1
|
Forouzanfar F, Ahmadzadeh AM, Pourbagher-Shahri AM, Gorji A. Significance of NMDA receptor-targeting compounds in neuropsychological disorders: An in-depth review. Eur J Pharmacol 2025; 999:177690. [PMID: 40315950 DOI: 10.1016/j.ejphar.2025.177690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
N-methyl-D-aspartate receptors (NMDARs), a subclass of glutamate-gated ion channels, play an integral role in the maintenance of synaptic plasticity and excitation-inhibition balance within the central nervous system (CNS). Any irregularities in NMDAR functions, whether hypo-activation or over-activation, can destabilize neural networks and impair CNS function. Several decades of experimental and clinical investigations have demonstrated that NMDAR dysfunction is implicated in the pathophysiology of various neurological disorders. Despite designing a long list of compounds that differentially modulate NMDARs, success in developing drugs that can selectively and effectively regulate various NMDAR subtypes while showing encouraging efficacy in clinical settings remains limited. A better understanding of the basic mechanism of NMDAR function, particularly its selective regulation in pathological conditions, could aid in designing effective drugs for the treatment of neurological conditions. Here, we reviewed the experimental and clinical investigations that studied the effects of available NMDAR modulators in various neurological disorders and weighed up the pros and cons of the use of these substances on the improvement of functional outcomes of these disorders. Despite numerous efforts to develop NMDAR modulatory drugs that did not produce the desired outcomes, NMDARs remain a significant target for advancing novel drugs to treat neurological disorders. This article reviews the complexity of NMDAR signaling dysfunction in different neurological diseases, the efforts taken to examine designed compounds targeting specific subtypes of NMDARs, including challenges associated with using these substances, and the potential enhancements in drug discovery for NMDAR modulatory compounds by innovative technologies.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neurosurgery, Münster University, Münster, Germany; Epilepsy Research Center, Münster University, Münster, Germany.
| |
Collapse
|
2
|
Hadzibegovic S, Bontempi B, Nicole O. Investigating the Impact of NMDA Receptor Organization and Biological Sex in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2025; 26:1737. [PMID: 40004200 PMCID: PMC11855313 DOI: 10.3390/ijms26041737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, with women being disproportionately affected in both prevalence and severity. A key feature of AD is synaptic loss, particularly around amyloid-β (Aβ) aggregates, which correlates strongly with the severity of dementia. Oligomeric Aβ is believed to be the primary driver of synaptic dysfunction by impairing excitatory neurotransmission through interactions with synaptic receptors, including N-methyl-D-aspartate (NMDA) receptors. However, the influence of sex on these synaptic changes and NMDA receptor mislocalization in AD is not well understood. This study examined potential sex-specific differences in synaptotoxicity and the role of extrasynaptic GluN2B-containing NMDA receptors in AD pathogenesis using the APP/PS1 double transgenic mouse model. Although both male and female mice showed a similar amyloid burden and cognitive impairments, synaptic alterations were slightly less severe in females, suggesting subtle sex differences in synaptic pathology. Both sexes exhibited the mislocalization of GluN2B subunits to extrasynaptic areas, which was linked to reduced PSD-95 levels and the synaptic accumulation of Aβ1-42. Intrahippocampal injections of DL-TBOA confirmed the role of extrasynaptic GluN2B-containing NMDA receptors in memory dysfunction. These findings emphasize the importance of targeting synaptic receptor trafficking to address AD-related memory deficits, potentially offering a therapeutic approach for both sexes.
Collapse
Affiliation(s)
- Senka Hadzibegovic
- Neurocentre Magendie, INSERM U1215, 33077 Bordeaux, France;
- University of Bordeaux, 33077 Bordeaux, France;
| | - Bruno Bontempi
- University of Bordeaux, 33077 Bordeaux, France;
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, 33077 Bordeaux, France;
- Institut Interdisciplinaire de Neurosciences, CNRS, UMR 5297, 33077 Bordeaux, France
| |
Collapse
|
3
|
Capó T, Rebassa JB, Raïch I, Lillo J, Badia P, Navarro G, Reyes-Resina I. Future Perspectives of NMDAR in CNS Disorders. Molecules 2025; 30:877. [PMID: 40005187 PMCID: PMC11857888 DOI: 10.3390/molecules30040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's diseases are among the leading causes of physical and cognitive disability across the globe. Fifty million people worldwide suffer these diseases, and that number is expected to rise as the population ages. Ictus is another pathology that also courses with neurodegeneration and is a leading cause of mortality and long-term disability in developed countries. Schizophrenia is not as common as other mental disorders, affecting approximately 24 million people worldwide. All these disorders have in common that still there is not an effective pharmacological treatment to cure them. The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has attracted attention as a potential therapeutic target due to its important role in learning and memory and also due to its implication in excitotoxicity processes. Some drugs targeting NMDARs are already being used to treat symptoms of disorders affecting the central nervous system (CNS). Here, we aim to review the implications of NMDAR in these CNS pathologies, its role as a potential therapeutic target, and the future perspectives for developing new treatments focused on these receptors.
Collapse
Affiliation(s)
- Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Pau Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| |
Collapse
|
4
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 PMCID: PMC11817889 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
5
|
Puranik N, Song M. Therapeutic Role of Heterocyclic Compounds in Neurodegenerative Diseases: Insights from Alzheimer's and Parkinson's Diseases. Neurol Int 2025; 17:26. [PMID: 39997657 PMCID: PMC11858632 DOI: 10.3390/neurolint17020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's and Parkinson's are the most common neurodegenerative diseases (NDDs). The development of aberrant protein aggregates and the progressive and permanent loss of neurons are the major characteristic features of these disorders. Although the precise mechanisms causing Alzheimer's disease (AD) and Parkinson's disease (PD) are still unknown, there is a wealth of evidence suggesting that misfolded proteins, accumulation of misfolded proteins, dysfunction of neuroreceptors and mitochondria, dysregulation of enzymes, and the release of neurotransmitters significantly influence the pathophysiology of these diseases. There is no effective protective medicine or therapy available even with the availability of numerous medications. There is an urgent need to create new and powerful bioactive compounds since the number of people with NDDs is rising globally. Heterocyclic compounds have consistently played a pivotal role in drug discovery due to their exceptional pharmaceutical properties. Many clinically approved drugs, such as galantamine hydrobromide, donepezil hydrochloride, memantine hydrochloride, and opicapone, feature heterocyclic cores. As these heterocyclic compounds have exceptional therapeutic potential, heterocycles are an intriguing research topic for the development of new effective therapeutic drugs for PD and AD. This review aims to provide current insights into the development and potential use of heterocyclic compounds targeting diverse therapeutic targets to manage and potentially treat patients with AD and PD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Ramírez OA, Hellwig A, Zhang Z, Bading H. Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage. Cells 2025; 14:195. [PMID: 39936986 PMCID: PMC11816953 DOI: 10.3390/cells14030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Focal swellings of dendrites ("dendritic blebbing") together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called "overactivation" of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein-protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER-mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity ("two-hit hypothesis"). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases.
