East syndrome coronavirus (MERS-CoV), and SARS-CoV-2. Viral infections hijack abundant cell signaling pathways, resulting in drastic phosphorylation rewiring in the host and viral proteins. Some kinases play a significant role throughout the viral infection cycle (entry, replication, assembly, and egress), and several of them are involved in the virus-induced hyperinflammatory response that leads to cytokine storm, acute respiratory distress syndrome (ARDS), organ injury, and death. Here, we highlight kinases that are associated with coronavirus infections and their inhibitors with antiviral and potentially anti-inflammatory, cytokine-suppressive, or antifibrotic activity.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| |
Collapse
|
34
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|
35
|
Abstract
Cellular activities are finely regulated by numerous signaling pathways to support specific functions of complex life processes. Viruses are obligate intracellular parasites. Each step of viral replication is ultimately governed by the interaction of a virus with its host cells. Because of the demands of viral replication, the nutritional needs of virus-infected cells differ from those of uninfected cells. To improve their chances of survival and replication, viruses have evolved to commandeer cellular processes, including cell metabolism, augmenting these processes to support their needs. This article summarizes recent findings regarding virus-induced alterations to major cellular metabolic pathways focusing on how viruses modulate various signaling cascades to induce these changes. We begin with a general introduction describing the role played by signaling pathways in cellular metabolism. We then discuss how different viruses target these signaling pathways to reprogram host metabolism to favor the viral needs. We highlight the gaps in understanding metabolism-related virus-host interactions and discuss how studying these changes will enhance our understanding of fundamental processes involved in metabolic regulation. Finally, we discuss the potential to harness these processes to combat viral diseases, as well as other diseases, including metabolic disorders and cancers.
Collapse
|
36
|
McLean SA, Cullen L, Gardam DJ, Schofield CJ, Laucirica DR, Sutanto EN, Ling KM, Stick SM, Peacock CS, Kicic A, Garratt LW, on behalf of AREST CF, WAERP. Cystic Fibrosis Clinical Isolates of Aspergillus fumigatus Induce Similar Muco-inflammatory Responses in Primary Airway Epithelial Cells. Pathogens 2021; 10:pathogens10081020. [PMID: 34451484 PMCID: PMC8399118 DOI: 10.3390/pathogens10081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus is increasingly associated with lung inflammation and mucus plugging in early cystic fibrosis (CF) disease during which conidia burden is low and strains appear to be highly diverse. It is unknown whether clinical Aspergillus strains vary in their capacity to induce epithelial inflammation and mucus production. We tested the hypothesis that individual colonising strains of Aspergillus fumigatus would induce different responses. Ten paediatric CF Aspergillus isolates were compared along with two systemically invasive clinical isolates and an ATCC reference strain. Isolates were first characterised by ITS gene sequencing and screened for antifungal susceptibility. Three clusters (A-C) of Aspergillus isolates were identified by ITS. Antifungal susceptibility was variable, particularly for itraconazole. Submerged CF and non-CF monolayers as well as differentiated primary airway epithelial cell cultures were incubated with conidia for 24 h to allow germination. None of the clinical isolates were found to significantly differ from one another in either IL-6 or IL-8 release or gene expression of secretory mucins. Clinical Aspergillus isolates appear to be largely homogenous in their mucostimulatory and immunostimulatory capacities and, therefore, only the antifungal resistance characteristics are likely to be clinically important.
