1
|
Jia Z, Zhang J, Li Z, Ai L. Identification of ferroptosis-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches. Int J Biol Macromol 2024; 282:137117. [PMID: 39488307 DOI: 10.1016/j.ijbiomac.2024.137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Ferroptosis has emerged as a critical mechanism in the development and progression of various tumors, particularly diffuse large B-cell lymphoma (DLBCL). However, the thorough characterization of ferroptosis-related genes in DLBCL remains inadequately explored. We retrieved datasets associated with DLBCL and ferroptosis gene sets from the Gene Expression Omnibus (GEO) database and the Ferroptosis Database (FerrDb), resulting in the identification of 27 differentially expressed ferroptosis-related genes (DE-FRGs) linked to DLBCL. Utilizing the LASSO and Support Vector Machine Recursive Feature Elimination (SVW-RFE) algorithms, we identified 10 genes-MT1G, MTOR, BRD4, ACO1, SAT1, PEBP1, LPIN1, ATM, SRXN1, and PRDX1-as key biomarker candidates with significant diagnostic potential. Functional enrichment analyses revealed that these biomarker genes are likely involved in regulating several critical biological pathways implicated in DLBCL pathogenesis, including immune response, oxidative phosphorylation, and cell cycle regulation. Moreover, we identified 246 potential therapeutic agents targeting these 10 biomarker genes. Concurrently, competitive endogenous RNA (ceRNA) network analysis uncovered a complex regulatory network centered on the identified biomarker genes. Additionally, CIBERSORT analysis highlighted notable alterations in the immune microenvironment of DLBCL patients. We propose a diagnostic strategy that provides novel insights into the molecular mechanisms underlying DLBCL. Nevertheless, further validation of the practical value of this strategy for DLBCL diagnosis is necessary before its clinical application.
Collapse
Affiliation(s)
- Zhixiang Jia
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayi Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zijia Li
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Limei Ai
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Du L, Oksenych V, Wan H, Ye X, Dong J, Ye AY, Abolhassani H, Vlachiotis S, Zhang X, de la Rosa K, Hammarström L, van der Burg M, Alt FW, Pan-Hammarström Q. Orientation Regulation of Class-switch Recombination in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1093-1104. [PMID: 39248600 PMCID: PMC11457721 DOI: 10.4049/jimmunol.2300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching.
Collapse
Affiliation(s)
- Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valentyn Oksenych
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuefei Zhang
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederick W. Alt
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
4
|
Hilton LK, Collinge B, Ben-Neriah S, Alduaij W, Shaalan H, Weng AP, Cruz M, Slack GW, Farinha P, Miyata-Takata T, Boyle M, Meissner B, Cook JR, Ondrejka SL, Ott G, Rosenwald A, Campo E, Amador C, Greiner TC, Raess PW, Song JY, Inghirami G, Jaffe ES, Weisenburger DD, Chan WC, Beiske K, Fu K, Delabie J, Pittaluga S, Iqbal J, Wright G, Sehn LH, Savage KJ, Mungall AJ, Feldman AL, Staudt LM, Steidl C, Rimsza LM, Morin RD, Scott DW. Motive and opportunity: MYC rearrangements in high-grade B-cell lymphoma with MYC and BCL2 rearrangements (an LLMPP study). Blood 2024; 144:525-540. [PMID: 38701426 PMCID: PMC11307266 DOI: 10.1182/blood.2024024251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Rearrangements that place the oncogenes MYC, BCL2, or BCL6 adjacent to superenhancers are common in mature B-cell lymphomas. Lymphomas with diffuse large B-cell lymphoma (DLBCL) or high-grade morphology with both MYC and BCL2 rearrangements are classified as high-grade B-cell lymphoma with MYC and BCL2 rearrangements ("double hit"; HGBCL-DH-BCL2) and are associated with aggressive disease and poor outcomes. Although it is established that MYC rearrangements involving immunoglobulin (IG) loci are associated with inferior outcomes relative to those involving other non-IG superenhancers, the frequency of and mechanisms driving IG vs non-IG MYC rearrangements have not been elucidated. Here, we used custom targeted capture and/or whole-genome sequencing to characterize oncogene rearrangements across 883 mature B-cell lymphomas including Burkitt lymphoma, follicular lymphoma, DLBCL, and HGBCL-DH-BCL2 tumors. We demonstrate that, although BCL2 rearrangement topology is consistent across entities, HGBCL-DH-BCL2 have distinct MYC rearrangement architecture relative to tumors with single MYC rearrangements or with both MYC and BCL6 rearrangements (HGBCL-DH-BCL6), including both a higher frequency of non-IG rearrangements and different architecture of MYC::IGH rearrangements. The distinct MYC rearrangement patterns in HGBCL-DH-BCL2 occur on the background of high levels of somatic hypermutation across MYC partner loci in HGBCL-DH-BCL2, creating more opportunity to form these rearrangements. Furthermore, because 1 IGH allele is already disrupted by the existing BCL2 rearrangement, the MYC rearrangement architecture in HGBCL-DH-BCL2 likely reflects selective pressure to preserve both BCL2 and B-cell receptor expression. These data provide new mechanistic explanations for the distinct patterns of MYC rearrangements observed across different lymphoma entities.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | - Waleed Alduaij
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Haya Shaalan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - James R. Cook
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH
| | | | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | - Elias Campo
- Hematopathology Section, Hospital Clinic of Barcelona, Institut d’Investigaciones Biomediques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Timothy C. Greiner
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Philipp W. Raess
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR
| | - Joo Y. Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dennis D. Weisenburger
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Wing C. Chan
- Department of Pathology, City of Hope, Duarte, CA
| | - Klaus Beiske
- Department of Pathology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kai Fu
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jan Delabie
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Javeed Iqbal
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - George Wright
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew J. Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Lisa M. Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Qin Y, Meng FL. Taming AID mutator activity in somatic hypermutation. Trends Biochem Sci 2024; 49:622-632. [PMID: 38614818 DOI: 10.1016/j.tibs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) by introducing base substitutions into antibody genes, a process enabling antibody affinity maturation in immune response. How a mutator is tamed to precisely and safely generate programmed DNA lesions in a physiological process remains unsettled, as its dysregulation drives lymphomagenesis. Recent research has revealed several hidden features of AID-initiated mutagenesis: preferential activity on flexible DNA substrates, restrained activity within chromatin loop domains, unique DNA repair factors to differentially decode AID-caused lesions, and diverse consequences of aberrant deamination. Here, we depict the multifaceted regulation of AID activity with a focus on emerging concepts/factors and discuss their implications for the design of base editors (BEs) that install somatic mutations to correct deleterious genomic variants.
