1
|
Zhang W, Kong D, Zhang X, Hu L, Nian Y, Shen Z. T cell aging and exhaustion: Mechanisms and clinical implications. Clin Immunol 2025; 275:110486. [PMID: 40120658 DOI: 10.1016/j.clim.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
T cell senescence and exhaustion represent critical aspects of adaptive immune system dysfunction, with profound implications for health and the development of disease prevention and therapeutic strategies. These processes, though distinct, are interconnected at the molecular level, leading to impaired effector functions and reduced proliferative capacity of T cells. Such impairments increase susceptibility to diseases and diminish the efficacy of vaccines and treatments. Importantly, T cell senescence and exhaustion can dynamically influence each other, particularly in the context of chronic diseases. A deeper understanding of the molecular mechanisms underlying T cell senescence and exhaustion, as well as their interplay, is essential for elucidating the pathogenesis of related diseases and restoring dysfunctional immune responses. This knowledge will pave the way for the development of targeted therapeutic interventions and strategies to enhance immune competence. This review aims to summarize the characteristics, mechanisms, and disease associations of T cell senescence and exhaustion, while also delineating the distinctions and intersections between these two states to enhance our comprehension.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Xiaohan Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Lu Hu
- Tianjin Medical University First Central Clinical College, Tianjin, China.
| | - Yeqi Nian
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China; Department of Kidney Transplant, Tianjin First Central Hospital, Tianjin, China.
| | - Zhongyang Shen
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
2
|
Zheng K, Dai L, Zhang S, Zhao Y, Li W, Gao Y, Mang Y, Jiao L, Tang Y, Ran J. Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression. Gut Liver 2025; 19:410-426. [PMID: 38623058 PMCID: PMC12070210 DOI: 10.5009/gnl230345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 04/17/2024] Open
Abstract
Background/Aims : Liver cirrhosis involves chronic inflammation and progressive fibrosis. Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear. Methods : This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis. Results : Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer. Conclusions : In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
Collapse
Affiliation(s)
- Kepu Zheng
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Leiyang Dai
- Inspection Department of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Shengning Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yingpeng Zhao
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Wang Li
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yuanyi Mang
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Lingfeng Jiao
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yu Tang
- Kunming Medical University, Kunming, China
| | - Jianghua Ran
- Department of Hepato-Biliary-Pancreatic Surgery, The First People's Hospital of Kunming, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
4
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
5
|
Viramontes KM, Thone MN, De La Torre JJ, Neubert EN, DeRogatis JM, Garcia C, Henriquez ML, Tinoco R. Contrasting roles of PSGL-1 and PD-1 in regulating T-cell exhaustion and function during chronic viral infection. J Virol 2025; 99:e0224224. [PMID: 39912665 PMCID: PMC11915808 DOI: 10.1128/jvi.02242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Immune checkpoints are critical regulators of T-cell exhaustion, impairing their ability to eliminate antigens present during chronic viral infections. Current immune checkpoint inhibitors (ICIs) used in the clinic aim to reinvigorate exhausted T cells; yet, most patients fail to respond or develop resistance to these therapies, underscoring the need to better understand these immunosuppressive pathways. PSGL-1 (Selplg), a recently discovered immune checkpoint, negatively regulates T-cell function. We investigated the cell-intrinsic effects of PSGL-1, PD-1, and combined deletion on CD8+ T cells during chronic viral infection. We found that combined PSGL-1 and PD-1 (Selplg-/-Pdcd1-/-) deficiency in CD8+ T cells increased their frequencies and numbers throughout chronic infection compared to the wild type. This phenotype was primarily driven by PD-1 deficiency. Furthermore, while PD-1 deletion increased virus-specific T-cell frequencies, it was detrimental to their function. Conversely, PSGL-1 deletion improved T-cell function but resulted in lower frequencies and numbers. The primary mechanism behind these differences in cell maintenance was driven by proliferation rather than survival. Combined PSGL-1 and PD-1 deletion resulted in defective T-cell differentiation, driving cells from a progenitor self-renewal state to a more terminal dysfunctional state. These findings suggest that PD-1 and PSGL-1 have distinct, yet complementary, roles in regulating T-cell exhaustion and differentiation during chronic viral infection. Overall, this study provides novel insights into the individual and combined roles of PSGL-1 and PD-1 in CD8+ T-cell exhaustion. It underscores the potential of targeting these checkpoints in a more dynamic and sequential manner to optimize virus-specific T-cell responses, offering critical perspectives for improving therapeutic strategies aimed at reinvigorating exhausted CD8+ T cells.IMPORTANCEOur findings provide a comprehensive analysis of how the dual deletion of PD-1 and PSGL-1 impacts the response and function of virus-specific CD8+ T cells, revealing novel insights into their roles in chronic infection. Notably, our findings show that while PD-1 deletion enhances T-cell frequencies, it paradoxically reduces T-cell functionality. Conversely, PSGL-1 deletion improves T-cell function but reduces their survival. Whereas the combined deletion of PSGL-1 and PD-1 in CD8+ T cells improved their survival but decreased their function and progenitor-exhausted phenotypes during infection. We believe our study advances the understanding of immune checkpoint regulation in chronic infections and has significant implications for developing more effective immune checkpoint inhibitor (ICI) therapies.
Collapse
Affiliation(s)
- Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Melissa N. Thone
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Jamie-Jean De La Torre
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Chris Garcia
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
6
|
Brady AE, Revu S, Wu D, Fisk H, Kone K, Lydecker A, Purser EJ, Smith N, Hilt ZT, Woodyear S, Caddy S, Gingras S, Rudd B, McGeachy MM. Humanizing a CD28 signaling domain affects CD8 activation, exhaustion and stem-like precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642460. [PMID: 40161835 PMCID: PMC11952375 DOI: 10.1101/2025.03.10.642460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CD28 ligation provides critical signals that modulate activated T cell fate. In a human to mouse reverse-engineering approach, a single amino acid substitution adjacent to the C-terminal proline-rich domain created CD28A210P mice with enhanced signaling. CD28A210P mice experienced pro-inflammatory responses to CD28 superagonist antibody, analogous to severe cytokine storm induced in a human clinical trial, with a striking increase of activated CD8 T cells. In acute and chronic viral infections, early activation and expansion of CD28A210P CD8 effector T cells increased, with accelerated exhaustion in chronic infection. Mechanistically, CD28A210P enhanced JunB, IL-2, and inhibitory receptors driven by MEK1/2. Generation of CD28A210P stem-like progenitor (Tpex) cells was enhanced in acute and chronic infections, and further expanded by PD-L1 blockade in chronically-infected mice. Thus, 'humanized' PYAP mice reveal key roles for CD28 signaling strength in CD8 activation, accelerating exhaustion during antigen persistence, while promoting and sustaining Tpex during acute and chronic viral infection.
