1
|
Loscocco GG, Guglielmelli P. Targeted Therapies in Myelofibrosis: Present Landscape, Ongoing Studies, and Future Perspectives. Am J Hematol 2025; 100 Suppl 4:30-50. [PMID: 40062529 PMCID: PMC12067168 DOI: 10.1002/ajh.27658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm that is accompanied by driver JAK2, CALR, or MPL mutations in more than 90% of cases, leading to constitutive activation of the JAK-STAT pathway. MF is a multifaceted disease characterized by trilineage myeloid proliferation with prominent megakaryocyte atypia and bone marrow fibrosis, as well as splenomegaly, constitutional symptoms, ineffective erythropoiesis, extramedullary hematopoiesis, and a risk of leukemic progression and shortened survival. Therapy can range from observation alone in lower-risk and asymptomatic patients to allogeneic hematopoietic stem cell transplantation, which is the only potentially curative treatment capable of prolonging survival, although burdened by significant morbidity and mortality. The discovery of the JAK2 V617F mutation prompted the development of JAK inhibitors (JAKi) including the first-in-class JAK1/JAK2 inhibitor ruxolitinib and subsequent approval of fedratinib, pacritinib, and momelotinib. The latter has shown erythropoietic benefits by suppressing hepcidin expression via activin A receptor type 1 (ACVR1) inhibition, as well as reducing splenomegaly and symptoms. However, the current JAKi behave as anti-inflammatory drugs without a major impact on survival or disease progression. A better understanding of the genetics, mechanisms of fibrosis, cytopenia, and the role of inflammatory cytokines has led to the development of numerous therapeutic agents that target epigenetic regulation, signaling, telomerase, cell cycle, and apoptosis, nuclear export, and pro-fibrotic cytokines. Selective JAK2 V617F inhibitors and targeting of mutant CALR by immunotherapy are the most intriguing and promising approaches. This review focuses on approved and experimental treatments for MF, highlighting their biological background.
Collapse
Affiliation(s)
- Giuseppe G. Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐ Universitaria CareggiUniversity of FlorenceFlorenceItaly
- Division of HematologyMayo ClinicRochesterMinnesotaUSA
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐ Universitaria CareggiUniversity of FlorenceFlorenceItaly
| |
Collapse
|
2
|
Bellani V, Cattaneo D, Abbonante V, Bucelli C, Stella S, Mora B, Malara A, Gianelli U, Balduini A, Iurlo A. Circulating Levels of PF4/CXCL4 in Patients With BCR::ABL1-Negative Myeloproliferative Neoplasms: A New Potential Prognostic Factor for Disease Progression. Hematol Oncol 2025; 43:e70083. [PMID: 40221885 DOI: 10.1002/hon.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Affiliation(s)
- Valentina Bellani
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Stella
- Epidemiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Mora
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Umberto Gianelli
- Division of Pathology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Veletic I, Harris DM, Rozovski U, Bertilaccio MTS, Calin GA, Takahashi K, Li P, Liu Z, Manshouri T, Drula RC, Furudate K, Muftuoglu M, Hossain A, Wierda WG, Keating MJ, Estrov Z. CLL cell-derived exosomes alter the immune and hematopoietic systems. Leukemia 2025:10.1038/s41375-025-02590-x. [PMID: 40186065 DOI: 10.1038/s41375-025-02590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
The origins of immunosuppression, neutropenia, and anemia in patients with chronic lymphocytic leukemia (CLL) are not fully understood. Because in patients with CLL, circulating exosomes, which participate in cell-to-cell interactions, are CLL cell-derived, we examined whether those exosomes contribute to abnormal features of this disease. Our data revealed that CLL cell-derived exosomes engulfed by healthy donors' monocytes, fibrocytes, and lymphocytes altered target-cell gene and protein expression and suppressed normal hematopoiesis. CLL cell-derived exosomes increased normal monocytes' CD14 and CD16 expression such that it mimicked the accessory-cell profile and upregulated T cells' checkpoint PD-1 and CD160 protein levels, potentially reducing T-cell-mediated anti-CLL activity. In normal B cells, CLL cell-derived exosomes induced apoptosis and CD5 expression, suggesting that CLL cell-derived exosomes eliminate B cells and not all CD19+/CD5+ cells in CLL patients are clonal. RNA sequencing and quantitative real-time PCR revealed that CLL cell-derived exosomes harbored RNAs of pro-apoptotic genes and genes that increase metabolism, induce proliferation, and induce constitutive PI3K-mTOR pathway activation. CLL cell-derived exosomes inhibited hematopoietic progenitor proliferation, hindering the supportive effect of monocyte-derived fibrocytes. Together, our findings suggest that CLL cell-derived exosomes disrupt the immune and hematopoietic systems and contribute to disease progression in patients with CLL.
Collapse
Affiliation(s)
- Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Maria Teresa S Bertilaccio
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rares-Constantin Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muharrem Muftuoglu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anwar Hossain
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Arora S, Vachhani P, Bose P. Investigational drugs in early phase trials for myelofibrosis. Expert Opin Investig Drugs 2024; 33:1231-1244. [PMID: 39604120 PMCID: PMC11669310 DOI: 10.1080/13543784.2024.2434696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by bone marrow fibrosis, cytopenias, and organomegaly. Four JAK inhibitors are US-FDA approved for treatment of MF. While these drugs reduce symptom burden and spleen size to varying degrees, they do not affect the natural disease course or decrease the risk of leukemic transformation. Therefore, there is a strong need for newer therapies to further advance the field and improve the outcomes of MF. In this review, we cover novel therapies for MF currently in early stages of development. AREAS COVERED We present the latest data from early phase clinical trials in MF using drugs with diverse therapeutic mechanisms, including novel JAK-STAT pathway inhibitors, epigenetic therapies, antifibrotic agents, and immunotherapeutic strategies. Additionally, we cover drugs targeted toward anemia improvement in MF. EXPERT OPINION Numerous agents representing diverse drug classes are in clinical development for MF. While deeper and durable improvements in splenomegaly, symptoms, and anemia are the main clinical objectives, a number of putative biomarkers are being assessed as measures of potential 'disease modification.' Although JAK inhibitor monotherapy represents the current standard, it is hoped that JAK inhibitor-based rational combinations and driver mutation-specific therapies will soon usher in a new era.
Collapse
Affiliation(s)
- Sankalp Arora
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Homma S, Ogasawara T, Suga M, Nakamura Y, Takenaka K, Marshall S, Kawauchi K, Mori N, Kuroda H, Nakamura N, Miyagi Y, Masunaga A. Triple immunostaining demonstrates the possible existence of segregated-nucleus-containing atypical monocytes in human primary myelofibrosis bone marrow: a case report. J Med Case Rep 2024; 18:510. [PMID: 39472997 PMCID: PMC11524003 DOI: 10.1186/s13256-024-04844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Segregated-nucleus-containing atypical monocytes have recently been identified in mice. Segregated-nucleus-containing atypical monocytes are thought to originate from the bone marrow and induce fibrosis in the drug-injured lung. The Lyc6c- murine monocyte subset is the counterpart to human CD14-CD16++ non-classical monocytes; however, the human counterpart to murine segregated-nucleus-containing atypical monocytes has not yet been identified. Primary myelofibrosis is a well-known disease of progressive marrow fibrosis, and atypical megakaryocytes are thought to be closely related to fibrosis in primary myelofibrosis bone marrow. However, recently, monocytes have been reported to play an important role in marrow fibrosis in primary myelofibrosis. We speculated that, if there is a human counterpart to murine segregated-nucleus-containing atypical monocytes, it would present the same markers as murine segregated-nucleus-containing atypical monocytes, such as CD14-CD16+ macrophage-1 antigen (CD11b/CD18 complex)+, MSR1+, and CEACAM1+, and it might exist in the bone marrow of patients with primary myelofibrosis. CASE PRESENTATION A 74-year-old Japanese male visited our hospital for clinical follow-up after total prostatectomy for prostatic cancer. Anemia, thrombocytosis, and elevated lactate dehydrogenase were suddenly observed in a periodic examination. CALR mutation type 2 (p.K385fs*47) was observed. The histological features of the patient's bone marrow were consistent with fibrotic primary myelofibrosis. We immunohistochemically studied the bone marrow in an attempt to identify a human counterpart to murine segregated-nucleus-containing atypical monocytes. We detected a few CD16+MSR1+CEACAM1+ cells, but not CD14+MSR1+CEACAM1+ cells, by triple immunostaining. The patient is in a good condition and does not require treatment for primary myelofibrosis. CONCLUSION There is a possibility that human segregated-nucleus-containing atypical monocytes exist in the bone marrow of primary myelofibrosis patients and might be related to marrow fibrosis.
