1
|
Cui LJ, Liu XB, Cui ZH. Exceptionally Strong Triply Dative Be-F Bonds in [CO 3]BeF - and [C 2O 4]BeF - Complexes: Reducing Valence Shell Electron Repulsion to Achieve High Bond Dissociation Energies. Inorg Chem 2025; 64:1718-1725. [PMID: 39823365 DOI: 10.1021/acs.inorgchem.4c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Dative bonds are typically polar, weaker, and longer than electron-sharing covalent bonds. The intriguing diatomic BeF- anion uniquely exhibits triple Be-F dative bonding with a considerable bond dissociation energy (BDE) of 88 kcal/mol. Here, we report exceptionally strong dative-bonded systems, [CO3]BeF- and [C2O4]BeF-, with BDE values exceeding 155 kcal/mol by integrating [CO3] and [C2O4] groups into the BeF- framework. These designed C2v-symmetric molecules represent the lowest-energy configurations and maintain similar triply bonded Be-F interactions with orbital characteristics and bond distances closely resembling those in BeF-. Chemical bonding analysis reveals that [CO3] and [C2O4] groups significantly withdraw s-type nonbonding electrons from Be, which minimizes valence shell electron repulsion from the F- to Be interactions. This reduction in Pauli repulsion between the closed-shell fragments in [CO3]BeF- and [C2O4]BeF-, compared to that of BeF-, establishes a new record in dative bond strength and offers substantial insights into dative bonding mechanisms. The identified high thermodynamic and kinetic stability of these systems positions them as promising candidates for experimental detection in low-temperature matrices or the gas phase.
Collapse
Affiliation(s)
- Li-Juan Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Xin-Bo Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
2
|
O'Brien J, Melnyk N, Lee RS, James M, Trujillo C. Computational Design of Bidentate Hypervalent Iodine Catalysts in Halogen Bond-Mediated Organocatalysis. Chemphyschem 2024; 25:e202400515. [PMID: 38973286 DOI: 10.1002/cphc.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
In recent years, halogen bond-based organocatalysis has garnered significant attention as an alternative to hydrogen-based catalysis, capturing considerable interest within the scientific community. This transition has witnessed the evolution of catalytic scaffolds from monodentate to bidentate architectures, and from monovalent to hypervalent species. In this DFT-based study, we explored a bidentate hypervalent iodine(III)-based system that has already undergone experimental validation. Additionally, we explore various functionalisations (-CF3, -CH3, -tBu, -OH, -OMe, -NO2, -CN) and scaffold modifications, such as sulfur oxidation, theoretically proposed for an indole-based Michael addition. The investigated systems favour bidentate O-type binding, underlining the importance of ligand coordination in catalytic activity. Electron-deficient scaffolds exhibited stronger binding and lower activation energies, indicating the pivotal role of electronic properties for σ-hole-based catalysis. Of these groups, Lewis-base-like moieties formed stabilising intramolecular interactions with hypervalent iodines when in the ortho-position. Furthermore, inductive electron withdrawal was deemed more effective than mesomeric withdrawal in enhancing catalytic efficacy for these systems. Lastly, increasing sulfur oxidation was theoretically proven to improve catalytic activity significantly.
Collapse
Affiliation(s)
- James O'Brien
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Nika Melnyk
- School of Chemistry, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Rico Shing Lee
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Michael James
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Cristina Trujillo
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| |
Collapse
|
3
|
Ke Y, Jiang Y, Yuan Y, Chen Y, Huang J, Huang C. Eosinophilic gastrointestinal diseases with overall gastrointestinal tract causing liver abscess in an older patient: a case report and literature review. BMC Geriatr 2024; 24:945. [PMID: 39548381 PMCID: PMC11566447 DOI: 10.1186/s12877-024-05541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Eosinophilic gastrointestinal diseases are the rare gastrointestinal disorders. To our knowledge, there have been no reports of eosinophilic gastrointestinal diseases with overall gastrointestinal tract involvement causing liver abscess in an older patient. CASE PRESENTATION We report a 68-year-old man with eosinophilic gastrointestinal disease with overall gastrointestinal tract involvement. He was admitted with suspected acute gastroenteritis, and histological examination showed eosinophilic infiltration accompanied by liver abscess. The collected pus was tested for Metagenomics Next-Generation Sequencing and confirmed the presence of Klebsiella pneumoniae. CONCLUSIONS We conducted a literature review on the complications of eosinophilic gastrointestinal diseases and discussed how eosinophilic gastrointestinal diseases lead to liver abscess caused by Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Yifan Ke
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Jiang
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuping Yuan
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yihan Chen
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jianbin Huang
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chunwei Huang
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China.
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China.
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
4
|
Rotman E, McClure S, Glazier J, Fuerte-Stone J, Foldi J, Erani A, McGann R, Arnold J, Lin H, Valaitis S, Mimee M. Rapid design of bacteriophage cocktails to suppress the burden and virulence of gut-resident carbapenem-resistant Klebsiella pneumoniae. Cell Host Microbe 2024; 32:1988-2003.e8. [PMID: 39368473 PMCID: PMC11563920 DOI: 10.1016/j.chom.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Antibiotic use can lead to the expansion of multi-drug-resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank for the tailored design of bacteriophage cocktails to treat multi-drug-resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identify host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank, we formulate phage combinations that eliminate K. pneumoniae with minimal phage resistance. Optimized cocktails selectively suppress the burden of K. pneumoniae in the mouse gut and drive the loss of key virulence factors that act as phage receptors. Phage-mediated diversification of bacterial populations in the gut leads to co-evolution of phage variants with higher virulence and broader host range. Altogether, the Klebsiella PhageBank charts a roadmap for phage therapy against a critical multidrug-resistant human pathogen.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sandra McClure
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Joshua Glazier
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jay Fuerte-Stone
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan Foldi
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Ali Erani
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Rory McGann
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sandra Valaitis
- Department of Obstetrics and Gynecology, Section of Urogynecology, University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Rasool A, Sri S, Zulfajri M, Sri Herwahyu Krismastuti F. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. INORG CHEM COMMUN 2024; 169:112954. [DOI: 10.1016/j.inoche.2024.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Rosenstein R, Torres Salazar BO, Sauer C, Heilbronner S, Krismer B, Peschel A. The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy. MICROBIOME 2024; 12:213. [PMID: 39438987 PMCID: PMC11495082 DOI: 10.1186/s40168-024-01913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity. RESULTS We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.
Collapse
Affiliation(s)
- Ralf Rosenstein
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Benjamin O Torres Salazar
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Claudia Sauer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, Munich, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
- Present Address: Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Bernhard Krismer
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany.
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| | - Andreas Peschel
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Liu CSC, Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024; 10:e34719. [PMID: 39816336 PMCID: PMC11734142 DOI: 10.1016/j.heliyon.2024.e34719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 01/18/2025] Open
Abstract
Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles. While AMR monitoring is dominated by data from hospital-related infections, we review genomic surveillance of both biotic and abiotic components involved in global AMR emergence and persistence. Identification of pathogen-intrinsic as well as environmental and/or host factors through robust genomics/bioinformatics, along with monitoring of type and frequency of antibiotic usage will greatly facilitate prediction of regional and global patterns of AMR evolution. Genomics-enabled AMR prediction and surveillance will be crucial - in shaping health and economic policies within the One Health framework to combat this global concern.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Keane JM, Cazzaniga M, Gahan CG. Akkermansia muciniphila in infectious disease: A new target for this next-generation probiotic? Sci Prog 2024; 107:368504241231159. [PMID: 38490164 PMCID: PMC10943722 DOI: 10.1177/00368504241231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The common gastrointestinal commensal Akkermansia muciniphila is a mucin-degrading bacterium that is greatly reduced in individuals consuming a high-fat diet. Increasing evidence from a variety of clinical and pre-clinical studies suggests that oral supplementation with Akkermansia can improve metabolic health and moderate systemic inflammation. We and others have demonstrated a role for Akkermansia administration in protection against infectious disease and the outcome from sepsis. Very recent studies have indicated the molecular mechanisms by which A. muciniphila may interact with the host to influence systemic immune-regulation and control of microbial pathogenesis. Here we consider recent studies which demonstrate the efficacy of this potential next-generation probiotic in animal models of Salmonella Typhimurium, Listeria monocytogenes and Clostridioides difficile as well as influenza virus and phlebovirus. The potential mechanisms by which A. muciniphila may influence local and systemic immune responses are discussed.
Collapse
Affiliation(s)
- Jonathan M. Keane
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Monica Cazzaniga
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Lee I, Jo JW, Woo HJ, Suk KT, Lee SS, Kim BS. Proton pump inhibitors increase the risk of carbapenem-resistant Enterobacteriaceae colonization by facilitating the transfer of antibiotic resistance genes among bacteria in the gut microbiome. Gut Microbes 2024; 16:2341635. [PMID: 38634770 PMCID: PMC11028007 DOI: 10.1080/19490976.2024.2341635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis.