Collapse
Affiliation(s)
- Yining Qin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences; Shanghai 200031, China
| | - Fei-Long Meng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences; Shanghai 200031, China.
| |
Collapse
|
6
|
Liu D, Hsieh CL, Lieber MR. The RNA tether model for human chromosomal translocation fragile zones. Trends Biochem Sci 2024; 49:391-400. [PMID: 38490833 PMCID: PMC11069435 DOI: 10.1016/j.tibs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.
Collapse
Affiliation(s)
- Di Liu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Center, Department of Urology, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Center, Departments of Pathology and Laboratory Medicine, of Molecular Microbiology and Immunology, of Biochemistry and Molecular Medicine, and in the Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-9176, USA.
| |
Collapse
|
7
|
Leeman-Neill RJ, Bhagat G, Basu U. AID in non-Hodgkin B-cell lymphomas: The consequences of on- and off-target activity. Adv Immunol 2024; 161:127-164. [PMID: 38763700 DOI: 10.1016/bs.ai.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Krull JE, Wenzl K, Hopper MA, Manske MK, Sarangi V, Maurer MJ, Larson MC, Mondello P, Yang Z, Novak JP, Serres M, Whitaker KR, Villasboas Bisneto JC, Habermann TM, Witzig TE, Link BK, Rimsza LM, King RL, Ansell SM, Cerhan JR, Novak AJ. Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments. Cell Rep Med 2024; 5:101443. [PMID: 38428430 PMCID: PMC10983045 DOI: 10.1016/j.xcrm.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - ZhiZhang Yang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Chancharoen M, Yang Z, Dalvie ED, Gubina N, Ruchirawat M, Croy RG, Fedeles BI, Essigmann JM. 5-Chloro-2'-deoxycytidine Induces a Distinctive High-Resolution Mutational Spectrum of Transition Mutations In Vivo. Chem Res Toxicol 2024; 37:486-496. [PMID: 38394377 PMCID: PMC10952010 DOI: 10.1021/acs.chemrestox.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The biomarker 5-chlorocytosine (5ClC) appears in the DNA of inflamed tissues. Replication of a site-specific 5ClC in a viral DNA genome results in C → T mutations, which is consistent with 5ClC acting as a thymine mimic in vivo. Direct damage of nucleic acids by immune-cell-derived hypochlorous acid is one mechanism by which 5ClC could appear in the genome. A second, nonmutually exclusive mechanism involves damage of cytosine nucleosides or nucleotides in the DNA precursor pool, with subsequent utilization of the 5ClC deoxynucleotide triphosphate as a precursor for DNA synthesis. The present work characterized the mutagenic properties of 5ClC in the nucleotide pool by exposing cells to the nucleoside 5-chloro-2'-deoxycytidine (5CldC). In both Escherichia coli and mouse embryonic fibroblasts (MEFs), 5CldC in the growth media was potently mutagenic, indicating that 5CldC enters cells and likely is erroneously incorporated into the genome from the nucleotide pool. High-resolution sequencing of DNA from MEFs derived from the gptΔ C57BL/6J mouse allowed qualitative and quantitative characterization of 5CldC-induced mutations; CG → TA transitions in 5'-GC(Y)-3' contexts (Y = a pyrimidine) were dominant, while TA → CG transitions appeared at a much lower frequency. The high-resolution mutational spectrum of 5CldC revealed a notable similarity to the Catalogue of Somatic Mutations in Cancer mutational signatures SBS84 and SBS42, which appear in human lymphoid tumors and in occupationally induced cholangiocarcinomas, respectively. SBS84 is associated with the expression of activation-induced cytidine deaminase (AID), a cytosine deaminase associated with inflammation, as well as immunoglobulin gene diversification during antibody maturation. The similarity between the spectra of AID activation and 5CldC could be coincidental; however, the administration of 5CldC did induce some AID expression in MEFs, which have no inherent expression of its gene. In summary, this work shows that 5CldC induces a distinct pattern of mutations in cells. Moreover, that pattern resembles human mutational signatures induced by inflammatory processes, such as those triggered in certain malignancies.