Collapse
Affiliation(s)
- Shunsuke Homma
- Department of Medical Intern Center, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Toshie Ogasawara
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Michie Suga
- Department of Diagnostic Pathology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi-ku, 123-8558, Tokyo, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
| | - Katsuya Takenaka
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
- TR Company, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Shoko Marshall
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Kiyotaka Kawauchi
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Naoki Mori
- Department of Medicine, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
- Department of Hematology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Hajime Kuroda
- Department of Diagnostic Pathology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi-ku, 123-8558, Tokyo, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan
| | - Atsuko Masunaga
- Department of Diagnostic Pathology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1, Kohoku, Adachi-ku, 123-8558, Tokyo, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-Ku, Yokohama, 241-8515, Japan.
| |
Collapse
|
6
|
Capitanio D, Calledda FR, Abbonante V, Cattaneo D, Moriggi M, Bartalucci N, Bucelli C, Tosi D, Gianelli U, Vannucchi AM, Iurlo A, Gelfi C, Balduini A, Malara A. Proteomic screening identifies PF4/Cxcl4 as a critical driver of myelofibrosis. Leukemia 2024; 38:1971-1984. [PMID: 39025985 DOI: 10.1038/s41375-024-02354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Despite increased understanding of the genomic landscape of Myeloproliferative Neoplasms (MPNs), the pathological mechanisms underlying abnormal megakaryocyte (Mk)-stromal crosstalk and fibrotic progression in MPNs remain unclear. We conducted mass spectrometry-based proteomics on mice with Romiplostim-dependent myelofibrosis to reveal alterations in signaling pathways and protein changes in Mks, platelets, and bone marrow (BM) cells. The chemokine Platelet Factor 4 (PF4)/Cxcl4 was up-regulated in all proteomes and increased in plasma and BM fluids of fibrotic mice. High TPO concentrations sustained in vitro PF4 synthesis and secretion in cultured Mks, while Ruxolitinib restrains the abnormal PF4 expression in vivo. We discovered that PF4 is rapidly internalized by stromal cells through surface glycosaminoglycans (GAGs) to promote myofibroblast differentiation. Cxcl4 gene silencing in Mks mitigated the profibrotic phenotype of stromal cells in TPO-saturated co-culture conditions. Consistently, extensive stromal PF4 uptake and altered GAGs deposition were detected in Romiplostim-treated, JAK2V617F mice and BM biopsies of MPN patients. BM PF4 levels and Mk/platelet CXCL4 expression were elevated in patients, exclusively in overt fibrosis. Finally, pharmacological inhibition of GAGs ameliorated in vivo fibrosis in Romiplostim-treated mice. Thus, our findings highlight the critical role of PF4 in the fibrosis progression of MPNs and substantiate the potential therapeutic strategy of neutralizing PF4-GAGs interaction.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, University of Milan, S.C. di Anatomia Patologica, ASST-Santi Paolo e Carlo, Milan, Italy
| | - Umberto Gianelli
- Department of Health Sciences, University of Milan, S.C. di Anatomia Patologica, ASST-Santi Paolo e Carlo, Milan, Italy
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Wang H, Nie Y, Sun Z, He Y, Yang J. Serum amyloid P component: Structure, biological activity, and application in diagnosis and treatment of immune-associated diseases. Mol Immunol 2024; 172:1-8. [PMID: 38850776 DOI: 10.1016/j.molimm.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Serum amyloid P component (SAP) is a member the innate immune humoral arm and participated in various processes, including the innate immune responses, tissue remodeling, and the pathogenesis of inflammatory diseases. Remarkably, SAP is a highly versatile immunomodulatory factor that can serve as a drug target for treating amyloid diseases and reduce inflammation, fibrosis degree, and respiratory disease. In this review, we focus on the biological activities of SAP and its application in different systemic immune-associated diseases. First, we reviewed the regulatory effects of SAP on innate immune cells and possible mechanisms. Second, we emphasized SAP as a diagnostic marker and therapeutic target for immune-associated diseases, including the neuropsychiatric disorders. Third, we presented several recommendations for regulating SAP in immune cell function and potential areas for future research. Some authorities consider SAP to be a pattern recognition molecule that plays multiple roles in the innate immune system and inflammation. Developing therapeutics that target SAP or its associated signaling pathways may be a promising strategy for treating immune-associated diseases.
Collapse
Affiliation(s)
- Haixia Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yadan Nie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Bassan VL, de Freitas Martins Felício R, Ribeiro Malmegrim KC, Attié de Castro F. Myeloproliferative Neoplasms Transcriptome Reveals Pro-Inflammatory Signature and Enrichment in Peripheral Blood Monocyte-Related Genes. Cancer Invest 2024; 42:605-618. [PMID: 38958254 DOI: 10.1080/07357907.2024.2371371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Myeloproliferative neoplasms (MPN) are hematological diseases associated with genetic driver mutations in the JAK2, CALR, and MPL genes and exacerbated oncoinflammatory status. Analyzing public microarray data from polycythemia vera (n = 41), essential thrombocythemia (n = 21), and primary myelofibrosis (n = 9) patients' peripheral blood by in silico approaches, we found that pro-inflammatory and monocyte-related genes were differentially expressed in MPN patients' transcriptome. Genes related to cell activation, secretion of pro-inflammatory and pro-angiogenic mediators, activation of neutrophils and platelets, coagulation, and interferon pathway were upregulated in monocytes compared to controls. Together, our results suggest that molecular alterations in monocytes may contribute to oncoinflammation in MPN.
Collapse
Affiliation(s)
- Vitor Leonardo Bassan
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafaela de Freitas Martins Felício
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Cattaneo D, Galli N, Bucelli C, Fidanza CA, Bellani V, Artuso S, Bianchi P, Consonni D, Passamonti F, Iurlo A. Red cell distribution width and prognosis in myelofibrosis patients treated with ruxolitinib. Ann Hematol 2024; 103:2787-2795. [PMID: 38864904 DOI: 10.1007/s00277-024-05801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
We evaluated RDW in a single-center series of 61 consecutive patients with primary and secondary MF at diagnosis and during treatment with ruxolitinib (RUX) and examined any possible prognostic impact. Elevated RDW values were present in all but 4 patients at diagnosis with a median RDW of 18.9%. RDW was higher in subjects with palpable splenomegaly (p = 0.02), higher ferritin, as well as among those cases who did not receive any cytoreduction before RUX (p = 0.04). Interestingly, higher RDW at diagnosis also correlated with a shorter time from MF diagnosis to RUX start (-4.1 months per one RDW unit; p = 0.03). We observed a modest increase (< 1%) in RDW during the first 6 months of RUX treatment. In a multivariable random-intercept model that considered all time points and contained the covariates time and RUX dose, we also observed a clear decrease in RDW with increasing hemoglobin (Hb) during RUX (slope: -0.4% per g/dL of Hb; p < 0.001). The median RDW at diagnosis of 18.9% was used as a cut-off to identify two subgroups of patients [Group 1: RDW 19.0-25.7%; Group 2: RDW 13.1-18.7%], showing a difference in mortality [Group 1 vs. 2: crude HR 2.88; p = 0.01]. Using continuous RDW at diagnosis, the crude HR was 1.21 per RDW unit (p = 0.002). In a Cox model adjusted for gender, age and Hb at diagnosis, the HR was 1.13 per RDW unit (p = 0.07). RDW may have prognostic significance at MF diagnosis and during RUX, helping in the rapid detection of patients with poor prognosis.
Collapse
Affiliation(s)
- Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicole Galli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Cecilia Anna Fidanza
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Bellani
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Silvia Artuso
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Paola Bianchi
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Dario Consonni
- Epidemiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Myeloproliferative Syndromes Unit, Via Francesco Sforza 35, Milan, 20122, Italy.