Collapse
Affiliation(s)
- Imchang Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Won Jo
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Heung-Jeong Woo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seung Soon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
10
|
Mansoor AER, O'Neil CA, Kwon JH. The role of microbiome-based therapeutics for the reduction and prevention of antimicrobial-resistant organism colonization. Anaerobe 2023; 83:102772. [PMID: 37572864 DOI: 10.1016/j.anaerobe.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The gut is host to a diverse array of microbiota that constitute a complex ecological system crucial to human physiology. Disruptors to the normal host microbiota, such as antimicrobials, can cause a loss of species diversity in the gut, reducing its ability to resist colonization by invading pathogens and potentially leading to colonization with antimicrobial resistant organisms (AROs). ARO negatively impact gut health by disrupting the usual heterogeneity of gut microbiota and have the potential to cause systemic disease. In recent years, fecal microbiota transplantation (FMT) has been increasingly explored in the management of specific disease states such as Clostridioides difficile infection (CDI). Promising data from management of CDI has led to considerable interest in understanding the role of therapeutics to restore the gut microbiota to a healthy state. This review aims to discuss key studies that highlight the current landscape, and explore existing clinical evidence, for the use of FMT and microbiome-based therapeutics in combating intestinal colonization with ARO. We also explore potential future directions of such therapeutics and discuss unaddressed needs in this field that merit further investigation.
Collapse
Affiliation(s)
- Armaghan-E-Rehman Mansoor
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Caroline A O'Neil
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Li H, Wu X, Zeng H, Chang B, Cui Y, Zhang J, Wang R, Ding T. Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections. MICROBIOME 2023; 11:157. [PMID: 37482605 PMCID: PMC10364384 DOI: 10.1186/s40168-023-01597-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Secondary bacterial infections and pneumonia are major mortality causes of respiratory viruses, and the disruption of the upper respiratory tract (URT) microbiota is a crucial component of this process. However, whether this URT dysbiosis associates with the viral species (in other words, is viral type-specific) is unclear. RESULTS Here, we recruited 735 outpatients with upper respiratory symptoms, identified the infectious virus types in 349 participants using multiplex RT-PCR, and profiled their upper respiratory microbiome using the 16S ribosomal RNA gene and metagenomic gene sequencing. Microbial and viral data were subsequently used as inputs for multivariate analysis aimed at revealing viral type-specific disruption of the upper respiratory microbiota. We found that the oropharyngeal microbiota shaped by influenza A virus (FluA), influenza B virus (FluB), respiratory syncytial virus (RSV), and human rhinovirus (HRV) infections exhibited three distinct patterns of dysbiosis, and Veillonella was identified as a prominent biomarker for any type of respiratory viral infections. Influenza virus infections are significantly correlated with increased oropharynx microbiota diversity and enrichment of functional metabolic pathways such as L-arginine biosynthesis and tetracycline resistance gene tetW. We used the GRiD algorithm and found the predicted growth rate of common respiratory pathogens was increased upon influenza virus infection, while commensal bacteria, such as Streptococcus infantis and Streptococcus mitis, may act as a colonization resistance to the overgrowth of these pathogens. CONCLUSIONS We found that respiratory viral infections are linked with viral type-specific disruption of the upper respiratory microbiota, particularly, influenza infections uniquely associated with increased microbial diversity and growth rates of specific pathogens in URT. These findings are essential for clarifying the differences and dynamics of respiratory microbiota in healthy participants and acute respiratory viral infections, which contribute to elucidating the pathogenesis of viral-host-bacterial interactions to provide insights into future studies on effective prevention and treatment of respiratory tract infections. Video Abstract.
Collapse
Affiliation(s)
- Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiaorong Wu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Hong Zeng
- Center for Disease Control and Prevention of Nanhai District, Foshan, 528200, China
| | - Bozhen Chang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jingxiang Zhang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ruixia Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Baek MS, Kim S, Kim WY, Kweon MN, Huh JW. Gut microbiota alterations in critically Ill patients with carbapenem-resistant Enterobacteriaceae colonization: A clinical analysis. Front Microbiol 2023; 14:1140402. [PMID: 37082174 PMCID: PMC10110853 DOI: 10.3389/fmicb.2023.1140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundCarbapenem-resistant Enterobacteriaceae (CRE) are an emerging concern for global health and are associated with high morbidity and mortality in critically ill patients. Risk factors for CRE acquisition include broad-spectrum antibiotic use and microbiota dysbiosis in critically ill patients. Therefore, we evaluated the alteration of the intestinal microbiota associated with CRE colonization in critically ill patients.MethodsFecal samples of 41 patients who were diagnosed with septic shock or respiratory failure were collected after their admission to the intensive care unit (ICU). The gut microbiota profile determined using 16S rRNA gene sequencing and quantitative measurement of fecal short-chain fatty acids were evaluated in CRE-positive (n = 9) and CRE negative (n = 32) patients. The analysis of bacterial metabolic abundance to identify an association between CRE acquisition and metabolic pathway was performed.ResultsCRE carriers showed a significantly increased proportion of the phyla Proteobacteria and decreased numbers of the phyla Bacteroidetes as compared to the CRE non-carriers. Linear discriminant analysis (LDA) with linear discriminant effect size showed that the genera Erwinia, Citrobacter, Klebsiella, Cronobacter, Kluyvera, Dysgomonas, Pantoea, and Alistipes had an upper 2 LDA score in CRE carriers. The alpha-diversity indices were significantly decreased in CRE carriers, and beta-diversity analysis demonstrated that the two groups were clustered significantly apart. Among short-chain fatty acids, the levels of isobutyric acid and valeric acid were significantly decreased in CRE carriers. Furthermore, the PICRUSt-predicted metabolic pathways revealed significant differences in five features, including ATP-binding cassette transporters, phosphotransferase systems, sphingolipid metabolism, other glycan degradation, and microbial metabolism, in diverse environments between the two groups.ConclusionCritically ill patients with CRE have a distinctive gut microbiota composition and community structure, altered short-chain fatty acid production and changes in the metabolic pathways. Further studies are needed to determine whether amino acids supplementation improves microbiota dysbiosis in patients with CRE.
Collapse
Affiliation(s)
- Moon Seong Baek
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seungil Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won-Young Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jin Won Huh,
| |
Collapse
|
13
|
Holowka T, van Duin D, Bartelt LA. Impact of childhood malnutrition and intestinal microbiota on MDR infections. JAC Antimicrob Resist 2023; 5:dlad051. [PMID: 37102119 PMCID: PMC10125725 DOI: 10.1093/jacamr/dlad051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The global burden of infection from MDR organisms (MDROs) disproportionately affects children residing in low- and middle-income countries and those with increased healthcare exposure. These populations have high rates of malnutrition making them increasingly vulnerable to infection with intestinal-derived pathogens. Malnourished children experience increased incidence of intestinal carriage and invasive infection with intestinal-derived MDROs including ESBL- and carbapenemase-producing Enterobacterales. However, the relationship between malnutrition and MDRO infection remains to be clearly defined. Impairment in intestinal barrier function and innate and adaptive immunity in malnutrition increases the risk for infection with intestinal-derived pathogens, and there is an increasing appreciation of the role of the intestinal microbiota in this process. Current evidence from human studies and animal models suggests that diet and the intestinal microbiota influence each other to determine nutritional status, with important implications for infectious outcomes. These insights are crucial to developing microbiota-targeted strategies aimed at reversing the growing burden of MDRO infections in malnourished populations worldwide.