Collapse
Affiliation(s)
- Marisa Chancharoen
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Zhiyu Yang
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Esha D. Dalvie
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nina Gubina
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Mathuros Ruchirawat
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Robert G. Croy
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Bogdan I. Fedeles
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Makker J, Wotherspoon A, Tzioni MM, Chen Z, Guo S, Jiang D, Casa C, Cucco F, Du MQ. Relapses in early-stage follicular lymphoma frequently develop via a divergent evolution from their clonally related precursor cells. J Pathol 2024; 262:289-295. [PMID: 38156368 DOI: 10.1002/path.6235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/30/2023]
Abstract
Follicular lymphoma (FL) develops through a stepwise acquisition of cooperative genetic changes with t(14;18)(q32;q21)/IGH::BCL2 occurring early at the pre-B stage of B-cell development. Patients with FL typically show an indolent clinical course, remitting and relapsing with the eventual development of resistance to treatments. Interestingly, the majority of transformed FL do not progress directly from FL but originate from their clonally related lymphoma precursor (CLP) cells. To examine whether such divergent tumour evolution also underpins the relapses in patients with early-stage FL, we investigated by targeted next-generation sequencing 13 cases (stage I = 9, stage II = 4), who showed complete remission (mean: 5 years; range: 1-11.5 years) following local radiotherapy but subsequently relapsed (≥2 in 5). A clonal relationship between the diagnostic FL and relapses was confirmed in 11 cases. In six cases, common and distinct variants were seen between the paired diagnostic and relapsed lymphomas, indicating their divergent evolution from a CLP. In two cases, different B-cell clones were involved in the diagnostic and relapsed lymphomas, including one case involving two different BCL2 translocations. In the remaining five cases, the relapsed lymphoma developed via a linear progression (n = 4) or a mixed evolutionary path (n = 1). These findings may bear important implications in the routine diagnosis and management of relapsed FL. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jasmine Makker
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Maria-Myrsini Tzioni
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah Guo
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Dan Jiang
- East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Calogero Casa
- East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
11
|
Ren W, Wan H, Own SA, Berglund M, Wang X, Yang M, Li X, Liu D, Ye X, Sonnevi K, Enblad G, Amini RM, Sander B, Wu K, Zhang H, Wahlin BE, Smedby KE, Pan-Hammarström Q. Genetic and transcriptomic analyses of diffuse large B-cell lymphoma patients with poor outcomes within two years of diagnosis. Leukemia 2024; 38:610-620. [PMID: 38158444 PMCID: PMC10912034 DOI: 10.1038/s41375-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Despite the improvements in clinical outcomes for DLBCL, a significant proportion of patients still face challenges with refractory/relapsed (R/R) disease after receiving first-line R-CHOP treatment. To further elucidate the underlying mechanism of R/R disease and to develop methods for identifying patients at risk of early disease progression, we integrated clinical, genetic and transcriptomic data derived from 2805 R-CHOP-treated patients from seven independent cohorts. Among these, 887 patients exhibited R/R disease within two years (poor outcome), and 1918 patients remained in remission at two years (good outcome). Our analysis identified four preferentially mutated genes (TP53, MYD88, SPEN, MYC) in the untreated (diagnostic) tumor samples from patients with poor outcomes. Furthermore, transcriptomic analysis revealed a distinct gene expression pattern linked to poor outcomes, affecting pathways involved in cell adhesion/migration, T-cell activation/regulation, PI3K, and NF-κB signaling. Moreover, we developed and validated a 24-gene expression score as an independent prognostic predictor for treatment outcomes. This score also demonstrated efficacy in further stratifying high-risk patients when integrated with existing genetic or cell-of-origin subtypes, including the unclassified cases in these models. Finally, based on these findings, we developed an online analysis tool ( https://lymphprog.serve.scilifelab.se/app/lymphprog ) that can be used for prognostic prediction for DLBCL patients.
Collapse
Affiliation(s)
- Weicheng Ren
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sulaf Abd Own
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Berglund
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingyu Yang
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaobo Li
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Dongbing Liu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Kristina Sonnevi
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Kui Wu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Benitez-Cantos MS, Cano C, Cuadros M, Medina PP. Activation-induced cytidine deaminase causes recurrent splicing mutations in diffuse large B-cell lymphoma. Mol Cancer 2024; 23:42. [PMID: 38402205 PMCID: PMC10893679 DOI: 10.1186/s12943-024-01960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma. A major mutagenic process in DLBCL is aberrant somatic hypermutation (aSHM) by activation-induced cytidine deaminase (AID), which occurs preferentially at RCH/TW sequence motifs proximal to transcription start sites. Splice sequences are highly conserved, rich in RCH/TW motifs, and recurrently mutated in DLBCL. Therefore, we hypothesized that aSHM may cause recurrent splicing mutations in DLBCL. In a meta-cohort of > 1,800 DLBCLs, we found that 77.5% of splicing mutations in 29 recurrently mutated genes followed aSHM patterns. In addition, in whole-genome sequencing (WGS) data from 153 DLBCLs, proximal mutations in splice sequences, especially in donors, were significantly enriched in RCH/TW motifs (p < 0.01). We validated this enrichment in two additional DLBCL cohorts (N > 2,000; p < 0.0001) and confirmed its absence in 12 cancer types without aSHM (N > 6,300). Comparing sequencing data from mouse models with and without AID activity showed that the splice donor sequences were the top genomic feature enriched in AID-induced mutations (p < 0.0001). Finally, we observed that most AID-related splice site mutations are clonal within a sample, indicating that aSHM may cause early loss-of-function events in lymphomagenesis. Overall, these findings support that AID causes an overrepresentation of clonal splicing mutations in DLBCL.
Collapse
Affiliation(s)
- Maria S Benitez-Cantos
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114, Granada, 18016, Spain
- Health Research Institute of Granada (Ibs.Granada), Avenida de Madrid 15, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18016, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, School of Computer and Telecommunication Engineering, University of Granada, Calle Periodista Daniel Saucedo Aranda s/n, Granada, 18014, Spain
| | - Marta Cuadros
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114, Granada, 18016, Spain
- Health Research Institute of Granada (Ibs.Granada), Avenida de Madrid 15, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18016, Spain
| | - Pedro P Medina
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114, Granada, 18016, Spain.
- Health Research Institute of Granada (Ibs.Granada), Avenida de Madrid 15, Granada, 18012, Spain.
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida de Fuentenueva s/n, Granada, 18071, Spain.
| |
Collapse
|
13
|
Bobée V, Viennot M, Rainville V, Veresezan L, Drieux F, Viailly P, Michel V, Sater V, Lanic M, Bohers E, Camus V, Tilly H, Jardin F, Ruminy P. Analysis of immunoglobulin/T-cell receptor repertoires by high-throughput RNA sequencing reveals a continuous dynamic of positive clonal selection in follicular lymphoma. Hemasphere 2024; 8:e50. [PMID: 38435425 PMCID: PMC10896008 DOI: 10.1002/hem3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Follicular lymphoma (FL) course is highly variable, making its clinical management challenging. In this incurable and recurring pathology, the interval between relapses tends to decrease while aggressiveness increases, sometimes resulting in the transformation to higher-grade lymphoma. These evolutions are particularly difficult to anticipate, resulting from complex clonal evolutions where multiple subclones compete and thrive due to their capacity to proliferate and resist therapies. Here, to apprehend further these processes, we used a high-throughput RNA sequencing approach to address simultaneously the B-cell immunoglobulin repertoires and T-cell immunoglobulin repertoires repertoires of lymphoma cells and their lymphoid microenvironment in a large cohort of 131 FL1/2-3A patients. Our data confirm the existence of a high degree of intra-clonal heterogeneity in this pathology, resulting from ongoing somatic hyper-mutation and class switch recombination. Through the evaluation of the Simpson ecological-diversity index, we show that the contribution of the cancerous cells increases during the course of the disease to the detriment of the reactive compartment, a phenomenon accompanied by a concomitant decrease in the diversity of the tumoral population. Clonal evolution in FL thus contrasts with many tumors, where clonal heterogeneity steadily increases over time and participates in treatment evasion. In this pathology, the selection of lymphoma subclones with proliferative advantages progressively outweighs clonal diversification, ultimately leading in extreme cases to transformation to high-grade lymphoma resulting from the rapid emergence of homogeneous subpopulations.
