1
|
Zhai J, Fu R, Luo S, Liu X, Xie Y, Cao K, Ge W, Chen Y. Lactylation-related molecular subtyping reveals the immune heterogeneity and clinical characteristics in ulcerative colitis. Biochem Biophys Res Commun 2025; 756:151584. [PMID: 40081238 DOI: 10.1016/j.bbrc.2025.151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease linked to early-onset colorectal cancer and metabolic abnormalities. While intestinal lactate disturbances are observed in UC, the role of lactate and lactylation in its pathogenesis remains unclear. The lack of specific biomarkers reflecting these processes limits understanding of their biological significance. METHODS UC subtypes were classified using ConsensusClusterPlus and NMF based on LRGs. Immune infiltration was assessed with ssGSEA, xCell, and CIBERSORT. WGCNA identified subtype-specific gene modules, and Lasso regression pinpointed hub genes. Single-cell analysis determined cellular localization, while WB and IHC validated findings in clinical, mouse, and cell models. Prognostic machine learning models evaluated the clinical significance of these results. RESULTS LRGs distinguished UC patients from controls and stratified them into high and low immune infiltration groups. MSN and MAPRE1, strongly linked to UC, showed elevated expression in vitro and in vivo. They aid in diagnosing UC and UC-associated colorectal cancer and serve as predictors of UC severity and response to immunosuppressants. CONCLUSION Using high-throughput transcriptomic data, we identified hub LRGs and highlighted the role of lactate-mediated lactylation in UC. MSN and MAPRE1 were confirmed to be upregulated in an inflammatory environment, underscoring their potential for personalized UC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyang Zhai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Kejing Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Lu Q, Ushijima K, Sasaki S, Sera T, Takeishi N, Kudo S. Spatiotemporal distribution of PKCα, PIP3, Moesin, Cdc42, MARCKS, Scriblle, and Arf6 before directed cell migration in monolayers. Biochem Biophys Res Commun 2025; 750:151371. [PMID: 39892054 DOI: 10.1016/j.bbrc.2025.151371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Protein kinase Cα (PKCα) has an important role in directed cell migration. After a mechanical wounding, PKCα rapidly accumulates at cell edges adjacent to the wounded cell and regulates cell migration. However, the proteins downstream of PKCα that mediate directed signaling remain unknown. In this study, we examined the spatiotemporal dynamics of PKCα, PIP3, Moesin, Cdc42, MARCKS, Scribble, and Arf6 before directed migration. After wounding, PIP3, Moesin, and Cdc42 accumulated at the cell edge near the wounded cells later than PKCα. In contrast, MARCKS moved away from the plasma membrane without polarization, and Scribble and Arf6 exhibited no significant translocation. The inhibition of PIP3 suppressed the accumulation of Moesin and Cdc42, suggesting that PIP3 regulates Moesin and Cdc42. In particular, the inhibition of PKCα completely inhibited the translocation of all factors, indicating that PKCα is a central regulator in early signaling after wounding and before directional migration.
Collapse
Affiliation(s)
- Quanzhi Lu
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Katsuyuki Ushijima
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushik-ku, Tokyo, 125-8585 Japan
| | - Naoki Takeishi
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
4
|
Miller SG, Hoh M, Ebmeier CC, Tay JW, Ahn NG. Cooperative polarization of MCAM/CD146 and ERM family proteins in melanoma. Mol Biol Cell 2024; 35:ar31. [PMID: 38117590 PMCID: PMC10916866 DOI: 10.1091/mbc.e23-06-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023] Open
Abstract
The WRAMP structure is a protein network associated with tail-end actomyosin contractility, membrane retraction, and directional persistence during cell migration. A marker of WRAMP structures is melanoma cell adhesion molecule (MCAM) which dynamically polarizes to the cell rear. However, factors that mediate MCAM polarization are still unknown. In this study, BioID using MCAM as bait identifies the ERM family proteins, moesin, ezrin, and radixin, as WRAMP structure components. We also present a novel image analysis pipeline, Protein Polarity by Percentile ("3P"), which classifies protein polarization using machine learning and facilitates quantitative analysis. Using 3P, we find that depletion of moesin, and to a lesser extent ezrin, decreases the proportion of cells with polarized MCAM. Furthermore, although copolarized MCAM and ERM proteins show high spatial overlap, 3P identifies subpopulations with ERM proteins closer to the cell periphery. Live-cell imaging confirms that MCAM and ERM protein polarization is tightly coordinated, but ERM proteins enrich at the cell edge first. Finally, deletion of a juxtamembrane segment in MCAM previously shown to promote ERM protein interactions impedes MCAM polarization. Our findings highlight the requirement for ERM proteins in recruitment of MCAM to WRAMP structures and an advanced computational tool to characterize protein polarization.