Collapse
Affiliation(s)
- Thomas Holowka
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| | - David van Duin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| | - Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Wiersinga WJ. The power of the gut in critical care. Curr Opin Crit Care 2023; 29:99-100. [PMID: 36880557 DOI: 10.1097/mcc.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Department of Medicine, Division of Infectious Diseases and Amsterdam Institute for Infection and Immunity (AII), Amsterdam University Medical Centers (Amsterdam UMC), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Sudan S, Fletcher L, Zhan X, Dingle S, Patterson R, Huber LA, Friendship R, Kiarie EG, Li J. Comparative efficacy of a novel Bacillus subtilis-based probiotic and pharmacological zinc oxide on growth performance and gut responses in nursery pigs. Sci Rep 2023; 13:4659. [PMID: 36949225 PMCID: PMC10033705 DOI: 10.1038/s41598-023-31913-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
In this study, we assessed the efficacy of a novel Bacillus subtilis probiotic in improving growth performance and gut responses in comparison to pharmacological zinc oxide (ZnO) in nursery pigs. A total of 96 piglets were randomly assigned to four groups: Negative control (NC), Positive control (PC, 3000 mg Zn /kg feed), B.subtilis low dose (BS9-L, 2 × 107 CFU/pig) and B.subtilis high dose (BS9-H, 2 × 109 CFU/pig). Growth performance, diarrhea rate, gut mucosal gene expression and fecal microbial populations were evaluated. B.subtilis administration did not improve piglet bodyweight. BS9-L showed (P < 0.05) higher average daily gain (ADG) in Period 2 (D14-D28). BS9 groups had (P < 0.001) lower feed conversion ratio (FCR) in Period 2 (D14-D28) and overall. Like the ZnO-group, BS9 groups had lower (P < 0.01) diarrhea rate. A significant reduction (P < 0.05) in fecal E. coli, total coliforms, and an increase in lactic acid bacteria and Bacillus spp. in BS9 groups was observed. BS9 group had reduced (P < 0.05) mRNA levels of intestinal IL-8 and higher levels of MUC-1 and occludin and TJP-1 compared to negative control. These findings suggest that probiotic BS9, may promote growth performance, and ameliorate various indicators of intestinal health in piglets. Hence, it may serve as a prospective alternative to ZnO growth promoter in commercial swine production.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lauren Fletcher
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Serena Dingle
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Robert Friendship
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
16
|
Guillaume D, Racha B, Sandrine B, Etienne R, Laurent G, Virginie B, Pierre SS, Amine G, Vincent G, Nicolas B, Julien D, Richard B. Genes mcr improve the intestinal fitness of pathogenic E. coli and balance their lifestyle to commensalism. MICROBIOME 2023; 11:12. [PMID: 36670449 PMCID: PMC9863213 DOI: 10.1186/s40168-022-01457-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/22/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND The plasmid-mediated resistance gene mcr-1 confers colistin resistance in Escherichia coli and paves the way for the evolution to pan-drug resistance. We investigated the impact of mcr-1 in gut colonization in the absence of antibiotics using isogenic E. coli strains transformed with a plasmid encoding or devoid of mcr-1. RESULTS In gnotobiotic and conventional mice, mcr-1 significantly enhanced intestinal anchoring of E. coli but impaired their lethal effect. This improvement of intestinal fitness was associated with a downregulation of intestinal inflammatory markers and the preservation of intestinal microbiota composition. The mcr-1 gene mediated a cross-resistance to antimicrobial peptides secreted by the microbiota and intestinal epithelial cells (IECs), enhanced E. coli adhesion to IECs, and decreased the proinflammatory activity of both E. coli and its lipopolysaccharides. CONCLUSION Overall, mcr-1 changed multiple facets of bacterial behaviour and appeared as a factor enhancing commensal lifestyle and persistence in the gut even in the absence of antibiotics. Video Abstract.
Collapse
Affiliation(s)
- Dalmasso Guillaume
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Beyrouthy Racha
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, 58 place Montalembert, 63000 Clermont-Ferrand, France
| | - Brugiroux Sandrine
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Ruppé Etienne
- Université de Paris, IAME, INSERM, F-75018 Paris, France
- AP-HP, Hôpital Bichat, DEBRC, F-75018 Paris, France
| | - Guillouard Laurent
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, 58 place Montalembert, 63000 Clermont-Ferrand, France
| | - Bonnin Virginie
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Saint-Sardos Pierre
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Ghozlane Amine
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Gaumet Vincent
- IMOST, UMR 1240 Inserm, Université Clermont Auvergne, 58 Rue Montalembert, 63005 Clermont-Ferrand, France
| | - Barnich Nicolas
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Delmas Julien
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Bonnet Richard
- Université Clermont Auvergne, Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, 58 place Montalembert, 63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Limiting the Spread of Multidrug-Resistant Bacteria in Low-to-Middle-Income Countries: One Size Does Not Fit All. Pathogens 2023; 12:pathogens12010144. [PMID: 36678492 PMCID: PMC9866331 DOI: 10.3390/pathogens12010144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The spread of multidrug-resistant organisms (MDRO) is associated with additional costs as well as higher morbidity and mortality rates. Risk factors related to the spread of MDRO can be classified into four categories: bacterial, host-related, organizational, and epidemiological. Faced with the severity of the MDRO predicament and its individual and collective consequences, many scientific societies have developed recommendations to help healthcare teams control the spread of MDROs. These international recommendations include a series of control measures based on surveillance cultures and the application of barrier measures, ranging from patients' being isolated in single rooms, to the reinforcement of hand hygiene and implementation of additional contact precautions, to the cohorting of colonized patients in a dedicated unit with or without a dedicated staff. In addition, most policies include the application of an antimicrobial stewardship program. Applying international policies to control the spread of MDROs presents several challenges, particularly in low-to-middle-income countries (LMICs). Through a review of the literature, this work evaluates the real risks of dissemination linked to MDROs and proposes an alternative policy that caters to the means of LMICs. Indeed, sufficient evidence exists to support the theory that high compliance with hand hygiene and antimicrobial stewardship reduces the risk of MDRO transmission. LMICs would therefore be better off adopting such low-cost policies without necessarily having to implement costly isolation protocols or impose additional contact precautions.
Collapse
|
18
|
MacDonald T, Dunn KA, MacDonald J, Langille MG, Van Limbergen JE, Bielawski JP, Kulkarni K. The gastrointestinal antibiotic resistome in pediatric leukemia and lymphoma patients. Front Cell Infect Microbiol 2023; 13:1102501. [PMID: 36909730 PMCID: PMC9998685 DOI: 10.3389/fcimb.2023.1102501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Most children with leukemia and lymphoma experience febrile neutropenia. These are treated with empiric antibiotics that include β-lactams and/or vancomycin. These are often administered for extended periods, and the effect on the resistome is unknown. Methods We examined the impact of repeated courses and duration of antibiotic use on the resistome of 39 pediatric leukemia and lymphoma patients. Shotgun metagenome sequences from 127 stool samples of pediatric oncology patients were examined for abundance of antibiotic resistance genes (ARGs) in each sample. Abundances were grouped by repeated courses (no antibiotics, 1-2 courses, 3+ courses) and duration (no use, short duration, long and/or mixed durationg) of β-lactams, vancomycin and "any antibiotic" use. We assessed changes in both taxonomic composition and prevalence of ARGs among these groups. Results We found that Bacteroidetes taxa and β-lactam resistance genes decreased, while opportunistic Firmicutes and Proteobacteria taxa, along with multidrug resistance genes, increased with repeated courses and/or duration of antibiotics. Efflux pump related genes predominated (92%) among the increased multidrug genes. While we found β-lactam ARGs present in the resistome, the taxa that appear to contain them were kept in check by antibiotic treatment. Multidrug ARGs, mostly efflux pumps or regulators of efflux pump genes, were associated with opportunistic pathogens, and both increased in the resistome with repeated antibiotic use and/or increased duration. Conclusions Given the strong association between opportunistic pathogens and multidrug-related efflux pumps, we suggest that drug efflux capacity might allow the opportunistic pathogens to persist or increase despite repeated courses and/or duration of antibiotics. While drug efflux is the most direct explanation, other mechanisms that enhance the ability of opportunistic pathogens to handle environmental stress, or other aspects of the treatment environment, could also contribute to their ability to flourish within the gut during treatment. Persistence of opportunistic pathogens in an already dysbiotic and weakened gastrointestinal tract could increase the likelihood of life-threatening blood borne infections. Of the 39 patients, 59% experienced at least one gastrointestinal or blood infection and 60% of bacteremia's were bacteria found in stool samples. Antimicrobial stewardship and appropriate use and duration of antibiotics could help reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Tamara MacDonald
- Department of Pharmacy, IWK Health, Halifax, NS, Canada
- Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Katherine A. Dunn
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Jane MacDonald
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Science, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G.I. Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Johan E. Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Joseph P. Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| |
Collapse
|
19
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Xiang W, Jiang X, Yao YR, Xin J, Jin H, Guan R, Zhang Q, Chen M, Xie SY, Popov AA, Yang S. Monometallic Endohedral Azafullerene. J Am Chem Soc 2022; 144:21587-21595. [DOI: 10.1021/jacs.2c08679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenhao Xiang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xiaole Jiang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Rong Yao
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Xin
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huaimin Jin
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Runnan Guan
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qianyan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Muqing Chen
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, Dresden 01069, Germany
| | - Shangfeng Yang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Wu Y, Tang X, Hu F, Zhu T, Liu H, Xiong Y, Zuo X, Xu A, Zhuang X. Long-term use of broad-spectrum antibiotics affects Ly6C hi monocyte recruitment and IL-17A and IL-22 production through the gut microbiota in tumor-bearing mice treated with chemotherapy. Immunol Res 2022; 70:829-843. [PMID: 36149530 DOI: 10.1007/s12026-022-09313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The protective effects of antibiotics against infection in cancer patients treated with chemotherapy remains unclear and related studies have been performed in healthy or pathogen-infected animal models. Here, we aimed to study the effects of antibiotic use on intestinal infection in tumor-bearing mice treated with chemotherapy and to determine the underlying mechanisms. Subcutaneous CT26 tumor-bearing mice were assigned to four groups: the control (Ctrl) group without any treatment, the antibiotic (ATB) group treated with a mixture of ampicillin, streptomycin, and colistin, the 5-fluorouracil (FU) group treated with four cycles of intraperitoneal injections of FU, and the ATB + FU group treated with the combination of ATB and FU. Gut microbial composition was determined and mesenteric lymph nodes (mLNs) were isolated for bacterial culturing. Intestinal permeability and integrity were assessed and the expression of cytokines was analyzed by quantitative PCR, ELISA, or flow cytometry (FCM). Monocytes in the colonic lamina propria (LP) were measured by FCM. Compared with the Ctrl and FU groups, the numbers of positive bacterial culturing results for mLNs were higher, and gut bacterial compositions were altered in the ATB and ATB + FU groups, with significantly decreased alpha diversity in the ATB + FU group. Intestinal integrity regarding the expression of tight junction proteins and intestinal permeability were not impaired significantly after treatments, but the colons were shorter in the ATB + FU group. The expression levels of intestinal IL-17A and IL-22, as well as the percentages of IL-17A+ cells in the colonic LP of the ATB + FU group, were lower than those in the FU group. The percentages of Ly6Chi monocytes in the colonic LP were lower, but those in the spleen were higher in the ATB + FU group than in the FU group. The mRNA levels of colonic CCL8 were reduced in the ATB + FU group. Antibiotic use is associated with an increased incidence of intestinal infections in tumor-bearing mice treated with chemotherapy, which might in turn be associated with a dysregulated gut microbiota that inhibits colonic monocyte recruitment and IL-17A and IL-22 production.