Collapse
|
7
|
Huang YJ, Ngiow SF, Baxter AE, Manne S, Park SL, Wu JE, Khan O, Giles JR, Wherry EJ. Continuous expression of TOX safeguards exhausted CD8 T cell epigenetic fate. Sci Immunol 2025; 10:eado3032. [PMID: 40053604 DOI: 10.1126/sciimmunol.ado3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Although checkpoint blockade temporarily improves exhausted CD8 T (Tex) cell function, the underlying Tex epigenetic landscape remains largely unchanged, preventing durable Tex "reinvigoration" in cancer and chronic infections. The transcription factor TOX initiates Tex epigenetic programming, yet it remains unclear whether TOX continually preserves Tex biology after Tex establishment. Here, we demonstrated that induced TOX ablation in committed Tex cells resulted in apoptotic-driven loss of Tex cells, reduced expression of inhibitory receptors, and decreased terminal differentiation. Gene expression and epigenetic profiling revealed a critical role for TOX in maintaining chromatin accessibility and transcriptional patterns in committed Tex cells. Moreover, TOX removal endows established Tex cells with greater fate flexibility to differentiate into more functional effector-like T cells. Thus, continuous TOX expression in established Tex cells acts as a durable epigenetic barrier reinforcing the Tex developmental fate. TOX manipulation even after Tex establishment could therefore provide therapeutic opportunities to rewire Tex cells in chronic infections or cancer.
Collapse
Affiliation(s)
- Yinghui J Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone L Park
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2025; 24:190-208. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
9
|
Bhatt B, Kumar K, Shi H, Ganesan D, Anazodo F, Rathakrishnan A, Zhu H, Wanna A, Jiang C, Jayavelu T, Lokeshwar VB, Pacholczyk R, Munn DH, Sheridan BS, Moskophidis D, Li H, Singh N. UFL1 promotes survival and function of virtual memory CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae042. [PMID: 40073095 PMCID: PMC11952874 DOI: 10.1093/jimmun/vkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/30/2024] [Indexed: 03/14/2025]
Abstract
In naïve mice, a fraction of CD8 T cells displaying high affinity for self-MHC peptide complexes develop into virtual memory T (TVM) cells. Due to self-reactivity, TVM cells are exposed to persistent antigenic stimulation, a condition known to induce T cell exhaustion. However, TVM cells do not exhibit characteristics similar to exhausted CD8 T (TEX) cells. Here, we tested the role of the UFL1, E3 ligase of the ufmylation pathway in TVM cells. We show that UFL1 prevents the acquisition of epigenetic, transcriptional, and phenotypic changes in TVM cells that are similar to TEX cells and thus promote their survival and function. UFL1-deficient TVM cells failed to protect mice against Listeria infection. Epigenetic analysis showed higher BATF activity in UFL1-deficient TVM cells. Deletion of BATF and not PD1 decreased inhibitory molecules expression and restored the survival and function of UFL1-deficient TVM cells. Our findings demonstrate a key role of UFL1 in inhibiting the exhaustion of TVM cells and promoting their survival and function.
Collapse
Affiliation(s)
- Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Kunal Kumar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dhasarathan Ganesan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Francis Anazodo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Aravind Rathakrishnan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Andrew Wanna
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Chen Jiang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Tamilselvan Jayavelu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Vinata Bal Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - David H Munn
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian S Sheridan
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Demetrius Moskophidis
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
10
|
Ma S, Dahabieh MS, Mann TH, Zhao S, McDonald B, Song WS, Chung HK, Farsakoglu Y, Garcia-Rivera L, Hoffmann FA, Xu S, Du VY, Chen D, Furgiuele J, LaPorta M, Jacobs E, DeCamp LM, Oswald BM, Sheldon RD, Ellis AE, Liu L, He P, Wang Y, Jang C, Jones RG, Kaech SM. Nutrient-driven histone code determines exhausted CD8 + T cell fates. Science 2025; 387:eadj3020. [PMID: 39666821 PMCID: PMC11881194 DOI: 10.1126/science.adj3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Exhausted T cells (TEX) in cancer and chronic viral infections undergo metabolic and epigenetic remodeling, impairing their protective capabilities. However, the impact of nutrient metabolism on epigenetic modifications that control TEX differentiation remains unclear. We showed that TEX cells shifted from acetate to citrate metabolism by down-regulating acetyl-CoA synthetase 2 (ACSS2) while maintaining ATP-citrate lyase (ACLY) activity. This metabolic switch increased citrate-dependent histone acetylation, mediated by histone acetyltransferase KAT2A-ACLY interactions, at TEX signature genes while reducing acetate-dependent histone acetylation, dependent on p300-ACSS2 complexes, at effector and memory T cell genes. Nuclear ACSS2 overexpression or ACLY inhibition prevented TEX differentiation and enhanced tumor-specific T cell responses. These findings unveiled a nutrient-instructed histone code governing CD8+ T cell differentiation, with implications for metabolic- and epigenetic-based T cell therapies.
Collapse
Affiliation(s)
- Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Thomas H. Mann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven Zhao
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - H. Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lizmarie Garcia-Rivera
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victor Y. Du
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jesse Furgiuele
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Emily Jacobs
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Abigail E. Ellis
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Peixiang He
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
11
|
Albarrán-Fernández V, Angelats L, Delgado J, Gros A, Urbano-Ispizua Á, Guedan S, Prat A. Unlocking the potential of engineered immune cell therapy for solid tumors. Nat Commun 2025; 16:1144. [PMID: 39880825 PMCID: PMC11779857 DOI: 10.1038/s41467-025-56527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
- Víctor Albarrán-Fernández
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain.
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Laura Angelats
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Julio Delgado
- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Cellular Immunotherapies for Cancer, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Aleix Prat
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Reveal Genomics, Barcelona, Spain
- Chair on Innovation in Precision Oncology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
13
|
Mao Z, Hirdler JB, Gicobi JK, Maynes M, Hsu MA, Dellacecca ER, Zhang W, Teske JJ, Li Y, Zhao G, Lucien-Matteoni F, da Silva HB, Billadeau DD, Dong H. PD-1 prelimits both the cytotoxic and exhaustion potential in thymic CD8+ T cells and impacts the maintenance of peripheral tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.631253. [PMID: 39868106 PMCID: PMC11761021 DOI: 10.1101/2025.01.18.631253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Durable T cell immunity against cancer depends on the continual replenishment of effector CD8+ T cells. Thymic output has been correlated with favorable prognosis in cancer patients across a range of ages, suggesting that the thymus is an important source for replenishing T cells capable of controlling cancer progression. However, the effector potential of thymic mature CD8+ T cells and their regulation have not been clearly defined. In this study, we identified the ability of thymic single positive CD8+ T cells to gain effector potential after thymic selection, but they are subject to the regulation of PD-1. We found a previously undisclosed role of PD-1 in limiting both the cytotoxic and exhaustion potential of thymic and peripheral CD8+ T cells. Our results show that although PD-1 inhibition facilitates the expansion of effector CD8+ T cells, effector CD8+ cells gradually lose their antitumor activity within tumor tissues due to advanced exhaustion in the absence of PD-1. Thus, although the preset effector potential in thymic mature CD8+ T cells allows them to rapidly respond to malignant cells in the periphery, PD-1, as a checkpoint, is embedded in the thymic mature CD8+ T cells after positive selection to balance their effector function from exaggeration and exhaustion. Therefore, we propose that a strategy capable of upholding the cytotoxic capacity and avoiding exhaustion of CD8+ T cells during the early stages of PD-1 inhibition therapy is needed to achieve durable antitumor immunity.