Collapse
Affiliation(s)
- Victor Bobée
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Biological HematologyRouen University HospitalRouenFrance
| | - Mathieu Viennot
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vinciane Rainville
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Liana Veresezan
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | - Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | | | - Victor Michel
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Sater
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Marie‐Delphine Lanic
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Camus
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Hervé Tilly
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Fabrice Jardin
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Philippe Ruminy
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| |
Collapse
|
14
|
Zaccaria GM, Altini N, Mezzolla G, Vegliante MC, Stranieri M, Pappagallo SA, Ciavarella S, Guarini A, Bevilacqua V. SurvIAE: Survival prediction with Interpretable Autoencoders from Diffuse Large B-Cells Lymphoma gene expression data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107966. [PMID: 38091844 DOI: 10.1016/j.cmpb.2023.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and Explainable Artificial Intelligence (XAI) to stratify prognosis and derive a gene-based signature. METHODS AE was exploited to learn an unsupervised representation of the gene expression (GE) from three publicly available datasets, each with its own technology. Multi-layer perceptron (MLP) was used to classify prognosis from latent representation. GE data were preprocessed as normalized, scaled, and standardized. Four different AE architectures (Large, Medium, Small and Extra Small) were compared to find the most suitable for GE data. The joint AE-MLP classified patients on six different outcomes: overall survival at 12, 36, 60 months and progression-free survival (PFS) at 12, 36, 60 months. XAI techniques were used to derive a gene-based signature aimed at refining the Revised International Prognostic Index (R-IPI) risk, which was validated in a fourth independent publicly available dataset. We named our tool SurvIAE: Survival prediction with Interpretable AE. RESULTS From the latent space of AEs, we observed that scaled and standardized data reduced the batch effect. SurvIAE models outperformed R-IPI with Matthews Correlation Coefficient up to 0.42 vs. 0.18 for the validation-set (PFS36) and to 0.30 vs. 0.19 for the test-set (PFS60). We selected the SurvIAE-Small-PFS36 as the best model and, from its gene signature, we stratified patients in three risk groups: R-IPI Poor patients with High levels of GAB1, R-IPI Poor patients with Low levels of GAB1 or R-IPI Good/Very Good patients with Low levels of GPR132, and R-IPI Good/Very Good patients with High levels of GPR132. CONCLUSIONS SurvIAE showed the potential to derive a gene signature with translational purpose in DLBCL. The pipeline was made publicly available and can be reused for other pathologies.
Collapse
Affiliation(s)
- Gian Maria Zaccaria
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Nicola Altini
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy.
| | - Giuseppe Mezzolla
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Maria Carmela Vegliante
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Marianna Stranieri
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Susanna Anita Pappagallo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Attilio Guarini
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy; Apulian Bioengineering srl, Via delle Violette, 14, Modugno 70026, Italy
| |
Collapse
|
15
|
Leeman-Neill RJ, Song D, Bizarro J, Wacheul L, Rothschild G, Singh S, Yang Y, Sarode AY, Gollapalli K, Wu L, Zhang W, Chen Y, Lauring MC, Whisenant DE, Bhavsar S, Lim J, Swerdlow SH, Bhagat G, Zhao Q, Berchowitz LE, Lafontaine DLJ, Wang J, Basu U. Noncoding mutations cause super-enhancer retargeting resulting in protein synthesis dysregulation during B cell lymphoma progression. Nat Genet 2023; 55:2160-2174. [PMID: 38049665 PMCID: PMC10703697 DOI: 10.1038/s41588-023-01561-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
Whole-genome sequencing of longitudinal tumor pairs representing transformation of follicular lymphoma to high-grade B cell lymphoma with MYC and BCL2 rearrangements (double-hit lymphoma) identified coding and noncoding genomic alterations acquired during lymphoma progression. Many of these transformation-associated alterations recurrently and focally occur at topologically associating domain resident regulatory DNA elements, including H3K4me3 promoter marks located within H3K27ac super-enhancer clusters in B cell non-Hodgkin lymphoma. One region found to undergo recurrent alteration upon transformation overlaps a super-enhancer affecting the expression of the PAX5/ZCCHC7 gene pair. ZCCHC7 encodes a subunit of the Trf4/5-Air1/2-Mtr4 polyadenylation-like complex and demonstrated copy number gain, chromosomal translocation and enhancer retargeting-mediated transcriptional upregulation upon lymphoma transformation. Consequently, lymphoma cells demonstrate nucleolar dysregulation via altered noncoding 5.8S ribosomal RNA processing. We find that a noncoding mutation acquired during lymphoma progression affects noncoding rRNA processing, thereby rewiring protein synthesis leading to oncogenic changes in the lymphoma proteome.
Collapse
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Dong Song
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jonathan Bizarro
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Sameer Singh
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Aditya Y Sarode
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Kishore Gollapalli
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Lijing Wu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Yiyun Chen
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Max C Lauring
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - D Eric Whisenant
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Shweta Bhavsar
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Luke E Berchowitz
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Jiguang Wang
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China.
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China.
