1
|
Jin J, Ma L, Li L, Zhou X, Zhu S, Shen K, Xu Q, Jiang B, Gu Y, Ding Q, Qian H, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency impairs efferocytosis and resolution of acute lung injury. Respir Res 2025; 26:189. [PMID: 40380222 PMCID: PMC12084987 DOI: 10.1186/s12931-025-03241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) are major causes of mortality of critically ill patients. Impaired macrophage-mediated clearance of apoptotic cells (efferocytosis) in ARDS contributes to prolonged inflammation, yet the underlying mechanisms remain unclear. In this study, we investigated the role of geranylgeranyl diphosphate synthase (GGPPS) in efferocytosis during lung injury resolution. We identified dynamic changes in GGPPS expression in lung macrophages and circulating monocytes throughout the progression and resolution phases of acute lung injury (ALI). Myeloid-specific GGPPS knockout mice exhibited prolonged lung inflammation, increased accumulation of apoptotic neutrophils, a higher number of recruited macrophages, and a reduced number of resident macrophages. Notably, recruited macrophages play a dominant role in efferocytosis compared to resident macrophages. GGPPS deficiency suppressed efferocytosis in both macrophage subsets in vivo and in vitro. Mechanistically, GGPPS knockout disrupted AXL signaling in recruited macrophages. Importantly, administration of geranylgeraniol (GGOH) rescued the delayed resolution of lung injury, restored efferocytosis, and increased the suppressed AXL expression in CKO mice. Collectively, this study identifies GGPPS as a key regulator of AXL-mediated efferocytosis in recruited macrophages, highlighting its potential as a therapeutic target to accelerate ARDS resolution.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Wuxi, 214086, China
| | - Lulu Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China
| | - Xinyu Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China
| | - Kaikai Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Qiuli Xu
- Southeast University Medical College, Jinling Hospital, Nanjing, 210000, China
| | - Bei Jiang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, 223000, China
| | - Qianshan Ding
- Nanjing First Hospital, affiliated with Nanjing Medical University, Nanjing, 210006, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, #305, East Zhongshan Road, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Zhang T, Wang Y, Nie X, Chen X, Jin Y, Sun L, Yang R, Wang J, Xu W, Song T, Xie W, Chen X, Li C, Zhou J, Wu S, Li Y, Li T. ENKD1 modulates innate immune responses through enhanced geranylgeranyl pyrophosphate synthase activity. Cell Rep 2025; 44:115397. [PMID: 40048432 DOI: 10.1016/j.celrep.2025.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/22/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Inflammation is a crucial element of immune responses, with pivotal roles in host defenses against pathogens. Comprehensive understanding of the molecular mechanisms underlying inflammation is imperative for developing effective strategies to combat infectious diseases. Here, we conducted a screening analysis and identified enkurin domain-containing protein 1 (ENKD1) as a promising regulator of inflammation. We observed that ENKD1 expression was significantly reduced on activation of multiple Toll-like receptor (TLR) molecules. Deletion of ENKD1 resulted in enhanced innate immune system activation and exacerbation of septic inflammation. Mechanistically, ENKD1 interacted with geranylgeranyl diphosphate synthase 1 (GGPS1) and modulated its enzymatic activity, thereby influencing geranylgeranyl diphosphate production. This interaction ultimately led to Ras-related C3 botulinum toxin substrate 1 (RAC1) inactivation and suppression of pro-inflammatory signaling pathways. Our findings establish ENKD1 as a critical regulator of innate immune cell activation, underscoring its significant role in septic inflammation.
Collapse
Affiliation(s)
- Tianyu Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yixuan Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xiaotong Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xiangrong Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Yueyi Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lulu Sun
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Ruqian Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Jie Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Wenqing Xu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Wei Xie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| | - Tianliang Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
3
|
Qu H, Liu Q, Zheng D, Ni Y, Xiao X. A Comprehensive Bibliometric Analysis of Orchitis Research from 1980 to 2023. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:207-243. [PMID: 40301259 DOI: 10.1007/978-3-031-82990-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Orchitis, an inflammation of the testes, presents significant implications for male fertility and has been a focal area of scientific inquiry over the past four decades. This study employs a comprehensive bibliometric analysis to assess the progression of global research on orchitis from 1980 to 2023. Drawing from a dataset of 1586 publications indexed in the Web of Science Core Collection, we uncover emerging patterns, collaborations, and pivotal works that have shaped the field. The United States, China, and Germany emerge as leading contributors, while the Journal of Urology stands out as a primary publishing avenue. The results highlight the increasing recognition of autoimmune responses, alongside infectious agents, as key contributors to orchitis. Moreover, molecules such as TNF-α, IL-6, and IFN-γ are identified as central to the disease's pathology. The dynamic interplay of testosterone and regulatory T cells is underscored as a determinant of the testicular immune milieu. Notably, disruptions in the blood-testis barrier (BTB) and germ cell apoptosis emerge as pivotal consequences of the condition. This analysis underscores the expansive and multidisciplinary nature of orchitis research, revealing a consistent growth in collaborative endeavors. In summary, our findings catalog the evolution of orchitis research, providing a consolidated perspective on past achievements and signposting future research avenues. Such insights are instrumental for researchers aiming to navigate the complexities of orchitis and its multifaceted impact on male reproductive health.
Collapse
Affiliation(s)
- Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiubei Liu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Piechka A, Sparanese S, Witherspoon L, Hach F, Flannigan R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 2024; 21:67-90. [PMID: 38110528 DOI: 10.1038/s41585-023-00837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10-15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21-46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.
Collapse
Affiliation(s)
- Arina Piechka
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Sydney Sparanese
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Urology, Department of Surgery, University of Ottawa, Ontario, Canada
| | - Faraz Hach
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Yazdanpanah Ghadikolaei P, Ghaleno LR, Vesali S, Janzamin E, Gilani MAS, Sajadi H, Dizaj AVT, Shahverdi A, Drevet JR, Moghadam Masouleh AA. Epidemiology of sperm DNA fragmentation in a retrospective cohort of 1191 men. Andrology 2023; 11:1663-1672. [PMID: 37280171 DOI: 10.1111/andr.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The scientific and clinical communities now recognize that sperm DNA integrity is crucial for successful fertilization, good embryo development, and offspring quality of life. Despite the apparent unanimity, this criterion is rarely evaluated in clinical practice. We evaluated the sperm DNA fragmentation index of nearly 1200 sperm samples and its connections based on the patient's age, body mass index, the season of sperm collection, geographical location, medical history, and addictive behaviors. METHODS A cohort of 1503 patients who were referred to the Royan Institute between July 2018 and March 2020 was examined. Only 1191 patient records with demographic data, complete semen analysis, and DNA fragmentation index measurements were included in the final cohort. Documents were classified, incorporated into statistical models, and analyzed. RESULTS The results confirmed previous findings that the sperm DNA fragmentation index was significantly higher in aging men. The sperm DNA fragmentation index and high DNA stainability levels were significantly higher in spring and summer samples than in those of other seasons. No correlation was found between semen DNA fragmentation index and patient body mass index, although the study cohort was significantly overweight. Contrary to what might be expected, we observed that the sperm DNA fragmentation index was higher in rural than in urban patients. Intriguingly, epileptic patients exhibited significantly higher sperm DNA fragmentation index levels. DISCUSSION AND CONCLUSION Age is the factor that is most strongly associated with sperm DNA fragmentation index levels. Our analysis of 1191 samples indicates that between the ages of 19 and 59, the sperm DNA fragmentation index increases by an average of 2% each year. Intriguingly, from an epidemiological perspective, the warm season (spring/summer) is associated with a higher sperm DNA fragmentation index in the study population, possibly due to the deleterious effect of temperature on sperm quality. Some neurological diseases, such as epilepsy, are associated with decreased sperm DNA integrity. This observation could be related to the iatrogenic effects of associated therapies. In the study cohort, body mass index did not appear to be correlated with the DNA fragmentation index.
Collapse
Affiliation(s)
- Parisa Yazdanpanah Ghadikolaei
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Vesali
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ehsan Janzamin
- SABA Biomedical Science -Based Company, Tehran, Iran
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ahmad Vosough Taghi Dizaj
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Joël R Drevet
- Faculty of Medicine, GReD Institute, Clermont-Ferrand, France
| | - AliReza Alizadeh Moghadam Masouleh
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Zhang JL, Lv M, Yang CF, Zhu YX, Li CJ. Mevalonate pathway and male reproductive aging. Mol Reprod Dev 2023; 90:774-781. [PMID: 37733694 DOI: 10.1002/mrd.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.
Collapse
Affiliation(s)
- Jia-Le Zhang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Lv
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Fan Yang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying-Xi Zhu
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Sang Y, Yang Q, Guo Y, Liu X, Shen D, Jiang C, Wang X, Li K, Wang H, Yang C, Ding L, Sun H, Guo X, Li C. Oocytes orchestrate protein prenylation for mitochondrial function through selective inactivation of cholesterol biosynthesis in murine species. J Biol Chem 2023; 299:105183. [PMID: 37611828 PMCID: PMC10534227 DOI: 10.1016/j.jbc.2023.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging research and clinical evidence suggest that the metabolic activity of oocytes may play a pivotal role in reproductive anomalies. However, the intrinsic mechanisms governing oocyte development regulated by metabolic enzymes remain largely unknown. Our investigation demonstrates that geranylgeranyl diphosphate synthase1 (Ggps1), the crucial enzyme in the mevalonate pathway responsible for synthesizing isoprenoid metabolite geranylgeranyl pyrophosphate from farnesyl pyrophosphate, is essential for oocyte maturation in mice. Our findings reveal that the deletion of Ggps1 that prevents protein prenylation in fully grown oocytes leads to subfertility and offspring metabolic defects without affecting follicle development. Oocytes that lack Ggps1 exhibit disrupted mitochondrial homeostasis and the mitochondrial defects arising from oocytes are inherited by the fetal offspring. Mechanistically, the excessive farnesylation of mitochondrial ribosome protein, Dap3, and decreased levels of small G proteins mediate the mitochondrial dysfunction induced by Ggps1 deficiency. Additionally, a significant reduction in Ggps1 levels in oocytes is accompanied by offspring defects when females are exposed to a high-cholesterol diet. Collectively, this study establishes that mevalonate pathway-protein prenylation is vital for mitochondrial function in oocyte maturation and provides evidence that the disrupted protein prenylation resulting from an imbalance between farnesyl pyrophosphate and geranylgeranyl pyrophosphate is the major mechanism underlying impairment of oocyte quality induced by high cholesterol.