Collapse
Affiliation(s)
- Yanhong Wu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Basic Medical Laboratory, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Feng Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Tao Zhu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Hui Liu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Yanjing Xiong
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoxuan Zuo
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Aiping Xu
- The Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China.
| | - Xiufen Zhuang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
22
|
Zlotnikov ID, Ezhov AA, Petrov RA, Vigovskiy MA, Grigorieva OA, Belogurova NG, Kudryashova EV. Mannosylated Polymeric Ligands for Targeted Delivery of Antibacterials and Their Adjuvants to Macrophages for the Enhancement of the Drug Efficiency. Pharmaceuticals (Basel) 2022; 15:1172. [PMID: 36297284 PMCID: PMC9607288 DOI: 10.3390/ph15101172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections and especially resistant strains of pathogens localized in macrophages and granulomas are intractable diseases that pose a threat to millions of people. In this paper, the theoretical and experimental foundations for solving this problem are proposed due to two key aspects. The first is the use of a three-component polymer system for delivering fluoroquinolones to macrophages due to high-affinity interaction with mannose receptors (CD206). Cytometry assay determined that 95.5% macrophage-like cells were FITC-positive after adding high-affine to CD206 trimannoside conjugate HPCD-PEI1.8-triMan, and 61.7% were FITC-positive after adding medium-affine ligand with linear mannose label HPCD-PEI1.8-Man. The second aspect is the use of adjuvants, which are synergists for antibiotics. Using FTIR and NMR spectroscopy, it was shown that molecular containers, namely mannosylated polyethyleneimines (PEIs) and cyclodextrins (CDs), load moxifloxacin (MF) with dissociation constants of the order of 10-4-10-6 M; moreover, due to prolonged release and adsorption on the cell membrane, they enhance the effect of MF. Using CLSM, it was shown that eugenol (EG) increases the penetration of doxorubicin (Dox) into cells by an order of magnitude due to the creation of defects in the bacterial wall and the inhibition of efflux proteins. Fluorescence spectroscopy showed that 0.5% EG penetrates into bacteria and inhibits efflux proteins, which makes it possible to increase the maximum concentration of the antibiotic by 60% and maintain it for several hours until the pathogens are completely neutralized. Regulation of efflux is a possible way to overcome multiple drug resistance of both pathogens and cancer cells.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Rostislav A. Petrov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|
23
|
Fu B, Yin D, Sun C, Shen Y, Liu D, Bai R, Zhang R, Shen J, Hu F, Wang Y. Clonal and Horizontal Transmission of blaNDM among Klebsiella pneumoniae in Children's Intensive Care Units. Microbiol Spectr 2022; 10:e0157421. [PMID: 35758676 PMCID: PMC9431529 DOI: 10.1128/spectrum.01574-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing infections caused by blaNDM-carrying Klebsiella pneumoniae (NDM-KP) are an urgent threat to children with weakened immunity and limited antibiotic use. Preventing and intervening in NDM-KP infections requires a clear understanding of the pathogen's molecular and epidemiological characteristics. We investigated the prevalence and characteristics of NDM-KP in six children's hospitals from five Chinese provinces/municipalities. We collected 111 NDM-KP strains (40 NDM-1, one NDM-4 and 70 NDM-5) from neonatal intensive care units (NICUs) and pediatric intensive care units (PICUs) from June 2017 to June 2018; these strains accounted for 31.62% of all carbapenem-resistant K. pneumoniae (CR-KP). Although NDM-KP isolates exhibited high resistance to all carbapenems, including ertapenem (MIC: ≥32 mg/L, 96.4%), imipenem (MIC: ≥16 mg/L, 90.1%) and meropenem (MIC: ≥16 mg/L, 99.1%), they were fully sensitive to amikacin, tigecycline and polymyxin B, and presented low resistance to levofloxacin (9.9%) and gentamicin (15.3%). Whole-genome sequencing was conducted to gain insight into the molecular characterizations of NDM-KP isolates. The NDM-KP isolates belonged to 20 sequence types (STs), and ST2407 (n = 45) dominated in one hospital from Chengdu. ST2407 isolates with fewer single-nucleotide polymorphisms (SNP < 38) were found either in the same hospital or different hospitals. Most blaNDM (81.1%, 90/111), including all blaNDM-5 and blaNDM-4 and 47.5% (19/40) of blaNDM-1, in NDM-KP isolates with 13 STs were associated with the IncX3 plasmid. Our results indicated that both explosive clonal transmission and horizontal transmission of blaNDM occur among NDM-KP strains in children's hospitals. These data provide a basis for preventing and controlling NDM-KP-associated infectious diseases in hospitalized children, especially in neonates. IMPORTANCE The blaNDM gene is playing an increasingly important role in infections caused by CR-KP, especially in children. However, systematic detection and bioinformatics analysis of NDM-KP in children's hospitals are lacking in China. In this study, a total of 111 NDM-positive K. pneumoniae isolates were selected from the China Antimicrobial Surveillance Network for further investigation. The isolates were further characterized using state-of-the-art molecular techniques. Our findings suggested the clonal and horizontal transmission of blaNDM in K. pneumoniae in NICUs/PICUs. Key plasmids (IncX3) and ST diversity contribute to the spread of blaNDM. In addition, our findings provided recommendations for pediatric clinicians to use antibiotics to treat NDM-KP infections. Our current large-scale epidemiological survey would support further infection intervention strategies of NDM-KP in NICU/PICU of children's hospitals.
Collapse
Affiliation(s)
- Bo Fu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Chengtao Sun
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yingbo Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rina Bai
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Boetius Hertz F, Holm JB, Pallejá A, Björnsdóttir MK, Mikkelsen LS, Brandsborg E, Frimodt-Møller N. The vaginal microbiome following orally administered probiotic. APMIS 2022; 130:605-611. [PMID: 35801409 PMCID: PMC9540456 DOI: 10.1111/apm.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Here we present a longitudinal shotgun sequencing metagenomics study of 16 healthy, Danish women in the reproductive age. The aim of the study was to investigate whether lactobacilli, orally consumed, had any impact on the vaginal microbiome and its functional potential. MATERIALS AND METHODS The 16 women aged 19-45 years were recruited from Copenhagen, Denmark. One baseline vaginal sample (day 0) and two study samples (day 25-30 and day 55-60, respectively) were sampled. The vaginal samples were analyzed by shotgun metagenomics. RESULTS We detected 26 species in the vaginal microbiota of the 16 women, of which six belonged to the Lactobacillus genus. We observed three vaginal microbiome clusters mainly dominated by Gardnerella vaginalis, Lactobacillus iners or Lactobacillus crispatus. The oral probiotic had no detectable effect on either the composition or the functional potential of the vaginal microbiota. DISCUSSION Most of the study subjects (11 out of 16 women) exhibited only minor changes in the vaginal microbiome during the treatment with probiotics. Any compositional changes could not be associated to the probiotic treatment. Future studies may benefit from an increased number of participants, and administration of the probiotics during conditions with bacterial imbalance (e.g. during/after antibiotic treatment) or the use of different Lactobacillus spp. known to colonize the vagina.
