1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Duan H, Deng W, Kzhyshkowska J, Chen D, Zhang S. Macrophage at maternal-fetal Interface: Perspective on pregnancy and related disorders. Placenta 2025:S0143-4004(25)00158-4. [PMID: 40399151 DOI: 10.1016/j.placenta.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/13/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
Immune cells at the maternal-fetal interface (MFI) undergo dynamic changes to facilitate fetal growth and development during pregnancy. In contrast to the adaptive immune system, where effector T cells, Tregs, and suppressor T cells play key roles in maintaining immune tolerance toward the semi-allogeneic fetus, the innate immune system-comprising decidual nature killer (dNK) cells, macrophages, and dendritic cells (DCs)-makes up a significant portion of the decidual leukocyte population. These innate immune cells are crucial in modulating trophoblast invasion, spiral artery remodeling, and apoptotic cell phagocytosis. Dysregulation of the innate immune system has been linked to impaired uterine vessel remodeling and defective trophoblast invasion, which can lead to complications such as spontaneous abortion, preeclampsia (PE), and preterm. This review focuses on recent advancements in understanding the innate immune defenses at the maternal-fetal interface and their connections to pregnancy-related diseases, with particular emphasis on the role of macrophages.
Collapse
Affiliation(s)
- Haoran Duan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; German Red Cross Blood Service Baden- Württemberg-Hessen, 68167, Mannheim, Germany; Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Shuang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
3
|
Lu XY, Xu YD, Zhang QR, Jiang YN, Chen HN, Ji P, Wang Y, Zeng WH, Dong Y. Single-cell RNA sequencing reveals altered placental microenvironment due to maternal high-fat diet. Placenta 2025; 167:140-151. [PMID: 40381453 DOI: 10.1016/j.placenta.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND The prevalence of childhood metabolic diseases has markedly increased in recent decades whereas the effects of maternal nutrients affecting the placental microenvironment are not clearly addressed. METHODS In the present study, female C57BL/6J mice were fed with a high-fat diet (HFD) or control diet (CON) for 5 weeks prior to mating and then during pregnancy. Single-cell RNA sequencing (scRNA-seq) was used to dissect the placental cell atlas at embryonic day(E) 18.5. RESULTS Maternal HFD led to a reduction in the composition of placental labyrinth zone (LZ) trophoblast cells and endothelial cells, together with a diminished LZ area and narrowed fetal vessels, related to a decreased placental efficiency. Pro-inflammatory placental NK1 cells and M1-like macrophages were more apparent in the placenta from HFD dams with inflammation features. Increased glycogen deposition and glycogen trophoblast cells were also detectable in the HFD placenta, likely associated with the altered metabolism of placental NK cells and macrophages. CONCLUSIONS Maternal HFD before and during pregnancy leads to an altered placental microenvironment with more inflammatory features and abnormal metabolic properties, which provides a better understanding on the mechanisms of intergenerational inheritance.
Collapse
Affiliation(s)
- Xing-Yu Lu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi-Dan Xu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qian-Ren Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi-Nan Jiang
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Nan Chen
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei-Hong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| |
Collapse
|
4
|
Andrieu J, Valade M, Wurtz N, Lebideau M, Bretelle F, La Scola B, Mège J, Mezouar S. Monkeypox Virus Subverts the Inflammatory Response of Macrophages at the Maternal-Fetal Interface. J Med Virol 2025; 97:e70412. [PMID: 40400454 PMCID: PMC12096145 DOI: 10.1002/jmv.70412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Monkeypox is a viral zoonosis caused by the monkeypox virus (MPXV). Although the virus was identified decades ago, human immunity to MPXV infection has not been widely characterized. During MPXV infection, macrophages are recruited at the site of infection and are thought to contribute to the spread of the virus. Cases of MPXV vertical transmission were reported in infected pregnant women to the developing fetuses in utero resulting to high viral burden in placenta tissue and abortion. We aim to understand the impact of MPXV infection at the foeto-maternal interface by focusing on macrophages functions. Using full-term placental explant model, macrophages were recruited at site of infection. Isolated naive macrophages are permissive to MPXV infection and secrete high levels of pro-inflammatory cytokines associated with a strong M1 polarization profile. Analysis of antiviral gene expression reveals upregulation of IFNA and IFN-associated genes suggesting that MPXV induces the expression of some component of antiviral response from macrophages that are unable to clear the virus. Our study shows that macrophages are permissive to MPXV that subverts inflammatory and antiviral machinery without virus clearance. Such findings contribute to better knowledge of MPXV vertical transmission pathogenesis.