Collapse
Affiliation(s)
- Omar A. Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Zihong Zhang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| |
Collapse
|
7
|
Sun M, Wang L, Cao Q, Wang X, Zhang Y, Guo M, Chen J, Ma Y, Niu L, Zhang Y, Hu M, Gu M, Zhu Z, Yao X, Yao J, Zhao C, Wu J, Liu X, Lu Y, Wang Z, Xiang Q, Han F, Zhu D. Discovery of HZS60 as a Novel Brain Penetrant NMDAR/TRPM4 Interaction Interface Inhibitor with Improved Activity and Pharmacokinetic Properties for the Treatment of Cerebral Ischemia. J Med Chem 2025; 68:2008-2043. [PMID: 39745498 DOI: 10.1021/acs.jmedchem.4c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles. The representative compound HZS60 displayed significant neuroprotective effects against both NMDA and oxygen-glucose deprivation/reoxygenation-induced ischemic injury in primary neurons. Notably, HZS60 exhibited a favorable pharmacokinetic profile and excellent brain permeability. Furthermore, HZS60 provided effective neuroprotection following brain ischemia and reperfusion injury in vivo. Collectively, these findings underscore the potential of HZS60 as a promising candidate for the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lin Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qiaofeng Cao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuechun Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Manyu Guo
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jie Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yuchen Ma
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Le Niu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yanping Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengdie Hu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengli Gu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhihui Zhu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Yao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Junchen Yao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chen Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Wu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingmei Lu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai 200032, China
| | - Qiuping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo 315000, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China
| | - Dongsheng Zhu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Delint-Ramirez I, Madabhushi R. DNA damage and its links to neuronal aging and degeneration. Neuron 2025; 113:7-28. [PMID: 39788088 PMCID: PMC11832075 DOI: 10.1016/j.neuron.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage. Chromosome conformation capture-based approaches have shown that, while DNA damage and the ensuing cellular response alter chromatin topology, chromatin organization at damage sites also affects DNA repair outcomes in neurons. Additionally, neuronal activity results in the formation of programmed DNA breaks, which could burden DNA repair mechanisms and promote neuronal dysfunction. Finally, emerging evidence implicates DNA damage-induced inflammation as an important contributor to the age-related decline in neuronal functions. Together, these discoveries have ushered in a new understanding of the significance of genome maintenance for neuronal function.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Ferreira IL, Marinho D, de Rosa V, Castanheira B, Fang Z, Caldeira GL, Mota SI, Rego AC. Linking activation of synaptic NMDA receptors-induced CREB signaling to brief exposure of cortical neurons to oligomeric amyloid-beta peptide. J Neurochem 2025; 169:e16222. [PMID: 39263896 DOI: 10.1111/jnc.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Amyloid-beta peptide oligomers (AβO) have been considered "primum movens" for a cascade of events that ultimately cause selective neuronal death in Alzheimer's disease (AD). However, initial events triggered by AβO have not been clearly defined. Synaptic (Syn) N-methyl-d-aspartate receptors (NMDAR) are known to activate cAMP response element-binding protein (CREB), a transcriptional factor involved in gene expression related to cell survival, memory formation and synaptic plasticity, whereas activation of extrasynaptic (ESyn) NMDARs was linked to excitotoxic events. In AD brain, CREB phosphorylation/activation was shown to be altered, along with dyshomeostasis of intracellular Ca2+ (Ca2+ i). Thus, in this work, we analyze acute/early and long-term AβO-mediated changes in CREB activation involving Syn or ESyn NMDARs in mature rat cortical neurons. Our findings show that acute AβO exposure produce early increase in phosphorylated CREB, reflecting CREB activity, in a process occurring through Syn NMDAR-mediated Ca2+ influx. Data also demonstrate that AβO long-term (24 h) exposure compromises synaptic function related to Ca2+-dependent CREB phosphorylation/activation and nuclear CREB levels and related target genes, namely Bdnf, Gadd45γ, and Btg2. Data suggest a dual effect of AβO following early or prolonged exposure in mature cortical neurons through the activation of the CREB signaling pathway, linked to the activation of Syn NMDARs.
Collapse
Affiliation(s)
- I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniela Marinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Valéria de Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bárbara Castanheira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Zongwei Fang
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Gladys L Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
El Samad A, Jaffal J, Ibrahim DR, Schwarz K, Schmitz F. Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2545. [PMID: 39595111 PMCID: PMC11591696 DOI: 10.3390/biomedicines12112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. METHODOLOGY In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. RESULTS We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. CONCLUSIONS Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations.
Collapse
Affiliation(s)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (A.E.S.); (J.J.); (D.R.I.); (K.S.)
| |
Collapse
|
11
|
Wu W, Fan D, Zheng C, Que B, Lian QQ, Chen Y, Qiu R. Causal relationship between plasma metabolites and carpal tunnel syndrome risk: evidence from a mendelian randomization study. Front Mol Biosci 2024; 11:1431329. [PMID: 39421691 PMCID: PMC11484071 DOI: 10.3389/fmolb.2024.1431329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Carpal tunnel syndrome (CTS) is a common symptom of nerve compression and a leading cause of pain and hand dysfunction. However, the underlying biological mechanisms are not fully understood. The aim of this study was to reveal the causal effect of circulating metabolites on susceptibility to CTS. Methods We employed various Mendelian randomization (MR) methods, including Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Model, to examine the association between 1,400 metabolites and the risk of developing CTS. We obtained Single-nucleotide polymorphisms (SNPs) associated with 1,400 metabolites from the Canadian Longitudinal Study on Aging (CLSA) cohort. CTS data was derived from the FinnGen consortium, which included 11,208 cases and 1,95,047 controls of European ancestry. Results The results of the two-sample MR study indicated an association between 77 metabolites (metabolite ratios) and CTS. After false discovery rate (FDR) correction, a strong causal association between glucuronate levels (odd ratio (OR) [95% CI]: 0.98 [0.97-0.99], p FDR = 0.002), adenosine 5'-monophosphate (AMP) to phosphate ratio (OR [95% CI]:0.58 [0.45-0.74], p FDR = 0.009), cysteinylglycine disulfide levels (OR [95% CI]: 0.85 [0.78-0.92], p FDR = 0.047) and CTS was finally identified. Conclusion In summary, the results of this study suggest that the identified glucuronate, the ratio of AMP to phosphate, and cysteinylglycine disulfide levels can be considered as metabolic biomarkers for CTS screening and prevention in future clinical practice, as well as candidate molecules for future mechanism exploration and drug target selection.