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
| |
Collapse
|
16
|
Pastorczak A, Szmyd B, Braun M, Madzio J, Wypyszczak K, Sztromwasser P, Fendler W, Wojtaszewska M, Chrzanowski J, Grajkowska W, Gregorek H, Wakulinska A, Kazanowska B, Krenova Z, Weijers DD, Kuiper RP, Mlynarski W. Clinical and laboratory diversity of diffuse large B-cell lymphomas in children with Nijmegen breakage syndrome. Haematologica 2023; 108:2808-2813. [PMID: 37021541 PMCID: PMC10543198 DOI: 10.3324/haematol.2022.282325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Kamila Wypyszczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Pawel Sztromwasser
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marzena Wojtaszewska
- Department of Hematology, Frederic Chopin Provincial Specialist Hospital, Rzeszow, Poland
| | - Jedrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Bernarda Kazanowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Wroclaw, Wroclaw, Poland
| | - Zdenka Krenova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Tzioni M, Wotherspoon A, Chen Z, Cucco F, Makker J, Du M. Divergent evolution of metachronous follicular lymphoma and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue from a common precursor. J Pathol 2023; 261:11-18. [PMID: 37345526 PMCID: PMC10952687 DOI: 10.1002/path.6143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
The translocation t(14;18)(q32:q21)/IGH::BCL2 occurs at the pre-B stage of B-cell development in the bone marrow and is insufficient for malignant transformation, although it leads to the formation of in situ follicular B-cell neoplasia (ISFN). Despite that, the translocation is the genetic hallmark of follicular lymphoma (FL), it occurs infrequently in metachronous/synchronous lymphomas, including extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (EMZL), mantle cell lymphoma, and Hodgkin's lymphoma. In each of these scenarios, the two lymphomas often appear to be clonally related by analyses of IGH::BCL2 and/or rearranged IG genes. However, it remains largely unknown whether one lymphoma originates from the other or they develop independently. We studied five cases of metachronous EMZL and FL. In four cases, the two lymphomas were clonally related, as shown by identical IGH::BCL2 and/or rearranged IG genes or shared mutations. There were common and unique mutations between the paired EMZL and FL, indicating that they developed independently from a common premalignant cell population, harbouring IGH::BCL2 in three cases. Furthermore, case 1 presented with three metachronous FLs, and all of them originated from a common precursor cell population via divergent evolution. Our findings highlight the multi-malignant potential of IGH::BCL2-positive B-cells. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria‐Myrsini Tzioni
- Division of Cellular and Molecular Pathology, Department of PathologyUniversity of CambridgeCambridgeUK
| | | | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Jasmine Makker
- Division of Cellular and Molecular Pathology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Ming‐Qing Du
- Division of Cellular and Molecular Pathology, Department of PathologyUniversity of CambridgeCambridgeUK
- Department of Histopathology, Addenbrooke's HospitalCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
18
|
Jiao J, Lv Z, Wang Y, Fan L, Yang A. The off-target effects of AID in carcinogenesis. Front Immunol 2023; 14:1221528. [PMID: 37600817 PMCID: PMC10436223 DOI: 10.3389/fimmu.2023.1221528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) plays a crucial role in promoting B cell diversification through somatic hypermutation (SHM) and class switch recombination (CSR). While AID is primarily associated with the physiological function of humoral immune response, it has also been linked to the initiation and progression of lymphomas. Abnormalities in AID have been shown to disrupt gene networks and signaling pathways in both B-cell and T-cell lineage lymphoblastic leukemia, although the full extent of its role in carcinogenesis remains unclear. This review proposes an alternative role for AID and explores its off-target effects in regulating tumorigenesis. In this review, we first provide an overview of the physiological function of AID and its regulation. AID plays a crucial role in promoting B cell diversification through SHM and CSR. We then discuss the off-target effects of AID, which includes inducing mutations of non-Igs, epigenetic modification, and the alternative role as a cofactor. We also explore the networks that keep AID in line. Furthermore, we summarize the off-target effects of AID in autoimmune diseases and hematological neoplasms. Finally, we assess the off-target effects of AID in solid tumors. The primary focus of this review is to understand how and when AID targets specific gene loci and how this affects carcinogenesis. Overall, this review aims to provide a comprehensive understanding of the physiological and off-target effects of AID, which will contribute to the development of novel therapeutic strategies for autoimmune diseases, hematological neoplasms, and solid tumors.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yurong Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liye Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
19
|
Pecori R, Ren W, Pirmoradian M, Wang X, Liu D, Berglund M, Li W, Tasakis RN, Di Giorgio S, Ye X, Li X, Arnold A, Wüst S, Schneider M, Selvasaravanan KD, Fuell Y, Stafforst T, Amini RM, Sonnevi K, Enblad G, Sander B, Wahlin BE, Wu K, Zhang H, Helm D, Binder M, Papavasiliou FN, Pan-Hammarström Q. ADAR1-mediated RNA editing promotes B cell lymphomagenesis. iScience 2023; 26:106864. [PMID: 37255666 PMCID: PMC10225930 DOI: 10.1016/j.isci.2023.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is one of the most common types of aggressive lymphoid malignancies. Here, we explore the contribution of RNA editing to DLBCL pathogenesis. We observed that DNA mutations and RNA editing events are often mutually exclusive, suggesting that tumors can modulate pathway outcomes by altering sequences at either the genomic or the transcriptomic level. RNA editing targets transcripts within known disease-driving pathways such as apoptosis, p53 and NF-κB signaling, as well as the RIG-I-like pathway. In this context, we show that ADAR1-mediated editing within MAVS transcript positively correlates with MAVS protein expression levels, associating with increased interferon/NF-κB signaling and T cell exhaustion. Finally, using targeted RNA base editing tools to restore editing within MAVS 3'UTR in ADAR1-deficient cells, we demonstrate that editing is likely to be causal to an increase in downstream signaling in the absence of activation by canonical nucleic acid receptor sensing.