Collapse
Affiliation(s)
- Suzannah G. Miller
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | - Maria Hoh
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | | | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| |
Collapse
|
5
|
Cao L, Ma L, Zhao J, Wang X, Fang X, Li W, Qi Y, Tang Y, Liu J, Peng S, Yang L, Zhou L, Li L, Hu X, Ji Y, Hou Y, Zhao Y, Zhang X, Zhao YY, Zhao Y, Wei Y, Malik AB, Saiyin H, Xu J. An unexpected role of neutrophils in clearing apoptotic hepatocytes in vivo. eLife 2023; 12:RP86591. [PMID: 37728612 PMCID: PMC10511239 DOI: 10.7554/elife.86591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Billions of apoptotic cells are removed daily in a human adult by professional phagocytes (e.g. macrophages) and neighboring nonprofessional phagocytes (e.g. stromal cells). Despite being a type of professional phagocyte, neutrophils are thought to be excluded from apoptotic sites to avoid tissue inflammation. Here, we report a fundamental and unexpected role of neutrophils as the predominant phagocyte responsible for the clearance of apoptotic hepatic cells in the steady state. In contrast to the engulfment of dead cells by macrophages, neutrophils burrowed directly into apoptotic hepatocytes, a process we term perforocytosis, and ingested the effete cells from the inside. The depletion of neutrophils caused defective removal of apoptotic bodies, induced tissue injury in the mouse liver, and led to the generation of autoantibodies. Human autoimmune liver disease showed similar defects in the neutrophil-mediated clearance of apoptotic hepatic cells. Hence, neutrophils possess a specialized immunologically silent mechanism for the clearance of apoptotic hepatocytes through perforocytosis, and defects in this key housekeeping function of neutrophils contribute to the genesis of autoimmune liver disease.
Collapse
Affiliation(s)
- Luyang Cao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL)GuangzhouChina
| | - Lixiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical CollegeShanghaiChina
| | - Juan Zhao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Xiangyu Wang
- Department of Anatomy, Histology & Embryology, Shanghai Medical CollegeShanghaiChina
| | - Xinzou Fang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Wei Li
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL)GuangzhouChina
| | - Yawen Qi
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL)GuangzhouChina
| | - Yingkui Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Jieya Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Shengxian Peng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Li Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Liangxue Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Li Li
- Department of Anatomy, Histology & Embryology, Shanghai Medical CollegeShanghaiChina
| | - Xiaobo Hu
- Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional MedicineShanghaiChina
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital Fudan UniversityShanghaiChina
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan UniversityShanghaiChina
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan UniversityChengduChina
| | - Xianming Zhang
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, and Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - You-yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, and Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yuquan Wei
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, College of MedicineChicagoUnited States
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Jingsong Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Jang H, Choudhury S, Yu Y, Sievers BL, Gelbart T, Singh H, Rawlings SA, Proal A, Tan GS, Qian Y, Smith D, Freire M. Persistent immune and clotting dysfunction detected in saliva and blood plasma after COVID-19. Heliyon 2023; 9:e17958. [PMID: 37483779 PMCID: PMC10362241 DOI: 10.1016/j.heliyon.2023.e17958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
A growing number of studies indicate that coronavirus disease 2019 (COVID-19) is associated with inflammatory sequelae, but molecular signatures governing the normal versus pathologic convalescence process have not been well-delineated. Here, we characterized global immune and proteome responses in matched plasma and saliva samples obtained from COVID-19 patients collected between 20 and 90 days after initial clinical symptoms resolved. Convalescent subjects showed robust total IgA and IgG responses and positive antibody correlations in saliva and plasma samples. Shotgun proteomics revealed persistent inflammatory patterns in convalescent samples including dysfunction of salivary innate immune cells, such as neutrophil markers (e.g., myeloperoxidase), and clotting factors in plasma (e.g., fibrinogen), with positive correlations to acute COVID-19 disease severity. Saliva samples were characterized by higher concentrations of IgA, and proteomics showed altered myeloid-derived pathways that correlated positively with SARS-CoV-2 IgA levels. Beyond plasma, our study positions saliva as a viable fluid to monitor normal and aberrant immune responses including vascular, inflammatory, and coagulation-related sequelae.
