1
|
Cai Q, Jing C, Wang X, Xing X, Liu W. STEAP Proteins: Roles in disease biology and potential for therapeutic intervention. Int J Biol Macromol 2025; 309:142797. [PMID: 40185436 DOI: 10.1016/j.ijbiomac.2025.142797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Iron and copper are essential metal ions, and maintaining their metabolic balance is critical for organismal health. The Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) protein family, comprising STEAP1, STEAP2, STEAP3, and STEAP4, plays a vital role in cellular metal homeostasis. These proteins are located on the cell membrane and are characterized by six transmembrane domains. With the exception of STEAP1, the STEAP proteins function as metal oxidoreductases due to their F420H2:NADP+ oxidoreductase (FNO)-like domain. However, STEAP1 contributes to metal metabolism through its heme group and interaction with other STEAP proteins. Beyond metal metabolism, STEAP proteins are involved in critical cellular processes, including the regulation of the cell cycle, proliferation, differentiation, and apoptosis. Notably, STEAP proteins are recognized as potential biomarkers and therapeutic targets in human cancers, particularly prostate cancer. This review outlines the structural features and functional roles of STEAP proteins in various diseases, including cancers, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and benign prostatic hyperplasia, with a focus on their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Qiaomei Cai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xiangling Xing
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China.
| | - Wancheng Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
2
|
Bruni M, Lobefaro F, Pellegrini C, Mastrangelo M, Gualdi G, Esposito M, Antonetti P, De Sanctis P, Amerio P, Fargnoli MC. Psoriasis and cancer: the role of inflammation, immunosuppression, and cancer treatment. Expert Opin Biol Ther 2025; 25:395-411. [PMID: 40034077 DOI: 10.1080/14712598.2025.2471093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION The relationship between psoriasis, immunomodulatory therapies, and the risk of malignancies is complex and still debated. The scarcity of evidence in this field makes clinicians hesitate to prescribe biological therapies for 'difficult-to-treat' patients. AREAS COVERED Based on a comprehensive MEDLINE/PUBMED search of articles published up to November 2024, this review synthesizes the current evidence on the association between psoriasis and cancer. This review specifically addresses four key aspects: the overall cancer risk in psoriatic patients, the potential role of cytokines involved in psoriasis pathogenesis in tumor development, the association between biological therapies and the incidence of new malignancies in this population, and the risk of cancer recurrence or progression in patients with a history of malignancy who are treated with biologics. EXPERT OPINION Biological therapies do not significantly elevate malignancy risk compared to non-biological treatments or the general population. Evidence is also reassuring for patients with prior malignancy, showing no tumor progression or recurrence. These findings support the timely use of biological treatments in 'difficult-to-treat' patients. Regular cancer screenings and risk-factor minimization should always be recommended for psoriatic patients undergoing immunomodulatory therapies. Multidisciplinary management involving oncologists is suggested, particularly for patients with active and advanced oncological disease.
Collapse
Affiliation(s)
- Manfredo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabio Lobefaro
- Dermatology, Department of Medicine and Aging Science, University of Chieti-Pescara, Chieti, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mirco Mastrangelo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulio Gualdi
- Dermatology, Department of Medicine and Aging Science, University of Chieti-Pescara, Chieti, Italy
| | - Maria Esposito
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Antonetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo De Sanctis
- Dermatology, Department of Medicine and Aging Science, University of Chieti-Pescara, Chieti, Italy
| | - Paolo Amerio
- Dermatology, Department of Medicine and Aging Science, University of Chieti-Pescara, Chieti, Italy
| | - Maria Concetta Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Peng C, Lei P, Qi H, Zhu Q, Huang C, Fu J, Zhao C. Effect of fecal microbiota transplantation on diabetic wound healing through the IL-17A-mTOR-HIF1α signaling axis. Appl Environ Microbiol 2025; 91:e0201924. [PMID: 40019272 PMCID: PMC11921319 DOI: 10.1128/aem.02019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Diabetes is the third most common chronic disorder worldwide. Diabetic wounds are a severe complication that is costly and often results in non-traumatic lower limb amputation. Recent investigations have demonstrated that the gut microbiota as a "virtual organ" can regulate metabolic diseases like diabetes. Fecal microbiota transplantation (FMT) is an innovative therapeutic approach for promoting wound healing, but its function remains incompletely defined. A diabetes model was established by supplying mice with a high-fat diet and performing an intraperitoneal injection of streptozotocin. Diabetic wounds were then created, followed by bacterial transplantation. The relevant indexes of wound healing were evaluated to verify the promoting effect of FMT on the diabetic wounds. Human skin keratinocytes were also cultured, and cell scratch experiments were conducted to further investigate the underlying mechanism. The FMT regulated the levels of specific bacteria in the diabetic mice and helped restore the balance of intestinal microbes. This transplantation also enhanced wound healing in the diabetic mice by augmenting the closure rate, accelerating re-epithelialization, and boosting collagen deposition in skin wounds. Furthermore, FMT promoted the production of IL-17A, which significantly enhanced the growth and movement of human keratinocytes. Inhibiting molecules related to the IL-17A-mTOR-HIF1α signaling axis were shown to hinder wound re-epithelialization.This study clarifies the function of the IL-17A-mTOR-HIF1α signaling axis in the utilization of FMT in diabetic wound healing, providing a new therapeutic method and target for promoting the healing of diabetic wounds. IMPORTANCE The Intestinal microbiota, as the organ with the largest number of microorganisms in the body, plays a crucial role in the physiological functions of the human body. Normal microbiota can be involved in various functions such as energy absorption, metabolism, and immunity of the body, and microbiota imbalance is related to many diseases such as obesity and diabetes. Diabetes, as one of the world's three major chronic diseases, is a significant health issue that troubles more than a billion people globally. Diabetic wounds are a problem that all diabetic patients must confront when undergoing surgery, and it is an important cause of non-traumatic amputations. Exploring the role of intestinal microorganisms in the wound-healing process of diabetic mice can offer the possibility of using microorganisms as a therapeutic means to intervene in clinically related diseases.
Collapse
Affiliation(s)
- Chenmei Peng
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Pan Lei
- Department of General Practice Medicine, Qinghai University Affiliated Hospital, Xining, China
| | - Hongying Qi
- Department of Endocrinology, Qinghai University Affiliated Hospital, Xining, China
| | - Qianjun Zhu
- Department of Endocrinology, Qinghai Province People’s Hospital, Xining, China
| | - Chushun Huang
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Ju Fu
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Chengyu Zhao
- Department of Geriatrics, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
4
|
Yamazaki E, Fujimura T, Takahashi-Watanabe M, Amagai R, Tamabuchi E, Oka K, Kambayashi Y, Hashimoto A, Omori R, Takahashi T, Asano Y. An Evaluation of Prognostic Factors in Cutaneous Squamous Cell Carcinoma: A Single-Center Study of 237 Japanese Cases. J Clin Med 2025; 14:1243. [PMID: 40004774 PMCID: PMC11856698 DOI: 10.3390/jcm14041243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cutaneous squamous cell carcinoma (cSCC) is a common cutaneous malignancy with diverse etiologies, including actinic keratosis, burns, and hidradenitis suppurativa (HS). Methods: We reviewed 237 cases diagnosed as cSCC in our department between 2013 and 2023. In addition, we focused on HS as an aggravating factor for cSCC. The mechanism of cSCC progression was investigated with a focus on LL-37, a peptide implicated in the pathogenesis of HS. Relevant gene expression was analyzed comprehensively via RNA sequencing in vitro. Results: The median age of the patients was 82 years (range: 33-101), with 139 males and 98 females. The primary sites were as follows: head and neck (125 cases), trunk (10 cases), vulva (11 cases), extremities (81 cases), and buttocks (10 cases). Among the five cases (2.1%) of buttocks cSSc associated with HS, all cases (100%) had local recurrence or lymph node metastasis at the time of diagnosis, and one case (20%) developed multi-organ metastasis. The incidence of disease progression in cSCC originating from HS-affected buttocks was significantly higher than in other sites (p < 0.05). RNA sequencing revealed the significant amplification of ACTA1, which was confirmed by Western blotting and immunohistochemical staining. Conclusions: These results suggest that HS is a prognostic factor in cSCC and that LL-37 stimulation contributes to tumor progression, partly by enhancing multiple tumor growth factors.