Collapse
Affiliation(s)
- Yongjuan Sang
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qiwen Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Di Shen
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chen Jiang
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Xinying Wang
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Kang Li
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Haiquan Wang
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaofan Yang
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Chaojun Li
- Modern Animal Research Center of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Zhang X, Sai L, Zhang W, Kan X, Jia Q, Bo C, Yin W, Shao H, Han M, Peng C. M 6A transcriptome-wide map of circRNAs identified in the testis of normal and AZ-treated Xenopus laevis. Genes Environ 2023; 45:23. [PMID: 37658417 PMCID: PMC10472591 DOI: 10.1186/s41021-023-00279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Evidence showed that N6-methyladenosine (m6A) is strongly associated with male germline development. However, the role of m6A methylation on circRNAs in amphibians remains unknown. In this study, we conducted m6A sequencing analysis to explore the m6A transcriptome-wide profile of circRNAs in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 µg/L atrazine (AZ). RESULTS The analysis showed that m6A modification of circRNAs enriched in sense overlapping in testes of X. laevis. We identified the differential m6A modification sites within circRNAs in testes of AZ-exposed X. laevis and compared that with animals from control group. The results showed that a total of 1507 methylated m6A sites was induced by AZ (760 up-methylated and 747 down-methylated). The cross-analysis exhibited a negative correlation of differentially methylated m6A peaks and circRNAs expression level. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that 20 key pathways may be involved in the mechanism of testis damage of AZ-exposed X. laevis. CONCLUSIONS These findings indicated that differentially m6A-methylated circRNAs may play important roles in abnormal testis development of AZ-exposed X. laevis. This study is the first report about a map of m6A modification of circRNAs in male X. laevis and provides a basis for further studying on the function and mechanism of m6A methylation of circRNAs in the testis development of amphibian.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Xingzheng Kan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Eusyn Institute of Health Science, Brisbane, QLD, 4102, Australia
| |
Collapse
|
9
|
Yu W, Gao Y, Zhao Z, Long X, Yi Y, Ai S. Fumigaclavine C ameliorates liver steatosis by attenuating hepatic de novo lipogenesis via modulation of the RhoA/ROCK signaling pathway. BMC Complement Med Ther 2023; 23:288. [PMID: 37587459 PMCID: PMC10428638 DOI: 10.1186/s12906-023-04110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has been well defined as a common chronic liver metabolism disorder. Statins as a first-line therapeutic treatment had some side effects. Here, we found that Fumigaclavine C (FC) was collected from endophytic Aspergillus terreus via the root of Rhizophora stylosa (Rhizophoraceae), had potential anti-adipogenic and hepatoprotective effects both in vitro and in vivo without obvious adverse side effects. However, the mechanisms of the prevention and management of FC for hepatic steatosis are incompletely delineated. METHODS The pharmacodynamic effects of FC were measured in high-fat diet (HFD)-induced obese mice. Liver index and blood biochemical were examined. Histopathological examination in the liver was performed by hematoxylin & eosin or oil red O. The levels of serum TG, TC, LDL-c, HDL-c, FFA, T-bili, ALT, AST, creatinine, and creatine kinase were estimated via diagnostic assay kits. The levels of hepatic lipid metabolism-related genes were detected via qRT-PCR. The expression levels of hepatic de novo lipogenesis were quantitated with Western blot analysis. RESULTS: FC-treatment markedly reduced hepatic lipid accumulation in HFD-induced obese mice. FC significantly attenuated the hepatic lipid metabolism and ameliorated liver injury without obvious adverse side effects. Moreover, FC also could dose-dependently modulate the expressions of lipid metabolism-related transcription genes. Mechanically, FC notably suppressed sterol response element binding protein-1c mediated de novo lipogenesis via interfering with the RhoA/ROCK signaling pathway by decreasing the levels of geranylgeranyl diphosphate and farnesyl diphosphate. CONCLUSIONS These findings suggested that FC could improve hepatic steatosis through inhibiting de novo lipogenesis via modulating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Wanguo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
| | - Yaxin Gao
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Zaoya Zhao
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Xiufeng Long
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Yi Yi
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Shuo Ai
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
| |
Collapse
|
10
|
Zhou W, Liu H, Yuan Z, Zundell J, Towers M, Lin J, Lombardi S, Nie H, Murphy B, Yang T, Wang C, Liao L, Goldman AR, Kannan T, Kossenkov AV, Drapkin R, Montaner LJ, Claiborne DT, Zhang N, Wu S, Zhang R. Targeting the mevalonate pathway suppresses ARID1A-inactivated cancers by promoting pyroptosis. Cancer Cell 2023; 41:740-756.e10. [PMID: 36963401 PMCID: PMC10085864 DOI: 10.1016/j.ccell.2023.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
ARID1A, encoding a subunit of the SWI/SNF complex, is mutated in ∼50% of clear cell ovarian carcinoma (OCCC) cases. Here we show that inhibition of the mevalonate pathway synergizes with immune checkpoint blockade (ICB) by driving inflammasome-regulated immunomodulating pyroptosis in ARID1A-inactivated OCCCs. SWI/SNF inactivation downregulates the rate-limiting enzymes in the mevalonate pathway such as HMGCR and HMGCS1, which creates a dependence on the residual activity of the pathway in ARID1A-inactivated cells. Inhibitors of the mevalonate pathway such as simvastatin suppresses the growth of ARID1A mutant, but not wild-type, OCCCs. In addition, simvastatin synergizes with anti-PD-L1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation and in a humanized immunocompetent ARID1A mutant patient-derived OCCC mouse model. Our data indicate that inhibition of the mevalonate pathway simultaneously suppresses tumor cell growth and boosts antitumor immunity by promoting pyroptosis, which synergizes with ICB in suppressing ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Zhe Yuan
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Joseph Zundell
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Martina Towers
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Simona Lombardi
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Hao Nie
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Tyler Yang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Chen Wang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Liping Liao
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Toshitha Kannan
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis J Montaner
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Daniel T Claiborne
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Shuai Wu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
11
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
12
|
Sun H, Yang Z, Teng Z, Zhang Y, Han Z, Xu C, Wang Z, Wang H, Wen H, Chen X, Qu C, Wang Y. DDX58 expression promotes inflammation and growth arrest in Sertoli cells by stabilizing p65 mRNA in patients with Sertoli cell-only syndrome. Front Immunol 2023; 14:1135753. [PMID: 37033952 PMCID: PMC10073560 DOI: 10.3389/fimmu.2023.1135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Sertoli cell -only syndrome (SCOS) is a type of testicular pathological failure that causes male infertility and no effective treatment strategy, is available for this condition. Moreover, the molecular mechanism underlying its development remains unknown. We identified DExD/H-Box helicase 58 (DDX58) as a key gene in SCOS based on four datasets of testicular tissue samples obtained from the Gene Expression Synthesis database. DDX58 was significantly upregulated in SCOS testicular Sertoli cells. Moreover, high expression of DDX58 was positively correlated with the expression of several testicular inflammatory factors, such as IL -1β, IL-18, and IL-6. Interestingly, DDX58 could be induced in the D-galactose (D-gal)-stimulated TM4 cell injury model. Whereas silencing of DDX58 inhibited D-gal -mediated p65 expression, inflammatory cytokine release, and growth arrest. Mechanistically, we found that DDX58 acts as an RNA-binding protein, which enhances p65 expression by promoting mRNA stability. Furthermore, p65 gene silencing decreased the expression of inflammatory cytokines and inhibition of cell growth in D-gal-induced cells. In conclusion, our findings demonstrate that DDX58 promotes inflammatory responses and growth arrest in SCOS Sertoli cells by stabilizing p65 mRNA. Accordingly, the DDX58/p65 regulatory axis might be a therapeutic target for SCOS.
Collapse
Affiliation(s)
- Hao Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhuang Wen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Chen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changbao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| |
Collapse
|
13
|
Keivan M, Mansouri Torghabeh F, Davoodi S, Moradi Maryamneghari S, Dadfar R. Single intratesticular injection of blood-serum-derived exosomes can potentially alleviate testopathy following testicular torsion. Animal Model Exp Med 2022; 5:362-368. [PMID: 35593125 PMCID: PMC9434569 DOI: 10.1002/ame2.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/10/2022] [Indexed: 12/21/2022] Open
Abstract
Background Testicular torsion (TT) is an acute inflammatory process leading to male infertility. Today, anti‐inflammatory effects of exosomes derived from blood serum are used in various laboratory procedures. In the present study, the anti‐inflammatory effects of blood‐serum‐derived exosomes in treatment of acute inflammation following TT in mice were evaluated. Materials and Methods Eighteen male mice were grouped as healthy control, TT, and TT + exosome. TT was induced surgically, and exosomes were extracted from blood serum and administrated by a single intratesticular injection (10 IU). Malondialdehyde (MDA) and Griess assays were used to evaluate the level of oxidative stress. Sperm indices, testosterone (Tes), and apoptotic gene expression (p‐53, Bcl2, and Caspase‐3) were also assessed. H&E and immunohistochemistry (IHC) stainings were used for histopathological investigations. Data analysis was applied by SPSS (v.19) software. Results Oxidative stress and apoptotic genes expression were increased significantly (p < 0.05) in TT group compared with control. Sperm parameters and Tes were significantly increased, and expression of apoptotic genes was significantly reduced in TT + exosome group (p < 0.05). Conclusion Since the blood‐serum‐derived exosomes have anti‐inflammatory features, the intratesticular application of blood‐serum‐derived exosomes can be used clinically in acute phase of orchitis following TT to inhibit testicular inflammation.