Collapse
Affiliation(s)
- Hyesun Jang
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, USA, 19716
| | - Benjamin L Sievers
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Terri Gelbart
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Harinder Singh
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Stephen A Rawlings
- MMP Adult Infectious Disease, Maine Medical Center, South Portland, ME, 04106, USA
| | - Amy Proal
- PolyBio Research Foundation. Mercer Island, WA, USA
| | - Gene S Tan
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yu Qian
- Informatics, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | - Davey Smith
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marcelo Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Xie T, Dong J, Zhou X, Tang D, Li D, Chen J, Chen Y, Xu H, Xue W, Liu D, Hong X, Tang F, Yin L, Dai Y. Proteomics analysis of lysine crotonylation and 2-hydroxyisobutyrylation reveals significant features of systemic lupus erythematosus. Clin Rheumatol 2022; 41:3851-3858. [PMID: 35941338 PMCID: PMC9652266 DOI: 10.1007/s10067-022-06254-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION/OBJECTIVES To seek significant features of systemic lupus erythematosus (SLE) by utilizing bioinformatics analysis. METHOD Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify lysine crotonylation (Kcr) and lysine 2-hydroxyisobutyrylation (Khib) in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematosus (SLE) patients and normal controls. RESULTS Seventy-six differentially modified proteins (DMPs) dually modified by Kcr and Khib were identified between SLE patients and healthy people. GO enrichment analysis prompted significant enrichment of seventy-six DMPs in MHC class II protein complex binding and leukocyte migration. KEGG pathways were enriched in antigen processing and presentation pathway and leukocyte transendothelial migration pathway. Six DMPs (CLTC, HSPA1B, HSPA8, HSP90AB1, HSPD1, and PDIA3) were identified in antigen processing and presentation pathway, of which HSPA8 was the core protein. Significant changes of Kcr and Khib in HSPA8 may increase ATP hydrolysis and promote antigen binding to MHC II molecule. In leukocyte transendothelial migration pathway, 7 DMPs (ACTN1, ACTN4, EZR, MSN, RAC1, RHOA, and VCL) were identified. MSN was the protein with the most modification sites in this pathway. In amino terminal ferm region of MSN, Kcr and Khib expression change may lead to the adhesion between leukocytes and endothelial cells, which was an important step of leukocyte migration. CONCLUSION Kcr and Khib may promote the antigen presentation and jointly regulate the tissue damage mediated by leukocyte migration in SLE patients, which may play key roles in the pathogenesis of SLE probably. Key Points • Antigen processing and presentation and leukocyte transendothelial migration may play key roles in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Ting Xie
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jingjing Dong
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xianqing Zhou
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China
| | - Donge Tang
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Dandan Li
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiejing Chen
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China
| | - Yumei Chen
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Huixuan Xu
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Wen Xue
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China
| | - Dongzhou Liu
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xiaoping Hong
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Fang Tang
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China.
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
8
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
9
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
10
|
Bommanavar S, Kanetkar SR, Datkhile KD, More AL. Membrane-organizing extension spike protein and its role as an emerging biomarker in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2022; 26:82-86. [PMID: 35571321 PMCID: PMC9106235 DOI: 10.4103/jomfp.jomfp_182_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/05/2021] [Indexed: 12/02/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most malignant tumor worldwide with a relatively poor prognosis. This can be due to lack of using new specific biomarkers as a mode of pristine interventional therapy for detecting the lesions at an early stage, thereby not allowing it to proceed to a severe advanced stage. Biomarkers, being the products of malignant cells, can prove to be promising prognostic factors in understanding the molecular pathogenesis of oral cancer. One such biomarker is membrane-organizing extension spike protein (MOESIN). Belonging to the family of ezrin/radixin/MOESIN proteins, MOESIN acts as a structural linker between plasma membrane and actin filament of the cell moiety and is involved in regulating many fundamental cellular processes such as cell morphology, adhesion and motility. This narrative review is a systematic compilation on MOESIN and its role as an emerging biomarker in OSCC.
Collapse
Affiliation(s)
- Sushma Bommanavar
- Department of Oral Pathology and Microbiology, School of Dental Sciences, KIMSDU, Karad, Maharashtra, India
| | - Sujata R Kanetkar
- Department of Pathology, Krishna Institute of Medical Sciences, Karad, Maharashtra, India
| | - Kailas D Datkhile
- Department of Molecular Biology and Genetics, KIMSDU, Karad, Maharashtra, India
| | - Ashwini L More
- Department of Molecular Biology and Genetics, KIMSDU, Karad, Maharashtra, India
| |
Collapse
|
11
|
Hadjitheodorou A, Bell GRR, Ellett F, Shastry S, Irimia D, Collins SR, Theriot JA. Directional reorientation of migrating neutrophils is limited by suppression of receptor input signaling at the cell rear through myosin II activity. Nat Commun 2021; 12:6619. [PMID: 34785640 PMCID: PMC8595366 DOI: 10.1038/s41467-021-26622-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
To migrate efficiently to target locations, cells must integrate receptor inputs while maintaining polarity: a distinct front that leads and a rear that follows. Here we investigate what is necessary to overwrite pre-existing front-rear polarity in neutrophil-like HL60 cells migrating inside straight microfluidic channels. Using subcellular optogenetic receptor activation, we show that receptor inputs can reorient weakly polarized cells, but the rear of strongly polarized cells is refractory to new inputs. Transient stimulation reveals a multi-step repolarization process, confirming that cell rear sensitivity to receptor input is the primary determinant of large-scale directional reversal. We demonstrate that the RhoA/ROCK/myosin II pathway limits the ability of receptor inputs to signal to Cdc42 and reorient migrating neutrophils. We discover that by tuning the phosphorylation of myosin regulatory light chain we can modulate the activity and localization of myosin II and thus the amenability of the cell rear to 'listen' to receptor inputs and respond to directional reprogramming.