Collapse
Affiliation(s)
- Samantha A. McLean
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Leilani Cullen
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Dianne J. Gardam
- PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch 6150, Australia;
| | - Craig J. Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Daniel R. Laucirica
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Erika N. Sutanto
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands 6009, Australia
| | - Christopher S. Peacock
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands 6009, Australia
- Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Australia
| | - Luke W. Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Correspondence:
| | | | | |
Collapse
|
37
|
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021; 7:616. [PMID: 34436155 PMCID: PMC8400165 DOI: 10.3390/jof7080616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19)-associated mucormycosis (CAM) is an emerging threat globally, especially in India. More than 40,000 CAM cases have been reported in India. The emergence of CAM cases in India has been attributed to environmental, host, and iatrogenic factors. Mucorales spore burden has been reported globally; however, their presence is higher in tropical countries such as India, contributing to the emergence of CAM. Before the COVID-19 pandemic, patients with diabetes mellitus, haematological malignancies, solid organ transplants, corticosteroid therapy and neutropenia were more prone to mucormycosis, whereas in COVID-19 patients, virus-induced endothelial dysfunction, hyperglycaemia, and immune dysfunction following corticosteroid use increase the risk of acquiring mucormycosis. The interaction of Mucorales spores with the epithelial cells, followed by endothelial invasion, is a crucial step in the pathogenesis of mucormycosis. Endothelial damage and increased endothelial receptor expression induced by COVID-19 infection may predispose patients to CAM. COVID-19 infection may directly induce hyperglycaemia by damaging beta cells of the pancreas or by corticosteroid therapy, which may contribute to CAM pathogenesis. Iron acquisition from the host, especially in diabetic ketoacidosis (DKA) or deferoxamine therapy, is an important virulence trait of Mucorales. Similarly, the hyperferritinaemia caused by COVID-19 may act as a source of iron for Mucorales growth and invasion. In addition, corticosteroid treatment reduces or abolishes the innate immune functions of phagocytic cells contributing to the pathogenesis of CAM. This review aims to discuss primarily the host and iatrogenic factors shared between COVID-19 and mucormycosis that could explain the emergence of CAM.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Medical Microbiology, Department of Public Health, International Higher School of Medicine, Issyk-Kul Regional Campus, Cholpon-Ata 722125, Kyrgyzstan;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Shivaprakash Mandya Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| |
Collapse
|
38
|
Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat Commun 2021; 12:4303. [PMID: 34262037 PMCID: PMC8280141 DOI: 10.1038/s41467-021-24632-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) are increasingly recognized as critical organelles in signalling events, transient protein sequestration and inter-organelle interactions. However, the role LDs play in antiviral innate immune pathways remains unknown. Here we demonstrate that induction of LDs occurs as early as 2 h post-viral infection, is transient and returns to basal levels by 72 h. This phenomenon occurs following viral infections, both in vitro and in vivo. Virally driven in vitro LD induction is type-I interferon (IFN) independent, and dependent on Epidermal Growth Factor Receptor (EGFR) engagement, offering an alternate mechanism of LD induction in comparison to our traditional understanding of their biogenesis. Additionally, LD induction corresponds with enhanced cellular type-I and -III IFN production in infected cells, with enhanced LD accumulation decreasing viral replication of both Herpes Simplex virus 1 (HSV-1) and Zika virus (ZIKV). Here, we demonstrate, that LDs play vital roles in facilitating the magnitude of the early antiviral immune response specifically through the enhanced modulation of IFN following viral infection, and control of viral replication. By identifying LDs as a critical signalling organelle, this data represents a paradigm shift in our understanding of the molecular mechanisms which coordinate an effective antiviral response.