Collapse
Affiliation(s)
- Frederik Boetius Hertz
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Microbiology, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Travier L, Lecuit M. [Neonatal susceptibility to meningitis results from the immaturity of epithelial barriers and gut microbiota]. Med Sci (Paris) 2022; 38:416-418. [PMID: 35608460 DOI: 10.1051/medsci/2022049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Laetitia Travier
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015 Paris, France - Institut Pasteur, Centre national de référence des Listeria et Centre collaborateur de l'OMS sur les Listeria 75015 Paris, France - Hôpital Necker-Enfants malades AP-HP, Service des maladies infectieuses et tropicales, Institut Imagine, 75015 Paris, France
| |
Collapse
|
26
|
Jeong IS, Song JY. Epidemiological Characteristics of Carbapenemase Producing Carbapenem-Resistant Enterobacteriaceae Colonization. Asian Nurs Res (Korean Soc Nurs Sci) 2022; 16:134-139. [PMID: 35605957 DOI: 10.1016/j.anr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study identified the epidemiological characteristics, including the size and major strains, of carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) and CP-CRE-related factors by comparing the characteristics of patients in the CP-CRE and non-CP-CRE groups and the CP-CRE and non-CRE groups. METHODS This secondary data analysis study included 24 patients in the CP-CRE group, 113 patients in the non-CP-CRE group, and 113 in the non-CRE group. The size and type of CP-CRE were analyzed in terms of frequency and percentage, and CP-CRE risk factors were identified using multiple logistic regression analysis. RESULTS The rate of CP-CRE positivity among patients with CRE was 17.5%, and the most common causative organism in the CP-CRE group was Klebsiella pneumoniae (81.8%). There were no significant differences between patients in the CP-CRE and non-CP-CRE groups. When compared with the non-CRE group, the isolation of multidrug-resistant organisms except for CRE, particularly vancomycin resistant Enterococcus, was confirmed as a major risk factor. CONCLUSION To prevent CP-CRE acquisition, patients with multidrug-resistant organisms require treatment with more thorough adherence to CRE prevention and management guidelines.
Collapse
Affiliation(s)
- Ihn Sook Jeong
- College of Nursing, Pusan National University, Republic of Korea
| | - Ju Yeoun Song
- Department of Nursing, Pusan National University Yangsan Hospital, Republic of Korea.
| |
Collapse
|
27
|
Isles NS, Mu A, Kwong JC, Howden BP, Stinear TP. Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends Microbiol 2022; 30:853-865. [DOI: 10.1016/j.tim.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
28
|
Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 2022; 14:2038856. [PMID: 35230889 PMCID: PMC8890388 DOI: 10.1080/19490976.2022.2038856] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major 'whole microbiome' therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, the potential use of FMT in treating other infectious diseases is an area of active research. In this review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren A. Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Frances J. Davies
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
29
|
Nielsen KL, Olsen MH, Pallejá A, Ebdrup SR, Sørensen N, Lukjancenko O, Marvig RL, Møller K, Frimodt-Møller N, Hertz FB. Microbiome Compositions and Resistome Levels after Antibiotic Treatment of Critically Ill Patients: An Observational Cohort Study. Microorganisms 2021; 9:2542. [PMID: 34946144 PMCID: PMC8703874 DOI: 10.3390/microorganisms9122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Hospitalization and treatment with antibiotics increase the risk of acquiring multidrug-resistant bacteria due to antibiotic-mediated changes in patient microbiota. This study aimed to investigate how broad- and narrow-spectrum antibiotics affect the gut microbiome and the resistome in antibiotic naïve patients during neurointensive care. Patients admitted to the neurointensive care unit were treated with broad-spectrum (meropenem or piperacillin/tazobactam) or narrow-spectrum antibiotic treatment (including ciprofloxacin, cefuroxime, vancomycin and dicloxacillin) according to clinical indications. A rectal swab was collected from each patient before and after 5-7 days of antibiotic therapy (N = 34), respectively. Shotgun metagenomic sequencing was performed and the composition of metagenomic species (MGS) was determined. The resistome was characterized with CARD RGI software and the CARD database. As a measure for selection pressure in the patient, we used the sum of the number of days with each antibiotic (antibiotic days). We observed a significant increase in richness and a tendency for an increase in the Shannon index after narrow-spectrum treatment. For broad-spectrum treatment the effect was more diverse, with some patients increasing and some decreasing in richness and Shannon index. This was studied further by comparison of patients who had gained or lost >10 MGS, respectively. Selection pressure was significantly higher in patients with decreased richness and a decreased Shannon index who received the broad treatment. A decrease in MGS richness was significantly correlated to the number of drugs administered and the selection pressure in the patient. Bray-Curtis dissimilarities were significant between the pre- and post-treatment of samples in the narrow group, indicating that the longer the narrow-spectrum treatment, the higher the differences between the pre- and the post-treatment microbial composition. We did not find significant differences between pre- and post-treatment for both antibiotic spectrum treatments; however, we observed that most of the antibiotic class resistance genes were higher in abundance in post-treatment after broad-spectrum treatment.
Collapse
Affiliation(s)
- Karen Leth Nielsen
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (N.F.-M.); (F.B.H.)
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (M.H.O.); (S.R.E.); (K.M.)
| | - Albert Pallejá
- Clinical Microbiomics, Fruebjergvej 3, 2100 Copenhagen, Denmark; (A.P.); (N.S.); (O.L.)
| | - Søren Røddik Ebdrup
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (M.H.O.); (S.R.E.); (K.M.)
| | - Nikolaj Sørensen
- Clinical Microbiomics, Fruebjergvej 3, 2100 Copenhagen, Denmark; (A.P.); (N.S.); (O.L.)
| | - Oksana Lukjancenko
- Clinical Microbiomics, Fruebjergvej 3, 2100 Copenhagen, Denmark; (A.P.); (N.S.); (O.L.)
| | - Rasmus L. Marvig
- Department of Genomic Medicine, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark;
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (M.H.O.); (S.R.E.); (K.M.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (N.F.-M.); (F.B.H.)
| | - Frederik Boëtius Hertz
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (N.F.-M.); (F.B.H.)
| |
Collapse
|
30
|
Le Guern R, Stabler S, Gosset P, Pichavant M, Grandjean T, Faure E, Karaca Y, Faure K, Kipnis E, Dessein R. Colonization resistance against multi-drug-resistant bacteria: a narrative review. J Hosp Infect 2021; 118:48-58. [PMID: 34492304 DOI: 10.1016/j.jhin.2021.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Colonization resistance by gut microbiota is a fundamental phenomenon in infection prevention and control. Hospitalized patients may be exposed to multi-drug-resistant bacteria when hand hygiene compliance among healthcare workers is not adequate. An additional layer of defence is provided by the healthy gut microbiota, which helps clear the exogenous bacteria and acts as a safety net when hand hygiene procedures are not followed. This narrative review focuses on the role of the gut microbiota in colonization resistance against multi-drug-resistant bacteria, and its implications for infection control. The review discusses the underlying mechanisms of colonization resistance (direct or indirect), the concept of resilience of the gut microbiota, the link between the antimicrobial spectrum and gut dysbiosis, and possible therapeutic strategies. Antimicrobial stewardship is crucial to maximize the effects of colonization resistance. Avoiding unnecessary antimicrobial therapy, shortening the antimicrobial duration as much as possible, and favouring antibiotics with low anti-anaerobe activity may decrease the acquisition and expansion of multi-drug-resistant bacteria. Even after antimicrobial therapy, the resilience of the gut microbiota often occurs spontaneously. Spontaneous resilience explains the existence of a window of opportunity for colonization of multi-drug-resistant bacteria during or just after antimicrobial therapy. Strategies favouring resilience of the gut microbiota, such as high-fibre diets or precision probiotics, should be evaluated.