Collapse
Affiliation(s)
- Wenbao Wu
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chong Zheng
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Binfu Que
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qing qing Lian
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yangui Chen
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Rui Qiu
- Department of Acupuncture and Moxibustion, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
12
|
Escamilla S, Sáez-Valero J, Cuchillo-Ibáñez I. NMDARs in Alzheimer's Disease: Between Synaptic and Extrasynaptic Membranes. Int J Mol Sci 2024; 25:10220. [PMID: 39337704 PMCID: PMC11431980 DOI: 10.3390/ijms251810220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
13
|
Wang YM, Yan J, Williams SK, Fairless R, Bading H. TwinF interface inhibitor FP802 prevents retinal ganglion cell loss in a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2024; 12:149. [PMID: 39267142 PMCID: PMC11391826 DOI: 10.1186/s40478-024-01858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
Motor neuron loss is well recognized in amyotrophic lateral sclerosis (ALS), but research on retinal ganglion cells (RGCs) is limited. Ocular symptoms are generally not considered classic ALS symptoms, although RGCs and spinal motor neurons share certain cell pathologies, including hallmark signs of glutamate neurotoxicity, which may be triggered by activation of extrasynaptic NMDA receptors (NMDARs). To explore potential novel strategies to prevent ALS-associated death of RGCs, we utilized inhibition of the TwinF interface, a new pharmacological principle that detoxifies extrasynaptic NMDARs by disrupting the NMDAR/TRPM4 death signaling complex. Using the ALS mouse model SOD1G93A, we found that the small molecule TwinF interface inhibitor FP802 prevents the loss of RGCs, improves pattern electroretinogram (pERG) performance, increases the retinal expression of Bdnf, and restores the retinal expression of the immediate early genes, Inhibin beta A and Npas4. Thus, FP802 not only prevents, as recently described, death of spinal motor neurons in SOD1G93A mice, but it also mitigates ALS-associated retinal damage. TwinF interface inhibitors have great potential for alleviating neuro-ophthalmologic symptoms in ALS patients and offer a promising new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- FundaMental Pharma GmbH, 69120, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120, Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Kouchmeshky A, Whiting A, McCaffery P. Neuroprotective effects of ellorarxine in neuronal models of degeneration. Front Neurosci 2024; 18:1422294. [PMID: 39376539 PMCID: PMC11456694 DOI: 10.3389/fnins.2024.1422294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Retinoic acid (RA) was first recognised to be important for the central nervous system (CNS) in its developmental regulatory role and, given this action, it has been proposed in the adult CNS to regulate plasticity and promote regeneration. These types of roles have included support of neurogenesis, induction of neurite outgrowth, and protection from neuronal death. These functions are predominantly mediated by the retinoic acid receptor (RAR) transcription factor, and hence agonists for the RARs have been tested in a variety of models of neurodegeneration. This present study employs several in vitro models less explored for the action of RAR agonists to reverse neurodegeneration. Methods A series of assays are used in which neuronal cells are placed under the types of stress that have been linked to neurodegeneration, in particular amyotrophic lateral sclerosis (ALS), and the neuroprotective influence of a new potent agonist for RAR, ellorarxine, is tested out. In these assays, neuronal cells were subjected to excitotoxic stress induced by glutamate, proteostasis disruption caused by epoxomicin, and oxidative stress leading to stress granule formation triggered by sodium arsenite. Results Ellorarxine effectively reversed neuronal death in excitotoxic and proteostasis disruption assays and mitigated stress granule formation induced by sodium arsenite. This study also highlights for the first time the novel observation of RAR modulation of stress granules, although it is unknown whether this change in stress granules will be neuroprotective or potentially regenerative. Furthermore, the distribution of RAR agonists following intraperitoneal injection was assessed in mice, revealing preferential accumulation in the central nervous system, particularly in the spinal cord, compared to the liver. Gene expression studies in the spinal cord demonstrated that ellorarxine induces transcriptional changes at a low dose (0.01 mg/kg). Discussion These findings underscore the therapeutic potential of RAR agonists, such as ellorarxine, for ALS and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Azita Kouchmeshky
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, Durham, United Kingdom
| | - Peter McCaffery
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
15
|
Chen J, Yang J, Chu J, Chen KH, Alt J, Rais R, Qiu Z. The SWELL1 Channel Promotes Ischemic Brain Damage by Mediating Neuronal Swelling and Glutamate Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401085. [PMID: 39056405 PMCID: PMC11423184 DOI: 10.1002/advs.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Cytotoxic neuronal swelling and glutamate excitotoxicity are two hallmarks of ischemic stroke. However, the underlying molecular mechanisms are not well understood. Here, it is reported that SWELL1, the essential subunit of the volume-regulated anion channel (VRAC), plays a dual role in ischemic injury by promoting neuronal swelling and glutamate excitotoxicity. SWELL1 expression is upregulated in neurons and astrocytes after experimental stroke in mice. The neuronal SWELL1 channel is activated by intracellular hypertonicity, leading to Cl- influx-dependent cytotoxic neuronal swelling and subsequent cell death. Additionally, the SWELL1 channel in astrocytes mediates pathological glutamate release, indicated by increases in neuronal slow inward current frequency and tonic NMDAR current. Pharmacologically, targeting VRAC with a new inhibitor, an FDA-approved drug Dicumarol, attenuated cytotoxic neuronal swelling and cell death, reduced astrocytic glutamate release, and provided significant neuroprotection in mice when administered either before or after ischemia. Therefore, these findings uncover the pleiotropic effects of the SWELL1 channel in neurons and astrocytes in the pathogenesis of ischemic stroke and provide proof of concept for therapeutically targeting it in this disease.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
16
|
Arizanovska D, Dallera CA, Folorunso OO, Bush GF, Frye JB, Doyle KP, Jagid JR, Wolosker H, Monaco BA, Cordeiro JG, Atkins CM, Griswold AJ, Liebl DJ. Cognitive dysfunction following brain trauma results from sex-specific reactivation of the developmental pruning processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607610. [PMID: 39211262 PMCID: PMC11360988 DOI: 10.1101/2024.08.13.607610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cognitive losses resulting from severe brain trauma have long been associated with the focal region of tissue damage, leading to devastating functional impairment. For decades, researchers have focused on the sequelae of cellular alterations that exist within the perilesional tissues; however, few clinical trials have been successful. Here, we employed a mouse brain injury model that resulted in expansive synaptic damage to regions outside the focal injury. Our findings demonstrate that synaptic damage results from the prolonged increase in D-serine release from activated microglia and astrocytes, which leads to hyperactivation of perisynaptic NMDARs, tagging of damaged synapses by complement components, and the reactivation of developmental pruning processes. We show that this mechanistic pathway is reversible at several stages within a prolonged and progressive period of synaptic loss. Importantly, these key factors are present in acutely injured brain tissue acquired from patients with brain injury, which supports a therapeutic neuroprotective strategy.