Collapse
Affiliation(s)
- Amalia Hadjitheodorou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shashank Shastry
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Inoue H, Takatsu H, Hamamoto A, Takayama M, Nakabuchi R, Muranaka Y, Yagi T, Nakayama K, Shin HW. The interaction of ATP11C-b with ezrin contributes to its polarized localization. J Cell Sci 2021; 134:272204. [PMID: 34528675 DOI: 10.1242/jcs.258523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
ATP11C, a member of the P4-ATPase family, translocates phosphatidylserine and phosphatidylethanolamine at the plasma membrane. We previously revealed that its C-terminal splice variant ATP11C-b exhibits polarized localization in motile cell lines, such as MDA-MB-231 and Ba/F3. In the present study, we found that the C-terminal cytoplasmic region of ATP11C-b interacts specifically with ezrin. Notably, the LLxY motif in the ATP11C-b C-terminal region is crucial for its interaction with ezrin as well as its polarized localization on the plasma membrane. A constitutively active, C-terminal phosphomimetic mutant of ezrin was colocalized with ATP11C-b in polarized motile cells. ATP11C-b was partially mislocalized in cells depleted of ezrin alone, and exhibited greater mislocalization in cells simultaneously depleted of the family members ezrin, radixin and moesin (ERM), suggesting that ERM proteins, particularly ezrin, contribute to the polarized localization of ATP11C-b. Furthermore, Atp11c knockout resulted in C-terminally phosphorylated ERM protein mislocalization, which was restored by exogenous expression of ATP11C-b but not ATP11C-a. These observations together indicate that the polarized localizations of ATP11C-b and the active form of ezrin to the plasma membrane are interdependently stabilized.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Hamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Riki Nakabuchi
- Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yumeka Muranaka
- Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsukasa Yagi
- Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Zhu Z, Chen T, Wang Z, Xue Y, Wu W, Wang Y, Du Q, Wu Y, Zeng Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. Integrated Proteomics and Metabolomics Link Acne to the Action Mechanisms of Cryptotanshinone Intervention. Front Pharmacol 2021; 12:700696. [PMID: 34539397 PMCID: PMC8440807 DOI: 10.3389/fphar.2021.700696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/20/2021] [Indexed: 01/18/2023] Open
Abstract
The label-free methods of proteomic combined with metabolomics were applied to explore the mechanisms of Cryptotanshinone (CPT) intervention in rats with acne. The model group consisted of rats given oleic acid (MC), then treated with CPT, while control groups did not receive treatment. The skin samples were significantly different between control, model and CPT-treated groups in hierarchical clustering dendrogram. Obvious separations of the skin metabolic profiles from the three groups were found through PCA scoring. In total, 231 and 189 differentially expressed proteins (DEPs) were identified in MC and CPT groups, respectively. By the KEGG analysis, five protein and metabolite pathways were found to be significantly altered. These played important roles in response to oleic acid-induced acne and drug treatment. CPT could negatively regulate glycolysis/gluconeogenesis and histidine metabolisms to decrease keratinocyte differentiation and improve excessive keratinization and cellular barrier function. CPT could down-regulate the IL-17 signaling pathway and regulate the acne-driven immune response of sebum cells. The biosynthesis of unsaturated fatty acids metabolism, glycerophospholipid metabolism and linoleic acid pathways could significantly alter sebum production and control sebaceous gland secretion after CPT treatment. The gap junction was up-regulated after CPT treatment and the skin barrier turned back to normal. Krt 14, Krt 16 and Krt 17 were significantly down-regulated, decreasing keratinization, while inflammatory cell infiltration was improved by down-regulation of Msn, up-regulation of linoleic acid and estrogen pathways after CPT treatment. These results propose action mechanisms for the use of CPT in acne, as a safe and potential new drug.
Collapse
Affiliation(s)
- Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Neutrophils lacking ERM proteins polarize and crawl directionally but have decreased adhesion strength. Blood Adv 2021; 4:3559-3571. [PMID: 32761234 DOI: 10.1182/bloodadvances.2020002423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Ezrin/radixin/moesin (ERM) proteins are adaptors that link the actin cytoskeleton to the cytoplasmic domains of membrane proteins. Leukocytes express mostly moesin with lower levels of ezrin but no radixin. When leukocytes are activated, ERMs are postulated to redistribute membrane proteins from microvilli into uropods during polarization and to transduce signals that influence adhesion and other responses. However, these functions have not been tested in leukocytes lacking all ERMs. We used knockout (KO) mice with neutrophils lacking ezrin, moesin, or both proteins (double knockout [DKO]) to probe how ERMs modulate cell shape, adhesion, and signaling in vitro and in vivo. Surprisingly, chemokine-stimulated DKO neutrophils still polarized and redistributed ERM-binding proteins such as PSGL-1 and CD44 to the uropods. Selectin binding to PSGL-1 on moesin KO or DKO neutrophils activated kinases that enable integrin-dependent slow rolling but not those that generate neutrophil extracellular traps. Flowing neutrophils of all genotypes rolled normally on selectins and, upon chemokine stimulation, arrested on integrin ligands. However, moesin KO and DKO neutrophils exhibited defective integrin outside-in signaling and reduced adhesion strength. In vivo, DKO neutrophils displayed normal directional crawling toward a chemotactic gradient, but premature detachment markedly reduced migration from venules into inflamed tissues. Our results demonstrate that stimulated neutrophils do not require ERMs to polarize or to move membrane proteins into uropods. They also reveal an unexpected contribution of moesin to integrin outside-in signaling and adhesion strengthening.