Collapse
Affiliation(s)
- Mona Keivan
- Member of Research Committee, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
| | | | - Samira Davoodi
- Department of Anatomical Sciences, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
| | - Shima Moradi Maryamneghari
- Department of Anatomical Sciences, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
| | - Reza Dadfar
- Department of Anatomical Sciences, Faculty of MedicineAJA University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Wang Z, Chen M, Pan X, Wang L, Yin C, Lin Q, Jiang J, Zhang Y, Wan B. Knockout of GGPPS1 restrains rab37-mediated autophagy in response to ventilator-induced lung injury. Hum Cell 2022; 35:871-884. [PMID: 35334098 PMCID: PMC8948466 DOI: 10.1007/s13577-022-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022]
Abstract
Mechanical ventilation may cause ventilator-induced lung injury (VILI) in patients requiring ventilator support. Inhibition of autophagy is an important approach to ameliorate VILI as it always enhances lung injury after exposure to various stress agents. This study aimed to further reveal the potential mechanisms underlying the effects of geranylgeranyl diphosphate synthase large subunit 1 (GGPPS1) knockout and autophagy in VILI using C57BL/6 mice with lung-specific GGPPS1 knockout that were subjected to mechanical ventilation. The results demonstrate that GGPPS1 knockout mice exhibit significantly attenuated VILI based on the histologic score, the lung wet-to-dry ratio, total protein levels, neutrophils in bronchoalveolar lavage fluid, and reduced levels of inflammatory cytokines. Importantly, the expression levels of autophagy markers were obviously decreased in GGPPS1 knockout mice compared with wild-type mice. The inhibitory effects of GGPPS1 knockout on autophagy were further confirmed by measuring the ultrastructural change of lung tissues under transmission electron microscopy. In addition, knockdown of GGPPS1 in RAW264.7 cells reduced cyclic stretch-induced inflammation and autophagy. The benefits of GGPPS1 knockout for VILI can be partially eliminated through treatment with rapamycin. Further analysis revealed that Rab37 was significantly downregulated in GGPPS1 knockout mice after mechanical ventilation, while it was highly expressed in the control group. Simultaneously, Rab37 overexpression significantly enhances autophagy in cells that are treated with cyclin stretch, including GGPPS1 knockout cells. Collectively, our results indicate that GGPPS1 knockout results in reduced expression of Rab37 proteins, further restraining autophagy and VILI.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Meizi Chen
- Department of General Internal Medicine, The First Hospital of Chenzhou, Chenzhou, 423000, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Cheng Yin
- Department of Clinical Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Jingjing Jiang
- Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
15
|
Faridi R, Rea A, Fenollar-Ferrer C, O'Keefe RT, Gu S, Munir Z, Khan AA, Riazuddin S, Hoa M, Naz S, Newman WG, Friedman TB. New insights into Perrault syndrome, a clinically and genetically heterogeneous disorder. Hum Genet 2022; 141:805-819. [PMID: 34338890 PMCID: PMC11330641 DOI: 10.1007/s00439-021-02319-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023]
Abstract
Hearing loss and impaired fertility are common human disorders each with multiple genetic causes. Sometimes deafness and impaired fertility, which are the hallmarks of Perrault syndrome, co-occur in a person. Perrault syndrome is inherited as an autosomal recessive disorder characterized by bilateral mild to severe childhood sensorineural hearing loss with variable age of onset in both sexes and ovarian dysfunction in females who have a 46, XX karyotype. Since the initial clinical description of Perrault syndrome 70 years ago, the phenotype of some subjects may additionally involve developmental delay, intellectual deficit and other neurological disabilities, which can vary in severity in part dependent upon the genetic variants and the gene involved. Here, we review the molecular genetics and clinical phenotype of Perrault syndrome and focus on supporting evidence for the eight genes (CLPP, ERAL1, GGPS1, HARS2, HSD17B4, LARS2, RMND1, TWNK) associated with Perrault syndrome. Variants of these eight genes only account for approximately half of the individuals with clinical features of Perrault syndrome where the molecular genetic base remains under investigation. Additional environmental etiologies and novel Perrault disease-associated genes remain to be identified to account for unresolved cases. We also report a new genetic variant of CLPP, computational structural insight about CLPP and single cell RNAseq data for eight reported Perrault syndrome genes suggesting a common cellular pathophysiology for this disorder. Some unanswered questions are raised to kindle future research about Perrault syndrome.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alessandro Rea
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Raymond T O'Keefe
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zunaira Munir
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
- present address: Department of Neurosciences, University of Turin, 10124, Turin, Italy
| | - Asma Ali Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 54000, Pakistan
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Center, Jinnah Burn and Reconstructive Surgery Center, University of Health Sciences, Lahore, 54550, Pakistan
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | - William G Newman
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
WANG T, ZHANG D, SONG T, SUN M, ZHANG J. Advances in research of TGF-Β1 in human testis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tingting WANG
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, China
| | - Dan ZHANG
- Zunyi Medical University Library, China
| | - Tao SONG
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, China
| | - Mengdi SUN
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, China
| | | |
Collapse
|
17
|
Zhu T, Chen X, Qiu H, Liu Y, Mwangi J, Zhao L, Ding W, Lai R, Jin L. Aspirin Alleviates Particulate Matter Induced Asymptomatic Orchitis of Mice via Suppression of cGAS-STING Signaling. Front Immunol 2021; 12:734546. [PMID: 34925318 PMCID: PMC8673441 DOI: 10.3389/fimmu.2021.734546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
As an important source of air pollutant, airborne particulate matter (PM) has become a major threat to public health. Orchitis is characterized by acute or chronic testicular inflammation and is a primary cause of male infertility. Although accumulating evidence indicates that PM exposure is associated with increased male infertility rates, the mechanism by which PM is involved is not well understood. Here, we found that short-term PM exposure activated NF-κB signaling in mouse Leydig cells and testes and leading to asymptomatic orchitis. Analyzing the mitochondrial abundance and cGAMP levels in PM exposed mouse Leydig cells, we found that PM exposure induced mitochondrial injury and mtDNA release, leading to inflammation via the cGAS-STING axis. We also found that aspirin-induced acetylation of cGAS inhibited the inflammation in mice after PM exposure, especially in the testes. Moreover, aspirin pretreatment rescued offspring growth in PM-exposed mice. In summary, our study not only provides evidence that PM-induced asymptomatic orchitis in mice may be amenable to aspirin pre-treatment by acetylating cGAS, but also provides a potential explanation for male infertility caused by air pollutants.
Collapse
Affiliation(s)
- Tengyu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Huan Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ling Zhao
- Experimental Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjun Ding
- Laboratory of Environment and Health, University of Chinese Academy of Sciences, Beijing, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Kunming institute of zoology-the Chinese university of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
18
|
Zhao Y, Zheng H, Yang S, Zhang X, Dong W, Shi Y, Li Y, Feng J. Catechin regulates miR-182/GGPPS1 signaling pathway and inhibits LPS-induced acute lung injury in mice. Immunopharmacol Immunotoxicol 2021; 44:58-66. [PMID: 34845949 DOI: 10.1080/08923973.2021.2002890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM Acute lung injury (ALI) and resultant acute respiratory distress syndrome (ARDS) are detrimental inflammatory disease associated with high rates of morbidity and mortality due to a lack of effective treatment options. Previous study has demonstrated that an inhibition of geranylgeranyl pyrophosphate synthase large subunit 1 (GGPPS1) show a protective effect against ALI. METHOD In this study, by using connective map (CMAP), we identified catechin as a potential drug to exhibit similar effects to inhibit GGPPS1. Furthermore, we detected the protective effect of catechin on lipopolysaccharide (LPS)-induced ALI and delineated the underlying mechanism. RESULTS We found that catechin effectively ameliorated LPS-induced lung inflammation and alleviated the release of cytokines into alveolar space. Notably, miR-182/GGPPS1 signaling pathway was reactivated upon catechin administration, which was essential for the catechin-induced protective effect against ALI. CONCLUSION catechin regulates miR-182/GGPPS1 signaling pathway and efficaciously ameliorates LPS-induced acute lung injury in mice model, which provided a promising therapeutic strategy in ALI and ARDS.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Hao Zheng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nankai University, Tianjin, China
| | - Shengnan Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Xiaoqing Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nankai University, Tianjin, China
| | - Weigang Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yu Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuechuan Li
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Wang X, Zhang X, Chen Y, Zhao C, Zhou W, Chen W, Zhang C, Ding K, Li W, Xu H, Lou L, Chu Z, Hu S, Yang J. Cardiac-specific deletion of FDPS induces cardiac remodeling and dysfunction by enhancing the activity of small GTP-binding proteins. J Pathol 2021; 255:438-450. [PMID: 34467534 DOI: 10.1002/path.5789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
The mevalonate pathway is essential for cholesterol biosynthesis. Previous studies have suggested that the key enzyme in this pathway, farnesyl diphosphate synthase (FDPS), regulates the cardiovascular system. We used human samples and mice that were deficient in cardiac FDPS (c-Fdps-/- mice) to investigate the role of FDPS in cardiac homeostasis. Cardiac function was assessed using echocardiography. Left ventricles were examined and tested for histological and molecular markers of cardiac remodeling. Our results showed that FDPS levels were downregulated in samples from patients with cardiomyopathy. Furthermore, c-Fdps-/- mice exhibited cardiac remodeling and dysfunction. This dysfunction was associated with abnormal activation of Ras and Rheb, which may be due to the accumulation of geranyl pyrophosphate. Activation of Ras and Rheb stimulated downstream mTOR and ERK pathways. Moreover, administration of farnesyltransferase inhibitors attenuated cardiac remodeling and dysfunction in c-Fdps-/- mice. These results indicate that FDPS plays an important role in cardiac homeostasis. Deletion of FDPS stimulates the downstream mTOR and ERK signaling pathways, resulting in cardiac remodeling and dysfunction. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yuxiao Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chenze Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, PR China
| | - Weier Zhou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wanwan Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Kejun Ding
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Lian Lou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhenliang Chu
- Department of Cardiology, The Second Hospital of Jiaxing, Jiaxing, PR China
| | - ShenJiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
20
|
Chong D, Chen Z, Guan S, Zhang T, Xu N, Zhao Y, Li C. Geranylgeranyl pyrophosphate-mediated protein geranylgeranylation regulates endothelial cell proliferation and apoptosis during vasculogenesis in mouse embryo. J Genet Genomics 2021; 48:300-311. [PMID: 34049800 DOI: 10.1016/j.jgg.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022]
Abstract
Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate (GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase (GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of RhoA and enhanced yes-associated protein (YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol (GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.
Collapse
Affiliation(s)
- Danyang Chong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Zhong Chen
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Shan Guan
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Na Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China
| | - Yue Zhao
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China.
