1
|
Ma W, Chen H, Gao F, Zhao H, Wu N, Zhang S, Zhu Y, Xu Z, Lan Y, Liu B, Ye Y, Liu Z, Ginhoux F, Su B. Embryonic mast cells arise from the Cpa3-expressing precursors but not granulocyte-monocyte progenitors. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2891-1. [PMID: 40419842 DOI: 10.1007/s11427-024-2891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 05/28/2025]
Abstract
Most of the mast cells (MCs) in connective tissues, such as skin, are long-lived embryonic-derived immune cells that play important roles in host defense and in various immunological diseases, including allergies. Their embryonic origin and ontogeny remain to be fully studied since several overlapping waves of embryonic hematopoiesis have been reported to give rise to these cells. Here, combining single-cell RNA sequencing and new genetic fate mapping models, we identified a Cpa3-expressing population sequentially appearing in the yolk sac, fetal liver, and peripheral tissues which gives rise to dermal MCs during embryonic days 11.5 to 14.5. Using in vitro differentiation and in vivo transplantation assays, we identified a Ter119-F4/80-CD45+CD117+CD16/32+CD135-CD115-Ly6C-CD34lo population as potential fetal liver MC precursors (MCPs). Fate mapping with Cpa3CreERT2 and Zbtb16CreERT2 models, as well as the granulocyte-monocyte progenitors (GMPs) fate mapping Ms4a3Cre and ElaneCre models, demonstrated that MCs arise from Cpa3+ precursors rather than Ms4a3+ or Elane+ GMPs. A corresponding population with a similar developmental trajectory was also identified in human early yolk sac and fetal liver, suggesting a conserved MC developmental program across species. These findings reveal a distinct developmental path of skin MCs in embryos, permitting future functional studies in immunity and development.
Collapse
Affiliation(s)
- Wei Ma
- Department of Oncology at Xiangya Cancer Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huifang Chen
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fei Gao
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Han Zhao
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuangyan Zhang
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiwen Zhu
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zijian Xu
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Bing Su
- Department of Oncology at Xiangya Cancer Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Shanghai Institute of Immunology, Department of Gastroenterology and Center for Immune-Related Diseases at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism (SYIIM), Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Xia Y, Bin P, Zhou Y, Zhao M, Zhang J, Zhong W, Wang N, Wang B, Ren W. Glycerophospholipid metabolism licenses IgE-mediated mast cell degranulation. Cell Rep 2025; 44:115742. [PMID: 40397574 DOI: 10.1016/j.celrep.2025.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/26/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
Immunoglobulin E (IgE) antibodies and mast cells have been extensively recognized to dictate the pathophysiology of anaphylaxis and allergic reactions; nevertheless, the pivotal cues driving IgE-mediated mast cell degranulation remain enigmatic. Here, we demonstrate that FcεRI aggregation-initiated p38α signaling stimulates Ets-1 transcription by recruitment of the SWI-SNF chromatin-remodeling complex, contributing to Pcyt1a expression and glycerophospholipid metabolism in IgE-stimulated mast cells. Most importantly, Pcyt1a-mediated glycerophospholipid metabolism facilitates mast cell degranulation through the limited macropinocytosis of FcεRI via altering H3K9me3 deposition at the promoter of Prkcd. Moreover, the metabolic cue functions as an instigator of allergic diseases (e.g., atopic dermatitis [AD]) according to preclinical findings of murine models, in silico analysis of human disease studies, and examination of clinical samples. In summary, our study establishes that lipid metabolism and signaling orchestrate mast cell activation and provides promising therapeutic targets for clinically tackling allergic diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Youyou Zhou
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Weiming Zhong
- Department of Neurosurgery, The Second People's Hospital of Shenzhen (The First Affiliated Hospital of Shenzhen University), Shenzhen 518020, China