Collapse
Affiliation(s)
- Zhiming Mao
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | | | | | - Mark Maynes
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Michelle A Hsu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Emilia R Dellacecca
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Wenjing Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | | | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Geoffrey Zhao
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | | | | | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Department of Urology, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Mok S, Liu H, Ağaç Çobanoğlu D, Anang NAAS, Mancuso JJ, Wherry EJ, Allison JP. Anti-CTLA-4 generates greater memory response than anti-PD-1 via TCF-1. Proc Natl Acad Sci U S A 2025; 122:e2418985122. [PMID: 39786926 PMCID: PMC11745370 DOI: 10.1073/pnas.2418985122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells. Experiments using conditional Tcf7- or Tox-knockout mice highlight that TCF-1 is essential for the memory response generated by anti-CTLA-4, whereas TOX deletion alone in T cells has no effect on the response to anti-PD-1. Deepening our understanding of how checkpoint inhibition affects memory response is crucial for advancing our understanding of the enduring impacts of these immunotherapies on the immune system.
Collapse
Affiliation(s)
- Stephen Mok
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Huey Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Didem Ağaç Çobanoğlu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Nana-Ama A. S. Anang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - James J. Mancuso
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA19104
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
15
|
Scott MC, Steier Z, Pierson MJ, Stolley JM, O'Flanagan SD, Soerens AG, Wijeyesinghe SP, Beura LK, Dileepan G, Burbach BJ, Künzli M, Quarnstrom CF, Ghirardelli Smith OC, Weyu E, Hamilton SE, Vezys V, Shalek AK, Masopust D. Deep profiling deconstructs features associated with memory CD8 + T cell tissue residence. Immunity 2025; 58:162-181.e10. [PMID: 39708817 PMCID: PMC11852946 DOI: 10.1016/j.immuni.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs-location, stimulation history, antigen persistence, and environment-resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
Collapse
Affiliation(s)
- Milcah C Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zoë Steier
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gayathri Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon J Burbach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Künzli
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia C Ghirardelli Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex K Shalek
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Eshaq AM, Flanagan TW, Ba Abbad AA, Makarem ZAA, Bokir MS, Alasheq AK, Al Asheikh SA, Almashhor AM, Binyamani F, Al-Amoudi WA, Bawzir AS, Haikel Y, Megahed M, Hassan M. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int J Mol Sci 2024; 26:88. [PMID: 39795946 PMCID: PMC11719825 DOI: 10.3390/ijms26010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common. ICI-associated cutaneous adverse effects include mostly inflammatory and bullous dermatoses, as well as severe cutaneous side reactions such as rash or inflammatory dermatitis encompassing erythema multiforme; lichenoid, eczematous, psoriasiform, and morbilliform lesions; and palmoplantar erythrodysesthesia. The development of immunotherapy-related adverse effects is a consequence of ICIs' unique molecular action that is mainly mediated by the activation of cytotoxic CD4+/CD8+ T cells. ICI-associated cutaneous disorders are the most prevalent effects induced in response to anti-programmed cell death 1 (PD-1), anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and anti-programmed cell death ligand 1 (PD-L1) agents. Herein, we will elucidate the mechanisms regulating the occurrence of cutaneous adverse effects following treatment with ICIs.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatstics, Milken Institute School of Public Health, George Washington University Washington, Washington, DC 20052, USA;
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulqader A. Ba Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Zain Alabden A. Makarem
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Mohammed S. Bokir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Ahmed K. Alasheq
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdullah M. Almashhor
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Faroq Binyamani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdulaziz S. Bawzir
- Department of Radiology, King Saud Medical City, Riyadh 11533, Saudi Arabia;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
17
|
Min D, Fiedler J, Anandasabapathy N. Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy. Curr Opin Immunol 2024; 91:102499. [PMID: 39486215 PMCID: PMC11609010 DOI: 10.1016/j.coi.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
As cancer immunotherapy evolves, tissue-resident memory (TRM) cells remain key contributors to the antitumoral immune response due to their ability to mediate local tumor control, high expression of immune checkpoints, potential to respond to immunotherapy, and location across tissue sites where distal tumor metastases occur. This review synthesizes recent findings on the biology of TRM cells, their role in cancer, and their interactions with the tumor microenvironment. We also identify several critical research gaps, such as how mechanistic interrogation of TRM cell function is required for integration into therapeutics, proposing a focused research agenda to better exploit their potential.
Collapse
Affiliation(s)
- Daniel Min
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Fiedler
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10026, USA; Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
18
|
Sirini C, De Rossi L, Moresco MA, Casucci M. CAR T cells in solid tumors and metastasis: paving the way forward. Cancer Metastasis Rev 2024; 43:1279-1296. [PMID: 39316265 DOI: 10.1007/s10555-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
CAR T cell therapy, hailed as a breakthrough in cancer treatment due to its remarkable outcomes in hematological malignancies, encounters significant hurdles when applied to solid tumors. While notable responses to CAR T cells remain sporadic in these patients, challenges persist due to issues such as on-target off-tumor toxicity, difficulties in their trafficking and infiltration into the tumor, and the presence of a hostile and immunosuppressive microenvironment. This review aims to explore recent endeavors aimed at overcoming these obstacles in CAR T cell therapy for solid tumors. Specifically, we will delve into promising strategies for enhancing tumor specificity through antigen targeting, addressing tumor heterogeneity, overcoming physical barriers, and counteracting the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura De Rossi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
19
|
Dimitri AJ, Baxter AE, Chen GM, Hopkins CR, Rouin GT, Huang H, Kong W, Holliday CH, Wiebking V, Bartoszek R, Drury S, Dalton K, Koucky OM, Chen Z, Giles JR, Dils AT, Jung IY, O’Connor R, Collins S, Everett JK, Amses K, Sherrill-Mix S, Chandra A, Goldman N, Vahedi G, Jadlowsky JK, Young RM, Melenhorst JJ, Maude SL, Levine BL, Frey NV, Berger SL, Grupp SA, Porter DL, Herbst F, Porteus MH, Carty SA, Bushman FD, Weber EW, Wherry EJ, Jordan MS, Fraietta JA. TET2 regulates early and late transitions in exhausted CD8 + T cell differentiation and limits CAR T cell function. SCIENCE ADVANCES 2024; 10:eadp9371. [PMID: 39536093 PMCID: PMC11559603 DOI: 10.1126/sciadv.adp9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cell exhaustion hampers control of cancer and chronic infections and limits chimeric antigen receptor (CAR) T cell efficacy. Targeting TET2 in CAR T cells provides therapeutic benefit; however, TET2's role in exhausted T cell (TEX) development is unclear. In chronic lymphocytic choriomeningitis virus (LCMV) infection, TET2 drove conversion from stem cell-like TEX progenitors toward terminally differentiated and effector (TEFF)-like TEX. TET2 also enforced a terminally differentiated state in the early bifurcation between TEFF and TEX, indicating broad roles for TET2 in acquisition of effector biology. To exploit the therapeutic potential of TET2, we developed clinically actionable TET2-targeted CAR T cells by disrupting TET2 via knock-in of a safety switch alongside CAR knock-in at the TRAC locus. TET2-targeted CAR T cells exhibited restrained terminal exhaustion in vitro and enhanced antitumor responses in vivo. Thus, TET2 regulates fate transitions in TEX differentiation and can be targeted with a safety mechanism in CAR T cells for improved tumor control.
