1
|
Nabekura T. Immunological memory in natural killer cells. Int Immunol 2025:dxaf016. [PMID: 40388217 DOI: 10.1093/intimm/dxaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/18/2025] [Indexed: 05/20/2025] Open
Abstract
Immune cells are classified into adaptive and innate immune cells. Adaptive immune cells-i.e. T cells and B cells-respond to pathogens in an antigen-specific manner and then provide immunological memory, contributing to long-term host defense against reinfection. In contrast, innate immune cells promptly respond to pathogens, but they are short-lived and have been thought not to contribute to immunological memory. Natural killer (NK) cells are lymphocytes essential for controlling viral infections and cancer. NK cells-which have traditionally been classified as innate immune cells-have recently been revealed as being capable of differentiating into memory NK cells, thus participating in immunological memory, formerly considered to be restricted to adaptive immune cells. Like memory T and B cells, memory NK cells (i) can be long-lived; (ii) display distinct phenotypes from naïve and activated NK cells; (iii) show augmented cellular functions, as compared with naïve NK cells; (iv) have secondary proliferation capacity; and (v) confer an improved host defense when transferred to naïve recipients. Therefore, at least in a broad sense, they fulfill the definition of immunological memory. In this article, I provide an overview of NK cell memory and recent research trends regarding this phenomenon.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Division of Immune Response, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
2
|
Yun IH, Yang J. Mechanisms of allorecognition and xenorecognition in transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:273-293. [PMID: 39743230 PMCID: PMC11732770 DOI: 10.4285/ctr.24.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells. Innate immune cells, such as dendritic cells, identify pathogen- or danger-associated molecular patterns through pattern recognition receptors, thereby facilitating effective antigen presentation to T cells. Recent studies have shown that innate immune cells, including macrophages and NK cells, can recognize allogeneic or xenogeneic antigens using immune receptors like CD47 or activating NK receptors, instead of pattern recognition receptors. Additionally, macrophages and NK cells are capable of exhibiting memory responses to alloantigens, although these responses are shorter than those of adaptive memory. T cells also recognize xenoantigens through either direct or indirect presentation. Notably, macrophages and NK cells can directly recognize xenoantigens via surface immune receptors in an antibody-independent manner, or they can be activated in an antibody-dependent manner. Advances in our understanding of the recognition mechanisms of adaptive and innate immunity against allogeneic and xenogeneic antigens may improve our understanding of graft rejection.
Collapse
Affiliation(s)
- Il Hee Yun
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Owen MC, Kopecky BJ. Targeting Macrophages in Organ Transplantation: A Step Toward Personalized Medicine. Transplantation 2024; 108:2045-2056. [PMID: 38467591 PMCID: PMC11390981 DOI: 10.1097/tp.0000000000004978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.
Collapse
Affiliation(s)
- Macee C Owen
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
4
|
Hamdan TA. The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. Immune Netw 2024; 24:e29. [PMID: 39246620 PMCID: PMC11377952 DOI: 10.4110/in.2024.24.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.
Collapse
Affiliation(s)
- Thamer A Hamdan
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
5
|
Gui Z, Al Moussawy M, Sanders SM, Abou-Daya KI. Innate Allorecognition in Transplantation: Ancient Mechanisms With Modern Impact. Transplantation 2024; 108:1524-1531. [PMID: 38049941 PMCID: PMC11188633 DOI: 10.1097/tp.0000000000004847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023]
Abstract
Through the effective targeting of the adaptive immune system, solid organ transplantation became a life-saving therapy for organ failure. However, beyond 1 y of transplantation, there is little improvement in transplant outcomes. The adaptive immune response requires the activation of the innate immune system. There are no modalities for the specific targeting of the innate immune system involvement in transplant rejection. However, the recent discovery of innate allorecognition and innate immune memory presents novel targets in transplantation that will increase our understanding of organ rejection and might aid in improving transplant outcomes. In this review, we look at the latest developments in the study of innate allorecognition and innate immune memory in transplantation.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Khodor I. Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Schuster IS, Andoniou CE, Degli-Esposti MA. Tissue-resident memory NK cells: Homing in on local effectors and regulators. Immunol Rev 2024; 323:54-60. [PMID: 38568046 PMCID: PMC11102295 DOI: 10.1111/imr.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Natural killer (NK) cells are the prototype innate effector lymphocyte population that plays an important role in controlling viral infections and tumors. Studies demonstrating that NK cells form long-lived memory populations, akin to those generated by adaptive immune cells, prompted a revaluation of the potential functions of NK cells. Recent data demonstrating that NK cells are recruited from the circulation into tissues where they form long-lived memory-like populations further emphasize that NK cells have properties that mirror those of adaptive immune cells. NK cells that localize in non-lymphoid tissues are heterogeneous, and there is a growing appreciation that immune responses occurring within tissues are subject to tissue-specific regulation. Here we discuss both the immune effector and immunoregulatory functions of NK cells, with a particular emphasis on the role of NK cells within non-lymphoid tissues and how the tissue microenvironment shapes NK cell-dependent outcomes.