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing 210093, China.
| |
Collapse
|
21
|
Xu J, He L, Zhang Y, Hu Z, Su Y, Fang Y, Peng M, Fan Z, Liu C, Zhao K, Zhang H. Severe Acute Respiratory Syndrome Coronavirus 2 and Male Reproduction: Relationship, Explanations, and Clinical Remedies. Front Physiol 2021; 12:651408. [PMID: 33935803 PMCID: PMC8079781 DOI: 10.3389/fphys.2021.651408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-2019) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic and worldwide public health emergency, having drawn a lot of attention around the world. The pathogenesis of COVID-19 is characterized by infecting angiotensin-converting enzyme 2 (ACE2)-expressing cells, including testis-specific cells, namely, Leydig, Sertoli, and spermatogenic cells, which are closely related to male reproduction. This leads to aberrant hyperactivation of the immune system generating damage to the infected organs. An impairment in testicular function through uncontrolled immune responses alerts more attention to male infertility. Meanwhile, the recent clinical data indicate that the infection of the human testis with SARS-CoV-2 may impair male germ cell development, leading to germ cell loss and higher immune cell infiltration. In this review, we investigated the evidence of male reproductive dysfunction associated with the infection with SARS-CoV-2 and its possible immunological explanations and clinical remedies.
Collapse
Affiliation(s)
- Jia Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting He
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Su
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Peng
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wu H, Wang F, Tang D, Han D. Mumps Orchitis: Clinical Aspects and Mechanisms. Front Immunol 2021; 12:582946. [PMID: 33815357 PMCID: PMC8013702 DOI: 10.3389/fimmu.2021.582946] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
The causative agent of mumps is a single-stranded, non-segmented, negative sense RNA virus belonging to the Paramyxoviridae family. Besides the classic symptom of painfully swollen parotid salivary glands (parotitis) in mumps virus (MuV)-infected men, orchitis is the most common form of extra-salivary gland inflammation. Mumps orchitis frequently occurs in young adult men, and leads to pain and swelling of the testis. The administration of MuV vaccines in children has been proven highly effective in reducing the incidence of mumps. However, a recent global outbreak of mumps and the high rate of orchitis have recently been considered as threats to male fertility. The pathogenesis of mumps orchitis remains largely unclear due to lack of systematic clinical data analysis and animal models studies. The alarming increase in the incidence of mumps orchitis and the high risk of the male fertility have thus become a major health concern. Recent studies have revealed the mechanisms by which MuV-host cells interact and MuV infection induces inflammatory responses in testicular cells. In this mini-review, we highlight advances in our knowledge of the clinical aspects and possible mechanisms of mumps orchitis.
Collapse
Affiliation(s)
- Han Wu
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Jin J, Qian H, Wan B, Zhou L, Chen C, Lv Y, Chen M, Zhu S, Ye L, Wang X, Xu W, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency hyperactivates macrophages and aggravates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1011-L1024. [PMID: 33729030 DOI: 10.1152/ajplung.00281.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage activation is a key contributing factor for excessive inflammatory responses of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Geranylgeranyl diphosphate synthase (GGPPS) plays a key role in the development of inflammatory diseases. Our group previously showed that GGPPS in alveolar epithelium have deleterious effects on acute lung injury induced by LPS or mechanical ventilation. Herein, we examined the role of GGPPS in modulating macrophage activation in ALI/ARDS. We found significant increased GGPPS expression in alveolar macrophages in patients with ARDS compared with healthy volunteers and in ALI mice induced by LPS. GGPPS-floxed control (GGPPSfl/fl) and myeloid-selective knockout (GGPPSfl/flLysMcre) mice were then generated. Interestingly, using an LPS-induced ALI mouse model, we showed that myeloid-specific GGPPS knockout significantly increased mortality, aggravated lung injury, and increased the accumulation of inflammatory cells, total protein, and inflammatory cytokines in BALF. In vitro, GGPPS deficiency upregulated the production of LPS-induced IL-6, IL-1β, and TNF-α in alveolar macrophages, bone marrow-derived macrophages (BMDMs), and THP-1 cells. Mechanistically, GGPPS knockout increased phosphorylation and nuclear translocation of NF-κB p65 induced by LPS. In addition, GGPPS deficiency increased the level of GTP-Rac1, which was responsible for NF-κB activation. In conclusion, decreased expression of GGPPS in macrophages aggravates lung injury and inflammation in ARDS, at least partly by regulating Rac1-dependent NF-κB signaling. GGPPS in macrophages may represent a novel therapeutic target in ARDS.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China.,Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yanling Lv
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meizi Chen
- Department of General Internal Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wang
- Department of Intensive Care Unit, Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| |
Collapse
|
24
|
Sang YJ, Wang Q, Zheng F, Hua Y, Wang XY, Zhang JZ, Li K, Wang HQ, Zhao Y, Zhu MS, Sun HX, Li CJ. Ggps1 deficiency in the uterus results in dystocia by disrupting uterine contraction. J Mol Cell Biol 2020; 13:116-127. [PMID: 33340314 PMCID: PMC8104943 DOI: 10.1093/jmcb/mjaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022] Open
Abstract
Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.
Collapse
Affiliation(s)
- Yong-Juan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Qiang Wang
- Department of Neurosurgery, Jingling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Feng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Xin-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Jing-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Kang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Quan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Xiang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Li M, Jin R, Qi Y, Zhou H, Zhu T, Liu L, Gu Y, Luan K, Luo X, Zhang S. Cholesterol partially rescues the inhibition effect of pravastatin on keratinocytes proliferation by regulating cell cycle relative proteins through AKT and ERK pathway. Dermatol Ther 2020; 33:e14305. [PMID: 32926496 DOI: 10.1111/dth.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022]
Abstract
Mevalonate pathway plays a key role in skin physiological process in human. Recently, it has been reported that mutation of some genes in the mevalonate pathway cause disseminated superficial actinic porokeratosis (DSAP). But the pathogenesis is still unknown. Pravastatin (PRA), one of HMG-CoA reductase (HMGCR) inhibitors, has been found to inhibit cells proliferation, including keratinocytes (KCs). In this study, we use PRA to block the mevalonate pathway in KCs with or without the down-stream intermediate products replenishment. The results demonstrated that PRA strongly inhibited proliferation of KCs and caused the G0 /G1 arrest. When some down-stream intermediate products were added, only cholesterol (CH) could partially rescue the inhibition effect of PRA on KCs proliferation, but not other products, such as mevalonic acid, farnesyl pyrophosphate or geranylgeranyl pyrophosphate. Mechanistic analysis revealed that PRA down-regulated expression of cyclin B1, but up-regulated cyclin E and p21 expression. And PRA increased the phosphorylation level of Protein Kinase B (AKT) but decreased the phosphorylation level of Extracellular Signal Regulated Kinase (ERK1/2). CH could attenuate the elevated cyclin E and activated AKT induced by PRA. These results indicated that CH could rescue the proliferation inhibition of KCs caused by PRA, which laid a foundation for elucidating the pathogenesis of DSAP clearly.
Collapse
Affiliation(s)
- Mingcong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yinliang Qi
- General Department of Hyperbaric Oxygen, Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tingting Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yanan Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Kang Luan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
26
|
Schmidt JK, Mean KD, Puntney RC, Alexander ES, Sullivan R, Simmons HA, Zeng X, Weiler AM, Friedrich TC, Golos TG. Zika virus in rhesus macaque semen and reproductive tract tissues: a pilot study of acute infection†. Biol Reprod 2020; 103:1030-1042. [PMID: 32761051 DOI: 10.1093/biolre/ioaa137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/09/2019] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Although sexual transmission of Zika virus (ZIKV) is well-documented, the viral reservoir(s) in the male reproductive tract remains uncertain in humans and immune-intact animal models. We evaluated the presence of ZIKV in a rhesus macaque pilot study to determine persistence in semen, assess the impact of infection on sperm functional characteristics, and define the viral reservoir in the male reproductive tract. Five adult male rhesus monkeys were inoculated with 105 PFU of Asian-lineage ZIKV isolate PRVABC59, and two males were inoculated with the same dose of African-lineage ZIKV DAKAR41524. Viremia and viral RNA (vRNA) shedding in semen were monitored, and a cohort of animals were necropsied for tissue collection to assess tissue vRNA burden and histopathology. All animals exhibited viremia for limited periods (1-11 days); duration of shedding did not differ significantly between viral isolates. There were sporadic low levels of vRNA in the semen from some, but not all animals. Viral RNA levels in reproductive tract tissues were also modest and present in the epididymis in three of five cases, one case in the vas deferens, but not detected in testis, seminal vesicles or prostate. ZIKV infection did not impact semen motility parameters as assessed by computer-assisted sperm analysis. Despite some evidence of prolonged ZIKV RNA shedding in human semen and high tropism of ZIKV for male reproductive tract tissues in mice deficient in Type 1 interferon signaling, in the rhesus macaques assessed in this pilot study, we did not consistently find ZIKV RNA in the male reproductive tract.
Collapse
Affiliation(s)
- Jenna K Schmidt
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Riley C Puntney
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, Madison, WI, USA.,Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, Madison, WI, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Foley AR, Zou Y, Dunford JE, Rooney J, Chandra G, Xiong H, Straub V, Voit T, Romero N, Donkervoort S, Hu Y, Markello T, Horn A, Qebibo L, Dastgir J, Meilleur KG, Finkel RS, Fan Y, Mamchaoui K, Duguez S, Nelson I, Laporte J, Santi M, Malfatti E, Maisonobe T, Touraine P, Hirano M, Hughes I, Bushby K, Oppermann U, Böhm J, Jaiswal JK, Stojkovic T, Bönnemann CG. GGPS1 Mutations Cause Muscular Dystrophy/Hearing Loss/Ovarian Insufficiency Syndrome. Ann Neurol 2020; 88:332-347. [PMID: 32403198 PMCID: PMC7496979 DOI: 10.1002/ana.25772] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.