Collapse
Affiliation(s)
- Alexander J. Dimitri
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E. Baxter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory M. Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin R. Hopkins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geoffrey T. Rouin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher H. Holliday
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Volker Wiebking
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Robert Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Owen M. Koucky
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R. Giles
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander T. Dils
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Amses
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Aditi Chandra
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie K. Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jan Joseph Melenhorst
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shannon L. Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce L. Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noelle V. Frey
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shelley L. Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David L. Porter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew H. Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Shannon A. Carty
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan W. Weber
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Pant A, Jain A, Chen Y, Patel K, Saleh L, Tzeng S, Nitta RT, Zhao L, Wu CYJ, Bederson M, Wang WL, Bergsneider BHL, Choi J, Medikonda R, Verma R, Cho KB, Kim LH, Kim JE, Yazigi E, Lee SY, Rajendran S, Rajappa P, Mackall CL, Li G, Tyler B, Brem H, Pardoll DM, Lim M, Jackson CM. The CCR6-CCL20 Axis Promotes Regulatory T-cell Glycolysis and Immunosuppression in Tumors. Cancer Immunol Res 2024; 12:1542-1558. [PMID: 39133127 DOI: 10.1158/2326-6066.cir-24-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Regulatory T cells (Treg) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity toward CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wild-type mice and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yiyun Chen
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephany Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Liang Zhao
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Maria Bederson
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - William Lee Wang
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | | | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Ravi Medikonda
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Lily H Kim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Jennifer E Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Sakthi Rajendran
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Prajwal Rajappa
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Luo YH, Shen CI, Chiang CL, Chen YM. Immune signatures of patients with advanced non-small-cell lung cancer for efficacy prediction after immunotherapy. Ther Adv Med Oncol 2024; 16:17588359241284946. [PMID: 39391353 PMCID: PMC11465298 DOI: 10.1177/17588359241284946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Background Programmed cell death protein 1 ligand 1 (PD-L1) expression alone may not be the optimal predictor of immunotherapy (IO) efficacy in advanced non-small cell lung cancer (NSCLC). Evaluation of circulating immune signatures using mass cytometry is a promising technique for predicting IO response and prognosis. The utility of circulating immune signatures for efficacy prediction after IO in advanced NSCLC remains to be elucidated. Objectives To assess the feasibility of circulating immune cells and cytokines in predicting tumor response to IO in advanced NSCLC. Design A prospective observational study. Methods To investigate dynamic changes in immune signatures, blood specimens were prospectively collected from patients with NSCLC at baseline and following chemotherapy (C/T) and/or IO. Mass cytometry and enzyme-linked immunosorbent assay were used to characterize immune signatures and cytokine patterns to identify correlations between immune profiles and treatment efficacy. Results The study enrolled 45 patients. The proportion of circulating natural killer (NK) cells and CD8+ T cells significantly increased after IO alone treatment. Cell levels of PD-1+CD8+ T cells, PD-1+CD4+ T cells, TIM-3+CD8+ T cells, LAG-3+ NK cells, and LAG-3+CD8+ T cells significantly decreased in patients with treatment response to IO alone. Tumor necrosis factor-alpha (TNF-α) levels significantly increased after IO alone treatment. Patients with high PD-1+CD8+ T cells before IO alone treatment had lower overall survival (OS) compared to those with low levels. Patients with high LAG-3+CD8+ T cells before chemotherapy plus immunotherapy treatment had lower OS compared to those with low levels. Conclusion Responses to IO in NSCLC were correlated with declines in specific exhausted T cells, suggesting that IO may exert therapeutical efficacy by decreasing circulating exhausted T cells, which were associated with poorer survival, while also increasing TNF-α. These results highlight the prognostic value of monitoring changes in circulating exhausted T cells to predict IO response and survival outcomes in advanced lung cancer.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Weiss SA, Huang AY, Fung ME, Martinez D, Chen ACY, LaSalle TJ, Miller BC, Scharer CD, Hegde M, Nguyen TH, Rowe JH, Osborn JF, Patterson DG, Sifnugel N, Mei-An Nolan C, Davidson RA, Schwartz MA, Bally APR, Neeld DK, LaFleur MW, Boss JM, Doench JG, Nicholas Haining W, Sharpe AH, Sen DR. Epigenetic tuning of PD-1 expression improves exhausted T cell function and viral control. Nat Immunol 2024; 25:1871-1883. [PMID: 39289557 PMCID: PMC11528687 DOI: 10.1038/s41590-024-01961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/08/2024] [Indexed: 09/19/2024]
Abstract
PD-1 is a key negative regulator of CD8+ T cell activation and is highly expressed by exhausted T cells in cancer and chronic viral infection. Although PD-1 blockade can improve viral and tumor control, physiological PD-1 expression prevents immunopathology and improves memory formation. The mechanisms driving high PD-1 expression in exhaustion are not well understood and could be critical to disentangling its beneficial and detrimental effects. Here, we functionally interrogated the epigenetic regulation of PD-1 using a mouse model with deletion of an exhaustion-specific PD-1 enhancer. Enhancer deletion exclusively alters PD-1 expression in CD8+ T cells in chronic infection, creating a 'sweet spot' of intermediate expression where T cell function is optimized compared to wild-type and Pdcd1-knockout cells. This permits improved control of chronic infection without additional immunopathology. Together, these results demonstrate that tuning PD-1 via epigenetic editing can reduce CD8+ T cell dysfunction while avoiding excess immunopathology.