Collapse
|
15
|
Sprenkeler EGG, Guenther C, Faisal I, Kuijpers TW, Fagerholm SC. Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting-Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases. Front Immunol 2021; 12:615477. [PMID: 33692789 PMCID: PMC7938309 DOI: 10.3389/fimmu.2021.615477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Okazaki T, Saito D, Inden M, Kawaguchi K, Wakimoto S, Nakahari T, Asano S. Moesin is involved in microglial activation accompanying morphological changes and reorganization of the actin cytoskeleton. J Physiol Sci 2020; 70:52. [PMID: 33129281 PMCID: PMC10717892 DOI: 10.1186/s12576-020-00779-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Moesin is a member of the ezrin, radixin and moesin (ERM) proteins that are involved in the formation and/or maintenance of cortical actin organization through their cross-linking activity between actin filaments and proteins located on the plasma membranes as well as through regulation of small GTPase activities. Microglia, immune cells in the central nervous system, show dynamic reorganization of the actin cytoskeleton in their process elongation and retraction as well as phagocytosis and migration. In microglia, moesin is the predominant ERM protein. Here, we show that microglial activation after systemic lipopolysaccharide application is partly inhibited in moesin knockout (Msn-KO) mice. We prepared primary microglia from wild-type and Msn-KO mice, and studied them to compare their phenotypes accompanying morphological changes and reorganization of the actin cytoskeleton induced by UDP-stimulated phagocytosis and ADP-stimulated migration. The Msn-KO microglia showed higher phagocytotic activity in the absence of UDP, which was not further increased by the treatment with UDP. They also exhibited decreased ADP-stimulated migration activities compared with the wild-type microglia. However, the Msn-KO microglia retained their ability to secrete tumor necrosis factor α and nitric oxide in response to lipopolysaccharide.
Collapse
Affiliation(s)
- Tomonori Okazaki
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Daichi Saito
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Gifu City University Nishi, Gifu, 501-1196, Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Sayuri Wakimoto
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan.
| |
Collapse
|
17
|
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. J Innate Immun 2020; 13:3-25. [PMID: 32846417 DOI: 10.1159/000509717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of primary immunodeficiencies (PIDs) have been identified over the last decade, which are caused by deleterious mutations in genes encoding for proteins involved in actin cytoskeleton regulation. These mutations primarily affect hematopoietic cells and lead to defective function of immune cells, such as impaired motility, signaling, proliferative capacity, and defective antimicrobial host defense. Here, we review several of these immunological "actinopathies" and cover both clinical aspects, as well as cellular mechanisms of these PIDs. We focus in particular on the effect of these mutations on human neutrophil function.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands, .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Steven D S Webbers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
19
|
Shabardina V, Kashima Y, Suzuki Y, Makalowski W. Emergence and Evolution of ERM Proteins and Merlin in Metazoans. Genome Biol Evol 2020; 12:3710-3724. [PMID: 31851361 PMCID: PMC6978628 DOI: 10.1093/gbe/evz265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Ezrin, radixin, moesin, and merlin are cytoskeletal proteins, whose functions are specific to metazoans. They participate in cell cortex rearrangement, including cell-cell contact formation, and play an important role in cancer progression. Here, we have performed a comprehensive phylogenetic analysis of the proteins spanning 87 species. The results describe a possible mechanism for the protein family origin in the root of Metazoa, paralogs diversification in vertebrates, and acquisition of novel functions, including tumor suppression. In addition, a merlin paralog, present in most vertebrates but lost in mammals, has been described here for the first time. We have also highlighted a set of amino acid variations within the conserved motifs as the candidates for determining physiological differences between ERM paralogs.
Collapse
Affiliation(s)
| | - Yukie Kashima
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | | |
Collapse
|
20
|
Fan Y, Zhang G, Vong CT, Ye RD. Serum amyloid A3 confers protection against acute lung injury in Pseudomonas aeruginosa-infected mice. Am J Physiol Lung Cell Mol Physiol 2019; 318:L314-L322. [PMID: 31851532 DOI: 10.1152/ajplung.00309.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium associated with serious illnesses, including ventilator-associated pneumonia and various sepsis syndromes in humans. Understanding the host immune mechanisms against P. aeruginosa is, therefore, of clinical importance. The present study identified serum amyloid A3 (SAA3) as being highly inducible in mouse bronchial epithelium following P. aeruginosa infection. Genetic deletion of Saa3 rendered mice more susceptible to P. aeruginosa infection with decreased neutrophil superoxide anion production, and ex vivo treatment of mouse neutrophils with recombinant SAA3 restored the ability of neutrophils to produce superoxide anions. The SAA3-deficient mice showed exacerbated inflammatory responses, which was characterized by pronounced neutrophil infiltration, elevated expression of TNF-α, KC/CXCL1, and MIP-2/CXCL2 in bronchoalveolar lavage fluid (BALF), and increased lung microvascular permeability compared with their wild-type littermates. BALF neutrophils from Saa3 knockout mice exhibited reduced superoxide anion production compared with neutrophils from wild-type mice. Adoptive transfer of SAA3-treated neutrophils to Saa3 knockout mice ameliorated P. aeruginosa-induced acute lung injury. These findings demonstrate that SAA3 not only serves as a biomarker for infection and inflammation, but also plays a protective role against P. aeruginosa infection-induced lung injury in part through augmentation of neutrophil bactericidal functions.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Gufang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chi Teng Vong
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Richard D Ye
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
21
|
Graziano BR, Town JP, Sitarska E, Nagy TL, Fošnarič M, Penič S, Iglič A, Kralj-Iglič V, Gov NS, Diz-Muñoz A, Weiner OD. Cell confinement reveals a branched-actin independent circuit for neutrophil polarity. PLoS Biol 2019; 17:e3000457. [PMID: 31600188 PMCID: PMC6805013 DOI: 10.1371/journal.pbio.3000457] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/22/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments. Cells display a high degree of plasticity in migration, but how polarity is organized in different microenvironments has remained unclear. This study uses mechanical perturbations to reveal that migration using actin-rich or bleb-based protrusions are both organized around Rac GTPase.