Collapse
|
39
|
Laanesoo A, Urgard E, Periyasamy K, Laan M, Bochkov YA, Aab A, Magilnick N, Pooga M, Gern JE, Johnston SL, Coquet JM, Boldin MP, Wengel J, Altraja A, Bochenek G, Jakiela B, Rebane A. Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation. Clin Transl Med 2021; 11:e427. [PMID: 34185416 PMCID: PMC8161513 DOI: 10.1002/ctm2.427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Rhinovirus (RV) infections are associated with asthma exacerbations. MicroRNA-146a and microRNA-146b (miR-146a/b) are anti-inflammatory miRNAs that suppress signaling through the nuclear factor kappa B (NF-κB) pathway and inhibit pro-inflammatory chemokine production in primary human bronchial epithelial cells (HBECs). In the current study, we aimed to explore whether miR-146a/b could regulate cellular responses to RVs in HBECs and airways during RV-induced asthma exacerbation. We demonstrated that expression of miR-146a/b and pro-inflammatory chemokines was increased in HBECs and mouse airways during RV infection. However, transfection with cell-penetrating peptide (CPP)-miR-146a nanocomplexes before infection with RV significantly reduced the expression of the pro-inflammatory chemokines CCL5, IL-8 and CXCL1, increased interferon-λ production, and attenuated infection with the green fluorescent protein (GFP)-expressing RV-A16 in HBECs. Concordantly, compared to wild-type (wt) mice, Mir146a/b-/- mice exhibited more severe airway neutrophilia and increased T helper (Th)1 and Th17 cell infiltration in response to RV-A1b infection and a stronger Th17 response with a less prominent Th2 response in house dust mite extract (HDM)-induced allergic airway inflammation and RV-induced exacerbation models. Interestingly, intranasal administration of CPP-miR-146a nanocomplexes reduced HDM-induced allergic airway inflammation without a significant effect on the Th2/Th1/Th17 balance in wild-type mice. In conclusion, the overexpression of miR-146a has a strong anti-inflammatory effect on RV infection in HBECs and a mouse model of allergic airway inflammation, while a lack of miR-146a/b leads to attenuated type 2 cell responses in mouse models of allergic airway inflammation and RV-induced exacerbation of allergic airway inflammation. Furthermore, our data indicate that the application of CPP-miR-146a nanocomplexes has therapeutic potential for targeting airway inflammation.
Collapse
Affiliation(s)
- Anet Laanesoo
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Egon Urgard
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Kapilraj Periyasamy
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Martti Laan
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Yury A. Bochkov
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alar Aab
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - Nathaniel Magilnick
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Margus Pooga
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - James E. Gern
- School of Medicine and Public Health University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sebastian L. Johnston
- National Heart and Lung InstituteImperial College LondonLondonUK
- Imperial College Healthcare NHS TrustLondonUK
| | - Jonathan M. Coquet
- Department of MicrobiologyTumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Mark P. Boldin
- Department of Molecular and Cellular BiologyBeckman Research Institute of City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Jesper Wengel
- Nucleic Acid CenterDepartment of PhysicsChemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Alan Altraja
- Department of Pulmonary MedicineUniversity of TartuTartuEstonia
- Lung Clinic of the Tartu University HospitalTartuEstonia
| | - Grazyna Bochenek
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Bogdan Jakiela
- Department of MedicineJagiellonian University Medical CollegeKrakowPoland
| | - Ana Rebane
- Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| |
Collapse
|
40
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
41
|
Tavassoly O, Del Cid Pellitero E, Larroquette F, Cai E, Thomas RA, Soubannier V, Luo W, Durcan TM, Fon EA. Pharmacological Inhibition of Brain EGFR Activation By a BBB-penetrating Inhibitor, AZD3759, Attenuates α-synuclein Pathology in a Mouse Model of α-Synuclein Propagation. Neurotherapeutics 2021; 18:979-997. [PMID: 33713002 PMCID: PMC8423974 DOI: 10.1007/s13311-021-01017-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Aggregation and deposition of α-synuclein (α-syn) in Lewy bodies within dopamine neurons of substantia nigra (SN) is the pathological hallmark of Parkinson's disease (PD). These toxic α-syn aggregates are believed to propagate from neuron-to-neuron and spread the α-syn pathology throughout the brain beyond dopamine neurons in a prion-like manner. Targeting propagation of such α-syn aggregates is of high interest but requires identifying pathways involving in this process. Evidence from previous Alzheimer's disease reports suggests that EGFR may be involved in the prion-like propagation and seeding of amyloid-β. We show here that EGFR regulates the uptake of exogenous α-syn-PFFs and the levels of endogenous α-syn in cell cultures and a mouse model of α-syn propagation, respectively. Thus, we tested the therapeutic potentials of AZD3759, a highly selective BBB-penetrating EGFR inhibitor, in a preclinical mouse model of α-syn propagation. AZD3759 decreases activated EGFR levels in the brain and reduces phosphorylated α-synuclein (pSyn) pathology in brain sections, including striatum and SN. As AZD3759 is already in the clinic, this paper's results suggest a possible repositioning of AZD3759 as a disease-modifying approach for PD.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Esther Del Cid Pellitero