Collapse
Affiliation(s)
- Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Amy Y Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Megan E Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniela Martinez
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Alex C Y Chen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J LaSalle
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Brian C Miller
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mudra Hegde
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thao H Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jared H Rowe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jossef F Osborn
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Natalia Sifnugel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C Mei-An Nolan
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard A Davidson
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marc A Schwartz
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander P R Bally
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dennis K Neeld
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Nicholas Haining
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- ArsenalBio, San Francisco, CA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Debattama R Sen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Ricciotti E, Tang SY, Mrčela A, Das US, Lordan R, Joshi R, Ghosh S, Aoyama J, McConnell R, Yang J, Grant GR, FitzGerald GA. Disruption of the PGE 2 synthesis / response pathway restrains atherogenesis in programmed cell death-1 (Pd-1) deficient hyperlipidemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601762. [PMID: 39005376 PMCID: PMC11244953 DOI: 10.1101/2024.07.02.601762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Immune checkpoint inhibitors (ICIs) that target programmed cell death 1 (PD-1) have revolutionized cancer treatment by enabling the restoration of suppressed T-cell cytotoxic responses. However, resistance to single-agent ICIs limits their clinical utility. Combinatorial strategies enhance their antitumor effects, but may also enhance the risk of immune related adverse effects of ICIs. Prostaglandin (PG) E2, formed by the sequential action of the cyclooxygenase (COX) and microsomal PGE synthase (mPGES-1) enzymes, acting via its E prostanoid (EP) receptors, EPr2 and EPr4, promotes lymphocyte exhaustion, revealing an additional target for ICIs. Thus, COX inhibitors and EPr4 antagonists are currently being combined with ICIs potentially to enhance antitumor efficacy in clinical trials. However, given the cardiovascular (CV) toxicity of COX inhibitors, such combinations may increase the risk particularly of CV AEs. Here, we compared the impact of distinct approaches to disruption of the PGE2 synthesis /response pathway - global or myeloid cell specific depletion of mPges-1 or global depletion of Epr4 - on the accelerated atherogenesis in Pd-1 deficient hyperlipidemic (Ldlr-/-) mice. All strategies restrained the atherogenesis. While depletion of mPGES-1 suppresses PGE2 biosynthesis, reflected by its major urinary metabolite, PGE2 biosynthesis was increased in mice lacking EPr4, consistent with enhanced expression of aortic Cox-1 and mPges-1. Deletions of mPges-1 and Epr4 differed in their effects on immune cell populations in atherosclerotic plaques; the former reduced neutrophil infiltration, while the latter restrained macrophages and increased the infiltration of T-cells. Consistent with these findings, chemotaxis by bone-marrow derived macrophages from Epr4-/- mice was impaired. Epr4 depletion also resulted in extramedullary lymphoid hematopoiesis and inhibition of lipoprotein lipase activity (LPL) with coincident spelenomegaly, leukocytosis and dyslipidemia. Targeting either mPGES-1 or EPr4 may restrain lymphocyte exhaustion while mitigating CV irAEs consequent to PD-1 blockade.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
- Department of Systems Pharmacology and Translational Therapeutics
| | - Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Ujjalkumar S. Das
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Robin Joshi
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Justin Aoyama
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Ryan McConnell
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Jianing Yang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
- Department of Genetics, University of Pennsylvania
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
- Department of Medicine Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
25
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 PMCID: PMC11522508 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
Affiliation(s)
- Catarina Sacristán
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ben A Youngblood
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiyuan Lu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Alexander P R Bally
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jean Xiaojin Xu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katelyn McGary
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Boss
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Steiner C, Denlinger N, Huang X, Yang Y. Stem-like CD8 + T cells in cancer. Front Immunol 2024; 15:1426418. [PMID: 39211052 PMCID: PMC11357971 DOI: 10.3389/fimmu.2024.1426418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Stem-like CD8+ T cells (TSL) are a subset of immune cells with superior persistence and antitumor immunity. They are TCF1+ PD-1+ and important for the expansion of tumor specific CD8+ T cells in response to checkpoint blockade immunotherapy. In acute infections, naïve CD8+ T cells differentiate into effector and memory CD8+ T cells; in cancer and chronic infections, persistent antigen stimulation can lead to T cell exhaustion. Recent studies have highlighted the dichotomy between late dysfunctional (or exhausted) T cells (TLD) that are TCF1- PD-1+ and self-renewing TCF1+ PD-1+ TSL from which they derive. TCF1+ TSL cells are considered to have stem cell-like properties akin to memory T cell populations and can give rise to cytotoxic effector and transitory T cell phenotypes (TTE) which mediate tumor control. In this review, we will discuss recent advances made in research on the formation and expansion of TSL, as well as distinct niches required for their differentiation and maintenance in the setting of cancer. We will also discuss potential strategies to generate these cells, with clinical implications for stemness enhancement in vaccine design, immune checkpoint blockade (ICB), and adoptive T cell therapies.
Collapse
Affiliation(s)
| | | | - Xiaopei Huang
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yiping Yang
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
28
|
Jackson CM, Pant A, Dinalankara W, Choi J, Jain A, Nitta R, Yazigi E, Saleh L, Zhao L, Nirschl TR, Kochel CM, Hwa-Lin Bergsneider B, Routkevitch D, Patel K, Cho KB, Tzeng S, Neshat SY, Kim YH, Smith BJ, Ramello MC, Sotillo E, Wang X, Green JJ, Bettegowda C, Li G, Brem H, Mackall CL, Pardoll DM, Drake CG, Marchionni L, Lim M. The cytokine Meteorin-like inhibits anti-tumor CD8 + T cell responses by disrupting mitochondrial function. Immunity 2024; 57:1864-1877.e9. [PMID: 39111315 PMCID: PMC11324406 DOI: 10.1016/j.immuni.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ayush Pant
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wikum Dinalankara
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Saleh
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas R Nirschl
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Stephany Tzeng
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Y Neshat
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Cecilia Ramello
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jordan J Green
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Crystal L Mackall
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
29
|
Ngiow SF, Manne S, Huang YJ, Azar T, Chen Z, Mathew D, Chen Q, Khan O, Wu JE, Alcalde V, Flowers AJ, McClain S, Baxter AE, Kurachi M, Shi J, Huang AC, Giles JR, Sharpe AH, Vignali DAA, Wherry EJ. LAG-3 sustains TOX expression and regulates the CD94/NKG2-Qa-1b axis to govern exhausted CD8 T cell NK receptor expression and cytotoxicity. Cell 2024; 187:4336-4354.e19. [PMID: 39121847 PMCID: PMC11337978 DOI: 10.1016/j.cell.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.