Collapse
Affiliation(s)
- Riccardo Pecori
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mohammad Pirmoradian
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Mattias Berglund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Annette Arnold
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yvonne Fuell
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Sonnevi
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Björn Engelbrekt Wahlin
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dominic Helm
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
20
|
Wang Y, Zhang S, Yang X, Hwang JK, Zhan C, Lian C, Wang C, Gui T, Wang B, Xie X, Dai P, Zhang L, Tian Y, Zhang H, Han C, Cai Y, Hao Q, Ye X, Liu X, Liu J, Cao Z, Huang S, Song J, Pan-Hammarström Q, Zhao Y, Alt FW, Zheng X, Da LT, Yeap LS, Meng FL. Mesoscale DNA feature in antibody-coding sequence facilitates somatic hypermutation. Cell 2023; 186:2193-2207.e19. [PMID: 37098343 DOI: 10.1016/j.cell.2023.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Senxin Zhang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Xinrui Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Joyce K Hwang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Chuanzong Zhan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Wang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huizhi Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141-83 Stockholm, Sweden; Kindstar Global Precision Medicine Institute, Wuhan 430000, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaquan Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shaohui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; School of Biosciences, University of Chinese Academy of Sciences, Beijing 101499, China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141-83 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yaofeng Zhao
- State Key Laboratory of Farm Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai 200052, China.
| |
Collapse
|
21
|
Hao Q, Zhan C, Lian C, Luo S, Cao W, Wang B, Xie X, Ye X, Gui T, Voena C, Pighi C, Wang Y, Tian Y, Wang X, Dai P, Cai Y, Liu X, Ouyang S, Sun S, Hu Q, Liu J, Ye Y, Zhao J, Lu A, Wang JY, Huang C, Su B, Meng FL, Chiarle R, Pan-Hammarström Q, Yeap LS. DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Sci Immunol 2023; 8:eade1167. [PMID: 36961908 PMCID: PMC10351598 DOI: 10.1126/sciimmunol.ade1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.
Collapse
Affiliation(s)
- Qian Hao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanzong Zhan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Simin Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
- Present address: Kindstar Global Precision Medicine Institute, Wuhan, China and Kindstar Biotech, Wuhan, China
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
| | - Chiara Pighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Yanyan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Shengqun Ouyang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Shiqi Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Endocrinology and Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
| | - Leng-Siew Yeap
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
22
|
Dreval K, Boutros PC, Morin RD. Minimal information for reporting a genomics experiment. Blood 2022; 140:2549-2555. [PMID: 36219881 PMCID: PMC10653092 DOI: 10.1182/blood.2022016095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
Exome and genome sequencing has facilitated the identification of hundreds of genes and other regions that are recurrently mutated in hematologic neoplasms. The data sets from these studies theoretically provide opportunities. Quality differences between data sets can confound secondary analyses. We explore the consequences of these on the conclusions from some recent studies of B-cell lymphomas. We highlight the need for a minimum reporting standard to increase transparency in genomic research.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Paul C. Boutros
- Departments of Human Genetics and Urology, University of California, Los Angeles, CA
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
23
|
Michaeli M, Carlotti E, Hazanov H, Gribben JG, Mehr R. Mutational patterns along different evolution paths of follicular lymphoma. Front Oncol 2022; 12:1029995. [PMID: 36439408 PMCID: PMC9686334 DOI: 10.3389/fonc.2022.1029995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/24/2022] [Indexed: 04/19/2025] Open
Abstract
Follicular lymphoma (FL) is an indolent disease, characterized by a median life expectancy of 18-20 years and by intermittent periods of relapse and remission. FL frequently transforms into the more aggressive diffuse large B cell lymphoma (t-FL). In previous studies, the analysis of immunoglobulin heavy chain variable region (IgHV) genes in sequential biopsies from the same patient revealed two different patterns of tumor clonal evolution: direct evolution, through acquisition of additional IgHV mutations over time, or divergent evolution, in which lymphoma clones from serial biopsies independently develop from a less-mutated common progenitor cell (CPC). Our goal in this study was to characterize the somatic hypermutation (SHM) patterns of IgHV genes in sequential FL samples from the same patients, and address the question of whether the mutation mechanisms (SHM targeting, DNA repair or both), or selection forces acting on the tumor clones, were different in FL samples compared to healthy control samples, or in late relapsed/transformed FL samples compared to earlier ones. Our analysis revealed differences in the distribution of mutations from each of the nucleotides when tumor and non-tumor clones were compared, while FL and transformed FL (t-FL) tumor clones displayed similar mutation distributions. Lineage tree measurements suggested that either initial clone affinity or selection thresholds were lower in FL samples compared to controls, but similar between FL and t-FL samples. Finally, we observed that both FL and t-FL tumor clones tend to accumulate larger numbers of potential N-glycosylation sites due to the introduction of new SHM. Taken together, these results suggest that transformation into t-FL, in contrast to initial FL development, is not associated with any major changes in DNA targeting or repair, or the selection threshold of the tumor clone.
Collapse
Affiliation(s)
- Miri Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Emanuela Carlotti
- Center for Haemato-Oncology, Barts Cancer Institute – a CR-UK Centre Of Excellence, Queen Mary University of London, London, United Kingdom
| | - Helena Hazanov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - John G. Gribben
- Center for Haemato-Oncology, Barts Cancer Institute – a CR-UK Centre Of Excellence, Queen Mary University of London, London, United Kingdom
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
24
|
Crouch S, Painter D, Barrans SL, Roman E, Beer PA, Cooke SL, Glover P, Van Hoppe SJ, Webster N, Lacy SE, Ruiz C, Campbell PJ, Hodson DJ, Patmore R, Burton C, Smith A, Tooze RM. Molecular subclusters of follicular lymphoma: a report from the United Kingdom's Haematological Malignancy Research Network. Blood Adv 2022; 6:5716-5731. [PMID: 35363872 PMCID: PMC9619185 DOI: 10.1182/bloodadvances.2021005284] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
Follicular lymphoma (FL) is morphologically and clinically diverse, with mutations in epigenetic regulators alongside t(14;18) identified as disease-initiating events. Identification of additional mutational entities confirms this cancer's heterogeneity, but whether mutational data can be resolved into mechanistically distinct subsets remains an open question. Targeted sequencing was applied to an unselected population-based FL cohort (n = 548) with full clinical follow-up (n = 538), which included 96 diffuse large B-cell lymphoma (DLBCL) transformations. We investigated whether molecular subclusters of FL can be identified and whether mutational data provide predictive information relating to transformation. DNA extracted from FL samples was sequenced with a 293-gene panel representing genes frequently mutated in DLBCL and FL. Three clusters were resolved using mutational data alone, independent of translocation status: FL_aSHM, with high burden of aberrant somatic hypermutation (aSHM) targets; FL_STAT6, with high STAT6 & CREBBP mutation and low aSHM; and FL_Com, with the absence of features of other subtypes and enriched KMT2D mutation. Analysis of mutation signatures demonstrated differential enrichment of predicted mutation signatures between subgroups and a dominant preference in the FL_aSHM subgroup for G(C>T)T and G(C>T)C transitions consistent with previously defined aSHM-like patterns. Of transformed cases with paired samples, 17 of 26 had evidence of branching evolution. Poorer overall survival (OS) in the aSHM group (P = .04) was associated with older age; however, overall tumor genetics provided limited information to predict individual patient risk. Our approach identifies 3 molecular subclusters of FL linked to differences in underlying mechanistic pathways. These clusters, which may be further resolved by the inclusion of translocation status and wider mutation profiles, have implications for understanding pathogenesis as well as improving treatment strategies in the future.