| |
Collapse
|
10
|
Ryou H, Sirinukunwattana K, Wood R, Aberdeen A, Rittscher J, Weinberg OK, Hasserjian R, Pozdnyakova O, Peale F, Higgins B, Lundberg P, Trunzer K, Harrison CN, Royston D. Quantitative analysis of bone marrow fibrosis highlights heterogeneity in myelofibrosis and augments histological assessment: An Insight from a phase II clinical study of zinpentraxin alfa. Hemasphere 2024; 8:e105. [PMID: 38884042 PMCID: PMC11176199 DOI: 10.1002/hem3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- Hosuk Ryou
- Nuffield Department of Medicine University of Oxford Oxford UK
| | | | - Ruby Wood
- Institute of Biomedical Engineering (IBME), Department of Engineering Science University of Oxford Oxford UK
| | | | - Jens Rittscher
- Ground Truth Labs, Ltd. Oxford UK
- Institute of Biomedical Engineering (IBME), Department of Engineering Science University of Oxford Oxford UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery University of Oxford Oxford UK
- Oxford NIHR Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford UK
- Ludwig Institute for Cancer Research University of Oxford Oxford UK
| | - Olga K Weinberg
- Department of Pathology University of Texas Southwestern Medical Center Dallas Texas USA
| | - Robert Hasserjian
- Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Olga Pozdnyakova
- Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Frank Peale
- Genentech, Inc. South San Francisco California USA
| | | | | | | | | | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Radcliffe Department of Medicine University of Oxford Oxford UK
| |
Collapse
|
11
|
Verstovsek S, Talpaz M, Wadleigh M, Isidori A, Te Boekhorst P, Savona MR, Bose P, Pozdnyakova O, Mesa R, El-Galaly TC, O'Sullivan J, Gamel K, Higgins B, Katakam S, Todorov B, Trunzer K, Harrison CN. A randomized, double-blind study of zinpentraxin alfa in patients with myelofibrosis who were previously treated with or ineligible for ruxolitinib: stage 2 of a phase II trial. Haematologica 2024; 109:1977-1983. [PMID: 38268448 PMCID: PMC11141656 DOI: 10.3324/haematol.2023.284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | - Moshe Talpaz
- Michigan Medicine - The University of Michigan, Ann Arbor, MI
| | | | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | | | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Olga Pozdnyakova
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ruben Mesa
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Tarec C El-Galaly
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Richeldi L, Schiffman C, Behr J, Inoue Y, Corte TJ, Cottin V, Jenkins RG, Nathan SD, Raghu G, Walsh SLF, Jayia PK, Kamath N, Martinez FJ. Zinpentraxin Alfa for Idiopathic Pulmonary Fibrosis: The Randomized Phase III STARSCAPE Trial. Am J Respir Crit Care Med 2024; 209:1132-1140. [PMID: 38354066 PMCID: PMC11092957 DOI: 10.1164/rccm.202401-0116oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024] Open
Abstract
Rationale: A phase II trial reported clinical benefit over 28 weeks in patients with idiopathic pulmonary fibrosis (IPF) who received zinpentraxin alfa. Objectives: To investigate the efficacy and safety of zinpentraxin alfa in patients with IPF in a phase III trial. Methods: This 52-week phase III, double-blind, placebo-controlled, pivotal trial was conducted at 275 sites in 29 countries. Patients with IPF were randomized 1:1 to intravenous placebo or zinpentraxin alfa 10 mg/kg every 4 weeks. The primary endpoint was absolute change from baseline to Week 52 in FVC. Secondary endpoints included absolute change from baseline to Week 52 in percent predicted FVC and 6-minute walk distance. Safety was monitored via adverse events. Post hoc analysis of the phase II and phase III data explored changes in FVC and their impact on the efficacy results. Measurements and Main Results: Of 664 randomized patients, 333 were assigned to placebo and 331 to zinpentraxin alfa. Four of the 664 randomized patients were never administered study drug. The trial was terminated early after a prespecified futility analysis that demonstrated no treatment benefit of zinpentraxin alfa over placebo. In the final analysis, absolute change from baseline to Week 52 in FVC was similar between placebo and zinpentraxin alfa (-214.89 ml and -235.72 ml; P = 0.5420); there were no apparent treatment effects on secondary endpoints. Overall, 72.3% and 74.6% of patients receiving placebo and zinpentraxin alfa, respectively, experienced one or more adverse events. Post hoc analysis revealed that extreme FVC decline in two placebo-treated patients resulted in the clinical benefit of zinpentraxin alfa reported by phase II. Conclusions: Zinpentraxin alfa treatment did not benefit patients with IPF over placebo. Learnings from this program may help improve decision making around trials in IPF. Clinical trial registered with www.clinicaltrials.gov (NCT04552899).
Collapse
Affiliation(s)
- Luca Richeldi
- Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Jürgen Behr
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Yoshikazu Inoue
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Claude Bernard University Lyon, National Research Institute for Agriculture, Food and the Environment, European Reference Network for Rare Respiratory Diseases, Lyon, France
| | - R. Gisli Jenkins
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Steven D. Nathan
- Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Ganesh Raghu
- University of Washington Medical Center, Seattle, Washington
| | - Simon L. F. Walsh
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Nikhil Kamath
- Roche Products Ltd., Welwyn Garden City, United Kingdom; and
| | - Fernando J. Martinez
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, New York
| |
Collapse
|
13
|
Luo F, Li B, Li J, Li Y. Simultaneous blastic plasmacytoid dendritic cell neoplasm and myelofibrosis: A case report. Oncol Lett 2024; 27:220. [PMID: 38586204 PMCID: PMC10996017 DOI: 10.3892/ol.2024.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/05/2023] [Indexed: 04/09/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an extremely rare and aggressive tumor with an unknown pathogenesis. Myelofibrosis (MF) is a type of myeloproliferative neoplasm. MF can be secondary to several hematological malignancies, including chronic myeloid leukemia, myelodysplastic syndrome and hairy cell leukemia. In the present report, a rare case of BPDCN secondary to MF is described. A 70-year-old male patient developed a large purplish-red rash with recurrent symptoms. BPDCN was confirmed by immunohistochemistry of a biopsy specimen and flow cytometry of bone marrow cells. Bone marrow histopathology revealed MF. Next-generation sequencing of peripheral blood revealed mutations in the Tet methylcytosine dioxygenase 2 and NRAS proto-oncogene GTPase genes. The patient underwent one cycle of chemoimmunotherapy, but the condition progressed, an infection developed and the patient eventually died. The present case suggests that BPDCN can occur in conjunction with MF and that the prognosis of such patients is poor. Pathological examination and genetic testing aided in the diagnosis and treatment. This case emphasizes the need to raise awareness of BPDCN among clinicians and to be alert to the potential for fatal infection in patients with BPDCN combined with MF following myelosuppression triggered during chemotherapy.
Collapse
Affiliation(s)
- Fuyi Luo
- Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Bingjie Li
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Li
- Department of Hematology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
14
|
Liu Y, Li X, Jing L, Guo C, Wan Z, Zhang F, Wu P, Huang Z. Application Value of 68 Ga-FAPI PET/CT in the Evaluation of Myelofibrotic Diseases. Clin Nucl Med 2024; 49:404-408. [PMID: 38465921 DOI: 10.1097/rlu.0000000000005120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE Fibroblast activation protein is highly expressed in neoplastic lesions and various fibrotic tissues, making it an attractive target for disease evaluation. 68 Ga-labeled fibroblast activation protein inhibitor (FAPI), a new tumor interstitial imaging agent, holds promise for evaluating myelofibrosis. Therefore, this study aimed to use 68 Ga-FAPI PET/CT for the noninvasive visualization and quantification of the extent of myelofibrosis. PATIENTS AND METHODS This was a prospective clinical study involving 22 patients with myelofibrosis who underwent 68 Ga-FAPI PET/CT. The uptake of 68 Ga-FAPI was measured in their respective bone marrow and spleen, and the obtained imaging findings were compared with laboratory, cytogenetic, and histopathological data. RESULTS 68 Ga-FAPI uptake in the bone marrow was significantly and positively correlated with the myelofibrosis grade ( r > 0.8, P < 0.001). 68 Ga-FAPI PET/CT showed visually negative results in patients with grades 0-1 myelofibrosis and positive in those with grades 2-3, but the level of involvement varied. 68 Ga-FAPI PET/CT provides a noninvasive means of visualizing the extent of systemic bone marrow involvement and differentiation between the early and advanced stages of fibrosis. CONCLUSIONS 68 Ga-FAPI PET/CT shows promise as a method for visualizing and quantifying myelofibrosis, providing suitable sites for bone marrow biopsy. The extent of 68 Ga-FAPI uptake by bone marrow increases with the progression of myelofibrosis, thus it is a simple and noninvasive measurement that can be used to evaluate the progression of myelofibrosis. Nevertheless, although 68 Ga-FAPI PET/CT has demonstrated a potential value in prognostic assessment, further confirmation is needed.
Collapse
Affiliation(s)
| | | | - Li Jing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | | | | | | | - Pengqiang Wu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | | |
Collapse
|
15
|
Verma T, Papadantonakis N, Peker Barclift D, Zhang L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers (Basel) 2024; 16:514. [PMID: 38339265 PMCID: PMC10854658 DOI: 10.3390/cancers16030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Myelofibrosis (MF) is an essential element of primary myelofibrosis, whereas secondary MF may develop in the advanced stages of other myeloid neoplasms, especially polycythemia vera and essential thrombocythemia. Over the last two decades, advances in molecular diagnostic techniques, particularly the integration of next-generation sequencing in clinical laboratories, have revolutionized the diagnosis, classification, and clinical decision making of myelofibrosis. Driver mutations involving JAK2, CALR, and MPL induce hyperactivity in the JAK-STAT signaling pathway, which plays a central role in cell survival and proliferation. Approximately 80% of myelofibrosis cases harbor additional mutations, frequently in the genes responsible for epigenetic regulation and RNA splicing. Detecting these mutations is crucial for diagnosing myeloproliferative neoplasms (MPNs), especially in cases where no mutations are present in the three driver genes (triple-negative MPNs). While fibrosis in the bone marrow results from the disturbance of inflammatory cytokines, it is fundamentally associated with mutation-driven hematopoiesis. The mutation profile and order of acquiring diverse mutations influence the MPN phenotype. Mutation profiling reveals clonal diversity in MF, offering insights into the clonal evolution of neoplastic progression. Prognostic prediction plays a pivotal role in guiding the treatment of myelofibrosis. Mutation profiles and cytogenetic abnormalities have been integrated into advanced prognostic scoring systems and personalized risk stratification for MF. Presently, JAK inhibitors are part of the standard of care for MF, with newer generations developed for enhanced efficacy and reduced adverse effects. However, only a minority of patients have achieved a significant molecular-level response. Clinical trials exploring innovative approaches, such as combining hypomethylation agents that target epigenetic regulators, drugs proven effective in myelodysplastic syndrome, or immune and inflammatory modulators with JAK inhibitors, have demonstrated promising results. These combinations may be more effective in patients with high-risk mutations and complex mutation profiles. Expanding mutation profiling studies with more sensitive and specific molecular methods, as well as sequencing a broader spectrum of genes in clinical patients, may reveal molecular mechanisms in cases currently lacking detectable driver mutations, provide a better understanding of the association between genetic alterations and clinical phenotypes, and offer valuable information to advance personalized treatment protocols to improve long-term survival and eradicate mutant clones with the hope of curing MF.