Collapse
Affiliation(s)
- Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tarek Azar
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor Alcalde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahron J Flowers
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean McClain
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation at Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Hor JL, Schrom EC, Wong-Rolle A, Vistain L, Shang W, Dong Q, Zhao C, Jin C, Germain RN. PD-1 controls differentiation, survival, and TCR affinity evolution of stem-like CD8+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606241. [PMID: 39211103 PMCID: PMC11360996 DOI: 10.1101/2024.08.02.606241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stem-like progenitors are a critical subset of cytotoxic T cells that self-renew and give rise to expanded populations of effector cells critical for successful checkpoint blockade immunotherapy. Emerging evidence suggests that the tumor-draining lymph nodes can support the continuous generation of these stem-like cells that replenish the tumor sites and act as a critical source of expanded effector populations, underlining the importance of understanding what factors promote and maintain activated T cells in the stem-like state. Using advanced 3D multiplex immunofluorescence imaging, here we identified antigen-presentation niches in tumor-draining lymph nodes that support the expansion, maintenance, and affinity evolution of a unique population of TCF-1+PD-1+SLAMF6 hi stem-like CD8+ T cells. Our results show that contrary to the prevailing view that persistent TCR signaling drives terminal effector differentiation, prolonged antigen engagement well beyond the initial priming phase sustained the proliferation and self-renewal of these stem-like T cells in vivo . The inhibitory PD-1 pathway plays a central role in this process by mediating the fine-tuning of TCR and co-stimulatory signal input that enables selective expansion of high affinity TCR stem-like clones, enabling them to act as a renewable source of high affinity effector cells. PD-1 checkpoint blockade disrupts this fine tuning of input signaling, leading to terminal differentiation to the effector state or death of the most avid anti-tumor stem-like cells. Our results thus reveal an unexpected relationship between TCR ligand affinity recognition, a key negative feedback regulatory loop, and T cell stemness programming. Furthermore, these findings raise questions about whether anti-PD-1 checkpoint blockade during cancer immunotherapy provides a short-term anti-tumor effect that comes at the cost of diminishing efficacy due to progressive loss of these critical high affinity stem-like precursors.
Collapse
|
31
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Xiong D, Yu H, Sun ZJ. Unlocking T cell exhaustion: Insights and implications for CAR-T cell therapy. Acta Pharm Sin B 2024; 14:3416-3431. [PMID: 39220881 PMCID: PMC11365448 DOI: 10.1016/j.apsb.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy as a form of adoptive cell therapy (ACT) has shown significant promise in cancer treatment, demonstrated by the FDA-approved CAR-T cell therapies targeting CD19 or B cell maturation antigen (BCMA) for hematological malignancies, albeit with moderate outcomes in solid tumors. However, despite these advancements, the efficacy of CAR-T therapy is often compromised by T cell exhaustion, a phenomenon that impedes the persistence and effector function of CAR-T cells, leading to a relapse rate of up to 75% in patients treated with CD19 or CD22 CAR-T cells for hematological malignancies. Strategies to overcome CAR-T exhaustion employ state-of-the-art genomic engineering tools and single-cell sequencing technologies. In this review, we provide a comprehensive understanding of the latest mechanistic insights into T cell exhaustion and their implications for the current efforts to optimize CAR-T cell therapy. These insights, combined with lessons learned from benchmarking CAR-T based products in recent clinical trials, aim to address the challenges posed by T cell exhaustion, potentially setting the stage for the development of tailored next-generation approaches to cancer treatment.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
33
|
Cadiou G, Beauvais T, Marotte L, Lambot S, Deleine C, Vignes C, Gantier M, Hussong M, Rulli S, Jarry A, Simon S, Malissen B, Labarriere N. Differential impact of genetic deletion of TIGIT or PD-1 on melanoma-specific T-lymphocytes. Oncoimmunology 2024; 13:2376782. [PMID: 38983599 PMCID: PMC11232637 DOI: 10.1080/2162402x.2024.2376782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Immune checkpoint (IC) blockade and adoptive transfer of tumor-specific T-cells (ACT) are two major strategies to treat metastatic melanoma. Their combination can potentiate T-cell activation in the suppressive tumor microenvironment, but the autoimmune adverse effects associated with systemic injection of IC blockers persist with this strategy. ACT of tumor-reactive T-cells defective for IC expression would overcome this issue. For this purpose, PD-1 and TIGIT appear to be relevant candidates, because their co-expression on highly tumor-reactive lymphocytes limits their therapeutic efficacy within the tumor microenvironme,nt. Our study compares the consequences of PDCD1 or TIGIT genetic deletion on anti-tumor properties and T-cell fitness of melanoma-specific T lymphocytes. Transcriptomic analyses revealed down-regulation of cell cycle-related genes in PD-1KO T-cells, consistent with biological observations, whereas proliferative pathways were preserved in TIGITKO T-cells. Functional analyses showed that PD-1KO and TIGITKO T-cells displayed superior antitumor reactivity than their wild-type counterpart in vitro and in a preclinical melanoma model using immunodeficient mice. Interestingly, it appears that TIGITKO T-cells were more effective at inhibiting tumor cell proliferation in vivo, and persist longer within tumors than PD-1KO T-cells, consistent with the absence of impact of TIGIT deletion on T-cell fitness. Taken together, these results suggest that TIGIT deletion, over PD-1 deletion, in melanoma-specific T-cells is a compelling option for future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Gwenann Cadiou
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Tiffany Beauvais
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Lucine Marotte
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Sylvia Lambot
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Cécile Deleine
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Caroline Vignes
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Malika Gantier
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Melanie Hussong
- QIAGEN Sciences, Frederick, MD, USA
- NeoGenomics, Research Triangle Park, Durham, NC, USA
| | | | - Anne Jarry
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Sylvain Simon
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Nathalie Labarriere
- Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes Université, Univ Angers, Inserm, Nantes, France
| |
Collapse
|
34
|
Moradi V, Khodabandehloo E, Alidadi M, Omidkhoda A, Ahmadbeigi N. Progress and pitfalls of gene editing technology in CAR-T cell therapy: a state-of-the-art review. Front Oncol 2024; 14:1388475. [PMID: 38912057 PMCID: PMC11190338 DOI: 10.3389/fonc.2024.1388475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
CAR-T cell therapy has shown remarkable promise in treating B-cell malignancies, which has sparked optimism about its potential to treat other types of cancer as well. Nevertheless, the Expectations of CAR-T cell therapy in solid tumors and non-B cell hematologic malignancies have not been met. Furthermore, safety concerns regarding the use of viral vectors and the current personalized production process are other bottlenecks that limit its widespread use. In recent years the use of gene editing technology in CAR-T cell therapy has opened a new way to unleash the latent potentials of CAR-T cell therapy and lessen its associated challenges. Moreover, gene editing tools have paved the way to manufacturing CAR-T cells in a fully non-viral approach as well as providing a universal, off-the-shelf product. Despite all the advantages of gene editing strategies, the off-target activity of classical gene editing tools (ZFNs, TALENs, and CRISPR/Cas9) remains a major concern. Accordingly, several efforts have been made in recent years to reduce their off-target activity and genotoxicity, leading to the introduction of advanced gene editing tools with an improved safety profile. In this review, we begin by examining advanced gene editing tools, providing an overview of how these technologies are currently being applied in clinical trials of CAR-T cell therapies. Following this, we explore various gene editing strategies aimed at enhancing the safety and efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Vahid Moradi