Collapse
Affiliation(s)
- A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - James E. Dunford
- Botnar Research Centre, National Institute for Health Research Biomedical Research Centre OxfordUniversity of OxfordOxfordUnited Kingdom
| | - Jachinta Rooney
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Goutam Chandra
- Children's National Health SystemCenter for Genetic Medicine ResearchWashingtonDistrict of ColumbiaUSA
| | - Hui Xiong
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Volker Straub
- Institute of Genetic MedicineInternational Centre for LifeNewcastle upon TyneUnited Kingdom
| | - Thomas Voit
- Great Ormond Street Hospital Biomedical Research CentreGreat Ormond Street Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Norma Romero
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
- Neuromuscular Morphology UnitInstitute of Myology, Pitié‐Salpêtrière HospitalParisFrance
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Thomas Markello
- National Institutes of Health Undiagnosed Diseases ProgramNational Human Genome Research InstituteBethesdaMarylandUSA
| | - Adam Horn
- Children's National Health SystemCenter for Genetic Medicine ResearchWashingtonDistrict of ColumbiaUSA
| | - Leila Qebibo
- Unit of Medical Genetics and OncogeneticsUniversity HospitalFesMorocco
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- Department of Pediatric NeurologyGoryeb Children's HospitalMorristownNew JerseyUSA
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- BiogenCambridgeMassachusettsUSA
| | - Richard S. Finkel
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Translational Neuroscience ProgramSt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Yanbin Fan
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Kamel Mamchaoui
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
| | - Stephanie Duguez
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
- School of Biomedical SciencesUlster UniversityDerryUnited Kingdom
| | - Isabelle Nelson
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
| | - Jocelyn Laporte
- Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104University of StrasbourgIllkirchFrance
| | - Mariarita Santi
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Edoardo Malfatti
- National Institute of Health and Medical Research U974, Sorbonne UniversityInstitute of Myology, APHPParisFrance
- U1179 University of Versailles Saint‐Quentin‐en‐Yvelines‐National Institute of Health and Medical ResearchParis‐Saclay UniversityVersaillesFrance
- Neurology Department, Reference Center for Neuromuscular Diseases North/East/Ile de FranceRaymond‐Poincaré University HospitalGarchesFrance
| | - Thierry Maisonobe
- Department of Clinical NeurophysiologyPitié‐Salpêtrière HospitalParisFrance
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Faculty of Medicine, Sorbonne University, Pitié‐Salpêtrière Hospital, APHPReference Center for Rare Endocrine Diseases of Growth and Development and Reference Center for Rare Gynecologic DisordersParisFrance
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center Columbia University Medical CenterNew YorkNew YorkUSA
| | - Imelda Hughes
- Department of Paediatric NeurologyRoyal Manchester Children's HospitalManchesterUnited Kingdom
| | - Kate Bushby
- Institute of Genetic MedicineInternational Centre for LifeNewcastle upon TyneUnited Kingdom
| | - Udo Oppermann
- Botnar Research Centre, National Institute for Health Research Biomedical Research Centre OxfordUniversity of OxfordOxfordUnited Kingdom
- Structural Genomics ConsortiumUniversity of OxfordOxfordUnited Kingdom
- Freiburg Institute of Advanced StudiesUniversity of FreiburgFreiburgGermany
| | - Johann Böhm
- Institute of Genetics and Molecular and Cellular Biology, National Institute of Health and Medical Research U1258, National Center for Scientific Research UMR7104University of StrasbourgIllkirchFrance
| | - Jyoti K. Jaiswal
- Children's National Health SystemCenter for Genetic Medicine ResearchWashingtonDistrict of ColumbiaUSA
- Department of Genomics and Precision MedicineGeorge Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Tanya Stojkovic
- Faculty of Medicine, Sorbonne University, Pitié‐Salpêtrière Hospital, APHPReference Center for Neuromuscular Diseases North/East/Ile de FranceParisFrance
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
28
|
Chen M, Wan B, Zhu S, Zhang F, Jin J, Li X, Wang X, Lv Y, Chen C, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency aggravates lung fibrosis in mice by modulating TGF-β1/BMP-4 signaling. Biol Chem 2020; 400:1617-1627. [PMID: 31120854 DOI: 10.1515/hsz-2019-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/12/2019] [Indexed: 02/06/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGPPS) is an enzyme that catalyzes the synthesis of geranylgeranyl pyrophosphate (GGPP). GGPPS is implicated in many disorders, but its role in idiopathic pulmonary fibrosis (IPF) remains unclear. This study aimed to investigate the role of GGPPS in IPF. We established bleomycin-induced lung injury in a lung-specific GGPPS-deficient mouse (GGPPS-/-) and detected GGPPS expression in lung tissues by Western blot and immunohistochemistry analysis. We found that GGPPS expression increased during lung injury and fibrosis in mice induced by bleomycin, and GGPPS deficiency augmented lung fibrosis. GGPPS deficiency activated lung fibroblast by facilitating transforming growth factor β1 while antagonizing bone morphogenetic protein 4 signaling. Notably, the supplementation of exogenous GGPP mitigated lung fibrosis in GGPPS-/- mice induced by bleomycin. In conclusion, our findings suggest that GGPPS provides protection against pulmonary fibrosis and that the restoration of protein geranylgeranylation may benefit statin-induced lung injury.
Collapse
Affiliation(s)
- Meizi Chen
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China.,Department of General Internal Medicine, The First People's Hospital of Chenzhou, Chenzhou 423000, Hunan, P.R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Suhua Zhu
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Fang Zhang
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Jiajia Jin
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Xinying Li
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Xianghai Wang
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Yanling Lv
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Cen Chen
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), Nanjing 210002, P.R. China
| | - Yong Song
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University (Guangzhou), 305 Zhongshan Road, Nanjing 210002, P.R. China
| |
Collapse
|
29
|
Zhao Y, Wu TY, Zhao MF, Li CJ. The balance of protein farnesylation and geranylgeranylation during the progression of nonalcoholic fatty liver disease. J Biol Chem 2020; 295:5152-5162. [PMID: 32139507 DOI: 10.1074/jbc.rev119.008897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein prenylation is an essential posttranslational modification and includes protein farnesylation and geranylgeranylation using farnesyl diphosphate or geranylgeranyl diphosphate as substrates, respectively. Geranylgeranyl diphosphate synthase is a branch point enzyme in the mevalonate pathway that affects the ratio of farnesyl diphosphate to geranylgeranyl diphosphate. Abnormal geranylgeranyl diphosphate synthase expression and activity can therefore disrupt the balance of farnesylation and geranylgeranylation and alter the ratio between farnesylated and geranylgeranylated proteins. This change is associated with the progression of nonalcoholic fatty liver disease (NAFLD), a condition characterized by hepatic fat overload. Of note, differential accumulation of farnesylated and geranylgeranylated proteins has been associated with differential stages of NAFLD and NAFLD-associated liver fibrosis. In this review, we summarize key aspects of protein prenylation as well as advances that have uncovered the regulation of associated metabolic patterns and signaling pathways, such as Ras GTPase signaling, involved in NAFLD progression. Additionally, we discuss unique opportunities for targeting prenylation in NAFLD/hepatocellular carcinoma with agents such as statins and bisphosphonates to improve clinical outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| | - Tian-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Meng-Fei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China .,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Zhao Y, Zhao MF, Jiang S, Wu J, Liu J, Yuan XW, Shen D, Zhang JZ, Zhou N, He J, Fang L, Sun XT, Xue B, Li CJ. Liver governs adipose remodelling via extracellular vesicles in response to lipid overload. Nat Commun 2020; 11:719. [PMID: 32024826 PMCID: PMC7002740 DOI: 10.1038/s41467-020-14450-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Lipid overload results in lipid redistribution among metabolic organs such as liver, adipose, and muscle; therefore, the interplay between liver and other organs is important to maintain lipid homeostasis. Here, we show that liver responds to lipid overload first and sends hepatocyte-derived extracellular vesicles (EVs) targeting adipocytes to regulate adipogenesis and lipogenesis. Geranylgeranyl diphosphate synthase (Ggpps) expression in liver is enhanced by lipid overload and regulates EV secretion through Rab27A geranylgeranylation. Consistently, liver-specific Ggpps deficient mice have reduced fat adipose deposition. The levels of several EV-derived miRNAs in the plasma of non-alcoholic fatty liver disease (NAFLD) patients are positively correlated with body mass index (BMI), and these miRNAs enhance adipocyte lipid accumulation. Thus, we highlight an inter-organ mechanism whereby the liver senses different metabolic states and sends corresponding signals to remodel adipose tissue to adapt to metabolic changes in response to lipid overload.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China
| | - Meng-Fei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
| | - Shan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
| | - Jing Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
| | - Xian-Wen Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China
| | - Di Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
| | - Jing-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China
| | - Nan Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China
| | - Jian He
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China.
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China.
| | - Xi-Tai Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & Model Animal Research Center, Nanjing University, Nanjing, 210093, China.
- MOE Key Laboratory of Model Animals for Disease Study, Department of Hepatobiliary Surgery & Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
31
|
Jia WJ, Tang QL, Jiang S, Sun SQ, Xue B, Qiu YD, Li CJ, Mao L. Conditional loss of geranylgeranyl diphosphate synthase alleviates acute obstructive cholestatic liver injury by regulating hepatic bile acid metabolism. FEBS J 2020; 287:3328-3345. [PMID: 31905247 DOI: 10.1111/febs.15204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/31/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have suggested that metabolites in the mevalonate pathway are involved in hepatic bile acid metabolism, yet the details of this relationship remain unknown. In this study, we found that the hepatic farnesyl pyrophosphate (FPP) level and the ratio of FPP to geranylgeranyl pyrophosphate (GGPP) were increased in mice with acute obstructive cholestasis compared with mice that underwent a sham operation. In addition, the livers of the mice with acute obstructive cholestasis showed lower expression of geranylgeranyl diphosphate synthase (GGPPS), which synthesizes GGPP from FPP. When Ggps1 was conditionally deleted in the liver, amelioration of liver injury, as shown by downregulation of the hepatic inflammatory response and decreased hepatocellular apoptosis, was found after ligation of the common bile duct and cholecystectomy (BDLC). Subsequently, liquid chromatography/mass spectrometry analysis showed that knocking out Ggps1 decreased the levels of hepatic bile acids, including hydrophobic bile acids. Mechanistically, the disruption of Ggps1 increased the levels of hepatic FPP and its metabolite farnesol, thereby resulting in farnesoid X receptor (FXR) activation, which modulated hepatic bile acid metabolism and reduced hepatic bile acids. It was consistently indicated that digeranyl bisphosphonate, a specific inhibitor of GGPPS, and GW4064, an agonist of FXR, could also alleviate acute obstructive cholestatic liver injury in vivo. In general, GGPPS is critical for modulating acute obstructive cholestatic liver injury, and the inhibition of GGPPS ameliorates acute obstructive cholestatic liver injury by decreasing hepatic bile acids, which is possibly achieved through the activation of FXR-induced bile acid metabolism.