Collapse
Affiliation(s)
- Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
| |
Collapse
|
7
|
Horta AL, Gigley J, Boutet M, Lavau G, Weiss LM, Huang H. Memory-like NK Cells Are a Critical Component of Vaccine-Induced Immunity to Trypanosoma cruzi Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:617-631. [PMID: 38197653 PMCID: PMC10872457 DOI: 10.4049/jimmunol.2300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Chagas disease by Trypanosoma cruzi infection is a major public health issue. The available therapeutic agents have limited efficacy and significant side effects. A reliable vaccine would reduce the threat of T. cruzi infections and prevent Chagas disease. Understanding the immune response to this infection would improve vaccine design. We previously demonstrated that adoptively transferred NK cells from mice immunized with highly attenuated T. cruzi, GFP-DDDHA strain, provided potent protection in naive recipients against secondary lethal challenge with various wild-type (WT) strains. To understand the importance of NK cells in protecting mice against T. cruzi infection, we performed an in-depth characterization of NK cell phenotype, responses, and memory-like traits during acute infections due to GFP-DDDHA and WT strains and in immunized mice during a recall response to a WT lethal challenge. NK cells robustly expanded and became more mature and cytolytic during the GFP-DDDHA strain immunization. NK cells in immunized mice responded more robustly after WT lethal challenge than during an acute primary WT infection. In addition, protection by immunization with the GFP-DDDHA strain is significantly weakened in NK cell-deficient mice and did not prevent parasitemia from WT lethal challenge, indicating that NK cells with memory-like traits were a critical component for early control of WT lethal challenge. Prior T. cruzi vaccine development studies have not included studies of this rapid NK response. These findings provide insights into overcoming existing challenges in developing a safe and effective vaccine to prevent this infection.
Collapse
Affiliation(s)
- Aline L. Horta
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gregoire Lavau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
8
|
Nabekura T, Deborah EA, Tahara S, Arai Y, Love PE, Kako K, Fukamizu A, Muratani M, Shibuya A. Themis2 regulates natural killer cell memory function and formation. Nat Commun 2023; 14:7200. [PMID: 37938555 PMCID: PMC10632368 DOI: 10.1038/s41467-023-42578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Elfira Amalia Deborah
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Saeko Tahara
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Arai
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Koichiro Kako
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
9
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
10
|
Lau CM, Wiedemann GM, Sun JC. Epigenetic regulation of natural killer cell memory. Immunol Rev 2022; 305:90-110. [PMID: 34908173 PMCID: PMC8955591 DOI: 10.1111/imr.13031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
Immunological memory is the underlying mechanism by which the immune system remembers previous encounters with pathogens to produce an enhanced secondary response upon re-encounter. It stands as the hallmark feature of the adaptive immune system and the cornerstone of vaccine development. Classic recall responses are executed by conventional T and B cells, which undergo somatic recombination and modify their receptor repertoire to ensure recognition of a vast number of antigens. However, recent evidence has challenged the dogma that memory responses are restricted to the adaptive immune system, which has prompted a reevaluation of what delineates "immune memory." Natural killer (NK) cells of the innate immune system have been at the forefront of these pushed boundaries, and have proved to be more "adaptable" than previously thought. Like T cells, we now appreciate that their "natural" abilities actually require a myriad of signals for optimal responses. In this review, we discuss the many signals required for effector and memory NK cell responses and the epigenetic mechanisms that ultimately endow their enhanced features.
Collapse
Affiliation(s)
- Colleen M. Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela M. Wiedemann
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
11
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
12
|
Cai Z, Xing R, Liu J, Xing F. Commentary: PIRs Mediate Innate Myeloid Cell Memory to Nonself MHC Molecules. Front Immunol 2021; 12:721344. [PMID: 34804010 PMCID: PMC8600524 DOI: 10.3389/fimmu.2021.721344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhenlong Cai
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Ministry of Education (MOE) Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Rui Xing
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Liu
- Department of Prosthodontics, Jinan University School of Stomatology, Guangzhou, China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Ministry of Education (MOE) Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Natural killer (NK) cells are innate lymphocytes that provide critical host defense against pathogens and cancer. Originally heralded for their early and rapid effector activity, NK cells have been recognized over the last decade for their ability to undergo adaptive immune processes, including antigen-driven clonal expansion and generation of long-lived memory. This review presents an overview of how NK cells lithely partake in both innate and adaptive responses and how this versatility is manifest in human NK cell-mediated immunity.
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rebecca B Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
14
|
Abou-Daya KI, Oberbarnscheidt MH. Innate allorecognition in transplantation. J Heart Lung Transplant 2021; 40:557-561. [PMID: 33958265 DOI: 10.1016/j.healun.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Successful allogeneic transplantation has been made possible by suppressing activation of the adaptive immune system. Current immunosuppressive therapy prevents rejection by targeting T and B cells. Despite this effective treatment, it is the innate immune system, which includes dendritic cells, monocytes, natural killer cells, that is responsible for the initiation of the adaptive immune response. Recent work has described that the innate immune system is capable of recognizing allogeneic nonself and some of the mechanisms of innate allorecognition have been uncovered. Better understanding of the role of the innate immune system in initiation and maintenance of the allo-immune response has potential to lead to better treatment strategies for transplant patients, prolonging allograft survival. Here, we review advances in our understanding of innate allorecognition in transplantation.