Collapse
Affiliation(s)
- Brian R. Graziano
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Jason P. Town
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tamas L. Nagy
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Miha Fošnarič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Samo Penič
- Department of Theoretical Electrotechnics, Mathematics and Physics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
- Department of Theoretical Electrotechnics, Mathematics and Physics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia
| | | | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Orion D. Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
PTENα promotes neutrophil chemotaxis through regulation of cell deformability. Blood 2019; 133:2079-2089. [PMID: 30926592 DOI: 10.1182/blood-2019-01-899864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are a major component of immune defense and are recruited through neutrophil chemotaxis in response to invading pathogens. However, the molecular mechanism that controls neutrophil chemotaxis remains unclear. Here, we report that PTENα, the first isoform identified in the PTEN family, regulates neutrophil deformability and promotes chemotaxis of neutrophils. A high level of PTENα is detected in neutrophils and lymphoreticular tissues. Homozygous deletion of PTENα impairs chemoattractant-induced migration of neutrophils. We show that PTENα physically interacts with cell membrane cross-linker moesin through its FERM domain and dephosphorylates moesin at Thr558, which disrupts the association of filamentous actin with the plasma membrane and subsequently induces morphologic changes in neutrophil pseudopodia. These results demonstrate that PTENα acts as a phosphatase of moesin and modulates neutrophil-mediated host immune defense. We propose that PTENα signaling is a potential target for the treatment of infections and immune diseases.
Collapse
|
23
|
Zehrer A, Pick R, Salvermoser M, Boda A, Miller M, Stark K, Weckbach LT, Walzog B, Begandt D. A Fundamental Role of Myh9 for Neutrophil Migration in Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1748-1764. [PMID: 30068598 DOI: 10.4049/jimmunol.1701400] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/11/2018] [Indexed: 01/13/2023]
Abstract
Neutrophils are the first leukocytes to arrive at sites of injury during the acute inflammatory response. To maintain the polarized morphology during migration, nonmuscle myosins class II are essential, but studies using genetic models to investigate the role of Myh9 for neutrophil migration were missing. In this study, we analyzed the functional role of Myh9 on neutrophil trafficking using genetic downregulation of Myh9 in Vav-iCre+/Myh9wt/fl mice because the complete knockout of Myh9 in the hematopoietic system was lethal. Migration velocity and Euclidean distance were significantly diminished during mechanotactic migration of Vav-iCre+/Myh9wt/fl neutrophils compared with Vav-iCre-/Myh9wt/fl control neutrophils. Similar results were obtained for transmigration and migration in confined three-dimensional environments. Stimulated emission depletion nanoscopy revealed that a certain threshold of Myh9 was required to maintain proper F-actin dynamics in the front of the migrating cell. In laser-induced skin injury and in acute peritonitis, reduced Myh9 expression in the hematopoietic system resulted in significantly diminished neutrophil extravasation. Investigation of bone marrow chimeric mice in the peritonitis model revealed that the migration defect was cell intrinsic. Expression of Myh9-EGFP rescued the Myh9-related defects in two-dimensional and three-dimensional migration of Hoxb8-SCF cell-derived neutrophils generated from fetal liver cells with a Myh9 knockdown. Live cell imaging provided evidence that Myh9 was localized in branching lamellipodia and in the uropod where it may enable fast neutrophil migration. In summary, the severe migration defects indicate an essential and fundamental role of Myh9 for neutrophil trafficking in innate immunity.
Collapse
Affiliation(s)
- Annette Zehrer
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Robert Pick
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Melanie Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Annegret Boda
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Meike Miller
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ludwig T Weckbach
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and.,Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| |
Collapse
|
24
|
Abstract
Moesin is expressed in several types of cells including epithelial and endothelial cells. Several groups reported that moesin plays important roles in the regulation of the cellular motility, and the process of internalization of membrane proteins. However, the physiological roles of moesin in the kidney still remain unclear. Herein, we examined the physiological function of moesin in the kidney using moesin knockout (Msn -/y ) mice. There was no obvious abnormality in the renal morphology of Msn -/y mice. However, we found that Msn -/y mice exhibited mild hyperchloremia, and reduced glomerular filtration rate compared to wild type (WT) mice. Absolute electrolytes excretions of NaCl in Msn -/y mice were not significantly changed compared to WT mice. In the renal medulla, moesin was detected in thick ascending limb of Henle (TALH) as previously reported. To determine the physiological function of moesin in TALH, we examined the expression and subcellular localization of NKCC2 in Msn -/y mice. Interestingly, apical surface expression level, but not total expression of NKCC2 was increased in Msn -/y mice. Subcellular fractionation of renal medulla lysate and internalization assay using tubular suspension showed that the process of NKCC2 endocytosis is impaired. Since the distribution of NKCC2 in lipid raft fractions was decreased in Msn -/y mice, moesin may regulate the NKCC2 distribution to microdomain. These results suggest that moesin regulates the internalization of NKCC2. Furthermore, euhydration by water loading caused hyponatremina in Msn -/y mice, suggesting that dysfunction of moesin is associated with the nephrogenic syndrome of inappropriate antidiuresis (NSIAD).