Collapse
Affiliation(s)
- Tanvi Verma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Rao GK, Santagostino SF, Wong L, Inoue A, Arjomandi A, Yadav R, Halpern WG. Repeat-dose and embryo-fetal developmental toxicity of zinpentraxin alfa. Reprod Toxicol 2024; 123:108526. [PMID: 38141866 DOI: 10.1016/j.reprotox.2023.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Zinpentraxin alfa is a recombinant human pentraxin-2 (PTX-2) developed for the treatment of various fibrotic diseases with the hypothesis that supplementing endogenous PTX-2 levels through intravenous administration should increase its regulatory capacity in circulation and at the site of disease, thereby promoting healing and reducing fibrosis. Zinpentraxin alfa has been studied in various clinical trials, particularly in patients with idiopathic pulmonary fibrosis, where it has demonstrated efficacy in slowing decline in lung function in a phase 2 study. In the present investigation, we summarize findings from 14-day repeat-dose toxicity studies in rats and cynomolgus monkeys supporting early clinical development of zinpentraxin alfa. In addition, we also describe the findings from the embryo-fetal developmental (EFD) studies conducted in rats and rabbits, since the intended fibrosis patient population may include patients of childbearing potential. Zinpentraxin alfa was well tolerated by rats and monkeys in general toxicity studies with no treatment-related adverse effects, as well as by pregnant rats over the same dose range in a definitive EFD study. In contrast, substantial toxicity was observed in a rabbit dose-range-finder EFD study. Zinpentraxin alfa was poorly tolerated by pregnant rabbits and effects on the dams correlated with post-implantation fetal losses. The disparate effects of zinpentraxin alfa on embryo-fetal development between the two species suggests a potential unknown biological function of PTX-2 in pregnancy in the rabbit, which may be relevant to humans. Our findings warrant the consideration for highly effective contraceptive measures to avoid pregnancy in patients enrolled in clinical studies with zinpentraxin alfa.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lisa Wong
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ayumi Inoue
- SNBL, Ltd., Drug Safety Research Laboratories, Kagoshima 891-1394, Japan
| | - Audrey Arjomandi
- Department of Bioanalytical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wendy G Halpern
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
17
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|
18
|
Nakajima K, Suzuki M, Kawashima I, Koshiisi M, Kumagai T, Yamamoto T, Tanaka M, Kirito K. The chaperone protein GRP78 released from MPN cells increases the expression of lysyl oxidase in a human stromal cell line. Leuk Res 2023; 134:107389. [PMID: 37757654 DOI: 10.1016/j.leukres.2023.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Impaired function of the endoplasmic stress (ER) response causes numerous pathological conditions, including tissue fibrosis. In the present study, we aimed to determine the pathological role of ER stress response systems in myeloproliferative neoplasms (MPNs). We found increased expression of the chaperone protein glucose-regulated protein (GRP) 78, a central regulator of ER stress, in megakaryocytes from primary myelofibrosis or postessential thrombocythemia myelofibrosis patients. GRP78 was overexpressed in JAK2V617F-harboring cell lines; however, inhibitors of ER stress did not affect the expression levels of GRP78. In contrast, ruxolitinib, a well-known inhibitor of JAK2V617F, clearly blocked GRP78 expression in these cells through downregulation of transcription factor 4 (ATF4). Interestingly, GRP78 was secreted from HEL and SET-2 cells into culture media. Coculture of these cells with HS-5 cells, a human bone marrow stroma-derived cell line, induced enhanced expression of lysyl oxidase (LOX), which mediates cross-linking of collagen fibers and induces tissue fibrosis, in HS-5 cells. An anti-GRP78 neutralizing antibody abrogated LOX elevation; in contrast, recombinant GRP78 protein induced LOX protein expression in HS-5 cells. Our observations suggest that the oncogenic protein JAK2V617F induces overexpression and release of GRP78, which may induce a fibrotic phenotype in surrounding bone marrow stromal cells.
Collapse
Affiliation(s)
- Kei Nakajima
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Megumi Suzuki
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Ichiro Kawashima
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Megumi Koshiisi
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Takuma Kumagai
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Takeo Yamamoto
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Masaru Tanaka
- Department of Hematology/Oncology, University of Yamanashi, Japan
| | - Keita Kirito
- Department of Hematology/Oncology, University of Yamanashi, Japan.
| |
Collapse
|
19
|
Verstovsek S, Foltz L, Gupta V, Hasserjian R, Manshouri T, Mascarenhas J, Mesa R, Pozdnyakova O, Ritchie E, Veletic I, Gamel K, Hamidi H, Han L, Higgins B, Trunzer K, Uguen M, Wang D, El-Galaly TC, Todorov B, Gotlib J. Safety and efficacy of zinpentraxin alfa as monotherapy or in combination with ruxolitinib in myelofibrosis: stage I of a phase II trial. Haematologica 2023; 108:2730-2742. [PMID: 37165840 PMCID: PMC10543197 DOI: 10.3324/haematol.2022.282411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
Pentraxin 2 (PTX-2; serum amyloid P component), a circulating endogenous regulator of the inflammatory response to tissue injury and fibrosis, is reduced in patients with myelofibrosis (MF). Zinpentraxin alfa (RO7490677, PRM-151) is a recombinant form of PTX-2 that has shown preclinical antifibrotic activity and no dose-limiting toxicities in phase I trials. We report results from stage 1 of a phase II trial of zinpentraxin alfa in patients with intermediate-1/2 or high-risk MF. Patients (n=27) received intravenous zinpentraxin α weekly (QW) or every 4 weeks (Q4W), as monotherapy or an additional therapy for patients on stable-dose ruxolitinib. The primary endpoint was overall response rate (ORR; investigatorassessed) adapted from International Working Group-Myeloproliferative Neoplasms Research and Treatment criteria. Secondary endpoints included modified Myeloproliferative Neoplasm-Symptom Assessment Form Total Symptom Score (MPN-SAF TSS) change, bone marrow (BM) MF grade reduction, pharmacokinetics, and safety. ORR at week 24 was 33% (n=9/27) and varied across individual cohorts (QW: 38% [3/8]; Q4W: 14% [1/7]; QW+ruxolitinib: 33% [2/6]; Q4W+ruxolitinib: 50% [3/6]). Five of 18 evaluable patients (28%) experienced a ≥50% reduction in MPN-SAF TSS, and six of 17 evaluable patients (35%) had a ≥1 grade improvement from baseline in BM fibrosis at week 24. Most treatment-emergent adverse events (AE) were grade 1-2, most commonly fatigue. Among others, anemia and thrombocytopenia were infrequent (n=3 and n=1, respectively). Treatment-related serious AE occurred in four patients (15%). Overall, zinpentraxin alfa showed evidence of clinical activity and tolerable safety as monotherapy and in combination with ruxolitinib in this open-label, non-randomized trial (clinicaltrials gov. Identifier: NCT01981850).