Collapse
Affiliation(s)
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (E.Y.); (M.T.-W.); (R.A.); (E.T.); (K.O.); (Y.K.); (A.H.); (R.O.); (T.T.); (Y.A.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhao K, Sun T, Sun Q, Chen Z, Wang T, Yang J, Li L, Zhu Y, Liu X, Yang D, Lin B, Lu N. Nerve Growth Factor Signaling Promotes Nuclear Translocation of TRAF4 to Enhance Tumor Stemness and Metastatic Dormancy Via C-Jun-mediated IL-8 Autocrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414437. [PMID: 39716976 PMCID: PMC11831473 DOI: 10.1002/advs.202414437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Tumor necrosis factor receptor-associated factor 4 (TRAF4), an E3 ubiquitin ligase, is frequently overexpressed in tumors. Although its cytoplasmic role in tumor progression is well-documented, the precise mechanisms underlying its nuclear localization and functional contributions in tumor cells remain elusive. This study demonstrated a positive correlation between the expression of nuclear TRAF4 and both tumor grades and stemness signatures in human cancer tissues. Notably, reduced nuclear TRAF4 led to decreased stemness properties and metastatic dormancy of tumor cells. Conversely, restoring nuclear TRAF4 in TRAF4-knockout (TRAF4-KO) cells augmented these cellular capabilities. Within the nucleus, the TRAF domain of TRAF4 interacted with c-Jun, thereby stimulating its transcriptional activity. This interaction subsequently led to an enhancement of the promoter activity of interleukin-8 (IL-8), which is identified as a mediator of nuclear TRAF4-induced tumor dormancy. Additionally, activation of AKT signaling by nerve growth factor facilitated TRAF4 phosphorylation at Ser242, enhancing its interaction with 14-3-3θ and promoting its nuclear translocation. Importantly, pharmacological modulation of TRAF4 nuclear translocation is found to suppress tumor tumorigenicity and metastasis in tumor models. This study highlights the critical role of nuclear TRAF4 in regulating tumor stemness and dormancy, positioning it as a potential therapeutic target for metastatic and refractory cancers.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Tifan Sun
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Qiruo Sun
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Zhenzhong Chen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Tiepeng Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
- School of PharmacyNanjing University of Chinese Medicine138 Xianlin Rd.Nanjing210023China
| | - Jinming Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
- Department of PharmacyThe Second Hospital of NanjingAffiliated Hospital to Nanjing University of Chinese MedicineNanjing210003China
| | - Lei Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Yanan Zhu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Xinye Liu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| | - Dawei Yang
- Department of PharmacyThe Second Hospital of NanjingAffiliated Hospital to Nanjing University of Chinese MedicineNanjing210003China
| | - Binyan Lin
- School of PharmacyNanjing University of Chinese Medicine138 Xianlin Rd.Nanjing210023China
| | - Na Lu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionDepartment of PhysiologySchool of Basic Medicine and Clinical PharmacyChina Pharmaceutical University24 TongjiaxiangNanjing210009China
| |
Collapse
|
6
|
Jasmine F, Almazan A, Khamkevych Y, Argos M, Shahriar M, Islam T, Shea CR, Ahsan H, Kibriya MG. Gene-Environment Interaction: Small Deletions (DELs) and Transcriptomic Profiles in Non-Melanoma Skin Cancer (NMSC) and Potential Implications for Therapy. Cells 2025; 14:95. [PMID: 39851523 PMCID: PMC11764317 DOI: 10.3390/cells14020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Arsenic (As) is a risk factor for non-melanoma skin cancer (NMSC). From a six-year follow-up study on 7000 adults exposed to As, we reported the associations of single-nucleotide variation in tumor tissue and gene expression. Here, we identify the associations of small deletions (DELs) and transcriptomic profiles in NMSC. Comparing the (a) NMSC tissue (n = 32) and corresponding blood samples from each patient, and (b) an independent set of non-lesional, healthy skin (n = 16) and paired blood, we identified NMSC-associated DELs. Differential expressions of certain gene pathways (TGF-β signaling pathway, IL-17 pathway, PD-L1 pathway, etc.) showed significant interactions with these somatic DELs and As exposure. In low-As-exposure cases, the DELs in APC were associated with the up-regulation of inflamed T-Cell-associated genes by a fold change (FC) of 8.9 (95% CI 4.5-17.6), compared to 5.7 (95% CI 2.9-10.8) without APC DELs; in high-As-exposure cases, the APC DELs were associated with an FC of 5.8 (95% CI 3.5-9.8) compared to 1.2 (95% CI -1.3 to 1.8) without APC DELs. We report, for the first time, the significant associations of somatic DELs (many in STR regions) in NMSC tissue and As exposure with many dysregulated gene pathways. These findings may help in selecting groups of patients for potential targeted therapy like PD-L1 inhibitors, IL-17 inhibitors, and TGF-β inhibitors in the future.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Armando Almazan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Yuliia Khamkevych
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Maria Argos
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA;
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Tariqul Islam
- UChicago Research Bangladesh (URB), University of Chicago, Dhaka 1230, Bangladesh;
| | - Christopher R. Shea
- Division of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Krzysztofik M, Brzewski P, Kulbat A, Masajada M, Richter K, Wysocki WM. The IL-23/Th17 pathway inhibitors in the treatment of psoriasis and the risk of skin malignancies: a review. Postepy Dermatol Alergol 2024; 41:552-559. [PMID: 39877117 PMCID: PMC11770571 DOI: 10.5114/ada.2024.143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 01/31/2025] Open
Abstract
Psoriasis and psoriatic arthritis are chronic inflammatory conditions that constitute a significant global health burden due to their prevalence and impact on quality of life. A deeper comprehension of psoriasis and psoriatic arthritis pathogenesis has recently led to the emergence of novel classes of biologics targeting the IL-23/Th17 pathway. The specific role of interleukin-12, -23, and -17 in cancer as either promoters or inhibitors is under investigation in various studies. Here, we explore the potential role of interleukin-12, -23, and -17 in the development of skin tumours as well as the safety of using their inhibitors in the treatment of psoriasis and psoriatic arthritis, particularly in relation to the risk of melanoma and non-melanoma skin cancer (NMSC) development.
Collapse
Affiliation(s)
- Marta Krzysztofik
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
| | - Paweł Brzewski
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Aleksandra Kulbat
- Department of Oncological Surgery, 5 Military Clinical Hospital, Krakow, Poland
- National Institute of Oncology, Maria Sklodowska-Curie Memorial, Warsaw, Poland
| | - Magdalena Masajada
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Karolina Richter
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Wojciech M. Wysocki
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
- Department of Oncological Surgery, 5 Military Clinical Hospital, Krakow, Poland
- National Institute of Oncology, Maria Sklodowska-Curie Memorial, Warsaw, Poland
| |
Collapse
|
8
|
Yu Z, Tang X, Chen Z, Hu Y, Zhang S, Guo C, Gu J, Shi Y, Gong Y. Role of ADAM10/17-Mediated Cleavage of LAG3 in the Impairment of Immunosuppression in Psoriasis. J Invest Dermatol 2024:S0022-202X(24)02948-8. [PMID: 39571889 DOI: 10.1016/j.jid.2024.10.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 12/25/2024]
Abstract
Despite extensive research on immune activation regulatory mechanisms, studies on immune suppression in psoriasis are limited. LAG3, a newly identified immune checkpoint, plays a crucial role in modulating immune responses and maintaining T-regulatory cell function. However, its involvement in psoriasis is unclear. We show that psoriasis is associated with reduced LAG3 expression in CD4 T cells and T-regulatory cells. Further analysis revealed that the decline in LAG3 levels was linked to ADAM10/17-mediated proteolytic cleavage, which was upregulated in psoriasis. Clinical utilization of the IL-17A antagonist secukinumab, along with the in vivo and in vitro IL-17A-induced models, supported the potential of IL-17A to induce ADAM10/17 expression and trigger LAG3 cleavage. Through the Jurkat cell model, IL-17A was found to regulate ADAM10/17 expression by activating FOXM1. In addition, treatment with the ADAM10/17 inhibitor GW280264X showed ameliorative effects on psoriasis-like mouse models and lipopolysaccharide-induced inflammation. Collectively, the findings of this study uncover the immune regulatory role of the ADAM10/17-LAG3 axis in psoriasis and highlight the therapeutic potential of targeting ADAM10/17 for psoriasis treatment.