Collapse
Affiliation(s)
- Wen-Jun Jia
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China.,Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| | - Qiao-Li Tang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China
| | - Shan Jiang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China
| | - Shi-Quan Sun
- Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu-Dong Qiu
- Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, China
| | - Liang Mao
- Department of General Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, China
| |
Collapse
|
32
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
The alteration of RhoA geranylgeranylation and Ras farnesylation breaks the integrity of the blood-testis barrier and results in hypospermatogenesis. Cell Death Dis 2019; 10:450. [PMID: 31171774 PMCID: PMC6554403 DOI: 10.1038/s41419-019-1688-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Non-obstructive azoospermia (NOA) severely affects male infertility, however, the deep mechanisms of this disease are rarely interpreted. In this study, we find that undifferentiated spermatogonial stem cells (SSCs) still exist in the basal compartment of the seminiferous tubules and the blood–testis barrier (BTB) formed by the interaction of neighbor Sertoli cells (SCs) is incomplete in NOA patients with spermatogenic maturation arrest. The adhesions between SCs and germ cells (GCs) are also broken in NOA patients. Meanwhile, the expression level of geranylgeranyl diphosphate synthase (Ggpps), a key enzyme in mevalonate metabolic pathway, is lower in NOA patients than that in obstructive azoospermia (OA) patients. After Ggpps deletion specifically in SCs, the mice are infertile and the phenotype of the SC-Ggpps−/− mice is similar to the NOA patients, where the BTB and the SC–GC adhesions are severely destroyed. Although SSCs are still found in the basal compartment of the seminiferous tubules, fewer mature spermatocyte and spermatid are found in SC-Ggpps−/− mice. Further examination suggests that the defect is mediated by the aberrant protein isoprenylation of RhoA and Ras family after Ggpps deletion. The exciting finding is that when the knockout mice are injected with berberine, the abnormal cell adhesions are ameliorated and spermatogenesis is partially restored. Our data suggest that the reconstruction of disrupted BTB is an effective treatment strategy for NOA patients with spermatogenic maturation arrest and hypospermatogenesis.
Collapse
|
34
|
Lai SS, Fu X, Cheng Q, Yu ZH, Jiang EZ, Zhao DD, Yu DC, Qiu YD, Gao X, Ju HX, Wang W, Jiang Q, Zhu MS, Li CJ, Xue B. HSC-specific knockdown of GGPPS alleviated CCl 4-induced chronic liver fibrosis through mediating RhoA/Rock pathway. Am J Transl Res 2019; 11:2382-2392. [PMID: 31105844 PMCID: PMC6511779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Hepatic stellate cells (HSCs) play a critical role in the pathogenesis and reversal of liver fibrosis. Targeting HSCs is of great significance in the treatment of hepatic fibrosis, and has attracted wide attention of scholars. Here we demonstrated that expression of geranylgeranyldiphosphate synthase (GGPPS) predominantly increased in HSCs in murine fibrotic liver. HSC-specific knockdown of GGPPS using vitamin A-coupled liposome carrying siRNA-ggpps decreased activation of HSCs and alleviated fiber accumulation in vivo. Furthermore, our in vitro studies showed that GGPPS was up-regulated during HSCs activation in TGF-β1-dependent manner. Inhibition of GGPPS suppressed TGF-β1 induced F-actin reorganization and HSCs activation in LX-2 cells. Further, we found that GGPPS regulated HSCs activation and liver fibrosis possibly by enhancing RhoA/Rock kinase signaling. So its concluded that GGPPS promotes liver fibrosis by activating HSCs, which may represent a potential target for anti-fibrosis therapies.
Collapse
Affiliation(s)
- Shan-Shan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210023, China
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Xiao Fu
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing 210093, China
| | - Qi Cheng
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Zi-Han Yu
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - En-Ze Jiang
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Dan-Dan Zhao
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - De-Cai Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing 210093, China
| | - Yu-Dong Qiu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing 210093, China
| | - Xiang Gao
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing UniversityNanjing 210093, China
| | - Huang-Xian Ju
- MOE Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing UniversityNanjing 210093, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing UniversityNanjing 210093, China
| | - Min-Sheng Zhu
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing UniversityNanjing 210093, China
| | - Chao-Jun Li
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211166, China
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing 210009, China
| |
Collapse
|
35
|
Xu WJ, Wang XX, Jin JJ, Zou Q, Wu L, Lv TF, Wan B, Zhan P, Zhu SH, Liu HB, Zhao NW, Li CJ, Song Y. Inhibition of GGPPS1 attenuated LPS-induced acute lung injury and was associated with NLRP3 inflammasome suppression. Am J Physiol Lung Cell Mol Physiol 2019; 316:L567-L577. [PMID: 30652497 DOI: 10.1152/ajplung.00190.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inhibition of the mevalonate pathway using statins has been shown to be beneficial in the treatment of acute lung injury (ALI). Here, we investigated whether partial inhibition of this pathway by targeting geranylgeranyl pyrophosphate synthase large subunit 1 (GGPPS1), a catalase downstream of the mevalonate pathway, was effective at treating lung inflammation in ALI. Lipopolysaccharide (LPS) was intratracheally instilled to induce ALI in lung-specific GGPPS1-knockout and wild-type mice. Expression of GGPPS1 in lung tissues and alveolar epithelial cells was examined. The severity of lung injury and inflammation was determined in lung-specific GGPPS1 knockout and wild-type mice by measuring alveolar exudate, neutrophil infiltration, lung injury, and cell death. Change in global gene expression in response to GGPPS1 depletion was measured using mRNA microarray and verified in vivo and in vitro. We found that GGPPS1 levels increased significantly in lung tissues and alveolar epithelial cells in LPS-induced ALI mice. Compared with wild-type and simvastatin treated mice, the specific deletion of pulmonary GGPPS1 attenuated the severity of lung injury by inhibiting apoptosis of AECs. Furthermore, deletion of GGPPS1 inhibited LPS-induced inflammasome activation, in terms of IL-1β release and pyroptosis, by downregulating NLRP3 expression. Finally, downregulation of GGPPS1 reduced the membrane expression of Ras-related protein Rab10 and Toll-like receptor 4 (TLR4) and inhibited the phosphonation of IκB. This effect might be attributed to the downregulation of GGPP levels. Our results suggested that inhibition of pulmonary GGPPS1 attenuated LPS-induced ALI predominantly by suppressing the NLRP3 inflammasome through Rab10-mediated TLR4 replenishment.
Collapse
Affiliation(s)
- Wu-jian Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Xiao-xia Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Intensive Care Unit, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jia-jia Jin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Qian Zou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Lin Wu
- Department of Gastrointestinal Disease, Jinling Hospital, Nanjing, China
| | - Tang-feng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Bing Wan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Su-hua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Hong-bing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Ning-wei Zhao
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Chao-jun Li
- Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| |
Collapse
|
36
|
Wei Y, Gao Q, Niu P, Xu K, Qiu Y, Hu Y, Liu S, Zhang X, Yu M, Liu Z, Wang B, Mu Y, Li K. Integrative Proteomic and Phosphoproteomic Profiling of Testis from Wip1 Phosphatase-Knockout Mice: Insights into Mechanisms of Reduced Fertility. Mol Cell Proteomics 2019; 18:216-230. [PMID: 30361445 PMCID: PMC6356077 DOI: 10.1074/mcp.ra117.000479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
Mice lacking wild-type p53-induced phosphatase 1 (Wip1) display male reproductive defects including smaller testes, subfertility and spermatogenesis defects at the round- and elongating-spermatid stages. However, the molecular mechanisms underlying these abnormalities remain unclear. Here we examined the proteome and phosphoproteome of testes from Wip1-knockout mice using a quantitative proteomic approach. From a total of 6872 proteins and 4280 phosphorylation sites identified, 58 proteins and 159 phosphorylation sites were found to be differentially regulated compared with wild type mice. Pathway enrichment analyses revealed that these regulated proteins and phosphosites were mainly involved in adherens/tight junctions, apoptosis, inflammatory response, spermatogenesis, sperm motility, and cytoskeletal assembly and depolymerization. Wip1-knockout mice showed decreased expression of junction-associated proteins (occludin, ZO-1, and N-cadherin) and impaired integrity of the blood-testis barrier. In addition, Wip1 deficiency was associated with elevated levels of cytokines and germ cell apoptosis in the testis. These results suggest that proinflammatory cytokines may impair the blood-testis barrier dynamics by decreasing the expression of junction-associated proteins, which could lead to subfertility and spermatogenesis defects. Collectively, these findings help to explain the low reproductive function caused by Wip1 deletion and provide novel insights into our understanding of causes of male infertility.