Collapse
Affiliation(s)
- R Le Guern
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Laboratoire de Bactériologie-Hygiène, CHU Lille, Lille, France.
| | - S Stabler
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Maladies Infectieuses, CHU Lille, Lille, France
| | - P Gosset
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - M Pichavant
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - T Grandjean
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - E Faure
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Maladies Infectieuses, CHU Lille, Lille, France
| | - Y Karaca
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - K Faure
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Maladies Infectieuses, CHU Lille, Lille, France
| | - E Kipnis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Réanimation Chirurgicale, CHU Lille, Lille, France
| | - R Dessein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Laboratoire de Bactériologie-Hygiène, CHU Lille, Lille, France
| |
Collapse
|
31
|
Antimicrobial peptidomes of Bothrops atrox and Bothrops jararacussu snake venoms. Amino Acids 2021; 53:1635-1648. [PMID: 34482475 DOI: 10.1007/s00726-021-03055-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/11/2021] [Indexed: 01/25/2023]
Abstract
The worrisome emergence of pathogens resistant to conventional drugs has stimulated the search for new classes of antimicrobial and antiparasitic agents from natural sources. Antimicrobial peptides (AMPs), acting through mechanisms that do not rely on the interaction with a specific receptor, provide new possibilities for the development of drugs against resistant organisms. This study sought to purify and proteomically characterize the antimicrobial and antiparasitic peptidomes of B. atrox and B. jararacussu snake venoms against Gram-positive (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus-MRSA), Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, and the protozoan parasites Leishmania amazonensis and Plasmodium falciparum (clone W2, resistant to chloroquine). To this end, B. atrox and B. jararacussu venom peptides were purified by combination of 3 kDa cut-off Amicon® ultracentrifugal filters and reverse-phase high-performance liquid chromatography, and then identified by electrospray-ionization Ion-Trap/Time-of-Flight mass spectrometry. Fourteen distinct peptides, with masses ranging from 443.17 to 1383.73 Da and primary structure between 3 and 13 amino acid residues, were sequenced. Among them, 13 contained unique sequences, including 4 novel bradykinin-potentiating-like peptides (BPPs), and a snake venom metalloproteinase tripeptide inhibitor (SVMPi). Although commonly found in Viperidae venoms, except for Bax-12, the BPPs and SVMPi here reported had not been described in B. atrox and B. jararacussu venoms. Among the novel peptides, some exhibited bactericidal activity towards P. aeruginosa and S. aureus, had low hemolytic effect, and were devoid of antiparasitic activity. The identified novel antimicrobial peptides may be relevant in the development of new drugs for the management of multidrug-resistant Gram-negative and Gram-positive bacteria.
Collapse
|
32
|
Travier L, Alonso M, Andronico A, Hafner L, Disson O, Lledo PM, Cauchemez S, Lecuit M. Neonatal susceptibility to meningitis results from the immaturity of epithelial barriers and gut microbiota. Cell Rep 2021; 35:109319. [PMID: 34192531 DOI: 10.1016/j.celrep.2021.109319] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 01/06/2023] Open
Abstract
Neonates are highly susceptible to bacterial meningitis as compared to children and adults. Group B streptococcus (GBS) is a major cause of neonatal meningitis. Neonatal meningitis can result from GBS intestinal colonization and translocation across the intestinal barrier (IB). Here, we show that the immaturity of the neonatal intestinal microbiota leads to low resistance to GBS intestinal colonization and permissiveness of the gut-vascular barrier. Moreover, the age-dependent but microbiota-independent Wnt activity in intestinal and choroid plexus (CP) epithelia results in a lower degree of cell-cell junctions' polarization, which favors bacterial translocation. This study thus reveals that neonatal susceptibility to GBS meningitis results from the age-dependent immaturity of the intestinal microbiota and developmental pathways associated with neonatal tissue growth, which both concur to GBS gut colonization, systemic dissemination, and neuroinvasion. Whereas the activation of developmental pathways is intrinsic to neonates, interventions aimed at maturing the microbiota may help prevent neonatal meningitis.
Collapse
Affiliation(s)
- Laetitia Travier
- Institut Pasteur, Biology of Infection Unit, Paris, France; Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Mariana Alonso
- Laboratory for Perception and Memory, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Paris, France
| | - Alessio Andronico
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Lukas Hafner
- Institut Pasteur, Biology of Infection Unit, Paris, France; Institut National de la Santé et de la Recherche Médicale U1117, Paris, France; Université de Paris, Paris, France
| | - Olivier Disson
- Institut Pasteur, Biology of Infection Unit, Paris, France; Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Pierre-Marie Lledo
- Laboratory for Perception and Memory, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France; Institut National de la Santé et de la Recherche Médicale U1117, Paris, France; Université de Paris, Paris, France; National Reference Centre and WHO Collaborating Centre Listeria, Institut Pasteur, Paris, France; Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France.
| |
Collapse
|
33
|
Stewart AG, Satlin MJ, Schlebusch S, Isler B, Forde BM, Paterson DL, Harris PNA. Completing the Picture-Capturing the Resistome in Antibiotic Clinical Trials. Clin Infect Dis 2021; 72:e1122-e1129. [PMID: 33354717 DOI: 10.1093/cid/ciaa1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/12/2022] Open
Abstract
Despite the accepted dogma that antibiotic use is the largest contributor to antimicrobial resistance (AMR) and human microbiome disruption, our knowledge of specific antibiotic-microbiome effects remains basic. Detection of associations between new or old antimicrobials and specific AMR burden is patchy and heterogeneous. Various microbiome analysis tools are available to determine antibiotic effects on microbial communities in vivo. Microbiome analysis of treatment groups in antibiotic clinical trials, powered to measure clinically meaningful endpoints would greatly assist the antibiotic development pipeline and clinician antibiotic decision making.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michael J Satlin
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Sanmarié Schlebusch
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Forensic and Scientific Services, Health Support Queensland, Queensland Health, Brisbane, Australia
| | - Burcu Isler
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - David L Paterson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Patrick N A Harris
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| |
Collapse
|
34
|
Eckhart KE, Arnold AM, Starvaggi FA, Sydlik SA. Tunable, bacterio-instructive scaffolds made from functional graphenic materials. Biomater Sci 2021; 9:2467-2479. [PMID: 33404025 DOI: 10.1039/d0bm01471k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials - termed "functional graphenic materials" (FGMs) - have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly-l-lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLLn-G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLLn-Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLLn-G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry.
Collapse
Affiliation(s)
- Karoline E Eckhart
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
35
|
Ducarmon QR, Kuijper EJ, Olle B. Opportunities and Challenges in Development of Live Biotherapeutic Products to Fight Infections. J Infect Dis 2021; 223:S283-S289. [PMID: 33576793 DOI: 10.1093/infdis/jiaa779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Treatment of bacterial infections with broad-spectrum antibiotics is a strategy severely limited by the decreased ability of the perturbed resident microbiota to control expansion of antibiotic-resistant pathogens. Live biotherapeutic products (LBPs) could provide an alternative to antibiotics in infection control by restoring gut colonization resistance and controlling expansion of resistant strains, an important therapeutic need not being addressed with existing anti-infective drug modalities. We review opportunities and challenges in developing LBPs for multidrug-resistant organisms colonization and infection control, with a focus on commercial fecal microbiota transplantation-like products and defined bacterial consortia, and spanning considerations related to availability of models for rational drug candidate selection and dose regimen selection, good manufacturing practice, intellectual property, and commercial viability.
Collapse
Affiliation(s)
- Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, the Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bernat Olle
- Vedanta Biosciences Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. mBio 2021; 12:mBio.03226-20. [PMID: 33468699 PMCID: PMC7845648 DOI: 10.1128/mbio.03226-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of “self” cells by the immune system, thereby guiding an appropriate immune response against foreign “nonself” and/or damaged cells. Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent “molecular mimicry” of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic “Trojan horse” that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.
Collapse
|
37
|
Brown RL, Larkinson MLY, Clarke TB. Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathog 2021; 17:e1009191. [PMID: 33465156 PMCID: PMC7846104 DOI: 10.1371/journal.ppat.1009191] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 01/29/2021] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immunological impact of individual commensal species within the microbiota is poorly understood limiting the use of commensals to treat disease. Here, we systematically profile the immunological fingerprint of commensals from the major phyla in the human intestine (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) to reveal taxonomic patterns in immune activation and use this information to rationally design commensal communities to enhance antibacterial defenses and combat intestinal inflammation. We reveal that Bacteroidetes and Firmicutes have distinct effects on intestinal immunity by differentially inducing primary and secondary response genes. Within these phyla, the immunostimulatory capacity of commensals from the Bacteroidia class (Bacteroidetes phyla) reflects their robustness of TLR4 activation and Bacteroidia communities rely solely on this receptor for their effects on intestinal immunity. By contrast, within the Clostridia class (Firmicutes phyla) it reflects the degree of TLR2 and TLR4 activation, and communities of Clostridia signal via both of these receptors to exert their effects on intestinal immunity. By analyzing the receptors, intracellular signaling components and transcription factors that are engaged by different commensal species, we identify canonical NF-κB signaling as a critical rheostat which grades the degree of immune stimulation commensals elicit. Guided by this immunological analysis, we constructed a cross-phylum consortium of commensals (Bacteroides uniformis, Bacteroides ovatus, Peptostreptococcus anaerobius and Clostridium histolyticum) which enhances innate TLR, IL6 and macrophages-dependent defenses against intestinal colonization by vancomycin resistant Enterococci, and fortifies mucosal barrier function during pathological intestinal inflammation through the same pathway. Critically, the setpoint of intestinal immunity established by this consortium is calibrated by canonical NF-κB signaling. Thus, by profiling the immunological impact of major human commensal species our work paves the way for rational microbiota reengineering to protect against antibiotic resistant infections and to treat intestinal inflammation.