Collapse
Affiliation(s)
- Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zeyu Chen
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yifan Hu
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuqin Zhang
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyuan Guo
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jun Gu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuling Shi
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Manzanero-Ortiz S, Franco M, Laxmeesha M, Carmena A. Drosophila p53 tumor suppressor directly activates conserved asymmetric stem cell division regulators. iScience 2024; 27:111118. [PMID: 39524346 PMCID: PMC11546965 DOI: 10.1016/j.isci.2024.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
p53 is the most mutated tumor suppressor gene in human cancers. Besides p53 classical functions inducing cell-cycle arrest and apoptosis in stressed cells, additional p53 non-canonical roles in unstressed cells have emerged over the past years, including the mode of stem cell division regulation. However, the mechanisms by which p53 impacts on this process remain elusive. Here, we show that Drosophila p53 controls asymmetric stem cell division (ASCD), a key process in development, cancer and adult tissue homeostasis, by transcriptionally activating Numb, Brat, and Traf4 ASCD regulators. p53 knockout caused failures in their localization in dividing neural stem cells, as well as a significant decrease in their expression levels. Moreover, p53 directly bound numb, brat, and Traf4 regulatory regions. Remarkably, human and mice genes related to Drosophila brat (TRIM32) and Traf4 (TRAF4) were recently identified in a meta-analysis of transcriptomic and ChIP-seq datasets as predicted conserved p53 targets.
Collapse
Affiliation(s)
- Sandra Manzanero-Ortiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Mahima Laxmeesha
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
10
|
Liu H, Wang N, Yang R, Luan J, Cao M, Zhai C, Wang S, Wei M, Wang D, Qiao J, Liu Y, She W, Guo N, Liao B, Gou X. E3 Ubiquitin Ligase NEDD4L Negatively Regulates Skin Tumorigenesis by Inhibiting IL-6/GP130 Signaling Pathway. J Invest Dermatol 2024; 144:2453-2464.e11. [PMID: 38580105 DOI: 10.1016/j.jid.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
IL-6 signaling plays a crucial role in the survival and metastasis of skin cancer. NEDD4L acts as a suppressor of IL-6 signaling by targeting GP130 degradation. However, the effects of the NEDD4L-regulated IL-6/GP130 signaling pathway on skin cancer remain unclear. In this study, protein expression levels of NEDD4L and GP130 were measured in tumor tissues from patients with cutaneous squamous cell carcinoma. Skin tumors were induced in wild-type and Nedd4l-knockout mice, and activation of the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway was detected. The results indicated a negative correlation between the protein expression levels of NEDD4L and GP130 in cutaneous squamous cell carcinoma tissues from patients. Nedd4l deficiency significantly promoted 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin tumorigenesis and benign-to-malignant conversion by activating the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway, which was abrogated by supplementation with the GP130 inhibitor SC144. Furthermore, our findings suggested that NEDD4L can interact with GP130 and promote its ubiquitination in skin tumors. In conclusion, our results indicate that NEDD4L could act as a tumor suppressor in skin cancer, and inhibition of GP130 could be a potential therapeutic method for treating this disease.
Collapse
Affiliation(s)
- Huan Liu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Run Yang
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Meng Cao
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Cui Zhai
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Mengqian Wei
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Duorong Wang
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Jiayue Qiao
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Yuqian Liu
- College of pharmacy, Xi'an Medical University, Xi'an, China
| | - Wenting She
- College of pharmacy, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Department of Immunology, Xi'an Medical University, Xi'an, China
| | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.
| | - Xingchun Gou
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
11
|
Dai X, Mizukami Y, Watanabe K, Tsuda T, Shidahara M, Yoshida S, Yatsuzuka K, Shiraishi K, Mori H, Murakami M, Kawakami R, Imamura T, Fujisawa Y, Muto J. Trehalose Prevents IL-4/IL-13-Induced Skin Barrier Impairment by Suppressing IL-33 Expression and Increasing NRF2 Activation in Human Keratinocytes In Vitro. J Invest Dermatol 2024:S0022-202X(24)02175-4. [PMID: 39384017 DOI: 10.1016/j.jid.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 10/11/2024]
Abstract
Skin barrier dysfunction initiates or deteriorates various cutaneous problems, such as atopic dermatitis. At high concentrations, the nonreducing disaccharide trehalose (α-d-glucopyranosyl α-d-glucopyranoside) induces a transient senescence-like state in fibroblasts and promotes wound repair. In this study, we investigated the effect of trehalose on normal human keratinocytes and demonstrated its specific role in the skin barrier. RNA-sequencing analysis revealed that trehalose regulates the expression of many skin barrier-associated genes. T helper 2 cytokines IL-4/IL-13 were observed to downregulate several differentiation markers (FLG, loricrin, keratin 1, and keratin 10) and epidermal antimicrobial proteins in monolayer-cultured keratinocytes and living skin equivalents and impaired skin barrier function in living skin equivalents, all of which were significantly upregulated or restored by trehalose. Trehalose inhibited IL-33 expression and reduced nuclear IL-33 levels by activating MAPK/extracellular signal-regulated kinase kinase 5-extracellular signal-regulated kinase 5 and suppressing extracellular signal-regulated kinase kinase 1/2-extracellular signal-regulated kinase pathway. It also increased NRF2 activation to trigger antioxidant enzyme production through JNK, thus neutralizing IL-4/IL-13-mediated oxidative stress. Trehalose prevented IL-4/IL-13-mediated signal transducer and activator of transcription 3/signal transducer and activator of transcription 6 activation and restored IL-4/IL-13-suppressed skin barrier molecules through IL-33 downregulation and NRF2 activation. This study demonstrated that trehalose may play a role in skin barrier repair in atopic dermatitis.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mutsumi Shidahara
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Satoshi Yoshida
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuki Yatsuzuka
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Muto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
12
|
Potestio L, Tommasino N, Lauletta G, Salsano A, Lucagnano G, Menna L, Esposito G, Martora F, Megna M. The Impact of Psoriasis Treatments on the Risk of Skin Cancer: A Narrative Review. Adv Ther 2024; 41:3778-3791. [PMID: 39196500 DOI: 10.1007/s12325-024-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Several studies have described increased risk ratios of certain types of malignancies in patients with severe psoriasis. Among these, the lymphoproliferative disorders, including non-Hodgkin's lymphoma, cutaneous T-cell lymphoma and non-melanoma skin cancer, have been described most frequently. In addition to traditional cancer risk factors, some psoriasis treatments may also be implicated as potential carcinogens. The aim of this study was to perform a review of current literature on the association between psoriasis, the therapies against this disease and skin cancer, focusing on both epidemiology and the potential mechanism involved. Some psoriasis treatments, such as psoralen and ultraviolet A (PUVA) therapy and cyclosporine, have been associated with increased risk of skin cancer. Variable data have been reported for anti-tumour necrosis factor (TNF) drugs, whereas other class of biologics, like anti-IL17 and IL23, as well as ustekinumab, seem not to be related to skin cancer risk, such as the case of currently available small molecules.