Collapse
Affiliation(s)
- Yinghui Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qian Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengxia Niu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiqing Qiu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanqing Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shasha Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miaoying Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bingyuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
37
|
Liu J, Jiang S, Zhao Y, Sun Q, Zhang J, Shen D, Wu J, Shen N, Fu X, Sun X, Yu D, Chen J, He J, Shi T, Ding Y, Fang L, Xue B, Li C. Geranylgeranyl diphosphate synthase (GGPPS) regulates non-alcoholic fatty liver disease (NAFLD)-fibrosis progression by determining hepatic glucose/fatty acid preference under high-fat diet conditions. J Pathol 2018; 246:277-288. [PMID: 29971772 DOI: 10.1002/path.5131] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023]
Abstract
Patients with obesity have a high prevalence of non-alcoholic fatty liver disease (NAFLD) and, in parallel, increased susceptibility to fibrosis/cirrhosis/hepatocellular carcinoma (HCC). Herein, we report that a high-fat diet (HFD) can augment glycolysis and then accelerate NAFLD-fibrosis progression by downregulating the expression of geranylgeranyl diphosphate synthase (GGPPS), which is a critical enzyme in the mevalonate pathway. Long-term HFD overloading decreases GGPPS expression in mice, which shifts the fuel preference from fatty acids towards glucose. Liver-specific Ggpps deficiency drives the Warburg effect by impairing mitochondrial function, and then induces hepatic inflammation, thus exacerbating fibrosis. Ggpps deficiency also enhances the hyperfarnesylation of liver kinase B1, and promotes metabolic reprogramming by regulating 5'-AMP-activated protein kinase activity. Clinical data further imply that GGPPS expression can predict the stage of NAFLD and recurrence of NAFLD-associated HCC. We conclude that the level of GGPPS is a susceptibility factor for NAFLD-fibrosis progression, and requires more stringent surveillance to ensure early prediction and precision of treatment of NAFLD-related HCC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jia Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, PR China
| | - Shan Jiang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, PR China
| | - Yue Zhao
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Qian Sun
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
| | - Jingzi Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, PR China
| | - Di Shen
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
| | - Ning Shen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, PR China
| | - Xiao Fu
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
| | - Xitai Sun
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, PR China
| | - Decai Yu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, PR China
| | - Jun Chen
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, PR China
| | - Jian He
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, PR China
| | - Tingting Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, PR China
| | - Yitao Ding
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, PR China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Bin Xue
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Chaojun Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| |
Collapse
|
38
|
Wang X, Xu W, Zhan P, Xu T, Jin J, Miu Y, Zhou Z, Zhu Q, Wan B, Xi G, Ye L, Liu Y, Gao J, Li H, Lv T, Song Y. Overexpression of geranylgeranyl diphosphate synthase contributes to tumour metastasis and correlates with poor prognosis of lung adenocarcinoma. J Cell Mol Med 2018; 22:2177-2189. [PMID: 29377583 PMCID: PMC5867137 DOI: 10.1111/jcmm.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the biological role of geranylgeranyl diphosphate synthase (GGPPS) in the progression of lung adenocarcinoma. GGPPS expression was detected in lung adenocarcinoma tissues by qRT‐PCR, tissue microarray (TMA) and western blotting. The relationships between GGPPS expression and the clinicopathological characteristics and prognosis of lung adenocarcinoma patients were assessed. GGPPS was down‐regulated in SPCA‐1, PC9 and A549 cells using siRNA and up‐regulated in A549 cells using an adenoviral vector. The biological roles of GGPPS in cell proliferation, apoptosis, migration and invasion were determined by MTT and colony formation assays, flow cytometry, and transwell and wound‐healing assays, respectively. In addition, the regulatory roles of GGPPS on the expression of several epithelial‐mesenchymal transition (EMT) markers were determined. Furthermore, the Rac1/Cdc42 prenylation was detected after knockdown of GGPPS in SPCA‐1 and PC9 cells. GGPPS expression was significantly increased in lung adenocarcinoma tissues compared to that in adjacent normal tissues. Overexpression of GGPPS was correlated with large tumours, high TNM stage, lymph node metastasis and poor prognosis in patients. Knockdown of GGPPS inhibited the migration and invasion of lung adenocarcinoma cells, but did not affect cell proliferation and apoptosis. Meanwhile, GGPPS inhibition significantly increased the expression of E‐cadherin and reduced the expression of N‐cadherin and vimentin in lung adenocarcinoma cells. In addition, the Rac1/Cdc42 geranylgeranylation was reduced by GGPPS knockdown. Overexpression of GGPPS correlates with poor prognosis of lung adenocarcinoma and contributes to metastasis through regulating EMT.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Intensive Care Unit, Inner Mongolia People's Hospital, Hohhot, China
| | - Wujian Xu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tianxiang Xu
- Center of Tumor, Inner Mongolia People's Hospital, Hohhot, China
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yingying Miu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zejun Zhou
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Guangmin Xi
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yafang Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Jianwei Gao
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Huijuan Li
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
39
|
Saraf AJ, Nahata L. Fertility counseling and preservation: considerations for the pediatric endocrinologist. Transl Pediatr 2017; 6:313-322. [PMID: 29184812 PMCID: PMC5682384 DOI: 10.21037/tp.2017.07.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infertility is a distressing consequence of numerous pediatric medical conditions and treatments. The field of pediatric fertility preservation has expanded rapidly over the past decade, and clinical guidelines emphasize the importance of discussing infertility risk and fertility preservation options with patients and families in a timely manner. Understanding the various mechanisms and presentations of fertility issues across diagnoses is imperative to provide counseling to patients and families, and identify individuals who may benefit from fertility preservation. The goals of this manuscript are to outline current fertility preservation options in pediatrics, review populations at-risk for infertility that are seen in pediatric endocrinology, and discuss other important issues related to fertility preservation including ethical considerations.
Collapse
Affiliation(s)
- Amanda J Saraf
- Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Leena Nahata
- Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, USA.,Center for Biobehavioral Health, the Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
40
|
Tang Q, Jiang S, Jia W, Shen D, Qiu Y, Zhao Y, Xue B, Li C. Zoledronic acid, an FPPS inhibitor, ameliorates liver steatosis through inhibiting hepatic de novo lipogenesis. Eur J Pharmacol 2017; 814:169-177. [PMID: 28843826 DOI: 10.1016/j.ejphar.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
Currently, there is no standard therapy for non-alcoholic fatty liver disease (NAFLD), and statins have been developed as a first-line pharmaceutical therapeutic option for NAFLD-associated dyslipidemia. However, prolonged statins therapy has side effects, as statins inhibit HMG-CoA reductase, an enzyme at the very beginning of the mevalonate pathway. Here, we found that zoledronic acid (ZA), an inhibitor of farnesyl diphosphate synthase in the downstream mevalonate pathway, could attenuate hepatic lipid accumulation and improve liver injury in both high-fat diet-induced C57BL/6J mice and ob/ob mice. Moreover, the hepatic lipid metabolism was largely inhibited after ZA administration in high-fat diet-induced obese mice. Mechanically, ZA inhibited SREBP-1c-mediated de novo lipogenesis through suppressing RhoA activation via decreasing farnesyl diphosphate and geranylgeranyl diphosphate levels. In conclusion, our data provide a novel application of ZA in improving hepatic steatosis.
Collapse
Affiliation(s)
- Qiaoli Tang
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China
| | - Shan Jiang
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and Nanjing University, Nanjing 210093, People's Republic of China
| | - Wenjun Jia
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China; Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Di Shen
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Yue Zhao
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China.
| | - Bin Xue
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China.
| | - Chaojun Li
- School of Medicine of Nanjing University, Nanjing 210093, People's Republic of China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center and Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
41
|
Zengel J, Phan SI, Pickar A, Xu P, He B. Immunogenicity of mumps virus vaccine candidates matching circulating genotypes in the United States and China. Vaccine 2017; 35:3988-3994. [PMID: 28623030 PMCID: PMC5785236 DOI: 10.1016/j.vaccine.2017.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Mumps virus (MuV) causes acute infection in humans with characteristic swelling of the parotid gland. While vaccination has greatly reduced the incidence of MuV infection, there have been multiple large outbreaks of mumps virus (MuV) in highly vaccinated populations. The most common vaccine strain, Jeryl Lynn, belongs to genotype A, which is no longer a circulating genotype. We have developed two vaccine candidates that match the circulating genotypes in the United States (genotype G) and China (genotype F). We found that there was a significant decrease in the ability of the Jeryl Lynn vaccine to produce neutralizing antibody responses to non-matched viruses, when compared to either of our vaccine candidates. Our data suggests that an updated vaccine may allow for better immunity against the circulating MuV genotypes G and F.
Collapse
Affiliation(s)
- James Zengel
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Shannon I Phan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Adrian Pickar
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States; Marjorie B. Kovler Viral Oncology Labs, The University of Chicago, Chicago, IL 60637, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.
| |
Collapse
|
42
|
Brioschi M, Martinez Fernandez A, Banfi C. Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential. Expert Rev Proteomics 2017; 14:515-528. [PMID: 28521569 DOI: 10.1080/14789450.2017.1332998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Protein prenylation is a ubiquitous covalent post-translational modification characterized by the addition of farnesyl or geranylgeranyl isoprenoid groups to a cysteine residue located near the carboxyl terminal of a protein. It is essential for the proper localization and cellular activity of numerous proteins, including Ras family GTPases and G-proteins. In addition to its roles in cellular physiology, the prenylation process has important implications in human diseases and in the recent years, it has become attractive target of inhibitors with therapeutic potential. Areas covered: This review attempts to summarize the basic aspects of prenylation integrating them with biological functions in diseases and giving an account of the current status of prenylation inhibitors as potential therapeutics. We also summarize the methodologies for the characterization of this modification. Expert commentary: The growing body of evidence suggesting an important role of prenylation in diseases and the subsequent development of inhibitors of the enzymes responsible for this modification lead to the urgent need to identify the full spectrum of prenylated proteins that are altered in the disease or affected by drugs. Proteomic tools to analyze prenylated proteins are recently emerging, thanks to the advancement in the field of mass spectrometry coupled to enrichment strategies.
Collapse
|
43
|
GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet 2017; 13:e1006535. [PMID: 28072828 PMCID: PMC5224981 DOI: 10.1371/journal.pgen.1006535] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022] Open
Abstract
Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function. Folliculogenesis is a progressive and highly regulated process that requires the tight coordination of metabolism and bidirectional communication between the oocyte and granulosa cells. How this communication is established remains unclear. Here, we find that GGPP-mediated protein geranylgeranylation, a post-translational modification, is essential for the oocyte-granulosa cell communication. GGPP depletion in oocytes inhibits Rho GTPase geranylgeranylation-regulated cell adhesion and impairs Rab GTPase geranylgeranylation-directed cell secretion, which are responsible for the failure to maintain oocyte-granulosa cell communication. This communication defect is probably not able to support the proliferation of granulosa cells from one layer to multiple layers and ultimately results in the failure of the primary-secondary follicle transition and female subfertility. Our findings provide the evidence of GGPP-mediated protein geranylgeranylation involving in regulating primary-secondary follicle transition and establish a novel link between folliculogenesis and GGPP-regulated membrane dynamics.