Collapse
Affiliation(s)
- Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
15
|
Wight A, Parsons BD, Rahim MMA, Makrigiannis AP. A Central Role for Ly49 Receptors in NK Cell Memory. THE JOURNAL OF IMMUNOLOGY 2021; 204:2867-2875. [PMID: 32423924 DOI: 10.4049/jimmunol.2000196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
In the past decade, the study of NK cells was transformed by the discovery of three ways these "innate" immune cells display adaptive immune behavior, including the ability to form long-lasting, Ag-specific memories of a wide variety of immunogens. In this review, we examine these types of NK cell memory, highlighting their unique features and underlying similarities. We explore those similarities in depth, focusing on the role that Ly49 receptors play in various types of NK cell memory. From this Ly49 dependency, we will build a model by which we understand the three types of NK cell memory as aspects of what is ultimately the same adaptive immune process, rather than separate facets of NK cell biology. We hope that a defined model for NK cell memory will empower collaboration between researchers of these three fields to further our understanding of this surprising and clinically promising immune response.
Collapse
Affiliation(s)
- Andrew Wight
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; and
| | - Mir Munir A Rahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; and
| |
Collapse
|
16
|
Type 1 innate lymphoid cells: Soldiers at the front line of immunity. Biomed J 2020; 44:115-122. [PMID: 33839081 PMCID: PMC8178574 DOI: 10.1016/j.bj.2020.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are tissue-resident innate lymphocytes that have functions to protect the hosts against pathogens and that regulate tissue inflammation and homeostasis. ILC subsets rapidly produce particular cytokines in response to infection, inflammation, and tissue injury at the local environment. Type 1 ILCs (ILC1s) promptly and abundantly produce interferon (IFN)-γ but lack appreciable cytotoxic activity. ILC1s share many phenotypic, developmental, and functional characteristics with natural killer (NK) cells, which are circulating innate lymphocytes with potent natural cytotoxicity. However, recent studies have established ILC1s as distinct from NK cells. ILC1s predominantly reside in the liver—they initially were discovered as a liver-resident ILC subset—as well as in other lymphoid and non-lymphoid tissues. Accumulating evidence has demonstrated that ILC1s play an important and unique role in host protection and in immunomodulation in their resident organs. However, the pathophysiological role of tissue-resident ILC1s remains largely unclear. In this review, we summarize emerging evidence showing that ILC1s not only contribute to inflammation to protect against pathogens but also promote tissue protection and metabolism. We highlight a unique function of ILC1s in their resident tissues.
Collapse
|
17
|
Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S, Dassa B, Van Hove H, Chappell-Maor L, Boura-Halfon S, Leshkowitz D, Mueller W, Maggio N, Movahedi K, Jung S. Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity 2020; 53:1033-1049.e7. [PMID: 33049219 DOI: 10.1016/j.immuni.2020.09.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/06/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.
Collapse
Affiliation(s)
- Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gal Ronit Frumer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jonathan Grozovski
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Serkalem Ayanaw
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hannah Van Hove
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Werner Mueller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 5262 Tel Aviv, Israel
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Cherrier M, Ramachandran G, Golub R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol 2020; 13:732-742. [PMID: 32651476 DOI: 10.1038/s41385-020-0320-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.
Collapse
Affiliation(s)
- Marie Cherrier
- Laboratoire d'Immunité Intestinale, Institut Imagine, INSERM U1163, Université Sorbonne Paris Cité, Paris, France.
| | - Gayetri Ramachandran
- Host-Microbiota Interaction, Institut Necker Enfants Malades, INSERM U1151, Université Sorbonne Paris Cité, Paris, France
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Institut Pasteur, Paris, France. .,INSERM U1223, Paris, France. .,Université de Paris, F-75006, Paris, France.
| |
Collapse
|
19
|
Zhao D, Abou-Daya KI, Dai H, Oberbarnscheidt MH, Li XC, Lakkis FG. Innate Allorecognition and Memory in Transplantation. Front Immunol 2020; 11:918. [PMID: 32547540 PMCID: PMC7270276 DOI: 10.3389/fimmu.2020.00918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, we have witnessed a decline in the rates of acute rejection without significant improvement in chronic rejection. Current treatment strategies principally target the adaptive immune response and not the innate response. Therefore, better understanding of innate immunity in transplantation and how to target it is highly desirable. Here, we review the latest advances in innate immunity in transplantation focusing on the roles and mechanisms of innate allorecognition and memory in myeloid cells. These novel concepts could explain why alloimmune response do not abate over time and shed light on new molecular pathways that can be interrupted to prevent or treat chronic rejection.