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Lynda Foltz
- St Paul's Hospital, University of British Columbia, Vancouver
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto
| | | | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX
| | - Olga Pozdnyakova
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Dao Wang
- F. Hoffmann-La Roche, Ltd., Basel
| | - Tarec Christoffer El-Galaly
- F. Hoffmann-La Roche, Ltd., Basel, Switzerland; Current affiliation: Department of Hematology, Aalborg University Hospital, Aalborg
| | | | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
20
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
21
|
Mascarenhas J, Migliaccio AR, Kosiorek H, Bhave R, Palmer J, Kuykendall A, Mesa R, Rampal RK, Gerds AT, Yacoub A, Pettit K, Talpaz M, Komrokji R, Kremyanskaya M, Gonzalez A, Fabris F, Johnson K, Dougherty M, McGovern E, Arango Ossa J, Domenico D, Farnoud N, Weinberg RS, Kong A, Najfeld V, Vannucchi AM, Arciprete F, Zingariello M, Falchi M, Salama ME, Mead-Harvey C, Dueck A, Varricchio L, Hoffman R. A Phase Ib Trial of AVID200, a TGFβ 1/3 Trap, in Patients with Myelofibrosis. Clin Cancer Res 2023; 29:3622-3632. [PMID: 37439808 PMCID: PMC10502472 DOI: 10.1158/1078-0432.ccr-23-0276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by systemic symptoms, cytopenias, organomegaly, and bone marrow fibrosis. JAK2 inhibitors afford symptom and spleen burden reduction but do not alter the disease course and frequently lead to thrombocytopenia. TGFβ, a pleiotropic cytokine elaborated by the MF clone, negatively regulates normal hematopoiesis, downregulates antitumor immunity, and promotes bone marrow fibrosis. Our group previously showed that AVID200, a potent and selective TGFβ 1/3 trap, reduced TGFβ1-induced proliferation of human mesenchymal stromal cells, phosphorylation of SMAD2, and collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PC) with wild-type JAK2 rather than JAK2V617F. PATIENTS AND METHODS We conducted an investigator-initiated, multicenter, phase Ib trial of AVID200 monotherapy in 21 patients with advanced MF. RESULTS No dose-limiting toxicity was identified at the three dose levels tested, and grade 3/4 anemia and thrombocytopenia occurred in 28.6% and 19.0% of treated patients, respectively. After six cycles of therapy, two patients attained a clinical benefit by IWG-MRT criteria. Spleen and symptom benefits were observed across treatment cycles. Unlike other MF-directed therapies, increases in platelet counts were noted in 81% of treated patients with three patients achieving normalization. Treatment with AVID200 resulted in potent suppression of plasma TGFβ1 levels and pSMAD2 in MF cells. CONCLUSIONS AVID200 is a well-tolerated, rational, therapeutic agent for the treatment of patients with MF and should be evaluated further in patients with thrombocytopenic MF in combination with agents that target aberrant MF intracellular signaling pathways.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Heidi Kosiorek
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Rupali Bhave
- Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | | | - Andrew Kuykendall
- Department of Hematologic Malignancy, Moffitt Cancer Center, Tampa, Florida
| | - Ruben Mesa
- Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Raajit K. Rampal
- Leukemia Service, Department of Medicine, Center for Hematologic Malignancies, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Aaron T. Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | | | - Kristen Pettit
- University of Michigan, Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Moshe Talpaz
- University of Michigan, Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Rami Komrokji
- Department of Hematologic Malignancy, Moffitt Cancer Center, Tampa, Florida
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Agapito Gonzalez
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Frank Fabris
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathryn Johnson
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mikaela Dougherty
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin McGovern
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Arango Ossa
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dylan Domenico
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Amy Kong
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vesna Najfeld
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena Rome Italy
| | | | - Carolyn Mead-Harvey
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Amylou Dueck
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
22
|
Ding Z, Shi R, Hu W, Tian L, Sun R, Wu Y, Zhang X. Cancer-associated fibroblasts in hematologic malignancies: elucidating roles and spotlighting therapeutic targets. Front Oncol 2023; 13:1193978. [PMID: 37746306 PMCID: PMC10511871 DOI: 10.3389/fonc.2023.1193978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Hematologic malignancies comprise a diverse range of blood, bone marrow, and organ-related disorders that present significant challenges due to drug resistance, relapse, and treatment failure. Cancer-associated fibroblasts (CAFs) represent a critical component of the tumor microenvironment (TME) and have recently emerged as potential therapeutic targets. In this comprehensive review, we summarize the latest findings on the roles of CAFs in various hematologic malignancies, including acute leukemia, multiple myeloma, chronic lymphocytic leukemia, myeloproliferative neoplasms, and lymphoma. We also explore their involvement in tumor progression, drug resistance, and the various signaling pathways implicated in their activation and function. While the underlying mechanisms and the existence of multiple CAF subtypes pose challenges, targeting CAFs and their associated pathways offers a promising avenue for the development of innovative treatments to improve patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Ziyang Ding
- The Second Clinical School of Nanjing Medical University, Nanjing, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Sun
- Department of Radiation Oncology, Jinling Hospital, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Zhang
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
24
|
Hasselbalch HC, Junker P, Skov V, Kjær L, Knudsen TA, Larsen MK, Holmström MO, Andersen MH, Jensen C, Karsdal MA, Willumsen N. Revisiting Circulating Extracellular Matrix Fragments as Disease Markers in Myelofibrosis and Related Neoplasms. Cancers (Basel) 2023; 15:4323. [PMID: 37686599 PMCID: PMC10486581 DOI: 10.3390/cancers15174323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10-30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is the most prevalent driver mutation. Chronic inflammation is considered to be a major pathogenetic player, both as a trigger of MPN development and as a driver of disease progression. Chronic inflammation in MPNs is characterized by persistent connective tissue remodeling, which leads to organ dysfunction and ultimately, organ failure, due to excessive accumulation of extracellular matrix (ECM). Considering that MPNs are acquired clonal stem cell diseases developing in an inflammatory microenvironment in which the hematopoietic cell populations are progressively replaced by stromal proliferation-"a wound that never heals"-we herein aim to provide a comprehensive review of previous promising research in the field of circulating ECM fragments in the diagnosis, treatment and monitoring of MPNs. We address the rationales and highlight new perspectives for the use of circulating ECM protein fragments as biologically plausible, noninvasive disease markers in the management of MPNs.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, 5000 Odense, Denmark;
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Trine A. Knudsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Christina Jensen
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | - Morten A. Karsdal
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | | |
Collapse
|
25
|
Dunbar AJ, Kim D, Lu M, Farina M, Bowman RL, Yang JL, Park Y, Karzai A, Xiao W, Zaroogian Z, O’Connor K, Mowla S, Gobbo F, Verachi P, Martelli F, Sarli G, Xia L, Elmansy N, Kleppe M, Chen Z, Xiao Y, McGovern E, Snyder J, Krishnan A, Hill C, Cordner K, Zouak A, Salama ME, Yohai J, Tucker E, Chen J, Zhou J, McConnell T, Migliaccio AR, Koche R, Rampal R, Fan R, Levine RL, Hoffman R. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis. Blood 2023; 141:2508-2519. [PMID: 36800567 PMCID: PMC10273167 DOI: 10.1182/blood.2022015418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Collapse
Affiliation(s)
- Andrew J. Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Min Lu
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mirko Farina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Blood Diseases and Bone Marrow Transplantation Unit, Cell Therapies and Hematology Research Program, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie L. Yang
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abdul Karzai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zach Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Lijuan Xia
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nada Elmansy
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Erin McGovern
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jenna Snyder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Corrine Hill
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Keith Cordner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohamed E. Salama
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Mayo Clinic School of Medicine, Rochester, MN
| | - Jayden Yohai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Anna R. Migliaccio
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Altius Institute for Biomedical Sciences, Seattle, WA
- Unit of Microscopic and Ultrastructural Anatomy, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Richard Koche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronald Hoffman
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
26
|
Ryou H, Sirinukunwattana K, Aberdeen A, Grindstaff G, Stolz BJ, Byrne H, Harrington HA, Sousos N, Godfrey AL, Harrison CN, Psaila B, Mead AJ, Rees G, Turner GDH, Rittscher J, Royston D. Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia 2023; 37:348-358. [PMID: 36470992 PMCID: PMC9898027 DOI: 10.1038/s41375-022-01773-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022]
Abstract
The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.
Collapse
Affiliation(s)
- Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Gillian Grindstaff
- Department of Mathematics, University of California, Los Angeles, CA, USA
| | - Bernadette J Stolz
- Mathematical Institute, University of Oxford, Oxford, UK
- Laboratory for Topology and Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nikolaos Sousos
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Bethan Psaila
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gabrielle Rees
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gareth D H Turner
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
27
|
Kapor S, Momčilović S, Kapor S, Mojsilović S, Radojković M, Apostolović M, Filipović B, Gotić M, Čokić V, Santibanez JF. Increase in Frequency of Myeloid-Derived Suppressor Cells in the Bone Marrow of Myeloproliferative Neoplasm: Potential Implications in Myelofibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:273-290. [PMID: 37093433 DOI: 10.1007/978-3-031-26163-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs), defined as clonal disorders of the hematopoietic stem cells, are characterized by the proliferation of mature myeloid cells in the bone marrow and a chronic inflammatory status impacting the initiation, progression, and symptomatology of the malignancies. There are three main entities defined as essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), and genetically classified by JAK2V617F, CALR, or MPL mutations. In MPNs, due to the overproduction of inflammatory cytokines by the neoplastic cells and non-transformed immune cells, chronic inflammation may provoke the generation and expansion of myeloid-derived suppressors cells (MDSCs) that highly influence the adaptive immune response. Although peripheral blood MDSC levels are elevated, their frequency in the bone marrow of MPNs patients is not well elucidated yet. Our results indicated increased levels of total (T)-MDSCs (CD33+HLA-DR-/low) and polymorphonuclear (PMN)-MDSCs (CD33+/HLA-DRlow/CD15+/CD14-) in the bone marrow and peripheral blood of all three types of MPNs malignancies. However, these bone marrow MDSCs-increased frequencies did not correlate with the clinical parameters, such as hepatomegaly, leukocytes, hemoglobin, or platelet levels, or with JAK2 and CALR mutations. Besides, bone marrow MDSCs, from ET, PV, and PMF patients, exhibited immunosuppressive function, determined as T-cell proliferation inhibition. Notably, the highest T-MDSCs and PMN-MDSC levels were found in PMF samples, and the increased MDSCs frequency strongly correlated with the degree of myelofibrosis. Thus, these data together indicate that the immunosuppressive MDSCs population is increased in the bone marrow of MPNs patients and may be implicated in generating a fibrotic microenvironment.