Collapse
Affiliation(s)
- Jonatane Andrieu
- Aix‐Marseille Univ, Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie bio‐culturelle, Droit, Éthique et SantéMarseilleFrance
| | - Margaux Valade
- Aix‐Marseille Univ, Institut Recherche Développement, Assistance Publique – Hôpitaux de Marseille, Microbe, Evolution, Phylogeny InfectionMarseilleFrance
| | - Nathalie Wurtz
- Aix‐Marseille Univ, Institut Recherche Développement, Assistance Publique – Hôpitaux de Marseille, Microbe, Evolution, Phylogeny InfectionMarseilleFrance
| | - Marion Lebideau
- Aix‐Marseille Univ, Institut Recherche Développement, Assistance Publique – Hôpitaux de Marseille, Microbe, Evolution, Phylogeny InfectionMarseilleFrance
| | - Florence Bretelle
- Aix‐Marseille Univ, Institut Recherche Développement, Assistance Publique – Hôpitaux de Marseille, Microbe, Evolution, Phylogeny InfectionMarseilleFrance
- Department of Gynecology‐ObstetricLa Conception HospitalMarseilleFrance
| | - Bernard La Scola
- Aix‐Marseille Univ, Institut Recherche Développement, Assistance Publique – Hôpitaux de Marseille, Microbe, Evolution, Phylogeny InfectionMarseilleFrance
| | - Jean‐Louis Mège
- Aix‐Marseille Univ, Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie bio‐culturelle, Droit, Éthique et SantéMarseilleFrance
- Department of ImmunologyTimone HospitalMarseilleFrance
| | - Soraya Mezouar
- Aix‐Marseille Univ, Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie bio‐culturelle, Droit, Éthique et SantéMarseilleFrance
- Faculty of Medical and Paramedical SciencesAix‐Marseille University, HIPE Human LabMarseilleFrance
| |
Collapse
|
5
|
Velagala S, Phan L, Eke C, Fernandes A, Rice TA, Olaloye O, Konnikova L. Spatial single-cell analysis identifies placental villi structuraland immune remodeling across gestation. Mucosal Immunol 2025:S1933-0219(25)00043-1. [PMID: 40288579 DOI: 10.1016/j.mucimm.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/04/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Pregnancies rely upon the balance between fetal and maternal immune systems. Employing imaging mass cytometry, this study creates a spatial map landscape to unravel the cellular dynamics within the placental villi (PV). Consistent with previous data we report structural remodeling in PV, highlighted by increased syncytial trophoblasts, vascular smooth muscle cells, and endothelial cells in term PV. Additionally, we identified that rare immune populations including dendritic cells, innate lymphoid cells, and myeloid-derived suppressor cells in mid-gestation were more abundant and activated than in term placentas, suggesting a potentially tolerogenic state. Conversely, various macrophage subtypes were increased and in combination with rare T-cells exhibited heightened activation markers, possibly indicating increased signaling in preparation for parturition. In mid-gestation, fibroblasts had increased interactions with trophoblasts, while term samples exhibited close adjacencies between trophoblasts, vascular smooth muscle cells, and macrophages. This study offers insights into the PV cellular composition changes between mid and full-term samples, providing a foundation for future studies to understand the mechanisms of preterm birth and other pregnancy complications.