Collapse
Affiliation(s)
- Rebecca L. Brown
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Max L. Y. Larkinson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Serious infections owing to vancomycin-resistant enterococci have historically proven to be difficult clinical cases, requiring combination therapy and management of treatment-related toxicity. Despite the introduction of new antibiotics with activity against vancomycin-resistant enterococci to the therapeutic armamentarium, significant challenges remain. An understanding of the factors driving the emergence of resistance in vancomycin-resistant enterococci, the dynamics of gastrointestinal colonization and microbiota-mediated colonization resistance, and the mechanisms of resistance to the currently available therapeutics will permit clinicians to be better prepared to tackle these challenging hospital-associated pathogens.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; Center for Antimicrobial Resistance and Microbial Genomics (CARMiG)
| | - Barbara E Murray
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; Center for Antimicrobial Resistance and Microbial Genomics (CARMiG); Department of Microbiology and Molecular Genetics, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA
| | - Louis B Rice
- Department of Internal Medicine, Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; Center for Antimicrobial Resistance and Microbial Genomics (CARMiG); Department of Microbiology and Molecular Genetics, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.
| |
Collapse
|
39
|
Giovanni MY, Schneider JS, Calder T, Fauci AS. Refocusing Human Microbiota Research in Infectious and Immune-mediated Diseases: Advancing to the Next Stage. J Infect Dis 2020; 224:5-8. [PMID: 33188418 DOI: 10.1093/infdis/jiaa706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Changes in the microbiota are associated with disease susceptibility, immune system development, and responses to treatment. Refocusing research to elucidate the causal links between the human microbiota and infectious and immune-mediated diseases will be critical to harnessing its power to prevent, diagnose, and treat such diseases.
Collapse
Affiliation(s)
- Maria Y Giovanni
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Johanna S Schneider
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Calder
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Yadav M, Chauhan NS. Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. J Appl Microbiol 2020; 130:1425-1441. [PMID: 33022786 DOI: 10.1111/jam.14883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host-microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host-microbe interaction and successful commensalism to institute a human gut microbiome.
Collapse
Affiliation(s)
- M Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - N S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
41
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
42
|
Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Front Microbiol 2020; 11:1914. [PMID: 32983000 PMCID: PMC7483582 DOI: 10.3389/fmicb.2020.01914] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance is a problem for human health, and consequently, its study had been traditionally focused toward its impact for the success of treating human infections in individual patients (individual health). Nevertheless, antibiotic-resistant bacteria and antibiotic resistance genes are not confined only to the infected patients. It is now generally accepted that the problem goes beyond humans, hospitals, or long-term facility settings and that it should be considered simultaneously in human-connected animals, farms, food, water, and natural ecosystems. In this regard, the health of humans, animals, and local antibiotic-resistance-polluted environments should influence the health of the whole interconnected local ecosystem (One Health). In addition, antibiotic resistance is also a global problem; any resistant microorganism (and its antibiotic resistance genes) could be distributed worldwide. Consequently, antibiotic resistance is a pandemic that requires Global Health solutions. Social norms, imposing individual and group behavior that favor global human health and in accordance with the increasingly collective awareness of the lack of human alienation from nature, will positively influence these solutions. In this regard, the problem of antibiotic resistance should be understood within the framework of socioeconomic and ecological efforts to ensure the sustainability of human development and the associated human-natural ecosystem interactions.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M. Coque
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Fernando Baquero
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José L. Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
43
|
Li S, Zhang H, Xiao J, Yuan T, Shu Z, Min Y, Xu W, Yin Y, Zhang X. Streptococcus pneumoniae Endopeptidase O Promotes the Clearance of Staphylococcus aureus and Streptococcus pneumoniae via SH2 Domain-Containing Inositol Phosphatase 1-Mediated Complement Receptor 3 Upregulation. Front Cell Infect Microbiol 2020; 10:358. [PMID: 32766168 PMCID: PMC7379148 DOI: 10.3389/fcimb.2020.00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidences demonstrate that microorganism and their products protect against bacterial and viral pathogens through various mechanisms including immunomodulation. Streptococcus pneumoniae endopeptidase O (PepO), a pneumococcal virulence protein, has been proven to enhance the phagocytosis of Staphylococcus aureus and Streptococcus pneumoniae by macrophages in our previous study, where we detected the down regulation of SH2 domain-containing inositol phosphatase 1 (SHIP1) and the up regulation of complement receptor 3 (CR3) in PepO-stimulated macrophages. In the present study, using SHIP1 over-expression plasmid and CR3 siRNA, we proved that the down regulation of SHIP1 and the up regulation of CR3 mediate the enhanced phagocytosis of S. aureus and S. pneumoniae by PepO-stimulated macrophages. The down regulation of SHIP1 also mediates the up regulation of CR3. To further determine whether PepO protects against respiratory pathogens, we constructed a mouse model with intranasal infection of S. aureus or S. pneumoniae and found that PepO significantly promoted their clearance. The down regulation of SHIP1 and the up regulation of CR3 also play a role in this process. This study provides a new preventive and therapeutic option for respiratory infectious diseases and lays the theoretical basis for the development of PepO as an immunomodulation agent.
Collapse
Affiliation(s)
- Sijie Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Taixian Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yajun Min
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Mazurek-Popczyk J, Pisarska J, Bok E, Baldy-Chudzik K. Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics (Basel) 2020; 9:E411. [PMID: 32679778 PMCID: PMC7400030 DOI: 10.3390/antibiotics9070411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance concerns various areas with high consumption of antibiotics, including husbandry. Resistant strains are transmitted to humans from livestock and agricultural products via the food chain and may pose a health risk. The commensal microbiota protects against the invasion of environmental strains by secretion of bacteriocins, among other mechanisms. The present study aims to characterize the bactericidal potential of bacteriocinogenic Escherichia coli from healthy humans against multidrug-resistant and antibiotic-sensitive strains from pigs and cattle. Bacteriocin production was tested by the double-layer plate method, and bacteriocin genes were identified by the PCR method. At least one bacteriocinogenic E. coli was detected in the fecal samples of 55% of tested individuals, adults and children. Among all isolates (n = 210), 37.1% were bacteriocinogenic and contained genes of colicin (Col) Ib, ColE1, microcin (Mcc) H47, ColIa, ColM, MccV, ColK, ColB, and single ColE2 and ColE7. Twenty-five E. coli carrying various sets of bacteriocin genes were further characterized and tested for their activity against zoonotic strains (n = 60). Strains with ColE7 (88%), ColE1-ColIa-ColK-MccH47 (85%), MccH47-MccV (85%), ColE1-ColIa-ColM (82%), ColE1 (75%), ColM (67%), and ColK (65%) were most active against zoonotic strains. Statistically significant differences in activity toward antibiotic-resistant strains were shown by commensal E. coli carrying MccV, ColK-MccV, and ColIb-ColK. The study demonstrates that bacteriocinogenic commensal E. coli exerts antagonistic activity against zoonotic strains and may constitute a defense line against multidrug-resistant strains.