Collapse
|
44
|
Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice. Sci Rep 2016; 6:28917. [PMID: 27374985 PMCID: PMC4931501 DOI: 10.1038/srep28917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis in adulthood depends on the successful neonatal establishment of the spermatogonial stem cell (SSC) pool and gradual differentiation during puberty. The stage-dependent changes in protein prenylation in the seminiferous epithelium might be important during the first round of spermatogenesis before sexual maturation, but the mechanisms are unclear. We have previous found that altered prenylation in Sertoli cells induced spermatogonial apoptosis in the neonatal testis, resulting in adult infertility. Now we further explored the role of protein prenylation in germ cells, using a conditional deletion of geranylgeranyl diphosphate synthase (Ggpps) in embryonic stage and postmeiotic stage respectively. We observed infertility of Ggpps(-/-) Ddx4-Cre mice that displayed a Sertoli-cell-only syndrome phenotype, which resulted from abnormal spermatogonial differentiation and SSC depletion during the prepubertal stage. Analysis of morphological characteristics and cell-specific markers revealed that spermatogonial differentiation was enhanced from as early as the 7(th) postnatal day in the first round of spermatogenesis. Studies of the molecular mechanisms indicated that Ggpps deletion enhanced Rheb farnesylation, which subsequently activated mTORC1 and facilitated spermatogonial differentiation. In conclusion, the prenylation balance in germ cells is crucial for spermatogonial differentiation fate decision during the prepubertal stage, and the disruption of this process results in primary infertility.
Collapse
|
45
|
Jia WJ, Jiang S, Tang QL, Shen D, Xue B, Ning W, Li CJ. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1454-65. [PMID: 27106761 DOI: 10.1016/j.ajpath.2016.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation.
Collapse
Affiliation(s)
- Wen-Jun Jia
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China; Department of Hepatopancreatobiliary Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shan Jiang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Qiao-Li Tang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Di Shen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Bin Xue
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, the College of Life Sciences, Nankai University, Tianjin, China.
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China.
| |
Collapse
|
46
|
Kowluru A. A lack of 'glue' misplaces Rab27A to cause islet dysfunction in diabetes. J Pathol 2016; 238:375-7. [PMID: 26575346 DOI: 10.1002/path.4671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023]
Abstract
Glucose-stimulated insulin secretion (GSIS) involves interplay between metabolic and cationic events. Several lines of evidence suggest novel regulatory roles for small G proteins (Rac1, Cdc42, Rab27A) in cytoskeletal remodelling and docking of insulin granules on the plasma membrane for insulin secretion. Emerging evidence implicates novel roles for post-translational prenylation (farnesylation and geranylgeranylation) of G proteins for their targeting to appropriate membranous compartments. While several recent studies were focused on prenylating enzymes in the islet β-cell, a significant knowledge gap exists on the regulatory roles and function of enzymes that mediate intracellular generation of prenyl pyrophosphate substrates (farnesyl and geranylgeranyl pyrophosphates) for prenyltransferases. Recent work published in The Journal of Pathology by Jiang and associates highlights requisite roles for geranylgeranyl pyrophosphate synthase (GGPPS) in islet β-cell function in health and diabetes. These studies are timely and will form the basis for a series of new investigations to further validate roles for G-protein prenylation in GSIS under physiological conditions. They also pave the path towards the identification of potential defects in these signalling pathways in β-cell models of impaired insulin secretion including metabolic stress and diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Research Service, John D Dingell VA Medical Center and Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
47
|
Jiang S, Shen D, Jia WJ, Han X, Shen N, Tao W, Gao X, Xue B, Li CJ. GGPPS-mediated Rab27A geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation. J Pathol 2015; 238:109-19. [PMID: 26434932 DOI: 10.1002/path.4652] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/19/2015] [Accepted: 09/28/2015] [Indexed: 11/09/2022]
Abstract
Loss of first-phase insulin secretion associated with β cell dysfunction is an independent predictor of type 2 diabetes mellitus (T2DM) onset. Here we found that a critical enzyme involved in protein prenylation, geranylgeranyl pyrophosphate synthase (GGPPS), is required to maintain first-phase insulin secretion. GGPPS shows a biphasic expression pattern in islets of db/db mice during the progression of T2DM: GGPPS is increased during the insulin compensatory period, followed by a decrease during β cell dysfunction. Ggpps deletion in β cells results in typical T2DM β cell dysfunction, with blunted glucose-stimulated insulin secretion and consequent insulin secretion insufficiency. However, the number and size of islets and insulin biosynthesis are unaltered. Transmission electron microscopy shows a reduced number of insulin granules adjacent to the cellular membrane, suggesting a defect in docked granule pool formation, while the reserve pool is unaffected. Ggpps ablation depletes GGPP and impairs Rab27A geranylgeranylation, which is responsible for the docked pool deficiency in Ggpps-null mice. Moreover, GGPPS re-expression or GGPP administration restore glucose-stimulated insulin secretion in Ggpps-null islets. These results suggest that GGPPS-controlled protein geranylgeranylation, which regulates formation of the insulin granule docked pool, is critical for β cell function and insulin release during the development of T2DM.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Di Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Wen-Jun Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, People's Republic of China
| | - Ning Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Weiwei Tao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Centre and School of Medicine, Nanjing University, People's Republic of China
| |
Collapse
|
48
|
Gavin LE, Williams JR, Rivera MI, Lachance CR. Programs to Strengthen Parent-Adolescent Communication About Reproductive Health: A Systematic Review. Am J Prev Med 2015; 49:S65-72. [PMID: 26190849 PMCID: PMC10472452 DOI: 10.1016/j.amepre.2015.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
CONTEXT When caring for an adolescent client, providers of contraceptive services must consider whether and how to encourage parent/guardian-child communication about the adolescent's reproductive health. The objective of this systematic review was to summarize the evidence on the effectiveness of programs designed to increase parent-child communication about reproductive health. The review was used to inform national recommendations on quality family planning services. Data analysis occurred from mid-2011 through 2012. EVIDENCE ACQUISITION Several electronic bibliographic databases were used to identify relevant articles, including PubMed, CINAHL, PsycINFO, and Popline, published from January 1985 through February 2011. EVIDENCE SYNTHESIS Sixteen articles met the inclusion criteria: all studies examined the impact on at least one medium- or short-term outcome, and two studies assessed the impact on teen pregnancy. One study examined the impact of a program conducted in a clinic setting; the remainder examined the impact of programs in community settings. All studies showed a positive impact on at least one short-term outcome, and 12 of 16 studies showed an increase in parent-child communication about reproductive health. Four of seven studies found an impact on sexual risk behavior. CONCLUSIONS Most programs increased parent-child communication, and several resulted in reduced sexual risk behavior of adolescents. This suggests that delivering a clinic-based program that effectively helps parents/guardians talk to their adolescent child(ren) about reproductive health, or referring parents/guardians to an evidence-based program in the community, may be beneficial. However, further rigorous research on delivery of these programs in clinical settings is needed.
Collapse
Affiliation(s)
- Loretta E Gavin
- Division of Reproductive Health, CDC, Atlanta, Georgia; Office of Population Affairs, USDHHS, Rockville, Maryland.
| | - Jessica R Williams
- University of Miami School of Nursing and Health Studies, Coral Gables, Florida; MANILA Consulting Group, McLean, Virginia
| | | | | |
Collapse
|
49
|
Marcell AV, Gavin LE, Moskosky SB, McKenna R, Rompalo AM. Developing Federal Clinical Care Recommendations for Men. Am J Prev Med 2015; 49:S14-22. [PMID: 26190843 PMCID: PMC10472453 DOI: 10.1016/j.amepre.2015.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
Abstract
U.S. men experience substantial sexual and reproductive health needs across the life span. A significant barrier for providers in serving men in family planning, primary care, and sexually transmitted disease clinics has been the lack of standards for men's sexual and reproductive health care. The goal of this synthesis paper is to describe the development of clinical recommendations for the delivery of family planning services for men that were developed and published by CDC and the U.S. Office of Population Affairs. This paper is intended to describe the process used from 2011 to 2014 to develop the recommendations for the delivery of comprehensive reproductive healthcare services to men, and the rationale underpinning them.
Collapse
Affiliation(s)
- Arik V Marcell
- Johns Hopkins School of Medicine, Johns Hopkins University, with collaboration with Johns Hopkins Medical Institutions, School of Medicine, Center for Sexually Transmitted Disease and Reproductive Health Research, Prevention, and Training, Baltimore, Maryland; Bloomberg School of Public Health, Johns Hopkins University, with collaboration with Johns Hopkins Medical Institutions, School of Medicine, Center for Sexually Transmitted Disease and Reproductive Health Research, Prevention, and Training, Baltimore, Maryland.
| | | | | | - Robert McKenna
- National Male Training Center for Family Planning and Reproductive Health, a program of Access Matters (formerly Family Planning Council), Philadelphia, Pennsylvania
| | - Anne M Rompalo
- Johns Hopkins School of Medicine, Johns Hopkins University, with collaboration with Johns Hopkins Medical Institutions, School of Medicine, Center for Sexually Transmitted Disease and Reproductive Health Research, Prevention, and Training, Baltimore, Maryland; Bloomberg School of Public Health, Johns Hopkins University, with collaboration with Johns Hopkins Medical Institutions, School of Medicine, Center for Sexually Transmitted Disease and Reproductive Health Research, Prevention, and Training, Baltimore, Maryland
| |
Collapse
|
50
|
Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, Han J, Chen L, Sun K, Wu J, Wu X, Huang X, Chen J. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis 2015; 6:e1818. [PMID: 26181199 PMCID: PMC4650729 DOI: 10.1038/cddis.2015.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
In mammals, spermatogonial stem cells (SSCs) arise from early germ cells called gonocytes, which are derived from primordial germ cells during embryogenesis and remain quiescent until birth. After birth, these germ cells migrate from the center of testicular cord, through Sertoli cells, and toward the basement membrane to form the SSC pool and establish the SSC niche architecture. However, molecular mechanisms underlying germ cell migration and niche establishment are largely unknown. Here, we show that the actin disassembly factor actin interacting protein 1 (AIP1) is required in both germ cells and Sertoli cells to regulate this process. Germ cell-specific or Sertoli cell-specific deletion of Aip1 gene each led to significant defects in germ cell migration after postnatal day 4 or 5, accompanied by elevated levels of actin filaments (F-actin) in the affected cells. Furthermore, our data demonstrated that interaction between germ cells and Sertoli cells, likely through E-cadherin-mediated cell adhesion, is critical for germ cells' migration toward the basement membrane. At last, Aip1 deletion in Sertoli cells decreased SSC self-renewal, increased spermatogonial differentiation, but did not affect the expression and secretion levels of growth factors, suggesting that the disruption of SSC function results from architectural changes in the postnatal niche.
Collapse
Affiliation(s)
- J Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - P Wan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - J Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - X Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - B Hu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Han
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - L Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - K Sun
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - J Wu
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - X Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|