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Frederique Larroquette
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Eddie Cai
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Vincent Soubannier
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
42
|
Elkoshi Z. The Binary Classification of Protein Kinases. J Inflamm Res 2021; 14:929-947. [PMID: 33776467 PMCID: PMC7988341 DOI: 10.2147/jir.s303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication a binary model for chronic diseases classification has been proposed. According to the model, chronic diseases were classified as “high Treg” or “low Treg” diseases, depending on whether the immune response is anti- or pro-inflammatory and assuming that regulatory T cells are major determinants of the response. It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low Treg”. This paper proposes a molecular cause for this binary response. The mechanism proposed depends on the effect of protein kinases on the immune system. Thus, protein kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive “high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) activity. Analysis of literature data reveals that the two classes of kinases display distinctive properties relating to their interactions with pathogens and environmental factors. Pathogens that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are associated with “high Treg” pathogens while those diseases driven by PIKs are associated with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequencies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corresponding two classes of protein kinase inhibitors are mutually exclusive in terms of their approved therapeutic indications. There is no protein kinase inhibitor that is approved for the treatment of both autoimmune diseases and “high Treg” cancers. Although there are exceptions to the conclusions presented above, these conclusions are supported by the great bulk of published data. It therefore seems that the binary division of protein kinases is a useful tool for elucidating (at the molecular level) many distinctive properties of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
43
|
Protein Tyrosine Phosphatase SHP2 Suppresses Host Innate Immunity against Influenza A Virus by Regulating EGFR-Mediated Signaling. J Virol 2021; 95:JVI.02001-20. [PMID: 33361428 DOI: 10.1128/jvi.02001-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen, causing acute respiratory illnesses in human beings and animals and frequently giving rise to epidemic outbreaks. Evasion by IAV of host immunity facilitates viral replication and spread, which can be initiated through various mechanisms, including epidermal growth factor receptor (EGFR) activation. However, how EGFR mediates the suppression of antiviral systems remains unclear. Here, we examined host innate immune responses and their relevant signaling to EGFR upon IAV infection. IAV was found to induce the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK) at an early stage of infection. Inhibition of EGFR or ERK suppressed the viral replication but increased the expression of type I and type III interferons (IFNs) and interferon-stimulated genes (ISGs), supporting the idea that IAV escapes from antiviral innate immunity by activating EGFR/ERK signaling. Meanwhile, IAV infection also induced the activation of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Pharmacological inhibition or small interfering RNA (siRNA)-based silencing of SHP2 enhanced the IFN-dependent antiviral activity and reduced virion production. Furthermore, knockdown of SHP2 attenuated the EGFR-mediated ERK phosphorylation triggered by viral infection or EGF stimulation. Conversely, ectopic expression of constitutively active SHP2 noticeably promoted ERK activation and viral replication, concomitant with diminished immune function. Altogether, the results indicate that SHP2 is crucial for IAV-induced activation of the EGFR/ERK pathway to suppress host antiviral responses.IMPORTANCE Viral immune evasion is the most important strategy whereby viruses evolve for their survival. This work shows that influenza A virus (IAV) suppressed the antiviral innate immunity through downregulation of IFNs and ISGs by activating EGFR/ERK signaling. Meanwhile, IAV also induced the activation of protein tyrosine phosphatase SHP2, which was found to be responsible for modulating the EGFR-mediated ERK activity and subsequent antiviral effectiveness both in vitro and in vivo The results suggest that SHP2 is a key signal transducer between EGFR and ERK and plays a crucial role in suppressing host innate immunity during IAV infection. The finding enhances our understanding of influenza immune evasion and provides a new therapeutic approach to viral infection.