- Hematology and Blood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Khodabandehloo
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Omidkhoda
- Hematology and Blood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Satapathy BP, Sheoran P, Yadav R, Chettri D, Sonowal D, Dash CP, Dhaka P, Uttam V, Yadav R, Jain M, Jain A. The synergistic immunotherapeutic impact of engineered CAR-T cells with PD-1 blockade in lymphomas and solid tumors: a systematic review. Front Immunol 2024; 15:1389971. [PMID: 38799440 PMCID: PMC11116574 DOI: 10.3389/fimmu.2024.1389971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapies such as chimeric antigen receptor-T Cell (CAR-T) and immune checkpoint inhibitors like programmed cell death protein-1 (PD-1) blockers are showing promising results for numerous cancer patients. However, significant advancements are required before CAR-T therapies become readily available as off-the-shelf treatments, particularly for solid tumors and lymphomas. In this review, we have systematically analyzed the combination therapy involving engineered CAR-T cells and anti PD-1 agents. This approach aims at overcoming the limitations of current treatments and offers potential advantages such as enhanced tumor inhibition, alleviated T-cell exhaustion, heightened T-cell activation, and minimized toxicity. The integration of CAR-T therapy, which targets tumor-associated antigens, with PD-1 blockade augments T-cell function and mitigates immune suppression within the tumor microenvironment. To assess the impact of combination therapy on various tumors and lymphomas, we categorized them based on six major tumor-associated antigens: mesothelin, disialoganglioside GD-2, CD-19, CD-22, CD-133, and CD-30, which are present in different tumor types. We evaluated the efficacy, complete and partial responses, and progression-free survival in both pre-clinical and clinical models. Additionally, we discussed potential implications, including the feasibility of combination immunotherapies, emphasizing the importance of ongoing research to optimize treatment strategies and improve outcomes for cancer patients. Overall, we believe combining CAR-T therapy with PD-1 blockade holds promise for the next generation of cancer immunotherapy.
Collapse
Affiliation(s)
- Bibhu Prasad Satapathy
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Chinmayee Priyadarsini Dash
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Ritu Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
36
|
Jiang H, Wu J, Zhang J. PD-1 and LAG-3 positive T cells are related with the prognosis of patients with chronic kidney disease. Exp Cell Res 2024; 438:114027. [PMID: 38574959 DOI: 10.1016/j.yexcr.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE Our objective was to study the frequency of circulating LAG-3+ and PD-1+ T cells in chronic kidney disease (CKD) patients and their correlation with cytokines and patient prognosis. METHODS A total of 83 patients with CKD between June 2020 and June 2022 were enrolled. We measured serum levels of IL-6, CRP, IL-1β, and TNF-α by ELISA. The frequency of PD-1+ and LAG-3+ T cells was measured using flow cytometry. All patients were followed up for 1 year, and the occurrence of any of the following conditions during the follow-up period was considered as major adverse cardiac events (MACE) indicating poor prognosis. RESULTS The frequencies of LAG-3+PD-1+, LAG-3+ and PD-1+ cells were significantly increased in CKD group compared to healthy volunteers. Additionally, CKD patients had remarkably enhanced levels of cytokines. Compared to the non-MACE group, MACE group had significantly higher frequencies of LAG-3PD-1, LAG-3 and PD-1 expression on CD8 and CD4. Positive correlations were observed between IL-1β, IL-6 and frequencies of PD-1+LAG-3+. CD4+LAG-3+PD-1+ frequency displayed the highest diagnostic value for CKD patients with MACE. Moreover, CD8+LAG-3+, CD4+LAG-3+PD-1+, CD4+PD-1+, IL-1β and IL-6 were identified as risk factors for the occurrence of MACE in patients with CKD. CONCLUSION In summary, the present research showed that the frequencies of LAG-3+ and PD-1+ T cells were remarkably enhanced in CKD patients. These findings offer novel insights and potential therapeutic targets for the management of CKD.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Nephrology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Binhu District, 214122, Wuxi City, Jiangsu Province, China
| | - Jing Wu
- Department of Nephrology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Binhu District, 214122, Wuxi City, Jiangsu Province, China
| | - Junlin Zhang
- Department of Nephrology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Binhu District, 214122, Wuxi City, Jiangsu Province, China.
| |
Collapse
|
37
|
Andreu-Saumell I, Rodriguez-Garcia A, Mühlgrabner V, Gimenez-Alejandre M, Marzal B, Castellsagué J, Brasó-Maristany F, Calderon H, Angelats L, Colell S, Nuding M, Soria-Castellano M, Barbao P, Prat A, Urbano-Ispizua A, Huppa JB, Guedan S. CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition. Nat Commun 2024; 15:3552. [PMID: 38670972 PMCID: PMC11053011 DOI: 10.1038/s41467-024-47799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.
Collapse
Affiliation(s)
- Irene Andreu-Saumell
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Alba Rodriguez-Garcia
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain.
| | - Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Marta Gimenez-Alejandre
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Berta Marzal
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Joan Castellsagué
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Fara Brasó-Maristany
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Hugo Calderon
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Laura Angelats
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Salut Colell
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Mara Nuding
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Marta Soria-Castellano
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Paula Barbao
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Aleix Prat
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Sonia Guedan
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain.
| |
Collapse
|
38
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
39
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
40
|
Wang Y, Cho JW, Kastrunes G, Buck A, Razimbaud C, Culhane AC, Sun J, Braun DA, Choueiri TK, Wu CJ, Jones K, Nguyen QD, Zhu Z, Wei K, Zhu Q, Signoretti S, Freeman GJ, Hemberg M, Marasco WA. Immune-restoring CAR-T cells display antitumor activity and reverse immunosuppressive TME in a humanized ccRCC mouse model. iScience 2024; 27:108879. [PMID: 38327771 PMCID: PMC10847687 DOI: 10.1016/j.isci.2024.108879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Jae-Won Cho
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cecile Razimbaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aedin C. Culhane
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Braun
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhu Zhu
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA 02215, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Hemberg
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Lane IC, Kembuan G, Carreiro J, Kann MC, Lin W, Bouffard AA, Kreuzer J, Morris R, Schneider EM, Kim JY, Zou C, Salas-Benito D, Gasser JA, Leick MB, Słabicki M, Haas W, Maus MV, Jan M. Genetic retargeting of E3 ligases to enhance CAR T cell therapy. Cell Chem Biol 2024; 31:338-348.e5. [PMID: 37989314 PMCID: PMC10922718 DOI: 10.1016/j.chembiol.2023.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFβ signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFβ and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.