| | - Na Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bingfeng Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Lee E, Kim JH, Lee SY, Lee SH, Park YM, Oh HY, Yeom J, Ahn HS, Yoo HJ, Kim BS, Yun SM, Choi EJ, Song KB, Park MJ, Ahn K, Kim KW, Shin YH, Suh DI, Song JY, Hong SJ. Developmental trajectories of atopic dermatitis with multiomics approaches in the infant gut: COCOA birth cohort. J Allergy Clin Immunol 2025; 155:557-568. [PMID: 39547281 DOI: 10.1016/j.jaci.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND An understanding of the phenotypes and endotypes of atopic dermatitis (AD) is essential for developing precision therapies. Recent studies have demonstrated evidence for the gut-skin axis in AD. OBJECTIVE We sought to determine the natural course and clinical characteristics of AD phenotypes and investigate their mechanisms on the basis of multiomics analyses. METHODS Latent class trajectory analysis was used to classify AD phenotypes in 2247 children who were followed until age 9 years from the COhort for Childhood Origin of Asthma and allergic diseases birth cohort study. Multiomics analyses (microbiome, metabolites, and gut epithelial cell transcriptome) using stool samples collected at age 6 months were performed to elucidate the underlying mechanisms of AD phenotypes. RESULTS Five AD phenotypes were classified as follows: never/infrequent, early-onset transient, intermediate transient, late-onset, and early-onset persistent. Early-onset persistent and late-onset phenotypes showed increased risks of food allergy and wheezing treatment ever, with bronchial hyperresponsiveness evident only in the early-onset persistent phenotype. Multiomics analyses revealed a significantly lower relative abundance of Ruminococcus gnavus and a decreased gut acetate level in the early-onset persistent phenotype, with potential associations to ACSS2, Janus kinase-signal transducer and activator of transcription signaling, and systemic TH2 inflammation. The early-onset transient phenotype was associated with adenosine monophosphate-activated protein kinase (AMPK) and/or chemokine signaling regulation, whereas the late-onset phenotype was linked with IL-17 and barrier dysfunction. CONCLUSIONS Multiomics profiling in early life may offer insights into different mechanisms underlying AD phenotypes in children.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | | | - Si Hyeon Lee
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Yoon Mee Park
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Hea Young Oh
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Jeonghun Yeom
- Prometabio Research Institute, Prometabio Co, Ltd, Seoul, Korea
| | | | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Korea
| | - Sun Mi Yun
- Microbiome Division, Macrogen, Inc, Seoul, Korea
| | - Eom Ji Choi
- Department of Pediatrics, CHA Gangnam Medical Center, Seoul, Korea
| | - Kun Baek Song
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Min Jee Park
- Department of Pediatrics, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Youn Ho Shin
- Department of Pediatrics, Kyunghee University of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Young Song
- Department of Pediatrics, CHA University Ilsan Medical Center, Goyang, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Yang R, Yang M, Wu Z, Liu B, Zheng M, Lu L, Wu S. Tespa1 deficiency reduces the antitumour immune response by decreasing CD8 +T cell activity in a mouse Lewis lung cancer model. Int Immunopharmacol 2023; 124:110865. [PMID: 37660596 DOI: 10.1016/j.intimp.2023.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) is a key molecule in T-cell development and has been linked to immune diseases. However, its role in antitumour CD8+T cell immunity remains unclear. Here, we demonstrated that Tespa1 plays an important role in antitumour CD8+T cell immunity. First, compared with wild-type (WT) mice, Lewis lung cancer cells grew faster in Tespa1 knockout (Tespa1-/-) mice, with reduced apoptosis, and decreased CD8+T cells in peripheral blood and tumor tissues. Second, the proportion of CD8+T and Th1 cells in the splenocytes of Tespa1-/- mice was lower than that in WT mice. Third, Tespa1-/- CD8+ tumor-infiltrating lymphocytes (TILs) showed weakened proliferation, invasion, cytotoxicity, and protein expression of IL-2 signalling pathway components compared to WT CD8+TILs. Furthermore, PD-1 expression in CD8+TILs was higher in Tespa1-/- than in WT mice. Lastly, CD8+TILs in WT mice improved the antitumour ability of Tespa1-/- mice. In conclusion, these findings suggest that Tespa1 plays a critical role in the tumor immune system by regulating CD8+T cells.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China; Department of Pharmacology, Lishui University School of Medicine, Lishui 323000, China
| | - Mingyue Yang
- The First Clinical Department, China Medical University, Shenyang 110122, China
| | - Zehua Wu
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315000, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, 318000, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui 323000, China.