Collapse
|
44
|
Ehrlich M, Bacharach E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers (Basel) 2021; 13:cancers13050939. [PMID: 33668131 PMCID: PMC7956656 DOI: 10.3390/cancers13050939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) are a promising immunotherapy that specifically target and kill cancer cells and stimulate anti-tumor immunity. While different OVs are endowed with distinct features, which enhance their specificity towards tumor cells; attributes of the cancer cell also critically contribute to this specificity. Such features comprise defects in innate immunity, including antiviral responses, and the metabolic reprogramming of the malignant cell. The tumorigenic features which support OV replication can be intrinsic to the transformation process (e.g., a direct consequence of the activity of a given oncogene), or acquired in the course of tumor immunoediting—the selection process applied by antitumor immunity. Oncogene-induced epigenetic silencing plays an important role in negative regulation of immunostimulatory antiviral responses in the cancer cells. Reversal of such silencing may also provide a strong immunostimulant in the form of viral mimicry by activation of endogenous retroelements. Here we review features of the cancer cell that support viral replication, tumor immunoediting and the connection between oncogenic signaling, DNA methylation and viral oncolysis. As such, this review concentrates on the malignant cell, while detailed description of different OVs can be found in the accompanied reviews of this issue. Abstract Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.
Collapse
|
45
|
IRF1 Promotes the Innate Immune Response to Viral Infection by Enhancing the Activation of IRF3. J Virol 2020; 94:JVI.01231-20. [PMID: 32878885 DOI: 10.1128/jvi.01231-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Innate immunity is an essential way for host cells to resist viral infection through the production of interferons (IFNs) and proinflammatory cytokines. Interferon regulatory factor 3 (IRF3) plays a critical role in the innate immune response to viral infection. However, the role of IRF1 in innate immunity remains largely unknown. In this study, we found that IRF1 is upregulated through the IFN/JAK/STAT signaling pathway upon viral infection. The silencing of IRF1 attenuates the innate immune response to viral infection. IRF1 interacts with IRF3 and augments the activation of IRF3 by blocking the interaction between IRF3 and protein phosphatase 2A (PP2A). The DNA binding domain (DBD) of IRF1 is the key functional domain for its interaction with IRF3. Overall, our study reveals a novel mechanism by which IRF1 promotes the innate immune response to viral infection by enhancing the activation of IRF3, thereby inhibiting viral infection.IMPORTANCE The activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. IRF3 plays a critical role in the innate immune response to RNA viral infection. However, whether IRF1 plays a role in innate immunity is unclear. In this study, we demonstrated that IRF1 promotes the innate immune response to viral infection. IRF1 is induced by viral infection. Notably, IRF1 targets and augments the phosphorylation of IRF3 by blocking the interaction between IRF3 and PP2A, leading to the upregulation of innate immunity. Collectively, the results of our study provide new insight into the regulatory mechanism of IFN signaling and uncover the role of IRF1 in the positive regulation of the innate immune response to viral infection.