Collapse
Affiliation(s)
- Sunčica Kapor
- Department of Hematology, Clinical and Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11020, Belgrade, Serbia
| | - Sanja Momčilović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, POB 102, 11129 Belgrade, Serbia
| | - Slobodan Kapor
- Institute of Anatomy "Niko Miljanić", Dr. Subotića Starijeg 4, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129, Belgrade, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical and Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11020, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
| | - Milica Apostolović
- Department of Hematology, Clinical and Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11020, Belgrade, Serbia
| | - Branka Filipović
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
- Department of Gastroenterology, Clinical and Hospital Center "Dr. Dragiša Mišović-Dedinje", Heroja Milana Tepica 1, 11020, Belgrade, Serbia
| | - Mirjana Gotić
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
- Clinic for Hematology, Clinical Center of Serbia, Pasterova 4, 11000, Belgrade, Serbia
| | - Vladan Čokić
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia.
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile.
| |
Collapse
|
28
|
Karhadkar TR, Chen W, Pilling D, Gomer RH. Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis. Int J Mol Sci 2022; 24:239. [PMID: 36613682 PMCID: PMC9820515 DOI: 10.3390/ijms24010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
29
|
Reynolds SB, Pettit K. New approaches to tackle cytopenic myelofibrosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:235-244. [PMID: 36485113 PMCID: PMC9820710 DOI: 10.1182/hematology.2022000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.
Collapse
Affiliation(s)
- Samuel B Reynolds
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Kristen Pettit
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
30
|
Passamonti F, Harrison CN, Mesa RA, Kiladjian JJ, Vannucchi AM, Verstovsek S. Anemia in myelofibrosis: current and emerging treatment options. Crit Rev Oncol Hematol 2022; 180:103862. [DOI: 10.1016/j.critrevonc.2022.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
31
|
Sastow D, Mascarenhas J, Tremblay D. Thrombocytopenia in Patients With Myelofibrosis: Pathogenesis, Prevalence, Prognostic Impact, and Treatment. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e507-e520. [PMID: 35221248 DOI: 10.1016/j.clml.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm, characterized by pathologic myeloproliferation associated with inflammatory and pro-angiogenic cytokine release, that results in functional compromise of the bone marrow. Thrombocytopenia is a disease-related feature of MF, which portends a poor prognosis impacting overall survival (OS) and leukemia free survival. Thrombocytopenia in MF has multiple causes including ineffective hematopoiesis, splenic sequestration, and treatment-related effects. Presently, allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curable treatment for MF, which, unfortunately, is only a viable option for a minority of patients. All other currently available therapies are either focused on improving cytopenias or the alleviating systemic symptoms and burdensome splenomegaly. While JAK2 inhibitors have moved to the forefront of MF therapy, available JAK inhibitors are advised against in patients with severe thrombocytopenia (platelets < 50 × 109/L). In this review, we describe the pathogenesis, prevalence, and prognostic significance of thrombocytopenia in MF. We also explore the value and limitations of treatments directed at addressing cytopenias, splenomegaly and symptom burden, and those with potential disease modification. We conclude by proposing a treatment algorithm for patients with MF and severe thrombocytopenia.
Collapse
Affiliation(s)
- Dahniel Sastow
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Mascarenhas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Douglas Tremblay
- Division of Hematology and Medical Oncology, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
32
|
Rozovski U, Veletic I, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Ferrajoli A, Burger JA, Bose P, Thompson PA, Jain N, Wierda WG, Verstovsek S, Keating MJ, Estrov Z. STAT3 Activates the Pentraxin 3 Gene in Chronic Lymphocytic Leukemia Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2847-2855. [PMID: 35595309 DOI: 10.4049/jimmunol.2101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/03/2022] [Indexed: 01/13/2023]
Abstract
Pentraxin-related protein 3 (PTX3), commonly produced by myeloid and endothelial cells, is a humoral pattern recognition protein of the innate immune system. Because PTX3 plasma levels of patients with chronic lymphocytic leukemia (CLL) are high and most circulating cells in patients with CLL are CLL cells, we reasoned that CLL cells produce PTX3. Western immunoblotting revealed that low-density cells from seven of seven patients with CLL produce high levels of PTX3, flow cytometry analysis revealed that the PTX3-producing cells are B lymphocytes coexpressing CD19 and CD5, and confocal microscopy showed that PTX3 is present in the cytoplasm of CLL cells. Because STAT3 is constitutively activated in CLL cells, and because we identified putative STAT3 binding sites within the PTX3 gene promoter, we postulated that phosphorylated STAT3 triggers transcriptional activation of PTX3. Immunoprecipitation analysis of CLL cells' chromatin fragments showed that STAT3 Abs precipitated PTX3 DNA. STAT3 knockdown induced a marked reduction in PTX3 expression, indicating a STAT3-induced transcriptional activation of the PTX3 gene in CLL cells. Using an EMSA, we established and used a dual-reporter luciferase assay to confirm that STAT3 binds the PTX3 gene promoter. Downregulation of PTX3 enhanced apoptosis of CLL cells, suggesting that inhibition of PTX3 might benefit patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; and.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Phillip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX;
| |
Collapse
|
33
|
Pettit K, Rezazadeh A, Atallah EL, Radich J. Management of Myeloproliferative Neoplasms in the Molecular Era: From Research to Practice. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35658498 DOI: 10.1200/edbk_349615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 1960 discovery of the Philadelphia chromosome in chronic myeloid leukemia (CML) marked the beginning of the modern genomic era of oncology. In the following years, the molecular underpinnings of CML were unraveled, culminating in the development of the first molecularly targeted therapy: imatinib. Imatinib revolutionized CML management, inducing deep molecular responses for most patients and aligning survival curves with those of age-matched control participants. Five additional tyrosine kinase inhibitors are now approved for CML: dasatinib, nilotinib, bosutinib, ponatinib, and asciminib (approved October 2021). The 2005 discovery of JAK2 mutations in myelofibrosis (MF) sparked enthusiasm that molecularly targeted therapies could have a similar impact in that disease. Three JAK inhibitors are now available for MF: ruxolitinib, fedratinib, and pacritinib (approved February 2022). JAK inhibitors are helpful for improving symptoms and splenomegaly but still only scratch the surface of MF pathophysiology. Clinical research testing novel agents, next-generation JAK inhibitors, and combinations of JAK inhibitors plus novel agents is moving at a tremendous pace in the hope that outcomes for patients with MF may mirror those with CML one day. This review provides an update on the status of clinical care and research for MF and addresses ongoing issues related to CML management.
Collapse
Affiliation(s)
| | | | | | - Jerald Radich
- Global Oncology Program and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
34
|
Varricchio L, Hoffman R. Megakaryocytes Are Regulators of the Tumor Microenvironment and Malignant Hematopoietic Progenitor Cells in Myelofibrosis. Front Oncol 2022; 12:906698. [PMID: 35646681 PMCID: PMC9130548 DOI: 10.3389/fonc.2022.906698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Megakaryocytes (MKs) are multifunctional hematopoietic cells that produce platelets, serve as components of bone marrow (BM) niches that support the development of hematopoietic stem and progenitor cell (HSPC) and provide inflammatory signals. MKs can dynamically change their activities during homeostasis and following stress, thereby regulating hematopoietic stem cell (HSC) function. Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm (MPN) characterized by hyperactivation of JAK/STAT signaling and MK hyperplasia, which is associated with an aberrant inflammatory signature. Since JAK1/2 inhibitor alone is incapable of depleting the malignant HSC clones or reversing BM fibrosis, the identification of mechanisms that cooperate with MF JAK/STAT signaling to promote disease progression might help in developing combination therapies to modify disease outcomes. Chronic inflammation and MK hyperplasia result in an abnormal release of TGFβ1, which plays a critical role in the pathobiology of MF by contributing to the development of BM fibrosis. Dysregulated TGFβ signaling can also alter the hematopoietic microenvironment supporting the predominance of MF-HSCs and enhance the quiescence of the reservoir of wild-type HSCs. Upregulation of TGFβ1 levels is a relatively late event in MF, while during the early pre-fibrotic stage of MF the alarmin S100A8/S100A9 heterocomplex promotes pro-inflammatory responses and sustains the progression of MF-HSCs. In this review, we will discuss the recent advances in our understanding of the roles of abnormal megakaryopoiesis, and the altered microenvironment in MF progression and the development of novel combined targeted therapies to disrupt the aberrant interplay between MKs, the BM microenvironment and malignant HSCs which would potentially limit the expansion of MF-HSC clones.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC. TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 2022. [PMID: 35439167 DOI: 10.1172/jci154092.pmid:35439167;pmcid:pmc9151699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-β to these alterations by abrogating TGF-β signaling in bone marrow mesenchymal stromal cells. Loss of TGF-β signaling in Osx-Cre-targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-β signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-β signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-β signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program.
Collapse
Affiliation(s)
- Juo-Chin Yao
- Division of Oncology, Department of Medicine and
| | | | - Tianjiao Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haoliang Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
36
|
Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC. TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 2022; 132:154092. [PMID: 35439167 PMCID: PMC9151699 DOI: 10.1172/jci154092] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-β to these alterations by abrogating TGF-β signaling in bone marrow mesenchymal stromal cells. Loss of TGF-β signaling in Osx-Cre-targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-β signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-β signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-β signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program.