Collapse
|
17
|
Raïch I, Lillo J, Rebassa JB, Capó T, Cordomí A, Reyes-Resina I, Pallàs M, Navarro G. Dual Role of NMDAR Containing NR2A and NR2B Subunits in Alzheimer's Disease. Int J Mol Sci 2024; 25:4757. [PMID: 38731978 PMCID: PMC11084423 DOI: 10.3390/ijms25094757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aβ induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aβ treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Iu Raïch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Arnau Cordomí
- Bioinformatics, Escola Superior de Comerç Internacional-University Pompeu Fabra (ESCI-UPF), 08003 Barcelona, Spain;
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Av Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
18
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
19
|
Yan J, Wang YM, Hellwig A, Bading H. TwinF interface inhibitor FP802 stops loss of motor neurons and mitigates disease progression in a mouse model of ALS. Cell Rep Med 2024; 5:101413. [PMID: 38325382 PMCID: PMC10897598 DOI: 10.1016/j.xcrm.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/16/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Toxic signaling by extrasynaptic NMDA receptors (eNMDARs) is considered an important promoter of amyotrophic lateral sclerosis (ALS) disease progression. To exploit this therapeutically, we take advantage of TwinF interface (TI) inhibition, a pharmacological principle that, contrary to classical NMDAR pharmacology, allows selective elimination of eNMDAR-mediated toxicity via disruption of the NMDAR/TRPM4 death signaling complex while sparing the vital physiological functions of synaptic NMDARs. Post-disease onset treatment of the SOD1G93A ALS mouse model with FP802, a modified TI inhibitor with a safe pharmacology profile, stops the progressive loss of motor neurons in the spinal cord, resulting in a reduction in the serum biomarker neurofilament light chain, improved motor performance, and an extension of life expectancy. FP802 also effectively blocks NMDA-induced death of neurons in ALS patient-derived forebrain organoids. These results establish eNMDAR toxicity as a key player in ALS pathogenesis. TI inhibitors may provide an effective treatment option for ALS patients.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
21
|
Zhang JB, Wang F, Tang YT, Pang MZ, Li D, Liu CF. Inhibition of GluN2D-Containing NMDA Receptors Protects Dopaminergic Neurons against 6-OHDA-Induced Neurotoxicity via Activating ERK/NRF2/HO-1 Signaling. ACS Chem Neurosci 2024; 15:572-581. [PMID: 38277219 DOI: 10.1021/acschemneuro.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| |
Collapse
|
22
|
Gajewski MP, Barger SW. Design, synthesis, and characterization of novel system x C- transport inhibitors: inhibition of microglial glutamate release and neurotoxicity. J Neuroinflammation 2023; 20:292. [PMID: 38057869 PMCID: PMC10702053 DOI: 10.1186/s12974-023-02972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system xC- (SxC-) cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the SxC- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the SxC- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. To confirm that the compounds were inhibitors of SxC-, two of them were further tested for the ability to inhibit cystine uptake. Finally, these agents were shown to protect primary cortical neurons from the toxicity exhibited by activated microglia. These agents may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions, such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariusz P Gajewski
- Department of Physical and Earth Sciences, Arkansas Tech University, McEver Building, 1701 N Boulder Ave, Russellville, AR, 72801, USA.
| | - Steven W Barger
- Departments of Geriatrics and Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
23
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
24
|
Wu CC, Tzeng CY, Chang CY, Wang JD, Chen YF, Chen WY, Kuan YH, Liao SL, Wang WY, Chen CJ. NMDA receptor inhibitor MK801 alleviated pro-inflammatory polarization of BV-2 microglia cells. Eur J Pharmacol 2023; 955:175927. [PMID: 37479018 DOI: 10.1016/j.ejphar.2023.175927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Microglia have both protective and pathogenic properties, while polarization plays a decisive role in their functional diversity. Apart from being an energetic organelle, mitochondria possess biological capabilities of signaling and immunity involving mitochondrial dynamics. The N-methyl-D-aspartate (NMDA)-type glutamate receptor displays excitatory neurotransmission, excitatory neurotoxicity and pro-inflammatory properties in a membrane location- and cell context-dependent manner. In this study, we have provided experimental evidence showing that by acting on mitochondrial dynamics, NMDA receptors displayed pro-inflammatory properties, while its non-competitive inhibitor MK801 exhibited anti-inflammatory potential in Lipopolysaccharide (LPS)-challenged BV-2 microglia cells. LPS stimulation increased the protein phosphorylation of cells regarding their NMDA receptor component subunits and Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), along with mobilizing intracellular calcium. Additionally, parallel changes occurred in the activation of Transforming Growth Factor-β (TGF-β)-Activated Kinase 1 (TAK1), NF-κB p65 and NF-κB DNA binding activity, acquisition of pro-inflammatory M1 polarization and expression of pro-inflammatory cytokines. LPS-treated cells further displayed signs of mitochondrial dysfunction with higher expressions of the active form of Dynamin-Related Protein 1 (Drp1), NADPH Oxidase-2 (NOX2) expression and the generation of DCFDA-/MitoSOX-sensitive Reactive Oxygen Species (ROS). NMDA receptor blockade by MK801, along with CaMKII inhibitor KN93, Drp1 inhibitor Mdivi-1 and antioxidant apocynin alleviated LPS-induced pro-inflammatory changes. Other than the reported CaMKII/TAK1/NF-κB axis, our in vitro study revealed the CaMKII/Drp1/ROS/NF-κB axis being an alternative cascade for shaping pro-inflammatory phenotypes of microglia upon LPS stimulation, and MK801 having the potential for inhibiting microglia activation and any associated inflammatory damages.