Collapse
Affiliation(s)
- Luca Potestio
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Nello Tommasino
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Lauletta
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Antonia Salsano
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Gioacchino Lucagnano
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Luca Menna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Gianluca Esposito
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Fabrizio Martora
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Matteo Megna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
13
|
Mahmoudi A, Jamialahmadi T, Kesharwani P, Sahebkar A. Bioinformatic analysis of the molecular targets of curcumin in colorectal cancer. Pathol Res Pract 2024; 262:155533. [PMID: 39173464 DOI: 10.1016/j.prp.2024.155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Colorectal cancer (CRC) is a major global health concern, with rising incidence and mortality rates. Conventional treatments often come with significant complications, prompting the exploration of natural compounds like curcumin as potential therapeutic agents. Using bioinformatic tools, this study investigated the role of curcumin in CRC treatment. Significant protein interactions between curcumin and target proteins were identified in the STITCH database. Differentially expressed genes (DEGs) associated with CRC were then analyzed from GEO databases. Comparing curcumin targets and CRC-related DEGs, nine significant common targets were identified: DNMT1, PCNA, CCND1, PLAU, MMP3, SOX9, FOXM1, CXCL2, and SERPINB5. Pathway enrichment analyses revealed that curcumin-targeted pathways were primarily related to p53, IL-17, NF-kappa B, TNF, and cell cycle signaling, all crucial in CRC development and progression. Further analyses using DAID and EnrichR algorithms showed that the curcumin targets exhibited greater specificity to bronchial epithelial cells and colorectal adenocarcinoma than other diseases. Analyses via the DSigDB database indicated that curcumin ranks highly among other drugs targeting the identified CRC-related genes. Docking studies revealed favorable binding interactions between curcumin and the key CRC-related proteins, suggesting potential molecular mechanisms by which curcumin may exert its effects. In summary, this study provides bioinformatic and docking evidence that curcumin may exert beneficial effects on CRC by modulating the expression or activity of multiple CRC-susceptibility genes involved in critical signaling pathways. These findings warrant further experimental validation and support the potential of curcumin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
He K, Zang J, Ren T, Feng S, Liu M, Zhang X, Sun W, Chu J, Xu D, Liu F. Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Atopic Dermatitis. J Inflamm Res 2024; 17:5783-5800. [PMID: 39224661 PMCID: PMC11368146 DOI: 10.2147/jir.s479444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense itchiness that is highly prevalent worldwide.The pathogenesis of AD is complex and closely related to genetic factors, immunopathogenic factors, environmental factors, and skin infections. Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells derived from the mesenchymal stroma. They have anti-inflammatory, anti-apoptotic, and regenerative properties. Numerous studies demonstrate that MSCs can play a therapeutic role in AD by regulating various immune cells, maintaining immune homeostasis, and promoting the repair of damaged tissues. The key mediators for their biological functions are extracellular vesicles (MSC-Evs) and soluble cytokines derived from MSCs. The safety and efficacy of MSCs have been demonstrated in clinical Phase I / IIa trials for AD. This paper provides a comprehensive review of the pathogenesis of AD and the currently published studies on the function of MSCs and MSC-Evs in AD, primarily including the pathogenesis and the immunomodulatory impacts of MSCs and MSC-Evs, along with advancements in clinical studies. It provides insights for comprehending AD pathogenesis and investigating treatments based on MSCs.
Collapse
Affiliation(s)
- Kang He
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Tingting Ren
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Mohan Liu
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jinjin Chu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| |
Collapse
|
15
|
Pawlowski J, Pukhalskaya T, Cordoro K, Ibraheim MK, North JP. Interleukin-36 Is Highly Expressed in Skin Biopsies from Two Patients with Netherton Syndrome. Dermatopathology (Basel) 2024; 11:230-237. [PMID: 39189180 PMCID: PMC11348212 DOI: 10.3390/dermatopathology11030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Netherton syndrome (NS) is a rare autosomal recessive disorder that occurs due to a loss-of-function mutation in SPINK5; this loss results in significant inflammation, as well as perturbations of the skin barrier's integrity and functionality. While it is unclear which inflammatory pathways contribute to the development of NS, recent studies have demonstrated the expression of interleukin (IL)-17/IL-36, as well as several Th2 cytokines. Consequently, immunohistochemistry (IHC) with IL-36 may serve as a potential tool for aiding the histopathological diagnosis of this condition. In this case series, we present two cases of NS and capture their immunostaining pattern with IL-36. Both cases demonstrated robust expression of IL-36. This finding bolsters the hypothesis that NS is partially driven by Th17 activation and suggests the potential utility of IL-36 IHC as part of the workup for this rare and diagnostically elusive entity. LEKTI IHC was negative in one biopsy, revealing a limitation of this stain in diagnosing NS.
Collapse
Affiliation(s)
- Johannes Pawlowski
- Department of Dermatology, University Hospital Mainz, 55131 Mainz, Germany;
| | - Tatsiana Pukhalskaya
- Department of Dermatology and Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kelly Cordoro
- Department of Dermatology and Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
| | | | - Jeffrey P. North
- Department of Dermatology and Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Hong L, Herjan T, Chen X, Zagore LL, Bulek K, Wang H, Yang CFJ, Licatalosi DD, Li X, Li X. Act1 drives chemoresistance via regulation of antioxidant RNA metabolism and redox homeostasis. J Exp Med 2024; 221:e20231442. [PMID: 38861022 PMCID: PMC11167376 DOI: 10.1084/jem.20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.
Collapse
Affiliation(s)
- Lingzi Hong
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xing Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Leah L. Zagore
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Donny D. Licatalosi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Takeda Pharmaceutical Company, San Diego, CA, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiao Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
17
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
18
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
19
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [DOI: pmid: 38718731 doi: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
|
20
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
21
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
22
|
Chu YL, Yu S. Hidradenitis Suppurativa: An Understanding of Genetic Factors and Treatment. Biomedicines 2024; 12:338. [PMID: 38397941 PMCID: PMC10886623 DOI: 10.3390/biomedicines12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Hidradenitis suppurativa (HS), recognized as a chronic and debilitating skin disease, presents significant challenges in both diagnosis and treatment. This review explores the clinical manifestations, genetic landscape, and molecular mechanisms underlying HS. The disease's association with a predisposing genetic background, obesity, smoking, and skin occlusion underscores the complexity of its etiology. Genetic heterogeneity manifests in sporadic, familial, and syndromic forms, with a focus on mutations in the γ-secretase complex genes, particularly NCSTN. The dysregulation of immune mediators, including TNF-α, IL-17, IL-1β, and IL-12/23, plays a crucial role in the chronic inflammatory nature of HS. Recent advancements in genetic research have identified potential therapeutic targets, leading to the development of anti-TNF-α, anti-IL-17, anti-IL-1α, and anti-IL-12/23 therapies and JAK inhibitors. These interventions offer promise in alleviating symptoms and improving the quality of life for HS patients.
Collapse
Affiliation(s)
- Yi-Lun Chu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Master of Public Health Degree Program, National Taiwan University, Taipei 100025, Taiwan
| |
Collapse
|
23
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Saifullah Q, Sharma A. Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management. Curr Drug Res Rev 2024; 16:319-332. [PMID: 37807417 DOI: 10.2174/0125899775262048230925054922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods. SIGNIFICANCE The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing. KEY FINDINGS Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings. CONCLUSION Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.