Collapse
Affiliation(s)
- Juo-Chin Yao
- Division of Oncology, Department of Medicine and
| | | | - Tianjiao Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haoliang Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
37
|
Raghu G, Hamblin MJ, Brown AW, Golden JA, Ho LA, Wijsenbeek MS, Vasakova M, Pesci A, Antin-Ozerkis DE, Meyer KC, Kreuter M, Burgess T, Kamath N, Donaldson F, Richeldi L. Long-term evaluation of the safety and efficacy of recombinant human pentraxin-2 (rhPTX-2) in patients with idiopathic pulmonary fibrosis (IPF): an open-label extension study. Respir Res 2022; 23:129. [PMID: 35597980 PMCID: PMC9123757 DOI: 10.1186/s12931-022-02047-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background Recombinant human pentraxin-2 (rhPTX-2) significantly decreased decline in percent predicted forced vital capacity (FVC) and stabilized 6-min walk distance (6MWD) in patients with idiopathic pulmonary fibrosis (IPF) during the 28-week, placebo-controlled, randomized period of the Phase II PRM-151–202 study. Interim (76-week) data from the open-label extension (OLE) demonstrated sustained safety and efficacy with rhPTX-2 treatment. Here, we present the entire long-term OLE safety and efficacy data to 128 weeks. Methods Patients who completed the randomized PRM-151–202 study period were eligible for the OLE, during which all patients received rhPTX-2, having started rhPTX-2 (i.e., crossed from placebo) or continued rhPTX-2 after Week 28. rhPTX-2 was administered in 28-week cycles, with 10 mg/kg intravenous infusions (60 min) on Days 1, 3, and 5 in the first week of each cycle, then one infusion every 4 weeks up to Week 128. The OLE primary objective was to assess the long-term safety and tolerability of rhPTX-2. Other outcomes included FVC, 6MWD, and patient-reported outcomes (descriptive analysis). Results All 111 patients who completed the randomized period entered the OLE (n = 37 started rhPTX-2; n = 74 continued rhPTX-2); 57 (51.4%) completed to Week 128. The treatment-emergent adverse event (TEAE) profile was consistent with the randomized period, with the majority of TEAEs graded mild or moderate. Serious TEAEs occurred in 47 patients (42.3%), most frequently IPF (n = 11; 9.9%), pneumonia (n = 7; 6.3%), and acute respiratory failure (n = 3; 2.7%). Three patients underwent lung transplantation. Most serious TEAEs (and all 14 fatal events) were considered unrelated to rhPTX-2 treatment. For patients starting vs continuing rhPTX-2, mean (95% confidence interval) changes from baseline to Week 128 were, respectively, − 6.2% (− 7.7; − 4.6) and − 5.7% (− 8.0; − 3.3) for percent predicted FVC and − 36.3 m (− 65.8; − 6.9) and − 28.9 m (− 54.3; − 3.6) for 6MWD; however, conclusions were limited by patient numbers at Week 128. Conclusions Long-term treatment (up to 128 weeks) with rhPTX-2 was well tolerated in patients with IPF, with no new safety signals emerging in the OLE. The limited efficacy data over 128 weeks may suggest a trend towards a treatment effect. Trial registration NCT02550873; EudraCT 2014-004782-24.
Collapse
Affiliation(s)
- Ganesh Raghu
- Center for Interstitial Lung Diseases, Department of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | - Mark J Hamblin
- Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Whitney Brown
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Jeffrey A Golden
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence A Ho
- Center for Interstitial Lung Diseases, Department of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Marlies S Wijsenbeek
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Martina Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine of Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Alberto Pesci
- School of Medicine and Surgery, University of Milano-Bicocca, ASST-Monza, Milano, Italy
| | | | - Keith C Meyer
- Department of Medicine, Division of Pulmonary and Critical Care, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | | | | | | | - Luca Richeldi
- Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
38
|
Manshouri T, Veletic I, Li P, Yin CC, Post SM, Verstovsek S, Estrov Z. GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes. Cell Death Dis 2022; 13:481. [PMID: 35595725 PMCID: PMC9122946 DOI: 10.1038/s41419-022-04932-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
Collapse
Affiliation(s)
- Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
39
|
Chifotides HT, Bose P, Masarova L, Pemmaraju N, Verstovsek S. SOHO State of the Art Updates and Next Questions: Novel Therapies in Development for Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:210-223. [PMID: 34840087 DOI: 10.1016/j.clml.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Myeloproliferative neoplasms research has entered a dynamic and exciting era as we witness exponential growth of novel agents in advanced/early phase clinical trials for myelofibrosis (MF). Building on the success and pivotal role of ruxolitinib, many novel agents, spanning a wide range of mechanisms/targets (epigenetic regulation, apoptotic/intracellular signaling pathways, telomerase, bone marrow fibrosis) are in clinical development; several are studied in registrational trials and hold great potential to expand the therapeutic arsenal/shift the treatment paradigm if regulatory approval is granted. Insight into MF pathogenesis and its molecular underpinnings, preclinical studies demonstrating synergism of ruxolitinib with investigational agents, urgent unmet clinical needs (cytopenias, loss of response to JAK inhibitors); and progressive disease fueled the rapid rise of innovative therapeutics. New strategies include pairing ruxolitinib with erythroid maturation agents to manage anemia (luspatercept), designing rational combinations with ruxolitinib to boost responses in both the frontline and suboptimal response settings (pelabresib, navitoclax, parsaclisib), treatment with non-JAK inhibitor monotherapy in the second-line setting (navtemadlin, imetelstat), novel JAK inhibitors tailored to subgroups with challenging unmet needs (momelotinib and pacritinib for anemia and thrombocytopenia, respectively); and agents potentially enhancing longevity (imetelstat). Beyond typical endpoints evaluated in MF clinical trials (spleen volume reduction ≥ 35%, total symptom score reduction ≥ 50%) thus far, emerging endpoints include overall survival, progression-free survival, transfusion independence, anemia benefits, bone marrow fibrosis and driver mutation allele burden reduction. Novel biomarkers and additional clinical features are being sought to assess new agents and tailor emerging therapies to appropriate patients. New strategies are needed to optimize the design of clinical trials comparing novel combinations to standard agent monotherapy.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Lucia Masarova
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
40
|
Loscocco GG, Vannucchi AM. Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives. Int J Hematol 2022; 115:626-644. [PMID: 35352288 DOI: 10.1007/s12185-022-03335-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022]
Abstract
Classic Philadelphia-negative myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), classified as primary (PMF), or secondary to PV or ET. All MPN, regardless of the underlying driver mutation in JAK2/CALR/MPL, are invariably associated with dysregulation of JAK/STAT pathway. The discovery of JAK2V617F point mutation prompted the development of small molecules inhibitors of JAK tyrosine kinases (JAK inhibitors-JAKi). To date, among JAKi, ruxolitinib (RUX) and fedratinib (FEDR) are approved for intermediate and high-risk MF, and RUX is also an option for high-risk PV patients inadequately controlled by or intolerant to hydroxyurea. While not yet registered, pacritinib (PAC) and momelotinib (MMB), proved to be effective particularly in thrombocytopenic and anemic MF patients, respectively. In most cases, JAKi are effective in reducing splenomegaly and alleviating disease-related symptoms. However, almost 50% lose response by three years and dose-dependent toxicities may lead to suboptimal dosing or treatment discontinuation. To date, although not being disease-modifying agents, JAKi represent the therapeutic backbone particularly in MF patient. To optimize therapeutic strategies, many trials with drug combinations of JAKi with novel molecules are ongoing. This review critically discusses the role of JAKi in the modern management of patients with MPN.
Collapse
Affiliation(s)
- Giuseppe G Loscocco
- Department of Experimental and Clinical Medicine, University of Florence, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3 pad 27B, 50134, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3 pad 27B, 50134, Florence, Italy.
| |
Collapse
|
41
|
Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Exp Mol Med 2022; 54:273-284. [PMID: 35288649 PMCID: PMC8980093 DOI: 10.1038/s12276-022-00742-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFβ and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFβ and inflammatory signaling to extenuate fibrosis in MPN. The treatment of fibrosis in patients with rare bone marrow disorders could be improved with a combined therapy that targets inflammatory pathways. Myeloproliferative neoplasms (MPN) are a group of bone marrow disorders characterized by the over-production of blood cells, which can lead to fibrosis in the bone marrow. Vladan Čokić at the University of Belgrade, Serbia, and co-workers examined how stem cells known as mesenchymal stromal cells from the bone marrow contribute to MPN fibrosis. They found an increase in three pro-inflammatory signaling pathways in MPN patients, resulting in the stromal cells differentiating into cells with dysregulated extracellular matrices. The differentiated cells did not behave correctly nor degrade properly, triggering fibrosis. The team combined two drugs that target the inflammatory signaling pathways, and successfully inhibited the development of fibrosis in MPN cell cultures.