Collapse
Affiliation(s)
- Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan; Department of Financial Engineering, Providence University, Taichung City, 433, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City, 433, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung City, 407, Taiwan; Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, 515, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City, 420, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, 407, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City, 407, Taiwan
| | - Yu-Fang Chen
- Department of Microbiology & Immunology, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City, 433, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
25
|
Grochowska KM, Sperveslage M, Raman R, Failla AV, Głów D, Schulze C, Laprell L, Fehse B, Kreutz MR. Chaperone-mediated autophagy in neuronal dendrites utilizes activity-dependent lysosomal exocytosis for protein disposal. Cell Rep 2023; 42:112998. [PMID: 37590146 DOI: 10.1016/j.celrep.2023.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The complex morphology of neurons poses a challenge for proteostasis because the majority of lysosomal degradation machinery is present in the cell soma. In recent years, however, mature lysosomes were identified in dendrites, and a fraction of those appear to fuse with the plasma membrane and release their content to the extracellular space. Here, we report that dendritic lysosomes are heterogeneous in their composition and that only those containing lysosome-associated membrane protein (LAMP) 2A and 2B fuse with the membrane and exhibit activity-dependent motility. Exocytotic lysosomes dock in close proximity to GluN2B-containing N-methyl-D-aspartate-receptors (NMDAR) via an association of LAMP2B to the membrane-associated guanylate kinase family member SAP102/Dlg3. NMDAR-activation decreases lysosome motility and promotes membrane fusion. We find that chaperone-mediated autophagy is a supplier of content that is released to the extracellular space via lysosome exocytosis. This mechanism enables local disposal of aggregation-prone proteins like TDP-43 and huntingtin.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | - Marit Sperveslage
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Rajeev Raman
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Antonio V Failla
- UKE Microscopic Imaging Facility (umif), University Medical Center Eppendorf, 20251 Hamburg, Germany
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Christian Schulze
- Institute of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Laura Laprell
- Institute of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Michael R Kreutz
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
26
|
Yan J, Bading H. The Disruption of NMDAR/TRPM4 Death Signaling with TwinF Interface Inhibitors: A New Pharmacological Principle for Neuroprotection. Pharmaceuticals (Basel) 2023; 16:1085. [PMID: 37631001 PMCID: PMC10458786 DOI: 10.3390/ph16081085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
With the discovery that the acquisition of toxic features by extrasynaptic NMDA receptors (NMDARs) involves their physical interaction with the non-selective cation channel, TRPM4, it has become possible to develop a new pharmacological principle for neuroprotection, namely the disruption of the NMDAR/TRPM4 death signaling complex. This can be accomplished through the expression of the TwinF domain, a 57-amino-acid-long stretch of TRPM4 that mediates its interaction with NMDARs, but also using small molecule TwinF interface (TI) inhibitors, also known as NMDAR/TRPM4 interaction interface inhibitors. Both TwinF and small molecule TI inhibitors detoxify extrasynaptic NMDARs without interfering with synaptic NMDARs, which serve important physiological functions in the brain. As the toxic signaling of extrasynaptic NMDARs contributes to a wide range of neurodegenerative conditions, TI inhibitors may offer therapeutic options for currently untreatable human neurodegenerative diseases including Amyotrophic Lateral Sclerosis, Alzheimer's disease, and Huntington's disease.
Collapse
Affiliation(s)
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Karpova A, Samer S, Turacak R, Yuanxiang P, Kreutz MR. Integration of nuclear Ca 2+ transients and subnuclear protein shuttling provides a novel mechanism for the regulation of CREB-dependent gene expression. Cell Mol Life Sci 2023; 80:228. [PMID: 37491479 PMCID: PMC10368568 DOI: 10.1007/s00018-023-04876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Nuclear Ca2+ waves elicited by NMDAR and L-type voltage-gated Ca2+-channels as well as protein transport from synapse-to-nucleus are both instrumental in control of plasticity-related gene expression. At present it is not known whether fast [Ca2+]n transients converge in the nucleus with signaling of synapto-nuclear protein messenger. Jacob is a protein that translocate a signalosome from N-methyl-D-aspartate receptors (NMDAR) to the nucleus and that docks this signalosome to the transcription factor CREB. Here we show that the residing time of Jacob in the nucleoplasm strictly correlates with nuclear [Ca2+]n transients elicited by neuronal activity. A steep increase in [Ca2+]n induces instantaneous uncoupling of Jacob from LaminB1 at the nuclear lamina and promotes the association with the transcription factor cAMP-responsive element-binding protein (CREB) in hippocampal neurons. The size of the Jacob pool at the nuclear lamina is controlled by previous activity-dependent nuclear import, and thereby captures the previous history of NMDAR-induced nucleocytoplasmic shuttling. Moreover, the localization of Jacob at the nuclear lamina strongly correlates with synaptic activity and [Ca2+]n waves reflecting ongoing neuronal activity. In consequence, the resulting extension of the nuclear residing time of Jacob amplifies the capacity of the Jacob signalosome to regulate CREB-dependent gene expression and will, thereby, compensate for the relatively small number of molecules reaching the nucleus from individual synapses.
Collapse
Affiliation(s)
- Anna Karpova
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106, Magdeburg, Germany.
| | - Sebastian Samer
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Rabia Turacak
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
28
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Li RL, Duan HX, Wang LY, Liang Q, Wu C, Peng W. Amides from Zanthoxylum bungeanum Maxim. (Rutaceae) are promising natural agents with neuroprotective activities. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
30
|
Quintas C, Gonçalves J, Queiroz G. Involvement of P2Y 1, P2Y 6, A 1 and A 2A Receptors in the Purinergic Inhibition of NMDA-Evoked Noradrenaline Release in the Rat Brain Cortex. Cells 2023; 12:1690. [PMID: 37443726 PMCID: PMC10341078 DOI: 10.3390/cells12131690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.
Collapse
Affiliation(s)
| | - Jorge Gonçalves
- Mechanistic Pharmacology and Pharmacotherapy Unit, UCIBIO-i4HB, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.Q.); (G.Q.)
| | | |
Collapse
|
31
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
32
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
33
|
Weidinger A, Milivojev N, Hosmann A, Duvigneau JC, Szabo C, Törö G, Rauter L, Vaglio-Garro A, Mkrtchyan GV, Trofimova L, Sharipov RR, Surin AM, Krasilnikova IA, Pinelis VG, Tretter L, Moldzio R, Bayır H, Kagan VE, Bunik VI, Kozlov AV. Oxoglutarate dehydrogenase complex controls glutamate-mediated neuronal death. Redox Biol 2023; 62:102669. [PMID: 36933393 PMCID: PMC10031542 DOI: 10.1016/j.redox.2023.102669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nadja Milivojev
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Csaba Szabo
- University of Fribourg, Section of Science and Medicine, Department of Oncology, Microbiology and Immunology, Section of Pharmacology, Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Törö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Laurin Rauter
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Garik V Mkrtchyan
- A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Lidia Trofimova
- Biological Faculty, Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Rinat R Sharipov
- Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Problems of Pain, Moscow, Russia
| | - Alexander M Surin
- Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Problems of Pain, Moscow, Russia; National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Irina A Krasilnikova
- National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Vsevolod G Pinelis
- National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hülya Bayır
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria I Bunik
- A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
34
|
Gajewski M, Barger S. Design, synthesis, and characterization of novel Xc- transport inhibitors: Inhibition of microglial glutamate release and neurotoxicity. RESEARCH SQUARE 2023:rs.3.rs-2932128. [PMID: 37292591 PMCID: PMC10246248 DOI: 10.21203/rs.3.rs-2932128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system Xc- cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the Xc- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the Xc- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. Two of these were further tested for the ability to inhibit death of primary cortical neurons in the presence of activated microglia. While both showed some neuroprotective activity, they were quantitatively distinct with a compound we refer to as "35DBTA7" showing the greatest effi cacy. This agent may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.