Collapse
Affiliation(s)
- Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hehua Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xian C Li
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, Friday AJ, Williams AL, Sun T, Chen J, Chen W, Mortin-Toth S, Danska JS, Wiebe C, Nickerson P, Li T, Mathews LR, Turnquist HR, Nicotra ML, Gingras S, Takayama E, Kubagawa H, Shlomchik MJ, Oberbarnscheidt MH, Li XC, Lakkis FG. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science 2020; 368:1122-1127. [PMID: 32381589 DOI: 10.1126/science.aax4040] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/02/2019] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
Abstract
Immunological memory specific to previously encountered antigens is a cardinal feature of adaptive lymphoid cells. However, it is unknown whether innate myeloid cells retain memory of prior antigenic stimulation and respond to it more vigorously on subsequent encounters. In this work, we show that murine monocytes and macrophages acquire memory specific to major histocompatibility complex I (MHC-I) antigens, and we identify A-type paired immunoglobulin-like receptors (PIR-As) as the MHC-I receptors necessary for the memory response. We demonstrate that deleting PIR-A in the recipient or blocking PIR-A binding to donor MHC-I molecules blocks memory and attenuates kidney and heart allograft rejection. Thus, innate myeloid cells acquire alloantigen-specific memory that can be targeted to improve transplant outcomes.
Collapse
Affiliation(s)
- Hehua Dai
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peixiang Lan
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khodor Abou-Daya
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wentao Liu
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Andrew J Friday
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianjiao Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Tengfang Li
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa R Mathews
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hêth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Evolutionary Biology and Medicine (CEBaM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Hiromi Kubagawa
- Humoral Immune Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-Dependent NK Cell Response Is Essential for Protective Immunity against Secondary Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2944-2958. [PMID: 31604804 DOI: 10.4049/jimmunol.1801525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
NK cells can develop cell-intrinsic memory-like characteristics. Whether they develop these characteristics during Toxoplasma gondii infection is unknown. We addressed this question and dissected the mechanisms involved in secondary NK cell responses using a vaccine-challenge mouse model of T. gondii infection. NK cells were required for control of and survival after secondary T. gondii infection. NK cells increased in number at the reinfection site and produced IFN-γ. To test if these T. gondii experienced NK cells were intrinsically different from naive NK cells, we performed NK cell adoptive transfer into RAG2/cγ-chain-/- mice, NK cell fate mapping, and RAG1-/- mice vaccine-challenge experiments. Although NK cells contributed to immunity after reinfection, they did not develop cell-intrinsic memory-like characteristics after T. gondii vaccination. The mechanisms required for generating these secondary NK cell responses were investigated. Secondary NK cell responses were CD4+ or CD8+ T cell independent. Although IL-12 alone is required for NK cell IFN-γ production during primary T. gondii infection, in the absence of IL-12 using IL-12p35-/- mice or anti-IL-12p70, secondary NK cell responses were only partially reduced after reinfection. IL-23 depletion with anti-IL-23p19 in vivo also significantly reduced the secondary NK cell response. IL-12 and IL-23 blockade with anti-IL-12p40 treatment completely eliminated secondary NK cell responses. Importantly, blockade of IL-12, IL-23, or both significantly reduced control of parasite reinfection and increased parasite burden. Our results define a previously unknown protective role for NK cells during secondary T. gondii infection that is dependent on IL-12 and IL-23.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | | | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
22
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
23
|
Abstract
Innate lymphoid cells (ILCs), including natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells, comprise the first line of innate immune defense against pathogens and tumors. Over the past decade, accumulating evidence has demonstrated immunological memory in ILC subsets: for example, NK cells recall haptens, viruses, and cytokines; ILC1s recall haptens; and ILC2s recall cytokines. Although the development and functions of ILCs mirror those of T-cell subsets, ILC and T-cell memory exhibit both common characteristics and specific properties. Encouragingly, ILC memory has been found to confer benefits in long-term tumor control and vaccination, providing insight for novel memory ILC-based tumor immunotherapy and vaccine-development strategies. In this review, we discuss the evidence supporting ILC memory and present a comprehensive framework of the ILC memory system.
Collapse
|
24
|
Memory-like Liver Natural Killer Cells are Responsible for Islet Destruction in Secondary Islet Transplantation. Sci Rep 2019; 9:1022. [PMID: 30705364 PMCID: PMC6355863 DOI: 10.1038/s41598-018-37395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated the pivotal role of natural killer (NK) cells in islet graft loss during the early phase after intraportal syngeneic islet transplantation (IT). Liver-resident DX5- NK cells were reported to possess memory-like properties, distinguishing them from conventional DX5+ NK cells. Here, we investigated the impact of primary IT-induced liver DX5- NK cells on the engraftment of secondary-transplanted islets in mice. The culture of liver NK cells isolated from naive mice with TNF-α, IFN-γ, and IL-lβ, mimicking instant blood-mediated inflammatory reaction, led to significantly increased DX5- NK cell percentage among total liver NK cells. Consistently, the prolonged expansion of DX5- CD69+ TRAIL+ CXCR3+ NK cells was observed after intraportal IT of 300 syngeneic islets (marginal mass). In most diabetic mice, 400 syngeneic islets of primary IT were sufficient to achieve normoglycaemia, whereas the same mass after secondary IT failed to induce normoglycaemia in mice that received 200 syngeneic islets during primary IT. These findings indicated that liver-resident DX5- NK cells significantly expanded even after syngeneic IT, and that these memory-like NK cells may target both originally engrafted and secondary-transplanted islets. Furthermore, anti-TNF-α treatment suppressed the expansion of liver-resident DX5- NK cells, resulting in successful islet engraftment after sequential ITs.