Collapse
Affiliation(s)
- Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Sharon L. Barrans
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Philip A. Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susanna L. Cooke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul Glover
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Suzan J.L. Van Hoppe
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Nichola Webster
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Stuart E. Lacy
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Camilo Ruiz
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Russell Patmore
- Queen’s Centre for Oncology and Haematology, Castle Hill Hospital, Cottingham, United Kingdom
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Reuben M. Tooze
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
25
|
Zhang P, Philippot Q, Ren W, Lei WT, Li J, Stenson PD, Palacín PS, Colobran R, Boisson B, Zhang SY, Puel A, Pan-Hammarström Q, Zhang Q, Cooper DN, Abel L, Casanova JL. Genome-wide detection of human variants that disrupt intronic branchpoints. Proc Natl Acad Sci U S A 2022; 119:e2211194119. [PMID: 36306325 PMCID: PMC9636908 DOI: 10.1073/pnas.2211194119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pre-messenger RNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Forty-eight rare variants in 43 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach was available to efficiently detect such variants in massively parallel sequencing data. We established a comprehensive human genome-wide BP database by integrating existing BP data and generating new BP data from RNA sequencing of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We characterized multiple features of BP in major and minor introns and found that BP and BP-2 (two nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, while being comparable to the exonic background. We developed BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition. BPHunter retrospectively identified 40 of the 48 known pathogenic BP variants, in which we summarized a strategy for prioritizing BP variant candidates. The remaining eight variants all create AG-dinucleotides between the BP and acceptor site, which is the likely reason for missplicing. We demonstrated the practical utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which were validated experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter.
Collapse
Affiliation(s)
- Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Peter D. Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Pere Soler Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, 08035 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
- Diagnostic Immunology Group, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Immunology Division, Genetics Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
- HHMI, New York, NY 10065
| |
Collapse
|
26
|
Unifying Different Cancer Theories in a Unique Tumour Model: Chronic Inflammation and Deaminases as Meeting Points. Int J Mol Sci 2022; 23:ijms23158720. [PMID: 35955853 PMCID: PMC9368936 DOI: 10.3390/ijms23158720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in cancer incidences shows that there is a need to better understand tumour heterogeneity to achieve efficient treatments. Interestingly, there are several common features among almost all types of cancers, with chronic inflammation induction and deaminase dysfunctions singled out. Deaminases are a family of enzymes with nucleotide-editing capacity, which are classified into two main groups: DNA-based and RNA-based. Remarkably, a close relationship between inflammation and the dysregulation of these molecules has been widely documented, which may explain the characteristic intratumor heterogeneity, both at DNA and transcriptional levels. Indeed, heterogeneity in cancer makes it difficult to establish a unique tumour progression model. Currently, there are three main cancer models—stochastic, hierarchic, and dynamic—although there is no consensus on which one better resembles cancer biology because they are usually overly simplified. Here, to accurately explain tumour progression, we propose interactions among chronic inflammation, deaminases dysregulation, intratumor genetic heterogeneity, cancer phenotypic plasticity, and even the previously proposed appearance of cancer stem-like cell populations in the edges of advanced solid tumour masses (instead of being the cells of origin of primary malignancies). The new tumour development model proposed in this study does not contradict previously accepted models and it may open up a window to interesting therapeutic approaches.
Collapse
|
27
|
Giannuzzi D, Marconato L, Fanelli A, Licenziato L, De Maria R, Rinaldi A, Rotta L, Rouquet N, Birolo G, Fariselli P, Mensah AA, Bertoni F, Aresu L. The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications. Lab Anim (NY) 2022; 51:191-202. [PMID: 35726023 DOI: 10.1038/s41684-022-00998-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Laura Marconato
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy.
| |
Collapse
|
28
|
Genomic characterization of lymphomas in patients with inborn errors of immunity. Blood Adv 2022; 6:5403-5414. [PMID: 35687490 PMCID: PMC9631701 DOI: 10.1182/bloodadvances.2021006654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
Inborn errors of immunity-associated lymphomas are characterized by distinct clinical features and genetic signatures. Both germline and somatic alterations contribute to lymphomagenesis in patients with inborn errors of immunity.
Patients with inborn errors of immunity (IEI) have a higher risk of developing cancer, especially lymphoma. However, the molecular basis for IEI-related lymphoma is complex and remains elusive. Here, we perform an in-depth analysis of lymphoma genomes derived from 23 IEI patients. We identified and validated disease-causing or -associated germline mutations in 14 of 23 patients involving ATM, BACH2, BLM, CD70, G6PD, NBN, PIK3CD, PTEN, and TNFRSF13B. Furthermore, we profiled somatic mutations in the lymphoma genome and identified 8 genes that were mutated at a significantly higher level in IEI-associated diffuse large B-cell lymphomas (DLBCLs) than in non-IEI DLBCLs, such as BRCA2, NCOR1, KLF2, FAS, CCND3, and BRWD3. The latter, BRWD3, is furthermore preferentially mutated in tumors of a subgroup of activated phosphoinositide 3-kinase δ syndrome patients. We also identified 5 genomic mutational signatures, including 2 DNA repair deficiency-related signatures, in IEI-associated lymphomas and a strikingly high number of inter- and intrachromosomal structural variants in the tumor genome of a Bloom syndrome patient. In summary, our comprehensive genomic characterization of lymphomas derived from patients with rare genetic disorders expands our understanding of lymphomagenesis and provides new insights for targeted therapy.