Collapse
Affiliation(s)
- Qazi Saifullah
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| |
Collapse
|
25
|
Qi F, Jin H. Extracellular vesicles from keratinocytes and other skin-related cells in psoriasis: A review. Exp Dermatol 2024; 33:e15001. [PMID: 38284192 DOI: 10.1111/exd.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024]
Abstract
Psoriasis is a highly prevalent chronic inflammatory skin condition involving abnormal proliferation and differentiation of keratinocytes, together with substantial infiltration of immune cells. Extracellular vesicles (EVs), which are released spontaneously into the extracellular space by virtually all cell types, play a crucial role in cell-to-cell communication by delivering bioactive cargos such as mRNA nucleic acids and proteins to recipient cells. Numerous studies have highlighted the significant contributions of EVs to both the pathogenesis and treatment of psoriasis. This review provides a concise overview of skin-derived EVs and their involvement in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Hongzhong Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
26
|
Saifullah Q, Sharma A, Kabra A, Alshammari A, Albekairi TH, Alharbi M, Abdalla M. Development and optimization of film forming non-pressurized liquid bandage for wound healing by Box-Behnken statistical design. Saudi Pharm J 2023; 31:101864. [PMID: 38028211 PMCID: PMC10663907 DOI: 10.1016/j.jsps.2023.101864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The goal of the current investigation was to develop a non-pressurized liquid bandage to promote the healing of wounds by using silver sulfadiazine. A three-factor three level box-behnken statistical design was employed to optimize the drug-loaded liquid bandage. Film-forming liquid bandage was developed by using ethyl-cellulose, dibutyl sebacate, and glycerol. For optimization, ethyl cellulose, dibutyl sebacate, and isopropyl myristate were taken as independent variables while tensile strength, water vapor absorption value, and drying time were taken as dependent variables. The film-forming liquid bandage was evaluated for various parameters like tensile strength, water vapor absorption value, drying time, viscosity, pH, in-vitro drug release studies, in-vivo wound healing studies, and stability studies. The optimized formulation was found with the tensile strength of 68.24 ± 0.24 MPa, water vapor absorption value of 2.00 ± 0.25 %, drying time of 1.75 ± 0.14 min, viscosity of 60 ± 0.5 cPs, pH of 6.0 ± 0.5 and good physicochemical properties with satisfactory film-forming ability. The in-vitro study shows that the release of test formulations was better than the marketed formulation. After 6 h of study, the liquid bandage and marketed formulation showed 41.02 % and 29.32 % of drug release respectively. Significant results were obtained for the in-vivo wound healing studies. Upon comparison with the control group (2.61 mm) and marketed formulation (1.44 mm), rats treated with the optimized formulation exhibited a noticeable improvement in wound contraction (0.8 mm). The liquid bandage after three months of stability testing was found to be stable with optimum. The film-forming liquid bandage was found to be an effective alternative to conventional topical preparations as it develops a thin polymeric layer on the wound and the skin around it and improves comfort for the patient by protecting the wound from external factors and physical harm.
Collapse
Affiliation(s)
- Qazi Saifullah
- University Institute of Pharma Science, Chandigarh University, Punjab, India
| | - Abhishek Sharma
- University Institute of Pharma Science, Chandigarh University, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Science, Chandigarh University, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohnad Abdalla
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, China
| |
Collapse
|
27
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
28
|
Wu Y, Luo J, Xu B. Network Pharmacology and Bioinformatics Study of Geniposide Regulating Oxidative Stress in Colorectal Cancer. Int J Mol Sci 2023; 24:15222. [PMID: 37894904 PMCID: PMC10607277 DOI: 10.3390/ijms242015222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to identify the mechanism of geniposide regulating oxidative stress in colorectal cancer (CRC) through network pharmacology and bioinformatics analysis. Targets of geniposide, oxidative stress-related targets and targets related to CRC were applied from databases. The hub genes for geniposide regulating oxidative stress in CRC were identified with the protein-protein interaction (PPI) network. Furthermore, we applied Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment to analyze the hub genes from a macro perspective. We verified the hub genes by molecular docking, GEPIA, HPA and starBase database. We identified five hub genes: IL1B, GSK3B, NOS3, RELA and CDK4. GO analysis results suggested that the anti-colorectal cancer effect of geniposide by regulating oxidative stress is possibly related to the influence of multiple biological processes, including response to temperature stimulus, response to alkaloid, nitric oxide biosynthetic process, nitric oxide metabolic process, reactive nitrogen species metabolic process, cellular response to peptide, etc. KEGG enrichment analysis results indicated that the PI3K-Akt signaling pathway, IL-17 signaling pathway, p53 signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway are likely to be the significant pathways. Molecular docking results showed that the geniposide had a good binding activity with the hub genes. This study demonstrates that geniposide can regulate oxidative stress in CRC, and induction of oxidative stress is one of the possible mechanisms of anti-recurrence and metastasis effects of geniposide against CRC.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
29
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
30
|
Bakker D, Bakker WJ, Bekkenk MW, Luiten RM. Immunity against Non-Melanoma Skin Cancer and the Effect of Immunosuppressive Medication on Non-Melanoma Skin Cancer Risk in Solid Organ Transplant Recipients. Cells 2023; 12:2441. [PMID: 37887285 PMCID: PMC10605268 DOI: 10.3390/cells12202441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Non-melanoma skin cancers (NMSCs) occur frequently in the Caucasian population and are considered a burden for health care. Risk factors include ultraviolet (UV) radiation, ethnicity and immunosuppression. The incidence of NMSC is significantly higher in solid organ transplant recipients (SOTRs) than in immunocompetent individuals, due to immunosuppressive medication use by SOTRs. While the immunosuppressive agents, calcineurin inhibitors and purine analogues increase the incidence of NMSC in transplant recipients, mTOR inhibitors do not. This is most likely due to the different immunological pathways that are inhibited by each class of drug. This review will focus on what is currently known about the immune response against cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC), two of the main types of NMSC. Furthermore, we will describe the different classes of immunosuppressants given to SOTRs, which part of the immune system they target and how they can contribute to NMSC development. The risk of developing NMSC in SOTRs is the result of a combination of inhibiting immunological pathways involved in immunosurveillance against NMSC and the direct (pro/anti) tumor effects of immunosuppressants.