Collapse
Affiliation(s)
- Isabel C Lane
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriele Kembuan
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jeannie Carreiro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Kann
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - William Lin
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Amanda A Bouffard
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Johannes Kreuzer
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Morris
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joanna Y Kim
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charles Zou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Diego Salas-Benito
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica A Gasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark B Leick
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilhelm Haas
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Max Jan
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Manandhar P, Szymczak-Workman AL, Kane LP. Tim-3 Is Not Required for Establishment of CD8+ T Cell Memory to Lymphocytic Choriomeningitis Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:466-474. [PMID: 38108417 PMCID: PMC10906969 DOI: 10.4049/jimmunol.2300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Tim-3 is a transmembrane protein that is best known for being highly expressed on terminally exhausted CD8+ T cells associated with chronic infection and tumors, although its expression is not limited to those settings. Tim-3 is also expressed by CD8+ T cells during acute infection and by multiple other immune cell types, including CD4+ Th1 and regulatory T cells, dendritic cells, and mast cells. In this study, we investigated the role of Tim-3 signaling on CD8+ T cell memory using a Tim-3 conditional knockout mouse model and mice lacking the signaling portion of the Tim-3 cytoplasmic domain. Together, our results indicate that Tim-3 has at most a modest effect on the formation and function of CD8+ memory T cells.
Collapse
Affiliation(s)
- Priyanka Manandhar
- Dept. of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Lawrence P. Kane
- Dept. of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
44
|
Zhang Z, Baxter AE, Ren D, Qin K, Chen Z, Collins SM, Huang H, Komar CA, Bailer PF, Parker JB, Blobel GA, Kohli RM, Wherry EJ, Berger SL, Shi J. Efficient engineering of human and mouse primary cells using peptide-assisted genome editing. Nat Biotechnol 2024; 42:305-315. [PMID: 37095348 PMCID: PMC11230135 DOI: 10.1038/s41587-023-01756-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.
Collapse
Affiliation(s)
- Zhen Zhang
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Diqiu Ren
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kunhua Qin
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Sierra M Collins
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chad A Komar
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerd A Blobel
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rahul M Kohli
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Shelley L Berger
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Junwei Shi
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Hou B, Hu Y, Zhu Y, Wang X, Li W, Tang J, Jia X, Wang J, Cong Y, Quan M, Yang H, Zheng H, Bao Y, Chen XL, Wang HR, Xu B, Gascoigne NRJ, Fu G. SHP-1 Regulates CD8+ T Cell Effector Function but Plays a Subtle Role with SHP-2 in T Cell Exhaustion Due to a Stage-Specific Nonredundant Functional Relay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:397-409. [PMID: 38088801 DOI: 10.4049/jimmunol.2300462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.
Collapse
Affiliation(s)
- Bowen Hou
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhen Zhu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaocui Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanyun Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jian Tang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Minxue Quan
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongying Yang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhou Bao
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong-Rui Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Cancer Research Center of Xiamen University, Xiamen, China
- Laboratory Animal Center, Xiamen University; Xiamen, China
| |
Collapse
|
46
|
Tang Y, Liu W, Kadu S, Johnson O, Hasanali ZS, Kelly A, Shestov A, Pajarillo R, Greenblatt E, Holmes M, Wang LP, Shih N, O’Connor RS, Ruella M, Garfall AL, Allman D, Vogl DT, Cohen A, June CH, Sheppard NC. Exploiting the CD200-CD200R immune checkpoint axis in multiple myeloma to enhance CAR T-cell therapy. Blood 2024; 143:139-151. [PMID: 37616575 PMCID: PMC10862366 DOI: 10.1182/blood.2022018658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.
Collapse
Affiliation(s)
- Yan Tang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Wei Liu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Siddhant Kadu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Omar Johnson
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Zainul S. Hasanali
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andre Kelly
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Alexander Shestov
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Li-Ping Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Natalie Shih
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alfred L. Garfall
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Allman
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dan T. Vogl
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Cohen
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Neil C. Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Peng X, Zheng J, Liu T, Zhou Z, Song C, Geng Y, Wang Z, Huang Y. Tumor Microenvironment Heterogeneity, Potential Therapeutic Avenues, and Emerging Therapies. Curr Cancer Drug Targets 2024; 24:288-307. [PMID: 37537777 DOI: 10.2174/1568009623666230712095021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE This review describes the comprehensive portrait of tumor microenvironment (TME). Additionally, we provided a panoramic perspective on the transformation and functions of the diverse constituents in TME, and the underlying mechanisms of drug resistance, beginning with the immune cells and metabolic dynamics within TME. Lastly, we summarized the most auspicious potential therapeutic strategies. RESULTS TME is a unique realm crafted by malignant cells to withstand the onslaught of endogenous and exogenous therapies. Recent research has revealed many small-molecule immunotherapies exhibiting auspicious outcomes in preclinical investigations. Furthermore, some pro-immune mechanisms have emerged as a potential avenue. With the advent of nanosystems and precision targeting, targeted therapy has now transcended the "comfort zone" erected by cancer cells within TME. CONCLUSION The ceaseless metamorphosis of TME fosters the intransigent resilience and proliferation of tumors. However, existing therapies have yet to surmount the formidable obstacles posed by TME. Therefore, scientists should investigate potential avenues for therapeutic intervention and design innovative pharmacological and clinical technologies.
Collapse
Affiliation(s)
- Xintong Peng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jingfan Zheng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Tianzi Liu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ziwen Zhou
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chen Song
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Geng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zichuan Wang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Huang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
48
|
Schlabach MR, Lin S, Collester ZR, Wrocklage C, Shenker S, Calnan C, Xu T, Gannon HS, Williams LJ, Thompson F, Dunbar PR, LaMothe RA, Garrett TE, Colletti N, Hohmann AF, Tubo NJ, Bullock CP, Le Mercier I, Sofjan K, Merkin JJ, Keegan S, Kryukov GV, Dugopolski C, Stegmeier F, Wong K, Sharp FA, Cadzow L, Benson MJ. Rational design of a SOCS1-edited tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens. J Clin Invest 2023; 133:e163096. [PMID: 38099496 PMCID: PMC10721144 DOI: 10.1172/jci163096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell-enhancing target. In murine CD8+ T cell-therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.
Collapse
|
49
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
50
|
Bertoletti A, Le Bert N. Quest for immunological biomarkers in the management of CHB patients. Gut 2023; 72:2012-2014. [PMID: 36922017 DOI: 10.1136/gutjnl-2023-329437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|