Collapse
|
35
|
Podkowa K, Czarnacki K, Borończyk A, Borończyk M, Paprocka J. The NMDA receptor antagonists memantine and ketamine as anti-migraine agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02444-2. [PMID: 36869904 DOI: 10.1007/s00210-023-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Migraine is a debilitating disorder affecting females more frequently than males. There is some evidence that drugs targeting glutamate receptors: memantine and ketamine might be beneficial in the therapy of this entity. Therefore, the purpose of this work is to present NMDA receptor antagonists, memantine and ketamine, as potential anti-migraine agents. We searched PubMed/MEDLINE, Embase, and clinical trials submitted to ClinicalTrials.gov to find publications describing eligible trials published between database inception and December 31, 2021. This comprehensive literature review summarizes data on the use of the NMDA receptor antagonists memantine and ketamine in the pharmacotherapy of migraine. Results from 20 previous and recent preclinical experiments are discussed and correlated with 19 clinical trials (including case series, open-label, and randomized placebo-controlled trials). For the purposes of this review, the authors hypothesized that the propagation of SD is a major mechanism in the pathophysiology of migraine. In several animal studies and in vitro studies, memantine and ketamine inhibited or reduced propagation of the SD. In addition, the results of clinical trials suggest that memantine or ketamine may be an effective treatment option for migraine. However, most studies on these agents lack control group. Although further clinical trials are needed, the results suggest that ketamine or memantine may be promising molecules for the treatment of severe migraine. Particular attention should be paid to people who have a treatment-resistant form of migraine with aura or have exhausted existing treatment options. For them, the drugs under discussion could represent an interesting alternative in the future.
Collapse
Affiliation(s)
- Karolina Podkowa
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland.
| | - Kamil Czarnacki
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Borończyk
- Students' Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Borończyk
- Students' Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
36
|
Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes‐Resina I, Bayraktar G, Samer S, Spilker C, Woo MS, Morawski M, Goldschmidt J, Friese MA, Rossner S, Navarro G, Remy S, Reissner C, Karpova A, Kreutz MR. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. EMBO J 2023; 42:e112453. [PMID: 36594364 PMCID: PMC9929644 DOI: 10.15252/embj.2022112453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Synaptic dysfunction caused by soluble β-amyloid peptide (Aβ) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aβ suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aβ elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aβ-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guilherme M Gomes
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Rajeev Raman
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Rahul Kaushik
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Liudmila Sosulina
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Hiroshi Kaneko
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | | | - PingAn Yuanxiang
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | | | - Gonca Bayraktar
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Sebastian Samer
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Christina Spilker
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Markus Morawski
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Jürgen Goldschmidt
- Department of Systems Physiology of Learning and MemoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Rossner
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food ScienceUniversity of BarcelonaBarcelonaSpain
- Institut de Neurociències de la Universitat de BarcelonaBarcelonaSpain
| | - Stefan Remy
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular NeurobiologyWestfälische Wilhelms‐UniversityMünsterGermany
| | - Anna Karpova
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Michael R Kreutz
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| |
Collapse
|
37
|
Mani I, Singh V. An overview of receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:1-18. [PMID: 36631188 DOI: 10.1016/bs.pmbts.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocytosis is a cellular process which mediates receptor internalization, nutrient uptake, and the regulation of cell signaling. Microorganisms (many bacteria and viruses) and toxins also use the same process and enter the cells. Generally, endocytosis is considered in the three forms such as phagocytosis (cell eating), pinocytosis (cell drinking), and highly selective receptor-mediated endocytosis (clathrin-dependent and independent). Several endocytic routes exist in an analogous, achieving diverse functions. Most studies on endocytosis have used transformed cells in culture. To visualize the receptor internalization, trafficking, and signaling in subcellular organelles, a green fluorescent protein-tagged receptor has been utilized. It also helps to visualize the endocytosis effects in live-cell imaging. Confocal laser microscopy increases our understanding of receptor endocytosis and signaling. Site-directed mutagenesis studies demonstrated that many short-sequence motifs of the cytoplasmic domain of receptors significantly play a vital role in receptor internalization, subcellular trafficking, and signaling. However, other factors also regulate receptor internalization through clathrin-coated vesicles. Receptor endocytosis can occur through clathrin-dependent and clathrin-independent pathways. This chapter briefly discusses the internalization, trafficking, and signaling of various receptors in normal conditions. In addition, it also highlights the malfunction of the receptor in disease conditions.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
38
|
Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun 2023; 14:200. [PMID: 36639371 PMCID: PMC9839781 DOI: 10.1038/s41467-023-35806-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Immune system molecules are expressed by neurons, yet their functions are often unknown. We have identified IL-13 and its receptor IL-13Ra1 as neuronal, synaptic proteins in mouse, rat, and human brains, whose engagement upregulates the phosphorylation of NMDAR and AMPAR subunits and, in turn, increases synaptic activity and CREB-mediated transcription. We demonstrate that increased IL-13 is a hallmark of traumatic brain injury (TBI) in male mice as well as in two distinct cohorts of human patients. We also provide evidence that IL-13 upregulation protects neurons from excitotoxic death. We show IL-13 upregulation occurring in several cohorts of human brain samples and in cerebrospinal fluid (CSF). Thus, IL-13 is a physiological modulator of synaptic physiology of neuronal origin, with implications for the establishment of synaptic plasticity and the survival of neurons under injury conditions. Furthermore, we suggest that the neuroprotection afforded through the upregulation of IL-13 represents an entry point for interventions in the pathophysiology of TBI.
Collapse
|
39
|
Chen H, Dong Y, Wu Y, Yi F. Targeting NMDA receptor signaling for therapeutic intervention in brain disorders. Rev Neurosci 2023:revneuro-2022-0096. [PMID: 36586105 DOI: 10.1515/revneuro-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
N-Methyl-d-aspartate (NMDA) receptor hyperfunction plays a key role in the pathological processes of depression and neurodegenerative diseases, whereas NMDA receptor hypofunction is implicated in schizophrenia. Considerable efforts have been made to target NMDA receptor function for the therapeutic intervention in those brain disorders. In this mini-review, we first discuss ion flux-dependent NMDA receptor signaling and ion flux-independent NMDA receptor signaling that result from structural rearrangement upon binding of endogenous agonists. Then, we review current strategies for exploring druggable targets of the NMDA receptor signaling and promising future directions, which are poised to result in new therapeutic agents for several brain disorders.