Collapse
Affiliation(s)
- Dixie Bakker
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Walbert J. Bakker
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Marcel W. Bekkenk
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
- Amsterdam University Medical Centers, VU University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M. Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Xiao J, Chen X, Liu W, Qian W, Bulek K, Hong L, Miller-Little W, Li X, Liu C. TRAF4 is crucial for ST2+ memory Th2 cell expansion in IL-33-driven airway inflammation. JCI Insight 2023; 8:e169736. [PMID: 37607012 PMCID: PMC10561728 DOI: 10.1172/jci.insight.169736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 4 (TRAF4) is an important regulator of type 2 responses in the airway; however, the underlying cellular and molecular mechanisms remain elusive. Herein, we generated T cell-specific TRAF4-deficient (CD4-cre Traf4fl/fl) mice and investigated the role of TRAF4 in memory Th2 cells expressing IL-33 receptor (ST2, suppression of tumorigenicity 2) (ST2+ mTh2 cells) in IL-33-mediated type 2 airway inflammation. We found that in vitro-polarized TRAF4-deficient (CD4-cre Traf4fl/fl) ST2+ mTh2 cells exhibited decreased IL-33-induced proliferation as compared with TRAF4-sufficient (Traf4fl/fl) cells. Moreover, CD4-cre Traf4fl/fl mice showed less ST2+ mTh2 cell proliferation and eosinophilic infiltration in the lungs than Traf4fl/fl mice in the preclinical models of IL-33-mediated type 2 airway inflammation. Mechanistically, we discovered that TRAF4 was required for the activation of AKT/mTOR and ERK1/2 signaling pathways as well as the expression of transcription factor Myc and nutrient transporters (Slc2a1, Slc7a1, and Slc7a5), signature genes involved in T cell growth and proliferation, in ST2+ mTh2 cells stimulated by IL-33. Taken together, the current study reveals a role of TRAF4 in ST2+ mTh2 cells in IL-33-mediated type 2 pulmonary inflammation, opening up avenues for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jianxin Xiao
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xing Chen
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Weiwei Liu
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Wen Qian
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Katarzyna Bulek
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Lingzi Hong
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - William Miller-Little
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Medical Scientist Training Program
- Department of Pathology, and
| | - Xiaoxia Li
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Caini Liu
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Kosche C, Jaishankar D, Cosgrove C, Ramesh P, Hong S, Li L, Shivde RS, Bhuva D, White BEP, Munir SS, Zhang H, Lu KQ, Choi JN, Le Poole IC. Skin Infiltrate Composition as a Telling Measure of Responses to Checkpoint Inhibitors. JID INNOVATIONS 2023; 3:100190. [PMID: 37554516 PMCID: PMC10405096 DOI: 10.1016/j.xjidi.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Checkpoint inhibitors treat a variety of tumor types with significant benefits. Unfortunately, these therapies come with diverse adverse events. Skin rash is observed early into treatment and might serve as an indicator of downstream responses to therapy. We studied the cellular composition of cutaneous eruptions and whether their contribution varies with the treatment applied. Skin samples from 18 patients with cancer and 11 controls were evaluated by mono- and multiplex imaging, quantification, and statistical analysis. T cells were the prime contributors to skin rash, with T cells and macrophages interacting and proliferating on site. Among T cell subsets examined, type 1 and 17 T cells were relatively increased among inflammatory skin infiltrates. A combination of increased cytotoxic T cell content and decreased macrophage abundance was associated with dual checkpoint inhibition over PD1 inhibition alone. Importantly, responders significantly separated from nonresponders by greater CD68+ macrophage and either CD11c+ antigen-presenting cell or CD4+ T cell abundance in skin rash. The microenvironment promoted epidermal proliferation and thickening as well. The combination of checkpoint inhibitors used affects the development and composition of skin infiltrates, whereas the combined abundance of two cell types in cutaneous eruptions aligns with responses to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Cory Kosche
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dinesh Jaishankar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Prathyaya Ramesh
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Suyeon Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Li
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rohan S. Shivde
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Deven Bhuva
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bethany E. Perez White
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabah S. Munir
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kurt Q. Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer N. Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
33
|
Zhang Z, Liu S, Gao T, Yang Y, Li Q, Zhao L. A novel immune-related prognostic signature based on Chemoradiotherapy sensitivity predicts long-term survival in patients with esophageal squamous cell carcinoma. PeerJ 2023; 11:e15839. [PMID: 37609436 PMCID: PMC10441524 DOI: 10.7717/peerj.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Background There is a heterogenous clinical response following chemoradiotherapy (CRT) in esophageal squamous cell carcinoma (ESCC). Therefore, we aimed to study signaling pathway genes that affect CRT sensitivity and prognosis. Methods Gene expression analyses were performed in the GEO and TCGA datasets. A immunohistochemistry (IHC) analysis was performed in pretreatment biopsies. Results MMP13 was found to be highly expressed in the "Pathologic Complete Response (pCR)" and "Complete Remission (CR)" and "Alive" groups. Th17 cells and MMP9/13 showed a negative correlation in immune infiltration analysis. In GSEA analysis, IL-4 and IL-13 signaling pathways were highly enriched in patients exhibiting high MMP expression in pCR and CR groups. IHC results suggested higher MMP13 & IL-4 and lower IL-17A & RORC expression in the CR group compared to the 0.70, and the model could well distinguish high-risk and low-risk subgroups. Conclusion The above results may provide guidance for developing novel treatment and prognostic strategies in ESCC patients.
Collapse
Affiliation(s)
- Zewei Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Shiliang Liu
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Tiantian Gao
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yuxian Yang
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Quanfu Li
- Ordos Central Hospital, Ordos, China
| | - Lei Zhao
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
34
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
35
|
Smith SD, Stratigos A, Augustin M, Carrascosa JM, Grond S, Riedl E, Xu W, Patel H, Lebwohl M. Integrated Safety Analysis on Skin Cancers among Patients with Psoriasis Receiving Ixekizumab in Clinical Trials. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00966-4. [PMID: 37351831 PMCID: PMC10366039 DOI: 10.1007/s13555-023-00966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
INTRODUCTION Limited data exist on skin cancer risk in patients with psoriasis using biologics. Here, we report treatment-emergent adverse events (TEAEs) of skin cancer in patients treated with ixekizumab from psoriasis clinical trials. METHODS Integrated safety databases from 17 clinical trials of adults with moderate-to-severe psoriasis treated with ≥ 1 dose of ixekizumab for ≤ 5 years were used to analyze exposure-adjusted incidence rates (IRs) per 100 patient-years of exposure (PYE) and clinically characterize dermatologist-adjudicated skin cancer TEAEs. RESULTS Of 6892 patients, 58 presented with ≥ 1 skin cancer TEAE (IR 0.3) with IRs remaining stable with longer ixekizumab exposure. Non-melanoma skin cancer (NMSC) was the most common event (IR 0.3) affecting 55 patients; of those, 44 had basal cell carcinoma (IR 0.2) and 16 had squamous cell carcinoma (IR 0.1). Two treatment-emergent melanoma events were identified; neither were classified as serious AEs. CONCLUSIONS Incidence of skin neoplasms in patients with psoriasis treated with ixekizumab for ≤ 5 years was low, and among those events, NMSC was most common. Limitations included that longer exposure may be required to confirm risk of skin cancer and that the study exclusion criteria of several studies, which excluded patients with skin cancer events within 5 years prior to baseline, might limit interpretation of skin cancer risk in this cohort. These findings support the safety profile of ixekizumab for patients requiring long-term psoriasis control.
Collapse
Affiliation(s)
- Saxon D Smith
- ANU Medical School, ANU College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Alexandros Stratigos
- Department of Dermatology, University of Athens, School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jose Manuel Carrascosa
- Department of Dermatology, Hospital Universitari Germans Trias I Pujol, Badalona, Universidad Autónoma de Barcelona, IGTP, Badalona, Spain
| | | | - Elisabeth Riedl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wen Xu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Mark Lebwohl
- Department of Dermatology, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
36
|
Lee KL, Lai TC, Lee WJ, Chen YC, Ho KH, Hung WY, Yang YC, Chan MH, Hsieh FK, Chung CL, Chang JH, Chien MH. Sustaining the Activation of EGFR Signal by Inflammatory Cytokine IL17A Prompts Cell Proliferation and EGFR-TKI Resistance in Lung Cancer. Cancers (Basel) 2023; 15:3288. [PMID: 37444399 DOI: 10.3390/cancers15133288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a typical inflammation-associated cancer, and lung adenocarcinoma (LUAD) is the most common pathological subtype. Epidermal growth factor (EGF) receptor (EGFR) mutations are the most common driver mutations of LUAD, and they have been identified as important therapeutic targets by EGFR-tyrosine kinase inhibitors (TKIs). The proinflammatory cytokine, interleukin (IL)-17A, and IL-17A-producing cells were reported to be elevated in the tumor microenvironment and peripheral blood of NSCLC patients and to be correlated with tumor progression and poor prognoses. However, the pathophysiological role of IL-17A in NSCLC remains unclear, although some studies suggested its involvement in cancer cell invasion and metastasis. Herein, we observed that expressions of IL-17A and its receptor, IL-17 receptor C (IL-17RC), were elevated in LUAD tissues and were correlated with poor survival in different lung cancer cohorts. In LUAD cells with mutant EGFR, the IL-17A/IL-17RC axis was shown to enhance phosphorylation of EGFR and Met, thereby promoting proliferation and resistance to EGFR-TKIs such as afatinib. In LUAD cells with wild-type (WT) EGFR, we found that the IL-17A/IL-17RC axis enhanced EGF-induced EGFR activation and cell proliferation through causing impairment of EGF-induced EGFR lysosomal degradation. Collectively, our results indicated diverse impacts of the IL-17A/IL-17RC axis on EGFR activation in LUAD cells with WT and mutant EGFR and suggested that developing therapeutic strategies against IL-17A/IL-17RC would be valuable for LUAD treatment.