| |
Collapse
|
5
|
Zhang X, Wu XM, Han LH, Qian F, Zhang LQ, Li YM. New furofuran and tetrahydrofuran lignans from the flower buds of Magnolia biondii Pamp and their antiallergic effects. Nat Prod Res 2023; 37:3083-3092. [PMID: 36395104 DOI: 10.1080/14786419.2022.2147166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The dried flower buds of Magnolia biondii Pamp (herbal name, Xin-Yi) are a traditional Chinese medicine with a long history of clinical use in the treatment of allergic rhinitis and sinusitis. However, the constituents responsible for its antiallergic effects remain clearly unidentified. In the present study, totally 33 lignans were obtained from M. biondii. Among them, two novel furofuran lignans (1 and 2), two novel tetrahydrofuran lignans (3 and 4), and other 16 known lignans were isolated first time from M. biondii. The antiallergic effects of compounds 1-33 on mouse bone marrow-derived mast cells (BMMCs) degrunaliton were evaluated and results showed that compounds 7, 8, 13, 15 and 18 could significantly inhibited β-hex release on BMMCs. The results proved that furofuran and tetrahydrofuran lignans were the main constituents in M. biondii and their antiallergic effects were related with suppressing mast cell activation.
Collapse
Affiliation(s)
- Xing Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Min Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Hang Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu-Qiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Lu Y, Yang L, Shen M, Zhang Z, Wang S, Chen F, Chen N, Xu Y, Zeng H, Chen M, Chen S, Wang F, Hu M, Wang J. Tespa1 facilitates hematopoietic and leukemic stem cell maintenance by restricting c-Myc degradation. Leukemia 2023; 37:1039-1047. [PMID: 36997676 PMCID: PMC10169665 DOI: 10.1038/s41375-023-01880-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have robust self-renewal potential, which is responsible for sustaining normal and malignant hematopoiesis, respectively. Although considerable efforts have been made to explore the regulation of HSC and LSC maintenance, the underlying molecular mechanism remains obscure. Here, we observe that the expression of thymocyte-expressed, positive selection-associated 1 (Tespa1) is markedly increased in HSCs after stresses exposure. Of note, deletion of Tespa1 results in short-term expansion but long-term exhaustion of HSCs in mice under stress conditions due to impaired quiescence. Mechanistically, Tespa1 can interact with CSN subunit 6 (CSN6), a subunit of COP9 signalosome, to prevent ubiquitination-mediated degradation of c-Myc protein in HSCs. As a consequence, forcing c-Myc expression improves the functional defect of Tespa1-null HSCs. On the other hand, Tespa1 is identified to be highly enriched in human acute myeloid leukemia (AML) cells and is essential for AML cell growth. Furthermore, using MLL-AF9-induced AML model, we find that Tespa1 deficiency suppresses leukemogenesis and LSC maintenance. In summary, our findings reveal the important role of Tespa1 in promoting HSC and LSC maintenance and therefore provide new insights on the feasibility of hematopoietic regeneration and AML treatment.
Collapse
Affiliation(s)
- Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Tsai M, Valent P, Galli SJ. KIT as a master regulator of the mast cell lineage. J Allergy Clin Immunol 2022; 149:1845-1854. [PMID: 35469840 PMCID: PMC9177781 DOI: 10.1016/j.jaci.2022.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
The discovery in 1987/1988 and 1990 of the cell surface receptor KIT and its ligand, stem cell factor (SCF), was a critical achievement in efforts to understand the development and function of multiple distinct cell lineages. These include hematopoietic progenitors, melanocytes, germ cells, and mast cells, which all are significantly affected by loss-of-function mutations of KIT or SCF. Such mutations also influence the development and/or function of additional cells, including those in parts of the central nervous system and the interstitial cells of Cajal (which control gut motility). Many other cells can express KIT constitutively or during immune responses, including dendritic cells, eosinophils, type 2 innate lymphoid cells, and taste cells. Yet the biological importance of KIT in many of these cell types largely remains to be determined. We here review the history of work investigating mice with mutations affecting the white spotting locus (which encodes KIT) or the steel locus (which encodes SCF), focusing especially on the influence of such mutations on mast cells. We also briefly review efforts to target the KIT/SCF pathway with anti-SCF or anti-Kit antibodies in mouse models of allergic disorders, parasite immunity, or fibrosis in which mast cells are thought to play significant roles.