Collapse
Affiliation(s)
- He Chen
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yuanping Dong
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yun Wu
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng Yi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
40
|
Folorunso OO, Harvey TL, Brown SE, Chelini G, Berretta S, Balu DT. The D-serine biosynthetic enzyme serine racemase is expressed by reactive astrocytes in the amygdala of human and a mouse model of Alzheimer's disease. Neurosci Lett 2023; 792:136958. [PMID: 36356820 PMCID: PMC9730428 DOI: 10.1016/j.neulet.2022.136958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is characterized behaviorally by cognitive deterioration and emotional disruption, and neuropathologically by amyloid-β (A β) plaques, neurofibrillary tangles, and complement C3 (C3)-expressing neurotoxic, reactive astrocytes. We previously demonstrated that C3 + reactive astrocytes in the hippocampus and entorhinal cortex of AD patients express serine racemase (SR), which produces the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine. We show here that C3 + reactive astrocytes express SR in the amygdala of AD patients and in an amyloid mouse model of familial AD (5xFAD). 5xFAD mice also have deficits in cue fear memory recall that is dependent on intact amygdala function. Our results suggest that D-serine produced by reactive astrocytes in the amygdala could contribute to glutamate excitotoxicity and neurodegeneration observed with AD progression.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Theresa L Harvey
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Stephanie E Brown
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Gabriele Chelini
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
41
|
Mani I, Singh V. Receptor biology: Challenges and opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:337-349. [PMID: 36813364 DOI: 10.1016/bs.pmbts.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor biology provides a great opportunity to understand the ligand-receptor signaling involved in health and disease processes. Receptor endocytosis and signaling play a vital role in health conditions. Receptor-based signaling is the main form of communication between cells and cells with the environment. However, if any irregularities happen during these events, the consequences of pathophysiological conditions occur. Various methods are utilized to know structure, function, and regulation of receptor proteins. Further, live-cell imaging and genetic manipulations have aided in the understanding of receptor internalization, subcellular trafficking, signaling, metabolic degradation, etc. Understanding the genetics, biochemistry, and physiology of receptors and ligands is very helpful to explore various aspects such as prognosis, diagnosis, and treatment of disease. However, there are enormous challenges that exist to explore receptor biology further. This chapter briefly discusses the current challenges and emerging opportunities of receptor biology.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
42
|
Fröhlich A, Olde Heuvel F, Rehman R, Krishnamurthy SS, Li S, Li Z, Bayer D, Conquest A, Hagenston AM, Ludolph A, Huber-Lang M, Boeckers T, Knöll B, Morganti-Kossmann MC, Bading H, Roselli F. Neuronal nuclear calcium signaling suppression of microglial reactivity is mediated by osteoprotegerin after traumatic brain injury. J Neuroinflammation 2022; 19:279. [PMCID: PMC9675197 DOI: 10.1186/s12974-022-02634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Traumatic brain injury (TBI) is characterized by massive changes in neuronal excitation, from acute excitotoxicity to chronic hyper- or hypoexcitability. Nuclear calcium signaling pathways are involved in translating changes in synaptic inputs and neuronal activity into discrete transcriptional programs which not only affect neuronal survival and synaptic integrity, but also the crosstalk between neurons and glial cells. Here, we report the effects of blunting neuronal nuclear calcium signals in the context of TBI. Methods We used AAV vectors to express the genetically encoded and nuclear-targeted calcium buffer parvalbumin (PV.NLS.mCherry) or the calcium/calmodulin buffer CaMBP4.mCherry in neurons only. Upon TBI, the extent of neuroinflammation, neuronal death and synaptic loss were assessed by immunohistochemistry and targeted transcriptome analysis. Modulation of the overall level of neuronal activity was achieved by PSAM/PSEM chemogenetics targeted to parvalbumin interneurons. The functional impact of neuronal nuclear calcium buffering in TBI was assessed by quantification of spontaneous whisking. Results Buffering neuronal nuclear calcium unexpectedly resulted in a massive and long-lasting increase in the recruitment of reactive microglia to the injury site, which was characterized by a disease-associated and phagocytic phenotype. This effect was accompanied by a substantial surge in synaptic loss and significantly reduced whisking activity. Transcriptome analysis revealed a complex effect of TBI in the context of neuronal nuclear calcium buffering, with upregulation of complement factors, chemokines and interferon-response genes, as well as the downregulation of synaptic genes and epigenetic regulators compared to control conditions. Notably, nuclear calcium buffering led to a substantial loss in neuronal osteoprotegerin (OPG), whereas stimulation of neuronal firing induced OPG expression. Viral re-expression of OPG resulted in decreased microglial recruitment and synaptic loss. OPG upregulation was also observed in the CSF of human TBI patients, underscoring its translational value. Conclusion Neuronal nuclear calcium signals regulate the degree of microglial recruitment and reactivity upon TBI via, among others, osteoprotegerin signals. Our findings support a model whereby neuronal activity altered after TBI exerts a powerful impact on the neuroinflammatory cascade, which in turn contributes to the overall loss of synapses and functional impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02634-4.