Collapse
Affiliation(s)
- Kai-Ling Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chieh Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung 433402, Taiwan
| | - Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Feng-Koo Hsieh
- The Genome Engineering & Stem Cell Center, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
37
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 309] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
38
|
Wu L, Wang L, Chai X. Interleukin-17 receptor C is essential for the pro-inflammatory pathogenicity of granulocyte-macrophage-colony-stimulating factor-producing T helper cells in experimental autoimmune uveitis. Cell Immunol 2023; 390:104740. [PMID: 37336144 DOI: 10.1016/j.cellimm.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Autoimmune uveitis is an inflammatory disorder of the eye triggered by the responses of autoreactive T cells to ocular autoantigens. This study aims to understand the role of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in the pathophysiology of mouse experimental autoimmune uveitis (EAU). We established an EAU model by immunizing mice with interphotoreceptor retinoid-binding protein (IRBP) 651-670. Splenic or eye-infiltrating ThGM cells were analyzed and enriched by flow cytometry according to the levels of an array of surface markers, transcription factors, and cytokines. Lentiviral transduction was conducted to silence or overexpress the target gene in differentiated ThGM cells. The adoptive transfer was applied to determine the pathogenicity of ThGM cells in vivo. We found that ThGM cells were present in the spleen and the eye after EAU induction. Both splenic and eye-infiltrating ThGM cells were phenotypically CD4+CCR7-CXCR3-CCR6-CCR10hi. Eye-infiltrating ThGM cells up-regulated interleukin-1β (IL-1β), interleukin-6 (IL-6), and IL-17 receptor C (IL-17RC) relative to splenic ThGM cells. IL-17RC overexpression enabled interleukin-17A (IL-17A)-induced up-regulation of IL-1β and IL-6 production in ThGM cells. Adoptive transfer of IL-17RC overexpressing ThGM cells exacerbated EAU severity, as evidenced by a higher histology score as well as increased pro-inflammatory cytokines and inflammatory cells in the eye. However, IL-17RC-silenced ThGM cells did not impact EAU. Therefore, for the first time, this study unveils the essential pro-inflammatory role of IL-17RC-expressing ThGM cells in EAU pathophysiology. We discovered a novel mechanism underlying the pathophysiology of autoimmune uveitis.
Collapse
Affiliation(s)
- Lina Wu
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China.
| | - Lu Wang
- Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China
| | - Xin Chai
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province 430060, China
| |
Collapse
|
39
|
Ladjevac N, Milovanovic M, Jevtovic A, Arsenijevic D, Stojanovic B, Dimitrijevic Stojanovic M, Stojanovic B, Arsenijevic N, Arsenijevic A, Milovanovic J. The Role of IL-17 in the Pathogenesis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:9874. [PMID: 37373022 DOI: 10.3390/ijms24129874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Elucidating the inflammatory mechanisms underlying formation and progression of oral squamous cell carcinoma (OSCC) is crucial for discovering new targeted therapeutics. The proinflammatory cytokine IL-17 has proven roles in tumor formation, growth, and metastasis. The presence of IL-17 is demonstrated in both in vitro and in vivo models, and in OSCC patients, is mostly accompanied by enhanced proliferation and invasiveness of cancer cells. Here we review the known facts regarding the role of IL-17 in OSCC pathogenesis, namely the IL-17 mediated production of proinflammatory mediators that mobilize and activate myeloid cells with suppressive and proangiogenic activities and proliferative signals that directly induce proliferation of cancer cells and stem cells. The possibility of a potential IL-17 blockade in OSCC therapy is also discussed.
Collapse
Affiliation(s)
- Nevena Ladjevac
- Department of Otorhinolaryngology, General Hospital Uzice, 31000 Uzice, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Andra Jevtovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Otorhinolaryngology and Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology end Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
40
|
Dutta A, Hung CY, Chen TC, Hsiao SH, Chang CS, Lin YC, Lin CY, Huang CT. An IL-17-EGFR-TRAF4 axis contributes to the alleviation of lung inflammation in severe influenza. Commun Biol 2023; 6:600. [PMID: 37270623 DOI: 10.1038/s42003-023-04982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive inflammation is a postulated cause of severe disease and death in respiratory virus infections. In response to severe influenza virus infection, adoptively transferred naïve hemagglutinin-specific CD4+ T cells from CD4+ TCR-transgenic 6.5 mice drive an IFN-γ-producing Th1 response in wild-type mice. It helps in virus clearance but also causes collateral damage and disease aggravation. The donor 6.5 mice have all the CD4+ T cells with TCR specificity toward influenza hemagglutinin. Still, the infected 6.5 mice do not suffer from robust inflammation and grave outcome. The initial Th1 response wanes with time, and a prominent Th17 response of recent thymic emigrants alleviates inflammation and bestows protection in 6.5 mice. Our results suggest that viral neuraminidase-activated TGF-β of the Th1 cells guides the Th17 evolution, and IL-17 signaling through the non-canonical IL-17 receptor EGFR activates the scaffold protein TRAF4 more than TRAF6 during alleviation of lung inflammation in severe influenza.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Department of Pathology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Division of Hematology and Oncology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Division of Hepatogastroenterology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan.
- Division of Infectious Diseases, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan.
| |
Collapse
|
41
|
Hanna BS, Wang G, Galván-Peña S, Mann AO, Ramirez RN, Muñoz-Rojas AR, Smith K, Wan M, Benoist C, Mathis D. The gut microbiota promotes distal tissue regeneration via RORγ + regulatory T cell emissaries. Immunity 2023; 56:829-846.e8. [PMID: 36822206 PMCID: PMC10101925 DOI: 10.1016/j.immuni.2023.01.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Specific microbial signals induce the differentiation of a distinct pool of RORγ+ regulatory T (Treg) cells crucial for intestinal homeostasis. We discovered highly analogous populations of microbiota-dependent Treg cells that promoted tissue regeneration at extra-gut sites, notably acutely injured skeletal muscle and fatty liver. Inflammatory meditators elicited by tissue damage combined with MHC-class-II-dependent T cell activation to drive the accumulation of gut-derived RORγ+ Treg cells in injured muscle, wherein they regulated the dynamics and tenor of early inflammation and helped balance the proliferation vs. differentiation of local stem cells. Reining in IL-17A-producing T cells was a major mechanism underlying the rheostatic functions of RORγ+ Treg cells in compromised tissues. Our findings highlight the importance of gut-trained Treg cell emissaries in controlling the response to sterile injury of non-mucosal tissues.