Collapse
|
25
|
Cooper MA, Fehniger TA, Colonna M. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Vaccination Strategies Based on NK Cell and ILC Memory. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029512. [PMID: 29254976 DOI: 10.1101/cshperspect.a029512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies over the last decade have decisively shown that innate immune natural killer (NK) cells exhibit enhanced long-lasting functional responses following a single activation event. With the increased recognition of memory and memory-like properties of NK cells, questions have arisen with regard to their ability to effectively mediate vaccination responses in humans. Moreover, recently discovered innate lymphoid cells (ILCs) could also potentially exhibit memory-like functions. Here, we review different forms of NK cell memory, and speculate about the ability of these cells and ILCs to meaningfully contribute to vaccination responses.
Collapse
Affiliation(s)
- Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
26
|
Beaulieu AM. Memory responses by natural killer cells. J Leukoc Biol 2018; 104:1087-1096. [DOI: 10.1002/jlb.1ri0917-366r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Aimee M. Beaulieu
- Center for Immunity and InflammationNew Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers—The State University of New Jersey Newark New Jersey USA
- Department of Microbiology, Biochemistry, and Molecular GeneticsNew Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers—The State University of New Jersey Newark New Jersey USA
| |
Collapse
|
27
|
Nabekura T, Chen Z, Schroeder C, Park T, Vivier E, Lanier LL, Liu D. Crk Adaptor Proteins Regulate NK Cell Expansion and Differentiation during Mouse Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:3420-3428. [PMID: 29618525 DOI: 10.4049/jimmunol.1701639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Natural killer cells are critical in the immune response to infection and malignancy. Prior studies have demonstrated that Crk family proteins can influence cell apoptosis, proliferation, and cell transformation. In this study, we investigated the role of Crk family proteins in mouse NK cell differentiation and host defense using a mouse CMV infection model. The number of NK cells, maturational state, and the majority of the NKR repertoire was similar in Crk x Crk-like (CrkL)-double-deficient and wild type NK cells. However, Crk family proteins were required for optimal activation, IFN-γ production, expansion, and differentiation of Ly49H+ NK cells, as well as host defense during mouse CMV infection. The diminished function of Crk x CrkL-double-deficient NK cells correlated with decreased phosphorylation of STAT4 and STAT1 in response to IL-12 and IFN-α stimulation, respectively. Together, our findings analyzing NK cell-specific Crk-deficient mice provide insights into the role of Crk family proteins in NK cell function and host defense.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030
| | - Casey Schroeder
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030
| | - Taeju Park
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, MO 64108
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13288 Marseille, France; and
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030; .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
28
|
Dai KZ, Ryan JC, Naper C, Vaage JT. Identification of MHC Class Ib Ligands for Stimulatory and Inhibitory Ly49 Receptors and Induction of Potent NK Cell Alloresponses in Rats. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531166 DOI: 10.4049/jimmunol.1701464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Early studies indicate that rats may have a repertoire of MHC class Ib-reactive Ly49 stimulatory receptors capable of mounting memory-like NK cell alloresponses. In this article, we provide molecular and functional evidence for this assumption. Pairs of Ly49 receptors with sequence similarities in the lectin-like domains, but with opposing signaling functions, showed specificity for ligands with class Ia-like structural features encoded from the first telomeric MHC class Ib gene cluster, RT1-CE, which is syntenic with the H2-D/H2-L/H2-Q cluster in mice. The activating Ly49s4 receptor and its inhibitory counterparts, Ly49i4 and Ly49i3, reacted with all allelic variants of RT1-U, whereas Ly49s5 and Ly49i5 were specific for RT1-Eu NK cell cytolytic responses were predictably activated and inhibited, and potent in vivo NK alloresponses were induced by repeated MHC class Ib alloimmunizations. Additional Ly49-class Ib interactions, including RT1-Cl with the Ly49s4/Ly49i4/Ly49i3 group of receptors, were characterized using overexpressed receptor/ligand pairs, in vitro functional assays, and limited mutational analyses. Obvious, as well as subtle, Ly49-class Ib interactions led to ligand-induced receptor calibration and NK subset expansions in vivo. Together, these studies suggest that in vivo NK alloresponses are controlled by pleomorphic Ly49-class Ib interactions, some of which may not be easily detectable in vitro.