Collapse
|
25
|
Gomez CP, Descoteaux A. Moesin and myosin IIA modulate phagolysosomal biogenesis in macrophages. Biochem Biophys Res Commun 2017; 495:1964-1971. [PMID: 29247647 DOI: 10.1016/j.bbrc.2017.12.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
Biogenesis of phagolysosomes is central to the elimination of pathogens by macrophages. We previously showed that Src homology region 2 domain-containing phosphatase 1 (SHP-1) participates in the regulation of phagosome maturation. Through proteomics, we identified moesin and the non-muscle myosin-IIA as proteins interacting with SHP-1 during phagocytosis. Silencing of either moesin or myosin IIA with small interfering RNA inhibited phagosomal acidification and recruitment of LAMP-1. Moreover, the intraphagosomal oxidative burst was impaired in the absence of either SHP-1 or myosin IIA but not moesin. Finally, absence of either SHP-1, moesin, or myosin IIA ablated the capacity of macrophages to clear bacterial infection. Collectively, these results implicate both moesin and myosin IIA in the regulation of phagolysosome biogenesis and in host defense against infections.
Collapse
Affiliation(s)
- Carolina P Gomez
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
26
|
Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q. Chemotaxis-Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport. Angew Chem Int Ed Engl 2017; 56:12935-12939. [DOI: 10.1002/anie.201706570] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Jingxin Shao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Mingjun Xuan
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Hongyue Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| |
Collapse
|
27
|
Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q. Chemotaxis-Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706570] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jingxin Shao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Mingjun Xuan
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Hongyue Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| |
Collapse
|
28
|
Kawaguchi K, Yoshida S, Hatano R, Asano S. Pathophysiological Roles of Ezrin/Radixin/Moesin Proteins. Biol Pharm Bull 2017; 40:381-390. [PMID: 28381792 DOI: 10.1248/bpb.b16-01011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ezrin/radixin/moesin (ERM) proteins function as general cross-linkers between plasma membrane proteins and the actin cytoskeleton and are involved in the functional expression of membrane proteins on the cell surface. They also integrate Rho guanosine 5'-triphosphatase (GTPase) signaling to regulate cytoskeletal organization by sequestering Rho-related proteins. They act as protein kinase A (PKA)-anchoring proteins and sequester PKA close to its target proteins for their effective phosphorylation and functional regulation. Therefore, ERM proteins seem to play important roles in the membrane transport of electrolytes by ion channels and transporters. In this review, we focus on the pathophysiological roles of ERM proteins in in vivo studies and introduce the phenotypes of their knockout and knockdown mice.
Collapse
Affiliation(s)
- Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | | | | |
Collapse
|
29
|
Degryse B, Britto M, Shan CX, Wallace RG, Rochfort KD, Cummins PM, Meade G, Murphy RP. Moesin and merlin regulate urokinase receptor-dependent endothelial cell migration, adhesion and angiogenesis. Int J Biochem Cell Biol 2017; 88:14-22. [DOI: 10.1016/j.biocel.2017.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 04/02/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
30
|
Abstract
Cell motility is required for diverse biological processes including development, homing of immune cells, wound healing, and cancer cell invasion. Motile neutrophils exhibit a polarized morphology characterized by the formation of leading-edge pseudopods and a highly contractile cell rear known as the uropod. Although it is known that perturbing uropod formation impairs neutrophil migration, the role of the uropod in cell polarization and motility remains incompletely understood. Here we discuss cell intrinsic mechanisms that regulate neutrophil polarization and motility, with a focus on the uropod, and examine how relationships among regulatory mechanisms change when cells change their direction of migration.