Collapse
Affiliation(s)
- Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
8
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, Liu Y, Lai L, Wang Q. IL‐27 signaling negatively regulates FcɛRI‐mediated mast cell activation and allergic response. J Leukoc Biol 2022; 112:411-424. [PMID: 35075687 DOI: 10.1002/jlb.2ma1221-637r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaopeng Wan
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veternary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Huanna Tang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Tianqi Jiang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Jia He
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Chunjing Bao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Junkai Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yinjing Song
- Department of Dermatology and Venereology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Peng Xiao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yang Liu
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Lihua Lai
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Qingqing Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
9
|
Mayén-Lobo YG, Martínez-Magaña JJ, Pérez-Aldana BE, Ortega-Vázquez A, Genis-Mendoza AD, Dávila-Ortiz de Montellano DJ, Soto-Reyes E, Nicolini H, López-López M, Monroy-Jaramillo N. Integrative Genomic-Epigenomic Analysis of Clozapine-Treated Patients with Refractory Psychosis. Pharmaceuticals (Basel) 2021; 14:118. [PMID: 33557049 PMCID: PMC7913835 DOI: 10.3390/ph14020118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Clozapine (CLZ) is the only antipsychotic drug that has been proven to be effective in patients with refractory psychosis, but it has also been proposed as an effective mood stabilizer; however, the complex mechanisms of action of CLZ are not yet fully known. To find predictors of CLZ-associated phenotypes (i.e., the metabolic ratio, dosage, and response), we explore the genomic and epigenomic characteristics of 44 patients with refractory psychosis who receive CLZ treatment based on the integration of polygenic risk score (PRS) analyses in simultaneous methylome profiles. Surprisingly, the PRS for bipolar disorder (BD-PRS) was associated with the CLZ metabolic ratio (pseudo-R2 = 0.2080, adjusted p-value = 0.0189). To better explain our findings in a biological context, we assess the protein-protein interactions between gene products with high impact variants in the top enriched pathways and those exhibiting differentially methylated sites. The GABAergic synapse pathway was found to be enriched in BD-PRS and was associated with the CLZ metabolic ratio. Such interplay supports the use of CLZ as a mood stabilizer and not just as an antipsychotic. Future studies with larger sample sizes should be pursued to confirm the findings of this study.
Collapse
Affiliation(s)
- Yerye Gibrán Mayén-Lobo
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
- Department of Genetics, National Institute of Neurology and Neurosurgery, “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - José Jaime Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (H.N.)
| | - Blanca Estela Pérez-Aldana
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
| | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (H.N.)
| | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico;
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (H.N.)