Collapse
Affiliation(s)
- Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - James C Ryan
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121; and
| | - Christian Naper
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - John T Vaage
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway; .,Department of Immunology, University of Oslo, 0424 Oslo, Norway
| |
Collapse
|
29
|
Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity 2017; 47:820-833. [PMID: 29166586 DOI: 10.1016/j.immuni.2017.10.008] [Citation(s) in RCA: 491] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells provide protection against infectious pathogens and cancer. For decades it has been appreciated that two major NK cell subsets (CD56bright and CD56dim) exist in humans and have distinct anatomical localization patterns, phenotypes, and functions in immunity. In light of this traditional NK cell dichotomy, it is now clear that the spectrum of human NK cell diversity is much broader than originally appreciated as a result of variegated surface receptor, intracellular signaling molecule, and transcription factor expression; tissue-specific imprinting; and foreign antigen exposure. The recent discoveries of tissue-resident NK cell developmental intermediates, non-NK innate lymphoid cells, and the capacity for NK cells to adapt and differentiate into long-lived memory cells has added further complexity to this field. Here we review our current understanding of the breadth and generation of human NK cell diversity.
Collapse
Affiliation(s)
- Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Nabekura T, Lanier LL. Activating Receptors for Self-MHC Class I Enhance Effector Functions and Memory Differentiation of NK Cells during Mouse Cytomegalovirus Infection. Immunity 2017; 45:74-82. [PMID: 27438766 DOI: 10.1016/j.immuni.2016.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Natural killer (NK) cells are important in host defense against pathogens, and they can subsequently differentiate into memory NK cells. The Ly49 and KIR gene families in rodents and humans encode both inhibitory and activating receptors for MHC class I. The physiological role of activating KIR or Ly49 receptors that recognize self-MHC class I during immune response to viral infections is unknown. Here, we address how the activating Ly49D receptor impacts the NK cell response to mouse cytomegalovirus (MCMV) infection by comparing the activation and differentiation of Ly49D-bearing NK cells in mice lacking or expressing H-2D(d), the cognate MHC class I ligand of Ly49D. After MCMV infection, Ly49D augmented IFN-γ production by MCMV-specific Ly49H(+) NK cells and preferentially promoted the generation of memory Ly49H(+) NK cells. Thus, activating receptors for self-MHC class I modulate the differentiation of MCMV-specific NK cells and are beneficial for host defense against MCMV infection.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143, USA; Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Memory responses of natural killer cells. Semin Immunol 2017; 31:11-19. [PMID: 28863960 DOI: 10.1016/j.smim.2017.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have traditionally been classified as a cellular component of the innate immune system, given their ability to rapidly produce effector cytokines and kill infected or transformed cells without prior exposure. More recently, NK cells have been shown to possess features of adaptive immunity such as clonal expansion, longevity, and robust recall responses. NK cell memory can be broadly divided into two categories: antigen-specific and antigen-independent. In the first case, exposure to certain viral or hapten stimuli endows NK cells with antigen-specific immunological memory, similar to T and B cells. In the second case, exposure of NK cells to specific cytokine milieus can imprint long-lasting changes on effector functions, resulting in antigen-independent memory-like NK cells. In this review, we discuss the various conditions that promote generation of these two categories of memory NK cells, and the mechanistic requirements underlying these processes.
Collapse
|
32
|
Nabekura T, Gotthardt D, Niizuma K, Trsan T, Jenus T, Jonjic S, Lanier LL. Cutting Edge: NKG2D Signaling Enhances NK Cell Responses but Alone Is Insufficient To Drive Expansion during Mouse Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:1567-1571. [PMID: 28760883 DOI: 10.4049/jimmunol.1700799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
NK cells play a critical role in host defense against viruses. In this study, we investigated the role of NKG2D in the expansion of NK cells after mouse CMV (MCMV) infection. Wild-type and NKG2D-deficient (Klrk1-/- ) Ly49H+ NK cells proliferated robustly when infected with MCMV strains engineered to allow expression of NKG2D ligands, which enhanced the response of wild-type NK cells. Naive NK cells exclusively express NKG2D-L, which pairs only with DAP10, whereas NKG2D-S expressed by activated NK cells pairs with DAP10 and DAP12, similar to Ly49H. However, NKG2D alone was unable to drive robust expansion of Ly49H- NK cells when mice were infected with these MCMV strains, likely because NKG2D-S was only transiently expressed postinfection. These findings demonstrate that NKG2D augments Ly49H-dependent proliferation of NK cells; however, NKG2D signaling alone is inadequate for expansion of NK cells, likely due to only transient expression of the NKG2D-DAP12 complex.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| | - Kouta Niizuma
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan; and
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Tina Jenus
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| |
Collapse
|
33
|
Zeleznjak J, Popovic B, Krmpotic A, Jonjic S, Lisnic VJ. Mouse cytomegalovirus encoded immunoevasins and evolution of Ly49 receptors - Sidekicks or enemies? Immunol Lett 2017; 189:40-47. [PMID: 28414184 DOI: 10.1016/j.imlet.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022]
Abstract
Cytomegaloviruses (CMVs) have dedicated a large portion of their genome towards immune evasion targeting many aspects of the host immune system, particularly NK cells. However, the host managed to cope with the infection by developing multiple mechanisms to recognize viral threat and counterattack it, thus illustrating never-ending evolutionary interplay between CMV and its host. In this review, we will focus on several mechanisms of NK cell evasion by mouse CMV (MCMV), the role of host inhibitory and activating Ly49 receptors involved in the virus control and acquisition of adaptive features by NK cells as a consequence of MCMV infection.