Collapse
Affiliation(s)
- Justyna Mazurek-Popczyk
- Department of Microbiology and Molecular Biology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.P.); (E.B.); (K.B.-C.)
| | | | | | | |
Collapse
|
45
|
Khazaei Z, Ghorbani P, Namaei MH, Rezaei Y, Yousefi M. Prevalence of Escherichia coli K1 Rectovaginal Colonization Among Pregnant Women in Iran: Virulence Factors and Antibiotic Resistance Properties. Microb Drug Resist 2020; 26:1201-1207. [PMID: 32354254 DOI: 10.1089/mdr.2020.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neonatal invasive infections caused by Escherichia coli K1 are still major health problems and effective preventive strategies at the maternal level can be a concern. The aim of this study was to determine the prevalence of rectovaginal colonization, related risk factors, virulence factors, and antibiotic resistance properties of E. coli K1 among pregnant women. In this cross-sectional study, vaginal and rectal swabs were collected from 400 pregnant women. The identification of E. coli isolates was performed by microbiological tests. A polymerase chain reaction (PCR) assay was used to identify the E. coli K1 strains. The antimicrobial susceptibility patterns were determined by the Kirby-Bauer disk diffusion. Two duplex PCR assays were developed separately to detect genes encoding virulence determinants (fimH, hlyF, ibeA, and iucC) in the E. coli strains. The vaginal and rectal maternal E. coli K1 colonization rates were 3.7% and 19.25%, respectively. There is no significant association between demographic-obstetric factors and vaginal E. coli colonization in pregnant women. The most effective antibiotics against E. coli K1 strains were imipenem, gentamycin, ciprofloxacin, and ceftazidime. In our study, the E. coli K1 strains were significantly more likely to possess the fimH (90.9% vs. 60.7%) and iucC (90.9% vs. 53.6%) than the E. coli non-K1 strains. This study demonstrates that E. coli K1 seems to be more virulent than non-K1 strains. Our findings highlight the importance of screening pregnant women for vaginal colonization by E. coli K1 and of the appropriate antibiotic prophylaxis for the prevention of early-onset E. coli neonatal infection and comorbidity.
Collapse
Affiliation(s)
- Zohreh Khazaei
- Department of Gynecology, Birjand University of Medical Sciences, Birjand, Iran
| | - Parvin Ghorbani
- Faulty of Medicine, and Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hasan Namaei
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Yasaman Rezaei
- Faulty of Medicine, and Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Yousefi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
46
|
Effects of Antibiotics on the Intestinal Microbiota of Mice. Antibiotics (Basel) 2020; 9:antibiotics9040191. [PMID: 32316518 PMCID: PMC7235770 DOI: 10.3390/antibiotics9040191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Studies on human and mouse gastrointestinal microbiota have correlated the composition of the microbiota to a variety of diseases, as well as proved it vital to prevent colonization with resistant bacteria, a phenomenon known as colonization resistance. Antibiotics dramatically modify the gut community and there are examples of how antibiotic usage lead to colonization with resistant bacteria [e.g., dicloxacillin usage selecting for ESBL-producing E. coli carriage], as shown by Hertz et al. Here, we investigated the impact of five antibiotics [cefotaxime, cefuroxime, dicloxacillin, clindamycin, and ciprofloxacin] on the intestinal microbiota in mice. Five different antibiotics were each given to groups of five mice. The intestinal microbiotas were profiled by use of the IS-pro analysis; a 16S–23S rDNA interspace [IS]-region-based profiling method. For the mice receiving dicloxacillin and clindamycin, we observed dramatic shifts in dominating phyla from day 1 to day 5. Of note, diversity increased, but overall bacterial load decreased. For ciprofloxacin, cefotaxime, and cefuroxime there were few overall changes. We speculate that antibiotics with efficacy against the abundant anaerobes in the gut, particularly Bacteroidetes, can in fact be selected for resistant bacteria, disregarding the spectrum of activity.
Collapse
|
47
|
Oliveira RA, Ng KM, Correia MB, Cabral V, Shi H, Sonnenburg JL, Huang KC, Xavier KB. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat Microbiol 2020; 5:630-641. [PMID: 31959968 DOI: 10.1038/s41564-019-0658-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Intestinal microbiotas contain beneficial microorganisms that protect against pathogen colonization; treatment with antibiotics disrupts the microbiota and compromises colonization resistance. Here, we determine the impact of exchanging microorganisms between hosts on resilience to the colonization of invaders after antibiotic-induced dysbiosis. We assess the functional consequences of dysbiosis using a mouse model of colonization resistance against Escherichia coli. Antibiotics caused stochastic loss of members of the microbiota, but the microbiotas of co-housed mice remained more similar to each other compared with the microbiotas among singly housed animals. Strikingly, co-housed mice maintained colonization resistance after treatment with antibiotics, whereas most singly housed mice were susceptible to E. coli. The ability to retain or share the commensal Klebsiella michiganensis, a member of the Enterobacteriaceae family, was sufficient for colonization resistance after treatment with antibiotics. K. michiganensis generally outcompeted E. coli in vitro, but in vivo administration of galactitol-a nutrient that supports the growth of only E. coli-to bi-colonized gnotobiotic mice abolished the colonization-resistance capacity of K. michiganensis against E. coli, supporting the idea that nutrient competition is the primary interaction mechanism. K. michiganensis also hampered colonization of the pathogen Salmonella, prolonging host survival. Our results address functional consequences of the stochastic effects of microbiota perturbations, whereby microbial transmission through host interactions can facilitate reacquisition of beneficial commensals, minimizing the negative impact of antibiotics.
Collapse
Affiliation(s)
| | - Katharine M Ng
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Vitor Cabral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Handuo Shi
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | |
Collapse
|
48
|
The damage response framework and infection prevention: From concept to bedside. Infect Control Hosp Epidemiol 2020; 41:337-341. [PMID: 31915082 DOI: 10.1017/ice.2019.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hospital-acquired infections remain a common cause of morbidity and mortality despite advances in infection prevention through use of bundles, environmental cleaning, antimicrobial stewardship, and other best practices. Current prevention strategies and further hospital-acquired infection reduction are limited by lack of recognition of the role that host-microbe interactions play in susceptibility and by the inability to analyze multiple risk factors in real time to accurately predict the likelihood of a hospital-acquired infection before it occurs and to inform medical decision making. Herein, we examine the value of incorporating the damage-response framework and host attributes that determine susceptibility to infectious diseases known by the acronym MISTEACHING (ie, microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) into infection prevention strategies using machine learning to drive decision support and patient-specific interventions.
Collapse
|
49
|
Sequeira RP, McDonald JAK, Marchesi JR, Clarke TB. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat Microbiol 2020; 5:304-313. [PMID: 31907407 PMCID: PMC7610889 DOI: 10.1038/s41564-019-0640-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023]
Abstract
The microbiota primes immune defences but the identity of specific commensal microorganisms that protect against infection is unclear. Conversely, how pathogens compete with the microbiota to establish their host niche is also poorly understood. In the present study, we investigate the antagonism between the microbiota and Klebsiella pneumoniae during colonization and transmission. We discover that maturation of the microbiota drives the development of distinct immune defence programmes in the upper airways and intestine to limit K. pneumoniae colonization within these niches. Immune protection in the intestine depends on the development of Bacteroidetes, interleukin (IL)-36 signalling and macrophages. This effect of Bacteroidetes requires the polysaccharide utilization locus of their conserved commensal colonization factor. Conversely, in the upper airways, Proteobacteria prime immunity through IL-17A, but K. pneumoniae overcomes these defences through encapsulation to effectively colonize this site. Ultimately, we find that host-to-host spread of K. pneumoniae occurs principally from its intestinal reservoir, and that commensal-colonization-factor-producing Bacteroidetes are sufficient to prevent transmission between hosts through IL-36. Thus, our study provides mechanistic insight into when, where and how commensal Bacteroidetes protect against K. pneumoniae colonization and contagion, providing insight into how these protective microorganisms could be harnessed to confer population-level protection against K. pneumoniae infection.
Collapse
Affiliation(s)
- Richard P Sequeira
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Diseases, Imperial College London, London, UK
| | - Julie A K McDonald
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Diseases, Imperial College London, London, UK.
| |
Collapse
|
50
|
High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med 2020; 26:59-64. [PMID: 31907459 PMCID: PMC7005909 DOI: 10.1038/s41591-019-0709-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
The intestinal microbiota is a complex community of bacteria, archaea, viruses, protists and fungi1,2. While the composition of bacterial constituents has been linked to immune homeostasis and to infectious susceptibility3–7, the role of non-bacterial constituents and of cross-kingdom microbial interactions in these processes is poorly understood2,8. Fungi represent a major cause of infectious morbidity and mortality in immune-compromised individuals, though the relationship of intestinal fungi (i.e., the mycobiota) with fungal bloodstream infections (BSI) remains undefined9. We integrated an optimized bioinformatics pipeline with high-resolution mycobiota sequencing and comparative genomic analyses of fecal and blood specimens from recipients of allogeneic hematopoietic cell transplant (allo-HCT). Patients with Candida BSI experienced a prior marked intestinal expansion of pathogenic Candida species; this expansion consisted of a complex dynamic between multiple species and subspecies with a stochastic translocation pattern into the bloodstream. The intestinal expansion of pathogenic Candida species was associated with a significant loss in bacterial burden and diversity, particularly in the anaerobes. Thus, simultaneous analysis of intestinal fungi and bacteria identifies dysbiosis states across kingdoms that may promote fungal translocation and facilitate invasive disease. These findings support microbiota-driven approaches to identify patients at risk for fungal BSI for pre-emptive therapeutic intervention.
Collapse
|