Collapse
|
42
|
Novel treatments for myelofibrosis: beyond JAK inhibitors. Int J Hematol 2022; 115:645-658. [PMID: 35182376 DOI: 10.1007/s12185-022-03299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Myelofibrosis is a chronic hematologic malignancy characterized by constitutional symptoms, bone marrow fibrosis, extramedullary hematopoiesis resulting in splenomegaly and a propensity toward leukemic progression. Given the central role of the JAK-STAT pathway in the pathobiology of myelofibrosis, JAK inhibitors are the mainstay of current pharmacologic management. Although these therapies have produced meaningful improvements in splenomegaly and symptom burden, JAK inhibitors do not significantly impact disease progression. In addition, many patients are ineligible because of disease-related cytopenias, which are exacerbated by JAK inhibitors. Therefore, there is a continued effort to identify targets outside the JAK-STAT pathway. In this review, we discuss novel therapies in development for myelofibrosis. We focus on the preclinical rationale, efficacy and safety data for non-JAK inhibitor therapies that have published or presented clinical data. Specifically, we discuss agents that target epigenetic modification (pelabresib, bomedemstat), apoptosis (navitoclax, navtemdalin), signaling pathways (parsaclisib), bone marrow fibrosis (AVID200, PRM-151), in addition to other targets including telomerase (imetelstat), selective inhibitor of nuclear transport (selinexor), CD123 (tagraxofusp) and erythroid maturation (luspatercept). We end by providing commentary on the ongoing and future therapeutic development in myelofibrosis.
Collapse
|
43
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
44
|
Saito N, Yamauchi T, Kawano N, Ono R, Yoshida S, Miyamoto T, Kamimura T, Shultz LD, Saito Y, Takenaka K, Shimoda K, Harada M, Akashi K, Ishikawa F. Circulating CD34+ cells of primary myelofibrosis patients contribute to myeloid-dominant hematopoiesis and bone marrow fibrosis in immunodeficient mice. Int J Hematol 2022; 115:198-207. [PMID: 34773575 PMCID: PMC8905546 DOI: 10.1007/s12185-021-03239-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Primary myelofibrosis (PMF) is a clonal stem cell disorder characterized by myeloid dominant hematopoiesis and dysregulated proliferation of fibroblasts in the bone marrow. However, how these aberrant myeloid cells and fibroblasts are produced remains unclear. AIM AND METHODS In this study, we examined in vivo engraftment kinetics of PMF patient-derived CD34+ cells in immunecompromised NOD/SCID/IL2rgKO (NSG) mice. Engrafted human cells were analyzed with flow cytometry, and proliferation of fibroblastic cells and bone marrow fibrosis were assessed with the histo-pathological examination. RESULTS Transplantation of PMF patient-derived circulating CD34+ fractions into NSG newborns recapitulates clinical features of human PMF. Engraftment of human CD45+ leukocytes resulted in anemia and myeloid hyperplasia accompanied by bone marrow fibrosis by six months post-transplantation. Fibrotic bone marrow contained CD45-vimentin+ cells of both human and mouse origin, suggesting that circulating malignant CD34+ subsets contribute to myelofibrotic changes in PMF through direct and indirect mechanisms. CONCLUSION A patient-derived xenotransplantation (PDX) model of PMF allows in vivo examination of disease onset and propagation originating from immature CD34+ cells and will support the investigation of pathogenesis and development of therapeutic modalities for the disorder.
Collapse
Affiliation(s)
- Noriyuki Saito
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Hematology, Saiseikai Fukuoka General Hospital, 1-3-46 Tenjin, Chuo-ku, Fukuoka, 810-0001, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriaki Kawano
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Rintaro Ono
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuro Yoshida
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | - Yoriko Saito
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mine Harada
- Karatsu Higashimatsuura Medical Center, Karatsu, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
45
|
|
46
|
Vachhani P, Verstovsek S, Bose P. Disease Modification in Myelofibrosis: An Elusive Goal? J Clin Oncol 2022; 40:1147-1154. [PMID: 35084934 PMCID: PMC8987221 DOI: 10.1200/jco.21.02246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
47
|
Longhitano L, Tibullo D, Vicario N, Giallongo C, La Spina E, Romano A, Lombardo S, Moretti M, Masia F, Coda ARD, Venuto S, Fontana P, Parenti R, Li Volti G, Di Rosa M, Palumbo GA, Liso A. IGFBP-6/sonic hedgehog/TLR4 signalling axis drives bone marrow fibrotic transformation in primary myelofibrosis. Aging (Albany NY) 2021; 13:25055-25071. [PMID: 34905501 PMCID: PMC8714138 DOI: 10.18632/aging.203779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Primary myelofibrosis is a Ph-negative chronic myeloproliferative neoplasm characterized by bone marrow fibrosis and associated with the involvement of several pathways, in addition to bone marrow microenvironment alterations, mostly driven by the activation of the cytokine receptor/JAK2 pathway. Identification of driver mutations has led to the development of targeted therapy for myelofibrosis, contributing to reducing inflammation, although this currently does not translate into bone marrow fibrosis remission. Therefore, understanding the clear molecular cut underlying this pathology is now necessary to improve the clinical outcome of patients. The present study aims to investigate the involvement of IGFBP-6/sonic hedgehog /Toll-like receptor 4 axis in the microenvironment alterations of primary myelofibrosis. We observed a significant increase in IGFBP-6 expression levels in primary myelofibrosis patients, coupled with a reduction to near-normal levels in primary myelofibrosis patients with JAK2V617F mutation. We also found that both IGFBP-6 and purmorphamine, a SHH activator, were able to induce mesenchymal stromal cells differentiation with an up-regulation of cancer-associated fibroblasts markers. Furthermore, TLR4 signaling was also activated after IGFBP-6 and purmorphamine exposure and reverted by cyclopamine exposure, an inhibitor of the SHH pathway, confirming that SHH is involved in TLR4 activation and microenvironment alterations. In conclusion, our results suggest that the IGFBP-6/SHH/TLR4 axis is implicated in alterations of the primary myelofibrosis microenvironment and that IGFBP-6 may play a central role in activating SHH pathway during the fibrotic process.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania 95123, Italy
| | - Enrico La Spina
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania 95123, Italy
| | - Alessandra Romano
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania 95123, Italy
| | - Sofia Lombardo
- Department of Medical Oncology, The Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Marina Moretti
- Department of Medicine, University of Perugia, Perugia 06129, Italy
| | - Francesco Masia
- Department of Medicine, University of Perugia, Perugia 06129, Italy
| | | | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71100, Italy
| | - Paolo Fontana
- Department of Medical Oncology, The Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Giuseppe A Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania 95123, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71100, Italy
| |
Collapse
|
48
|
Migliaccio AR. A Novel Megakaryocyte Subpopulation Poised to Exert the Function of HSC Niche as Possible Driver of Myelofibrosis. Cells 2021; 10:3302. [PMID: 34943811 PMCID: PMC8699046 DOI: 10.3390/cells10123302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Careful morphological investigations, coupled with experimental hematology studies in animal models and in in vitro human cultures, have identified that platelets are released in the circulation by mature megakaryocytes generated by hematopoietic stem cells by giving rise to lineage-restricted progenitor cells and then to morphologically recognizable megakaryocyte precursors, which undergo a process of terminal maturation. Advances in single cell profilings are revolutionizing the process of megakaryocytopoiesis as we have known it up to now. They identify that, in addition to megakaryocytes responsible for producing platelets, hematopoietic stem cells may generate megakaryocytes, which exert either immune functions in the lung or niche functions in organs that undergo tissue repair. Furthermore, it has been discovered that, in addition to hematopoietic stem cells, during ontogeny, and possibly in adult life, megakaryocytes may be generated by a subclass of specialized endothelial precursors. These concepts shed new light on the etiology of myelofibrosis, the most severe of the Philadelphia negative myeloproliferative neoplasms, and possibly other disorders. This perspective will summarize these novel concepts in thrombopoiesis and discuss how they provide a framework to reconciliate some of the puzzling data published so far on the etiology of myelofibrosis and their implications for the therapy of this disease.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- Department of Medicine and Surgery, Campus Bio-Medico University, 00128 Rome, Italy; or amigliaccio.altius.org
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| |
Collapse
|
49
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
50
|
Leimkühler NB, Costa IG, Schneider RK. From cell to cell: Identification of actionable targets in bone marrow fibrosis using single-cell technologies. Exp Hematol 2021; 104:48-54. [PMID: 34601067 DOI: 10.1016/j.exphem.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
Single-cell technologies have rapidly developed in recent years and have already had a significant impact on the research of myeloproliferative neoplasms. The increasing number of publicly available data sets allows characterization of the bone marrow niche in patients and mouse models at unprecedented resolution. Single-cell RNA sequencing has successfully been used to identify and characterize disease-driving cell populations and to identify the alarmin S100A8/A9 as an important mediator of myelofibrosis and potent therapeutic target. It is now possible to execute a streamlined set of experiments to specifically identify and validate actionable target genes functionally with the advance of reliable in vivo models and the possibility of conducting single-cell analyses with a minimal amount of patient material. The advent of large-scale analyses of both hematopoietic and non-hematopoietic bone marrow cells will allow comprehensive network analyses guiding an increasingly detailed mapping of the MPN interactome.
Collapse
Affiliation(s)
- Nils B Leimkühler
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|