Collapse
Affiliation(s)
- Jelena Zeleznjak
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | - Branka Popovic
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | - Astrid Krmpotic
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | - Stipan Jonjic
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia.
| |
Collapse
|
34
|
Lam VC, Lanier LL. NK cells in host responses to viral infections. Curr Opin Immunol 2016; 44:43-51. [PMID: 27984782 DOI: 10.1016/j.coi.2016.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in viral clearance. NK cell responses to viral infections were originally believed to be non-specific and lacked immune memory recall responses. It is now appreciated that NK cell responses to viral infections can be specific and in some cases memory recall responses are established. Increasing evidence also illuminates the complexity of NK cell interactions with both innate and adaptive immune cells. Here, we summarize the evidence for NK cell-specific memory responses to viral infections and the intricate reciprocal interactions between NK cells and other immune cells that dictate their activation and effector functions.
Collapse
Affiliation(s)
- Viola C Lam
- Biomedical Sciences Graduate Program, San Francisco, CA 94143, United States; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, United States.
| |
Collapse
|
35
|
Nabekura T, Lanier LL. Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection. J Exp Med 2016; 213:2745-2758. [PMID: 27810928 PMCID: PMC5110025 DOI: 10.1084/jem.20160726] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 09/27/2016] [Indexed: 12/17/2022] Open
Abstract
Nabekura and Lanier demonstrate that two distinct long-lived NK cell subsets with different functional properties differentiate during mouse model of cytomegalovirus (MCMV) infection. NK cells expressing the MCMV-specific Ly49H receptor differentiated into memory NK cells and Ly49H− NK cells differentiated into cytokine-activated NK cells. Memory NK cells show enhanced effector function, whereas cytokine-activated NK cells persisted better in an MCMV-free environment. Natural killer (NK) cells provide important host defense and can generate long-lived memory NK cells. Here, by using novel transgenic mice carrying inducible Cre expressed under the control of Ncr1 gene, we demonstrated that two distinct long-lived NK cell subsets differentiate in a mouse model of cytomegalovirus (MCMV) infection. NK cells expressing the MCMV-specific Ly49H receptor differentiated into memory NK cells by an activating signaling through Ly49H and Ly49H− NK cells differentiated into cytokine-activated NK cells by exposure to inflammatory cytokines during infection. Interleukin-12 is indispensable for optimal generation of both antigen-specific memory NK cells and cytokine-activated NK cells. MCMV-specific memory NK cells show enhanced effector function and augmented antitumor activity in vivo as compared with cytokine-activated NK cells, whereas cytokine-activated NK cells exhibited a more robust response to IL-15 and persisted better in an MCMV-free environment. These findings reveal that NK cells are capable of differentiation into distinct long-lived subsets with different functional properties.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143 .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| |
Collapse
|
36
|
Park JS, Lim HJ, Yi SW, Park KH. Stem cell differentiation-related protein-loaded PLGA microspheres as a novel platform micro-typed scaffold for chondrogenesis. Biomed Mater 2016; 11:055003. [DOI: 10.1088/1748-6041/11/5/055003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Kadri N, Wagner AK, Ganesan S, Kärre K, Wickström S, Johansson MH, Höglund P. Dynamic Regulation of NK Cell Responsiveness. Curr Top Microbiol Immunol 2016; 395:95-114. [PMID: 26658943 DOI: 10.1007/82_2015_485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Natural killer (NK) cells deliver cytotoxic granules and immunomodulatory cytokines in response to transformed and virally infected cells. NK cell functions are under the control of a large number of germline-encoded receptors that recognize various ligands on target cells, but NK cells also respond to cytokines in the surrounding environment. The interaction between NK cell receptors and their ligands delivers either inhibitory or activating signals. The cytokine milieu further shapes NK cell responses, either directly or by influencing the way inhibitory or activating signals are perceived by NK cells. In this review, we discuss how NK cell function is controlled by inhibitory receptors and MHC-I molecules, how activating receptors contribute to NK cell education, and finally, how cytokines secreted by the surrounding cells affect NK cell responsiveness. Inputs at these three levels involve different cell types and are seamlessly integrated to form a functional NK cell population.
Collapse
Affiliation(s)
- Nadir Kadri
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sridharan Ganesan
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Stina Wickström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Maria H Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden.
| |
Collapse
|
38
|
Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery RR, John-Stewart G, Holmes S, Blish CA. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 2016. [PMID: 26203083 DOI: 10.1126/scitranslmed.aac5722] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate natural killer (NK) cells are diverse at the single-cell level because of variegated expressions of activating and inhibitory receptors, yet the developmental roots and functional consequences of this diversity remain unknown. Because NK cells are critical for antiviral and antitumor responses, a better understanding of their diversity could lead to an improved ability to harness them therapeutically. We found that NK diversity is lower at birth than in adults. During an antiviral response to either HIV-1 or West Nile virus, NK diversity increases, resulting in terminal differentiation and cytokine production at the cost of cell division and degranulation. In African women matched for HIV-1 exposure risk, high NK diversity is associated with increased risk of HIV-1 acquisition. Existing diversity may therefore decrease the flexibility of the antiviral response. Collectively, the data reveal that human NK diversity is a previously undefined metric of immune history and function that may be clinically useful in forecasting the outcomes of infection and malignancy.