Collapse
|
46
|
Li Z, Ma Z, Li Y, Gao S, Xiao S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb Pathog 2020; 149:104553. [PMID: 33011361 PMCID: PMC7527827 DOI: 10.1016/j.micpath.2020.104553] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes an emerging and re-emerging coronavirus disease characterized by vomiting, acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets, leading to huge economic losses in the global swine industry. Vaccination remains the most promising and effective way to prevent and control PEDV. However, effective vaccines for PEDV are still under development. Understanding the genomic structure and function of PEDV and the influence of the viral components on innate immunity is essential for developing effective vaccines. In the current review, we systematically describe the recent developments in vaccine against PEDV and the roles of structural proteins, non-structural proteins and accessory proteins of PEDV in affecting viral virulence and regulating innate immunity, which will provide insight into the rational design of effective and safe vaccines for PEDV or other coronaviruses. Advances in vaccines of PEDV, such as inactivated and attenuated live vaccines, subunit vaccines, and nucleic acid vaccines. The application of reverse genetics in the development of live attenuated PEDV vaccines. The roles of PEDV proteins in affecting viral virulence and regulating innate immunity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
47
|
Klann K, Bojkova D, Tascher G, Ciesek S, Münch C, Cinatl J. Growth Factor Receptor Signaling Inhibition Prevents SARS-CoV-2 Replication. Mol Cell 2020; 80:164-174.e4. [PMID: 32877642 PMCID: PMC7418786 DOI: 10.1016/j.molcel.2020.08.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 08/07/2020] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development. We use a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phosphoproteomics. We identify viral protein phosphorylation and define phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways are activated. Drug-protein network analyses revealed GFR signaling as key pathways targetable by approved drugs. The inhibition of GFR downstream signaling by five compounds prevents SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as a central pathway essential for SARS-CoV-2 replication. It provides novel strategies for COVID-19 treatment.
Collapse
Affiliation(s)
- Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany; German Centre for Infection Research (DZIF), External partner site, Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Frankfurt Cancer Institute and Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Veerati PC, Mitchel JA, Reid AT, Knight DA, Bartlett NW, Park JA, Grainge CL. Airway mechanical compression: its role in asthma pathogenesis and progression. Eur Respir Rev 2020; 29:190123. [PMID: 32759373 PMCID: PMC8008491 DOI: 10.1183/16000617.0123-2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
The lung is a mechanically active organ, but uncontrolled or excessive mechanical forces disrupt normal lung function and can contribute to the development of disease. In asthma, bronchoconstriction leads to airway narrowing and airway wall buckling. A growing body of evidence suggests that pathological mechanical forces induced by airway buckling alone can perpetuate disease processes in asthma. Here, we review the data obtained from a variety of experimental models, including in vitro, ex vivo and in vivo approaches, which have been used to study the impact of mechanical forces in asthma pathogenesis. We review the evidence showing that mechanical compression alters the biological and biophysical properties of the airway epithelium, including activation of the epidermal growth factor receptor pathway, overproduction of asthma-associated mediators, goblet cell hyperplasia, and a phase transition of epithelium from a static jammed phase to a mobile unjammed phase. We also define questions regarding the impact of mechanical forces on the pathology of asthma, with a focus on known triggers of asthma exacerbations such as viral infection.
Collapse
Affiliation(s)
- Punnam Chander Veerati
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Jennifer A Mitchel
- Molecular and Integrative Physiological Sciences Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Reid
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
- Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, Canada
| | - Nathan W Bartlett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chris L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| |
Collapse
|
49
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Niu Y, Fu X, Liu L, Lin Q, Liang H, Huang Z, Li N. Molecular characterization and function of EGFR during viral infectionprocess in Mandarin fishSiniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2020; 102:211-217. [PMID: 32298770 DOI: 10.1016/j.fsi.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase protein and plays a critical role in virus infection by modulating innate immunity. In this study, we cloned and sequenced the EGFR coding sequence of mandarin fish, designed as scEGFR, and explored its characteristics. scEGFR mRNA was widely expressed in the tested tissues of mandarin fish, and the higher mRNA levels were expressed in kidney and spleen. scEGFR expression was up-regulated in spleen and CPB cells at early stage of ISKNV and SCRV infection. Gefitinib (EGFR inhibitor) inhibited ISKNV and SCRV replication, and increased the expression of the interferon-stimulated genes (ISG). However the EGF (EGFR activator) promoted ISKNV and SCRV replication, and decreased the interferon-stimulated genes. Those results indicated that scEGFR and its signaling involved in ISKNV and SCRV infection, and EGFR activation negatively regulated the interferon response, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.
Collapse
Affiliation(s)
- Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Zhibin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China.
| |
Collapse
|