Collapse
|
29
|
Ren W, Wang X, Yang M, Wan H, Li X, Ye X, Meng B, Li W, Yu J, Lei M, Xie F, Jiang W, Kimby E, Huang H, Liu D, Li ZM, Wu K, Zhang H, Pan-Hammarström Q. Distinct clinical and genetic features of hepatitis B virus-associated follicular lymphoma in Chinese patients. Blood Adv 2022; 6:2731-2744. [PMID: 35030632 PMCID: PMC9092402 DOI: 10.1182/bloodadvances.2021006410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection has been associated with an increased risk for B-cell lymphomas. We previously showed that 20% of diffuse large B-cell lymphoma (DLBCL) patients from China, an endemic area of HBV infection, have chronic HBV infection (surface antigen-positive, HBsAg+) and are characterized by distinct clinical and genetic features. Here, we showed that 24% of follicular lymphoma (FL) Chinese patients are HBsAg+. Compared with the HBsAg- FL patients, HBsAg+ patients are younger, have a higher histological grade at diagnosis, and have a higher incidence of disease progression within 24 months. Moreover, by sequencing the genomes of 109 FL tumors, we observed enhanced mutagenesis and distinct genetic profile in HBsAg+ FLs, with a unique set of preferentially mutated genes (TNFAIP3, FAS, HIST1H1C, KLF2, TP53, PIM1, TMSB4X, DUSP2, TAGAP, LYN, and SETD2) but lack of the hallmark of HBsAg- FLs (ie, IGH/BCL2 translocations and CREBBP mutations). Transcriptomic analyses further showed that HBsAg+ FLs displayed gene-expression signatures resembling the activated B-cell-like subtype of diffuse large B-cell lymphoma, involving IRF4-targeted genes and NF-κB/MYD88 signaling pathways. Finally, we identified an increased infiltration of CD8+ memory T cells, CD4+ Th1 cells, and M1 macrophages and higher T-cell exhaustion gene signature in HBsAg+ FL samples. Taken together, we present new genetic/epigenetic evidence that links chronic HBV infection to B-cell lymphomagenesis, and HBV-associated FL is likely to have a distinct cell-of-origin and represent as a separate subtype of FL. Targetable genetic/epigenetic alterations identified in tumors and their associated tumor microenvironment may provide potential novel therapeutic approaches for this subgroup of patients.
Collapse
Affiliation(s)
- Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingyu Yang
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Hui Wan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Bing Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mengyue Lei
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Fanfan Xie
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Wenqi Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Eva Kimby
- Unit of Hematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; and
| | - Huiqiang Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Zhi-Ming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
30
|
Chen H, Chen K, Huang W, Staudt LM, Cyster JG, Li X. Structure of S1PR2-heterotrimeric G 13 signaling complex. SCIENCE ADVANCES 2022; 8:eabn0067. [PMID: 35353559 PMCID: PMC8967229 DOI: 10.1126/sciadv.abn0067] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
Sphingosine-1-phosphate (S1P) regulates immune cell trafficking, angiogenesis, and vascular function via its five receptors. Inherited mutations in S1P receptor 2 (S1PR2) occur in individuals with hearing loss, and acquired mutations in S1PR2 and Gα13 occur in a malignant lymphoma. Here, we present the cryo-electron microscopy structure of S1P-bound S1PR2 coupled to the heterotrimeric G13. Interaction between S1PR2 intracellular loop 2 (ICL2) and transmembrane helix 4 confines ICL2 to engage the α5 helix of Gα13. Transforming growth factor-α shedding assays and cell migration assays support the key roles of the residues in S1PR2-Gα13 complex assembly. The structure illuminates the mechanism of receptor disruption by disease-associated mutations. Unexpectedly, we showed that FTY720-P, an agonist of the other four S1PRs, can trigger G13 activation via S1PR2. S1PR2F274I variant can increase the activity of G13 considerably with FTY720-P and S1P, thus revealing a basis for S1PR drug selectivity.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Chen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weijiao Huang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Morande PE, Yan XJ, Sepulveda J, Seija N, Marquez ME, Sotelo N, Abreu C, Crispo M, Fernández-Graña G, Rego N, Bois T, Methot SP, Palacios F, Remedi V, Rai KR, Buschiazzo A, Di Noia JM, Navarrete MA, Chiorazzi N, Oppezzo P. AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood 2021; 138:246-258. [PMID: 34292322 DOI: 10.1182/blood.2020008654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eμ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.
Collapse
MESH Headings
- Animals
- Cytidine Deaminase/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Up-Regulation
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xiao-Jie Yan
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Julieta Sepulveda
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Elena Marquez
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Sotelo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Therence Bois
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Stephen P Methot
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Florencia Palacios
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Victoria Remedi
- Hospital Maciel, Administración de los Servicios de Salud del Estado (ASSE), Ministerio de Salud, Montevideo, Uruguay
| | - Kanti R Rai
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; and
- Integrative Microbiology of Zoonotic Agents-International Joint Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marcelo A Navarrete
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
32
|
Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP and EP300 in diffuse large B-cell lymphoma. Cell Death Dis 2021; 12:419. [PMID: 33911074 PMCID: PMC8080727 DOI: 10.1038/s41419-021-03695-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoid malignancy and a highly heterogeneous disease. In this study, we performed whole-genome and transcriptome sequencing, and a genome-wide CRISPR-Cas9-knockout screen to study an activated B-cell-like DLBCL cell line (RC-K8). We identified a distinct pattern of genetic essentialities in RC-K8, including a dependency on CREBBP and MDM2. The dependency on CREBBP is associated with a balanced translocation involving EP300, which results in a truncated form of the protein that lacks the critical histone acetyltransferase (HAT) domain. The synthetic lethal interaction between CREBBP and EP300 genes, two frequently mutated epigenetic modulators in B-cell lymphoma, was further validated in the previously published CRISPR-Cas9 screens and inhibitor assays. Our study suggests that integration of the unbiased functional screen results with genomic and transcriptomic data can identify both common and unique druggable vulnerabilities in DLBCL and histone acetyltransferases inhibition could be a therapeutic option for CREBBP or EP300 mutated cases.
Collapse
|
33
|
Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia 2021; 35:2002-2016. [PMID: 33953289 PMCID: PMC8257491 DOI: 10.1038/s41375-021-01251-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.
Collapse
|