- Grupo de Estudios Médicos y Familiares Carracci, Mexico City 03740, Mexico
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| |
Collapse
|
10
|
Yang R, Wang G, Li L, He H, Zheng M, Lu L, Wu S. Tespa1 plays a role in the modulation of airway hyperreactivity through the IL-4/STAT6 pathway. J Transl Med 2020; 18:444. [PMID: 33228696 PMCID: PMC7685668 DOI: 10.1186/s12967-020-02621-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Thymocyte-expressed, positive selection-associated 1 (Tespa1) is a critical signaling molecule in thymocyte development. This study aimed to investigate the regulatory effect of Tespa1 on mast cells in the pathogenesis of asthma and its relationship with the interleukin (IL)-4/signal transducers and activators of transcription 6 (STAT6) signaling pathway. METHODS Tespa1 mRNA expression analysis and IgE levels were carried out using the induced sputum of 33 adults with stable asthma and 36 healthy controls. Tespa1-knockout mice (Tespa1-/-, KO) and C57BL/6 background (wild-type, WT) mice were sensitized and treated with ovalbumin (OVA) to establish an asthma model. Pathological changes, number and activity of mast cells, and changes in activation of the IL-4/STAT6 pathway in lung tissue were detected. The changes of tryptase expression and STAT6 activation after mast cell gene knockout were analyzed in vitro. The changes of enzyme expression and STAT6 activation after mast cell gene knockout were analyzed in vitro. The association between the Tespa1 and p-STAT6 was analyzed by co-immunoprecipitation method. RESULTS Compared with the healthy controls, Tespa1 expression was decreased, and IgE levels were elevated in the sputum of asthmatic patients. Animal experiments showed that Tespa1-/- mice exhibited more severe inflammation, higher quantity of goblet cells and mast cells in the bronchium, and greater expression of mast cell tryptase, which is induced by ovalbumin, than WT mice. And IL-4, IL-13, phospho-Janus kinase 1, and p-STAT6 expressions presented a higher increase in the Tespa1-/- mouse model than in the WT mouse model. Further in vitro studies confirmed that IL-4 could more significantly promote tryptase and p-STAT6 activities in Tespa1-/- mast cells than their WT counterparts. Correlation analysis results showed a negative correlation between Tespa1 and p-STAT6. Co-immunoprecipitation results demonstrated an association between Tespa1 and p-STAT6. CONCLUSIONS Altogether, our results indicate that Tespa1 can negatively regulate mast cell activity, and this event is related to the mast cell IL-4/STAT6 signaling pathway and could be therapeutically exploited to treat asthma attacks.
Collapse
Affiliation(s)
- Ruhui Yang
- Department of Pharmacology, College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui, 323000, China
| | - Guangli Wang
- College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui, 323000, China
| | - Lingyun Li
- Clinical Laboratory, Lishui People's Hospital, Lishui, 323000, China
| | - Hanjiang He
- College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui, 323000, China
| | - Mingzhu Zheng
- Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Linrong Lu
- Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Songquan Wu
- College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui, 323000, China.
| |
Collapse
|
11
|
Raf kinase inhibitor protein negatively regulates FcεRI-mediated mast cell activation and allergic response. Proc Natl Acad Sci U S A 2018; 115:E9859-E9868. [PMID: 30282734 DOI: 10.1073/pnas.1805474115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The signaling cascades triggered by the cross-linkage of immunoglobulin E (IgE) with its high-affinity receptor (FcεRI) on mast cells contribute to multiple allergic disorders, such as asthma, rhinitis, and atopic dermatitis. Restraint of intracellular signals for mast cell activation is essential to restore homeostasis. In this study, we found that Raf kinase inhibitor protein (RKIP) negatively regulated mast cell activation. RKIP-deficient mast cells showed greater IgE-FcεRI-mediated activation than wild-type mast cells. Consistently, RKIP deficiency in mast cells rendered mice more sensitive to IgE-FcεRI-mediated allergic responses and ovalbumin-induced airway inflammation. Mechanistically, RKIP interacts with the p85 subunit of PI3K, prevents it from binding to GRB2-associated binding protein 2 (Gab2), and eventually inhibits the activation of the PI3K/Akt/NF-κB complex and its downstream signaling. Furthermore, the expression of RKIP was significantly down-regulated in the peripheral blood of asthma patients and in the IgE-FcεRI-stimulated mast cells. Collectively, our findings not only suggest that RKIP plays an important role in controlling mast cell-mediated allergic responses but also provide insight into therapeutic targets for mast cell-related allergic diseases.