Collapse
Affiliation(s)
- Dara M Strauss-Albee
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Fukuyama
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Emily C Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Yao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Justin A Jarrell
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alison L Drake
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - John Kinuthia
- Department of Research and Programs, Kenyatta National Hospital, Nairobi 00202, Kenya
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, WA 98195, USA. Department of Epidemiology, University of Washington, Seattle, WA 98195, USA. Department of Medicine, University of Washington, Seattle, WA 98195, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Catherine A Blish
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Abstract
Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity and can acquire immunological memory in a manner similar to that of T and B cells. In this review, we discuss evidence of NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes.
Collapse
Affiliation(s)
- Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Abstract
Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article, we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance.
Collapse
|
41
|
Nabekura T, Girard JP, Lanier LL. IL-33 receptor ST2 amplifies the expansion of NK cells and enhances host defense during mouse cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:5948-52. [PMID: 25926677 DOI: 10.4049/jimmunol.1500424] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/06/2015] [Indexed: 11/19/2022]
Abstract
NK cells provide important host defense against viruses and can differentiate into self-renewing memory NK cells after infection, alloantigen stimulation, and cytokine stimulation. In this study, we investigated the role of the IL-33 receptor ST2 in the differentiation of NK cells during mouse CMV (MCMV) infection. Although ST2-deficient (Il1rl1 (-/-)) Ly49H(+) NK cells develop normally and differentiate into memory cells after MCMV infection, naive and memory Il1rl1 (-/-) Ly49H(+) NK cells exhibited profound defects in MCMV-specific expansion, resulting in impaired protection against MCMV challenge. Additionally, IL-33 enhanced m157 Ag-specific proliferation of Ly49H(+) NK cells in vitro. Thus, an IL-33/ST2 signaling axis in NK cells contributes to host defense against MCMV.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan; and
| | - Jean-Philippe Girard
- Centre National de la Recherche Scientifique and Université de Toulouse, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
42
|
Couzi L, Pitard V, Moreau JF, Merville P, Déchanet-Merville J. Direct and Indirect Effects of Cytomegalovirus-Induced γδ T Cells after Kidney Transplantation. Front Immunol 2015; 6:3. [PMID: 25653652 PMCID: PMC4301015 DOI: 10.3389/fimmu.2015.00003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/04/2015] [Indexed: 01/30/2023] Open
Abstract
Despite effective anti-viral therapies, cytomegalovirus (CMV) is still associated with direct (CMV disease) and indirect effects (rejection and poor graft survival) in kidney transplant recipients. Recently, an unconventional T cell population (collectively designated as Vδ2neg γδ T cells) has been characterized during the anti-CMV immune response in all solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These CMV-induced Vδ2neg γδ T cells undergo a dramatic and stable expansion after CMV infection, in a conventional “adaptive” manner. Similarly, as CMV-specific CD8+ αβ T cells, they exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activation of Vδ2neg γδ T cells by CMV-infected cells involves the γδ T cell receptor (TCR) and still ill-defined co-stimulatory molecules such as LFA-1. A multiple of Vδ2neg γδ TCR ligands are apparently recognized on CMV-infected cells, the first one identified being the major histocompatibility complex-related molecule endothelial protein C receptor. A singularity of CMV-induced Vδ2neg γδ T cells is to acquire CD16 expression and to exert an antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect of Vδ2neg γδ T cells, unexpected indirect effects of these cells have been also observed in the context of kidney transplantation. CMV-induced Vδ2neg γδ T cells have been involved in surveillance of malignancy subsequent to long-term immunosuppression. Moreover, CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kidney transplants, and represent a new physiopathological contribution to the well-known association between CMV infection and poor graft survival. All these basic and clinical studies paved the road to the development of a future γδ T cell-based immunotherapy. In the meantime, γδ T cell monitoring should prove a valuable immunological biomarker in the management of CMV infection.
Collapse
Affiliation(s)
- Lionel Couzi
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Vincent Pitard
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| | - Jean-François Moreau
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Centre Hospitalier Universitaire de Bordeaux, Laboratoire d'immunologie , Bordeaux , France
| | - Pierre Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Julie Déchanet-Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| |
Collapse
|
43
|
Hendricks DW, Min-Oo G, Lanier LL. Sweet Is the Memory of Past Troubles: NK Cells Remember. Curr Top Microbiol Immunol 2015; 395:147-71. [PMID: 26099194 DOI: 10.1007/82_2015_447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells are important in host defense against tumors and microbial pathogens. Recent studies indicate that NK cells share many features with the adaptive immune system, and like B cells and T cells, NK cells can acquire immunological memory. Here, we review evidence for NK cell memory and the molecules involved in the generation and maintenance of these self-renewing NK cells that provide enhanced protection of the host.
Collapse
Affiliation(s)
- Deborah W Hendricks
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143-0414, USA
| | - Gundula Min-Oo
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143-0414, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143-0414, USA.
| |
Collapse
|