Collapse
|
31
|
Filter JJ, Williams BC, Eto M, Shalloway D, Goldberg ML. Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1). eLife 2017; 6. [PMID: 28387646 PMCID: PMC5441869 DOI: 10.7554/elife.24665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022] Open
Abstract
The small phosphoprotein pCPI-17 inhibits myosin light-chain phosphatase (MLCP). Current models postulate that during muscle relaxation, phosphatases other than MLCP dephosphorylate and inactivate pCPI-17 to restore MLCP activity. We show here that such hypotheses are insufficient to account for the observed rapidity of pCPI-17 inactivation in mammalian smooth muscles. Instead, MLCP itself is the critical enzyme for pCPI-17 dephosphorylation. We call the mutual sequestration mechanism through which pCPI-17 and MLCP interact inhibition by unfair competition: MLCP protects pCPI-17 from other phosphatases, while pCPI-17 blocks other substrates from MLCP’s active site. MLCP dephosphorylates pCPI-17 at a slow rate that is, nonetheless, both sufficient and necessary to explain the speed of pCPI-17 dephosphorylation and the consequent MLCP activation during muscle relaxation. DOI:http://dx.doi.org/10.7554/eLife.24665.001
Collapse
Affiliation(s)
- Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
32
|
Kim SY, Kim S, Bae DJ, Park SY, Lee GY, Park GM, Kim IS. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. PLoS One 2017; 12:e0174603. [PMID: 28376111 PMCID: PMC5380344 DOI: 10.1371/journal.pone.0174603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
The removal of unwanted or damaged cells by phagocytes is achieved via a finely regulated cleaning process called efferocytosis. To characterize the mechanisms through which phagocytes control the intake of apoptotic cells, we investigated how the phagocyte’s appetite for engulfed cells may be coordinated by RhoA and Rac1 in the phagocytic cup. We used FRET biosensors to visualize the spatiotemporal dynamics of Rho-family GTPases, and found that RhoA, which is known to be downregulated during phagocytosis, was transiently upregulated at the phagocytic cup immediately prior to ingestion. Conversely, Rac1 was upregulated during the engulfment process and then downregulated prior to phagosomal maturation. Moreover, disturbance of the dynamic activities of RhoA led to uncontrolled engulfment, such as fast and undiscerning eating. Our results reveal that the temporal activity of RhoA GTPase alters the Rac1/RhoA balance at the phagocytic cup prior to ingestion, and that this plays a distinct role in orchestrating efferocytosis, with RhoA modulating the rate of engulfment to ensure that the phagocyte engulfs an appropriate amount of the correct material.
Collapse
Affiliation(s)
- Sang-Yeob Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (SK); (ISK)
| | - Dong-Jun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Ga-Young Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyeong-Min Park
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KU-KIST school, Korea University, Seoul, Republic of Korea
- * E-mail: (SK); (ISK)
| |
Collapse
|
33
|
Wang G, Cao L, Liu X, Sieracki NA, Di A, Wen X, Chen Y, Taylor S, Huang X, Tiruppathi C, Zhao YY, Song Y, Gao X, Jin T, Bai C, Malik AB, Xu J. Oxidant Sensing by TRPM2 Inhibits Neutrophil Migration and Mitigates Inflammation. Dev Cell 2016; 38:453-62. [PMID: 27569419 DOI: 10.1016/j.devcel.2016.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/22/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023]
Abstract
Blood neutrophils perform an essential host-defense function by directly migrating to bacterial invasion sites to kill bacteria. The mechanisms mediating the transition from the migratory to bactericidal phenotype remain elusive. Here, we demonstrate that TRPM2, a trp superfamily member, senses neutrophil-generated reactive oxygen species and restrains neutrophil migration. The inhibitory function of oxidant sensing by TRPM2 requires the oxidation of Cys549, which then induces TRMP2 binding to formyl peptide receptor 1 (FPR1) and subsequent FPR1 internalization and signaling inhibition. The oxidant sensing-induced termination of neutrophil migration at the site of infection permits a smooth transition to the subsequent microbial killing phase.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Luyang Cao
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Xiaowen Liu
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Nathan A Sieracki
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Anke Di
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yong Chen
- Proteomic Core Facility, NHLBI, NIH, Bethesda, MD 20824, USA
| | - Shalina Taylor
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Xiaojia Huang
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | - You-Yang Zhao
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaopei Gao
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Jingsong Xu
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA; Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
ROCK inhibition impedes macrophage polarity and functions. Cell Immunol 2016; 300:54-62. [DOI: 10.1016/j.cellimm.2015.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
|
35
|
Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. Proc Natl Acad Sci U S A 2016; 113:1267-72. [PMID: 26764383 DOI: 10.1073/pnas.1513289113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemotaxis, the directional migration of cells in a chemical gradient, is robust to fluctuations associated with low chemical concentrations and dynamically changing gradients as well as high saturating chemical concentrations. Although a number of reports have identified cellular behavior consistent with a directional memory that could account for behavior in these complex environments, the quantitative and molecular details of such a memory process remain unknown. Using microfluidics to confine cellular motion to a 1D channel and control chemoattractant exposure, we observed directional memory in chemotactic neutrophil-like cells. We modeled this directional memory as a long-lived intracellular asymmetry that decays slower than observed membrane phospholipid signaling. Measurements of intracellular dynamics revealed that moesin at the cell rear is a long-lived element that when inhibited, results in a reduction of memory. Inhibition of ROCK (Rho-associated protein kinase), downstream of RhoA (Ras homolog gene family, member A), stabilized moesin and directional memory while depolymerization of microtubules (MTs) disoriented moesin deposition and also reduced directional memory. Our study reveals that long-lived polarized cytoskeletal structures, specifically moesin, actomyosin, and MTs, provide a directional memory in neutrophil-like cells even as they respond on short time scales to external chemical cues.
Collapse
|
36
|
Liu X, Yang T, Suzuki K, Tsukita S, Ishii M, Zhou S, Wang G, Cao L, Qian F, Taylor S, Oh MJ, Levitan I, Ye RD, Carnegie GK, Zhao Y, Malik AB, Xu J. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient. J Biophys Biochem Cytol 2015. [DOI: 10.1083/jcb.2083oia12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|