Collapse
Affiliation(s)
- Albrecht Fröhlich
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Rida Rehman
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Sruthi Sankari Krishnamurthy
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Shun Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany
| | - Zhenghui Li
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,Dept. of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - David Bayer
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,CEMMA (Cellular and Molecular Mechanisms in Aging) Research Training Group, Ulm, Germany
| | - Alison Conquest
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia
| | - Anna M. Hagenston
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Albert Ludolph
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute for Clinical and Experimental Trauma Immunology, Ulm University, Ulm, Germany
| | - Tobias Boeckers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Bernd Knöll
- grid.6582.90000 0004 1936 9748Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Maria Cristina Morganti-Kossmann
- grid.1623.60000 0004 0432 511XNational Trauma Research Institute and Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia ,grid.134563.60000 0001 2168 186XDepartment of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ USA
| | - Hilmar Bading
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, Heidelberg, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Dept. of Neurology, Ulm University, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany ,Present Address: Center for Biomedical Research, Helmholtzstrasse 8, 89081 Ulm, Germany
| |
Collapse
|
43
|
Joshi DC, Zhang CL, Mathur D, Li A, Kaushik G, Sheng ZH, Chiu SY. Tripartite Crosstalk between Cytokine IL-1β, NMDA-R and Misplaced Mitochondrial Anchor in Neuronal Dendrites Is a Novel Pathway for Neurodegeneration in Inflammatory Diseases. J Neurosci 2022; 42:7318-7329. [PMID: 35970564 PMCID: PMC9512578 DOI: 10.1523/jneurosci.0865-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
The mitochondrial anchor syntaphilin (SNPH) is a key mitochondrial protein normally expressed in axons to maintain neuronal health by positioning mitochondria along axons for metabolic needs. However, in 2019 we discovered a novel form of excitotoxicity that results when SNPH is misplaced into neuronal dendrites in disease models. A key unanswered question about this SNPH excitotoxicity is the pathologic molecules that trigger misplacement or intrusion of SNPH into dendrites. Here, we identified two different classes of pathologic molecules that interact to trigger dendritic SNPH intrusion. Using primary hippocampal neuronal cultures from mice of either sex, we demonstrated that the pro-inflammatory cytokine IL-1β interacts with NMDA to trigger SNPH intrusion into dendrites. First, IL-1β and NMDA each individually triggers dendritic SNPH intrusion. Second, IL-1β and NMDA do not act independently but interact. Thus, blocking NMDAR by the antagonist MK-801 blocks IL-1β from triggering dendritic SNPH intrusion. Further, decoupling the known interaction between IL-1β and NMDAR by tyrosine inhibitors prevents either IL-1β or NMDA from triggering dendritic SNPH intrusion. Third, neuronal toxicity caused by IL-1β or NMDA is strongly ameliorated in SNPH-/- neurons. Together, we hypothesize that the known bipartite IL-1β/NMDAR crosstalk converges to trigger misplacement of SNPH in dendrites as a final common pathway to cause neurodegeneration. Targeting dendritic SNPH in this novel tripartite IL-1β/NMDAR/SNPH interaction could be a strategic downstream locus for ameliorating neurotoxicity in inflammatory diseases.SIGNIFICANCE STATEMENT SNPH is a key mitochondrial protein normally expressed specifically in healthy axons to help position mitochondria along axons to match metabolic needs. In 2019 we discovered that misplacement of SNPH into neuronal dendrites causes a novel form of excitotoxicity in rodent models of multiple sclerosis. A key unanswered question about this new form of dendritic SNPH toxicity concerns pathologic molecules that trigger toxic misplacement of SNPH into dendrites. Here, we identified two major categories of pathologic molecules, the pro-inflammatory cytokines and NMDA, that interact and converge to trigger toxic misplacement of SNPH into dendrites. We propose that a dendritic mitochondrial anchor provides a novel, single common target for ameliorating diverse inflammatory and excitatory injuries in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dinesh C Joshi
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Chuan-Li Zhang
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Deepali Mathur
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Alex Li
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Gaurav Kaushik
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Zu-Hang Sheng
- Synaptic Functions Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | - Shing-Yan Chiu
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
44
|
Tapanes SA, Arizanovska D, Díaz MM, Folorunso OO, Harvey T, Brown SE, Radzishevsky I, Close LN, Jagid JR, Graciolli Cordeiro J, Wolosker H, Balu DT, Liebl DJ. Inhibition of glial D-serine release rescues synaptic damage after brain injury. Glia 2022; 70:1133-1152. [PMID: 35195906 PMCID: PMC9305835 DOI: 10.1002/glia.24161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Synaptic damage is one of the most prevalent pathophysiological responses to traumatic CNS injury and underlies much of the associated cognitive dysfunction; however, it is poorly understood. The D-amino acid, D-serine, serves as the primary co-agonist at synaptic NMDA receptors (NDMARs) and is a critical mediator of NMDAR-dependent transmission and synaptic plasticity. In physiological conditions, D-serine is produced and released by neurons from the enzymatic conversion of L-serine by serine racemase (SRR). However, under inflammatory conditions, glial cells become a major source of D-serine. Here, we report that D-serine synthesized by reactive glia plays a critical role in synaptic damage after traumatic brain injury (TBI) and identify the therapeutic potential of inhibiting glial D-serine release though the transporter Slc1a4 (ASCT1). Furthermore, using cell-specific genetic strategies and pharmacology, we demonstrate that TBI-induced synaptic damage and memory impairment requires D-serine synthesis and release from both reactive astrocytes and microglia. Analysis of the murine cortex and acutely resected human TBI brain also show increased SRR and Slc1a4 levels. Together, these findings support a novel role for glial D-serine in acute pathological dysfunction following brain trauma, whereby these reactive cells provide the excess co-agonist levels necessary to initiate NMDAR-mediated synaptic damage.
Collapse
Affiliation(s)
- Stephen A. Tapanes
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Madelen M. Díaz
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Oluwarotimi O. Folorunso
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Theresa Harvey
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Stephanie E. Brown
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Liesl N. Close
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan R. Jagid
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Joacir Graciolli Cordeiro
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Darrick T. Balu
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
45
|
Abhari AP, Etemadifar M, Yazdanpanah N, Rezaei N. N-Methyl-D-Aspartate (NMDA)-Type Glutamate Receptors and Demyelinating Disorders: A Neuroimmune Perspective. Mini Rev Med Chem 2022; 22:2624-2640. [PMID: 35507747 DOI: 10.2174/1389557522666220504135853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors, highly important in regulating substantial physiologic processes in the brain and the nervous system, and disturbance in their function could contribute to different pathologies. Overstimulation and hyperactivity of NMDARs, termed as glutamate toxicity, could promote cell death and apoptosis. Meanwhile, their blockade could lead to dysfunction of the brain and nervous system as well. A growing body of evidence has demonstrated the prominent role of NMDARs in demyelinating disorders and anti-NMDAR encephalitis. Herein, we provide an overview of the role of NMDARs' dysfunction in the physiopathology of demyelinating disorders such as multiple sclerosis and neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Amir Parsa Abhari
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.,School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Krogsaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 2022; 103:102553. [DOI: 10.1016/j.ceca.2022.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
|
48
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
50
|
Grochowska KM, Bär J, Gomes GM, Kreutz MR, Karpova A. Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Front Synaptic Neurosci 2021; 13:787494. [PMID: 34899262 PMCID: PMC8662305 DOI: 10.3389/fnsyn.2021.787494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons exhibit a complex dendritic tree that is decorated by a huge number of spine synapses receiving excitatory input. Synaptic signals not only act locally but are also conveyed to the nucleus of the postsynaptic neuron to regulate gene expression. This raises the question of how the spatio-temporal integration of synaptic inputs is accomplished at the genomic level and which molecular mechanisms are involved. Protein transport from synapse to nucleus has been shown in several studies and has the potential to encode synaptic signals at the site of origin and decode them in the nucleus. In this review, we summarize the knowledge about the properties of the synapto-nuclear messenger protein Jacob with special emphasis on a putative role in hippocampal neuronal plasticity. We will elaborate on the interactome of Jacob, the signals that control synapto-nuclear trafficking, the mechanisms of transport, and the potential nuclear function. In addition, we will address the organization of the Jacob/NSMF gene, its origin and we will summarize the evidence for the existence of splice isoforms and their expression pattern.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Julia Bär
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Research Group (RG) Neuronal Protein Transport, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Research Group (RG) Optobiology, Institute of Biology, HU Berlin, Berlin, Germany
| | - Guilherme M Gomes
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michael R Kreutz
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anna Karpova
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|