Collapse
Affiliation(s)
- Bola S Hanna
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Silvia Galván-Peña
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander O Mann
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrés R Muñoz-Rojas
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen Smith
- Internal Medicine Research Unit, Worldwide Research, Development & Medical, Pfizer Inc., Cambridge, MA, USA
| | - Min Wan
- Internal Medicine Research Unit, Worldwide Research, Development & Medical, Pfizer Inc., Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Long Y, Li Y, Wang T, Ni A, Guo J, Dong Q, Yang S, Guo J, Wang L, Hou Z. Inflammation-related proteomics demonstrate landscape of fracture blister fluid in patients with acute compartment syndrome. Front Immunol 2023; 14:1161479. [PMID: 37090725 PMCID: PMC10115951 DOI: 10.3389/fimmu.2023.1161479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Blisters are tense vesicles or bullae that arise on swollen skin and are found in a wide range of injuries. As a complication of fracture, fracture blisters are considered soft tissue injuries, which often lead to adverse effects such as prolonged preoperative waiting time and increased risk of surgical site infection. However, our previous study found that in patients with acute compartment syndrome, fracture blisters may be a form of compartment pressure release, but the specific mechanism has not been revealed. Here, we mapped out the proteomic landscape of fracture blister fluid for the first time and compared its expression profile to cupping and burn blisters. METHODS First, fluid samples were collected from 15 patients with fracture blisters, 7 patients with cupping blisters, and 9 patients with burn blisters. Then, the expression levels of 92 inflammatory proteins were measured using the Olink Target 96 Inflammation panel. Protein profiles were compared across the three groups using Differential Protein Expression Analysis and Principal Component Analysis (PCA). RESULTS Fracture blisters had significantly higher levels of 50 proteins in comparison to cupping and 26 proteins in comparison to burn blisters. Notably, PCA showed fracture blisters closely resembled the protein expression profile of burn blisters but were distinct from the protein expression profile of cupping blisters. CONCLUSION Our study provides the first characterization of fracture blister fluid using proteomics, which provides a valuable reference for further analysis of the difference between blisters caused by fractures and those caused by other pathogenic factors. This compendium of proteomic data provides valuable insights and a rich resource to better understand fracture blisters.
Collapse
Affiliation(s)
- Yubin Long
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Country Department of Orthopaedic Surgery, Baoding No. 1 Central Hospital, Baoding, China
| | - Yiran Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Jialiang Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- The School of Medicine, Nankai University, Tianjin, China
| | - Qi Dong
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Yang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junfei Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
43
|
Fisher ML, Balinth S, Mills AA. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol 2023; 33:280-292. [PMID: 36115734 PMCID: PMC10011024 DOI: 10.1016/j.tcb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Our understanding of cancer and the key pathways that drive cancer survival has expanded rapidly over the past several decades. However, there are still important challenges that continue to impair patient survival, including our inability to target cancer stem cells (CSCs), metastasis, and drug resistance. The transcription factor p63 is a p53 family member with multiple isoforms that carry out a wide array of functions. Here, we discuss the critical importance of the ΔNp63α isoform in cancer and potential therapeutic strategies to target ΔNp63α expression to impair the CSC population, as well as to prevent metastasis and drug resistance to improve patient survival.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
44
|
Yang W, He R, Qu H, Lian W, Xue Y, Wang T, Lin W, Zhu P, Xia M, Lai L, Wang Q. FXYD3 enhances IL-17A signaling to promote psoriasis by competitively binding TRAF3 in keratinocytes. Cell Mol Immunol 2023; 20:292-304. [PMID: 36693922 PMCID: PMC9971024 DOI: 10.1038/s41423-023-00973-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by inflammatory cell infiltration and epidermal hyperplasia. However, the regulatory complexity of cytokine and cellular networks still needs to be investigated. Here, we show that the expression of FXYD3, a member of the FXYD domain-containing regulators of Na+/K+ ATPases family, is significantly increased in the lesional skin of psoriasis patients and mice with imiquimod (IMQ)-induced psoriasis. IL-17A, a cytokine important for the development of psoriatic lesions, contributes to FXYD3 expression in human primary keratinocytes. FXYD3 deletion in keratinocytes attenuated the psoriasis-like phenotype and inflammation in an IMQ-induced psoriasis model. Importantly, FXYD3 promotes the formation of the IL-17R-ACT1 complex by competing with IL-17R for binding to TRAF3 and then enhances IL-17A signaling in keratinocytes. This promotes the activation of the NF-κB and MAPK signaling pathways and leads to the expression of proinflammatory factors. Our results clarify the mechanism by which FXYD3 serves as a mediator of IL-17A signaling in keratinocytes to form a positive regulatory loop to promote psoriasis exacerbation. Targeting FXYD3 may serve as a potential therapeutic approach in the treatment of psoriasis.
Collapse
Affiliation(s)
- Wenjuan Yang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Rukun He
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Wenwen Lian
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Tao Wang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Peishuo Zhu
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Lihua Lai
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
| |
Collapse
|
45
|
Jiang W, Wang Z, Zhang J, Li M. Interleukin 25 and its biological features and function in intestinal diseases. Cent Eur J Immunol 2023; 47:362-372. [PMID: 36817397 PMCID: PMC9901255 DOI: 10.5114/ceji.2022.124416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Interleukin 25 (IL-25), also known as IL-17E, is a member of the IL-17 cytokine family and an important regulator of the type 2 immune response. Accumulating evidence suggests that IL-25 interacts with diverse immune as well as non-immune cells and plays a rather complicated role in different backgrounds of multiple organs. IL-25 has been studied in the physiology and pathology of the intestine to some extent. With epithelial cells being an important source in the intestine, IL-25 plays a key role in intestinal immune responses and is associated with inappropriate allergic reactions, autoimmune diseases, and cancer tumorigenesis. In this review, we discuss the emerging comprehension of the biology of IL-25, as well as its cellular sources, targets, and signaling transduction. In particular, we discuss how IL-25 participates in the development of intestinal diseases including helminth infection, inflammatory bowel diseases, food allergy and colorectal cancer, as well as its underlying role in future therapy.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
46
|
Shnayder NA, Ashhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Vaiman EE, Petrova MM, Nasyrova RF. Cytokine Imbalance as a Biomarker of Intervertebral Disk Degeneration. Int J Mol Sci 2023; 24:ijms24032360. [PMID: 36768679 PMCID: PMC9917299 DOI: 10.3390/ijms24032360] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Zaitun A. Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| |
Collapse
|
47
|
Luo L, Pasquali L, Srivastava A, Freisenhausen JC, Pivarcsi A, Sonkoly E. The Long Noncoding RNA LINC00958 Is Induced in Psoriasis Epidermis and Modulates Epidermal Proliferation. J Invest Dermatol 2023; 143:999-1010. [PMID: 36641130 DOI: 10.1016/j.jid.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Psoriasis is a common, immune-mediated skin disease characterized by epidermal hyperproliferation and chronic skin inflammation. Long noncoding RNAs are >200 nucleotide-long transcripts that possess important regulatory functions. To date, little is known about the contribution of long noncoding RNAs to psoriasis. In this study, we identify LINC00958 as a long noncoding RNA overexpressed in keratinocytes (KCs) from psoriasis skin lesions, in a transcriptomic screen performed on KCs sorted from psoriasis and healthy skin. Increased levels of LINC00958 in psoriasis KCs were confirmed by RT-qPCR and single-molecule in situ hybridization. Confocal microscopy and analysis of subcellular fractions showed that LINC00958 is mainly localized in the cytoplasm of KCs. IL-17A, a key psoriasis cytokine, induced LINC00958 in KCs through C/EBP-β and the p38 pathway. The inhibition of LINC00958 led to decreased proliferation as measured by Ki-67 expression, IncuCyte imaging, and 5-ethynyl-2-deoxyuridine assays. Transcriptomic analysis of LINC00958-depleted KCs revealed enrichment of proliferation- and cell cycle‒related genes among differentially expressed transcripts. Moreover, LINC00958 depletion led to decreased basal and IL-17A‒induced phosphorylation of p38. Furthermore, IL-17A‒induced KC proliferation was counteracted by the inhibition of LINC00958. In summary, our data support a role for the IL-17A‒induced long noncoding RNA, LINC00958, in the pathological circuits of psoriasis by reinforcing IL-17A‒induced epidermal hyperproliferation.
Collapse
Affiliation(s)
- Longlong Luo
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| | - Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden; Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jan C Freisenhausen
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institutet, Solna, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
48
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
49
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
50
|
Itabashi C, Ohuchi K, Roh Y, Asano Y, Fujimura T. New onset of palmoplantar keratosis triggered by COVID-19 vaccination. Dermatol Ther 2022; 35:e15937. [PMID: 36239020 PMCID: PMC9874741 DOI: 10.1111/dth.15937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/10/2022] [Accepted: 10/12/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Chisato Itabashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuna Roh
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|