Collapse
|
12
|
Li Z, Liu S, Xu J, Zhang X, Han D, Liu J, Xia M, Yi L, Shen Q, Xu S, Lu L, Cao X. Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity 2018; 49:640-653.e5. [DOI: 10.1016/j.immuni.2018.09.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022]
|
13
|
Tespa1 regulates T cell receptor-induced calcium signals by recruiting inositol 1,4,5-trisphosphate receptors. Nat Commun 2017; 8:15732. [PMID: 28598420 PMCID: PMC5472764 DOI: 10.1038/ncomms15732] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) is important in T cell receptor (TCR)-driven thymocyte development. Downstream of the TCR, Tespa1 is a crucial component of the linker for activation of T cells (LAT) signalosome, facilitating calcium signalling and subsequent MAPK activation. However, it is unknown how Tespa1 elicits calcium signalling. Here, we show that inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) is crucial for Tespa1-optimized, TCR-induced Ca2+ flux and thymocyte development. Upon TCR stimulation, Tespa1 directly interacts with IP3R1 and recruits it to the TCR complex, where IP3R1 is phosphorylated at Y353 by Fyn. This Tespa1-IP3R1 interaction is mediated by the F187 and F188 residues of Tespa1 and the amino-terminus of IP3R1. Tespa1-F187A/F188A mutant mice phenocopy Tespa1-deficient mice with impaired late thymocyte development due to reduced IP3R1 translocation to the TCR-proximal region. Our work elucidates the function of Tespa1 in T cell development and the regulation of TCR-induced Ca2+ signalling through IP3R1. The thymocyte development protein Tespa1 is known to translate T cell receptor signals by affecting the calcium signalling cascade, but it is not clear how. Here the authors show that Tespa1 recruits IP3R1 to the TCR signalling complex.
Collapse
|
14
|
Zhang X, Qian F, Tan JJ, Guo FJ, Kulka M, Xu JW, Li YM. Bioassay-guided isolation of bisepoxylignans from the flower buds of Magnolia biondii Pamp and their antiallergic effects. RSC Adv 2017. [DOI: 10.1039/c7ra01476g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioassay-guided isolation of bisepoxylignans from the flower buds of Magnolia biondii Pamp and their antiallergic effects.
Collapse
Affiliation(s)
- Xing Zhang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Fei Qian
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Jun-Jie Tan
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Fu-Jiang Guo
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | | | - Jin-Wen Xu
- Institute of Interdisciplinary Research Complex
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yi-Ming Li
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
15
|
Effects of Cymbidium Root Ethanol Extract on Atopic Dermatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5362475. [PMID: 26981139 PMCID: PMC4766334 DOI: 10.1155/2016/5362475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/10/2023]
Abstract
Cymbidium has known antibacterial and antiedema activity and has been used as an ingredient in cosmetics and fragrances. The effects of Cymbidium ethanol extract (CYM) on allergic response and the underlying mechanisms of action have not been reported. Therefore, the purpose of this study was to determine the effect of CYM on allergic responses. Topical application of CYM was effective against immunoglobulin E (IgE)/dinitrophenyl-conjugated bovine serum albumin- (DNP-BSA-) induced degranulation of RBL-2H3 cells and anaphylaxis in ICR mice. An allergic dermatitis-like mouse model was used to evaluate the therapeutic potential of CYM in vivo. Continuous application of 2,4-dinitrochlorobenzene (DNCB) not only induced dermatitis in ICR mice but also aggravated the skin lesioning. However, the application of CYM decreased skin lesion severity, scratching behavior, and IgE levels. In addition, CYM downregulated the expression of the proinflammatory cytokines interleukin- (IL-) 4, IL-13, and tumor necrosis factor- (TNF-) α. Studies of signal transduction pathways showed that CYM suppressed the phosphorylation of spleen tyrosine kinase (Syk), an upstream molecule. It also inhibited the phosphorylation of Akt, phospholipase C- (PLC-) γ, and mitogen-activated protein kinase kinase kinase (MEKK). These results indicate that CYM may be effective in preventing and reducing allergic response and may have therapeutic potential as an antiallergic agent in disorders such as atopic dermatitis.
Collapse
|
16
|
Yao Y, Zhang H, Shao S, Cui G, Zhang T, Sun H. Tespa1 is associated with susceptibility but not severity of rheumatoid arthritis in the Zhejiang Han population in China. Clin Rheumatol 2015; 34:665-71. [DOI: 10.1007/s10067-015-2900-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/08/2015] [Accepted: 02/14/2015] [Indexed: 01/14/2023]
|