Collapse
Affiliation(s)
| | - Long Phan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Analie Fernandes
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Tyler A Rice
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | | | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Program in Human and Translational Immunology, Yale School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA; Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Solt I, Cohen SM, Admati I, Beharier O, Dominsky O, Yagel S. Placenta at single-cell resolution in early and late preeclampsia: insights and clinical implications. Am J Obstet Gynecol 2025; 232:S176-S189. [PMID: 40253080 DOI: 10.1016/j.ajog.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 04/21/2025]
Abstract
Preeclampsia, one of the great obstetrical syndromes, manifests through diverse maternal and fetal complications and remains a leading contributor to adverse perinatal outcomes. In this review, we describe our work on single-cell and single-nuclei RNA sequencing to elucidate the molecular mechanisms that underlie early- and late-onset preeclampsia. Analysis of 46 cell types, encompassing approximately 90,000 cells from placental tissues collected after delivery, demonstrated cellular dysregulation in early-onset preeclampsia, whereas late-onset preeclampsia showed comparatively subtle changes. These findings were observed in all cell lines, including all types of trophoblast, lymphoid, myeloid, stromal, and endothelial cells. Key findings in early-onset preeclampsia included disrupted syncytiotrophoblast and extravillous trophoblast angiogenic signaling, characterized by an up-regulation of FLT1 and down-regulation of PGF, consistent with an angiogenic imbalance. The stromal and vascular compartments exhibited stress-induced transcriptomic shifts. Both endothelial cells and pericytes showed evidence of stress, including up-regulation of heat shock proteins and markers of apoptosis. In addition, the inflammation- and stress-responsive states were more abundant in early-onset preeclampsia than in matched controls. Inflammatory pathways were markedly up-regulated in both the maternal and fetal immune cells; for example, we observed a marked increase in pro-inflammatory cytokines, including secreted phosphoprotein 1 and C-X-C motif chemokine ligand 2 and 3. Conversely, late-onset preeclampsia retained adaptive placental features with localized dysregulation of extracellular matrix remodeling and angiogenic markers, underscoring its possible maternal cardiovascular etiology. Single-cell and single-nuclei RNA sequencing investigations of placental tissues support the proposed classification of preeclampsia into a placental dysfunction type, primarily presenting early in pregnancy, and a maternal cardiovascular maladaptation type, primarily presenting later in pregnancy, each with distinct biomarkers, risk factors, and therapeutic targets. The early-onset preeclampsia findings advocate for interventions that target angiogenic pathways, such as RNA-based therapies that target specific cells of the placenta, to modulate soluble fms-like tyrosine kinase-1 levels. In contrast, late-onset preeclampsia management may benefit from maternal cardiovascular optimization, including individualized antihypertensive and metabolic treatments. These results underscore the heterogeneity of preeclampsia, emphasizing the need for individualized diagnostic and therapeutic strategies. This molecular atlas of preeclampsia advances our understanding of the complex interplay among elements of the maternal-placental-fetal array, thereby bridging clinical phenotypes and cellular mechanisms. Future research should focus on integrating these insights into longitudinal studies to develop precision medicine approaches for preeclampsia to enhance outcomes for mothers and neonates.
Collapse
Affiliation(s)
- Ido Solt
- Department of Obstetrics and Gynecology, Rambam Health Care Campus & Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Sarah M Cohen
- Division of Obstetrics and Gynecology, Hadassah Hebrew University Medical Centers, Jerusalem, Israel
| | - Inbal Admati
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology Haifa, Israel
| | - Ofer Beharier
- Division of Obstetrics and Gynecology, Hadassah Hebrew University Medical Centers, Jerusalem, Israel
| | - Omri Dominsky
- Department of Obstetrics and Gynecology, Lis Hospital for Women's Health Sourasky Medical Center, affiliated with the Faculty of Medicine at Tel Aviv University, Tel Aviv, Israel
| | - Simcha Yagel
- Division of Obstetrics and Gynecology, Hadassah Hebrew University Medical Centers, Jerusalem, Israel.
| |
Collapse
|
7
|
Haniffa M, Maartens A, Winheim E, Jardine L. Decoding the human prenatal immune system with single-cell multi-omics. Nat Rev Immunol 2025; 25:285-297. [PMID: 39482372 DOI: 10.1038/s41577-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The human immune system is made up of a huge variety of cell types each with unique functions. Local networks of resident immune cells are poised to sense and protect against pathogen entry, whereas more widespread innate and adaptive immune networks provide first rapid, then long-lasting and targeted responses. However, how we develop such a diverse and complex system remains unknown. Studying human development directly has been challenging in the past, but recent advances in single-cell and spatial genomics, together with the co-ordinated efforts of the Human Cell Atlas and other initiatives, have led to new studies that map the development of the human immune system in unprecedented detail. In this Review, we consider the timings, transitions, cell types and tissue microenvironments that are crucial for building the human immune system. We also compare and contrast the human system with model species and in vitro systems, and discuss how an understanding of prenatal immune system development will improve our knowledge of human disease.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Department of Dermatology, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, UK.
| | - Aidan Maartens
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Levenson D, Romero R, Miller D, Galaz J, Garcia-Flores V, Neshek B, Pique-Regi R, Gomez-Lopez N. The maternal-fetal interface at single-cell resolution: uncovering the cellular anatomy of the placenta and decidua. Am J Obstet Gynecol 2025; 232:S55-S79. [PMID: 40253083 DOI: 10.1016/j.ajog.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 04/21/2025]
Abstract
The maternal-fetal interface represents a critical site of immunological interactions that can greatly influence pregnancy outcomes. The unique cellular composition and cell-cell interactions taking place within these tissues has spurred substantial research efforts focused on the maternal-fetal interface. With the recent advent of single-cell technologies, multiple investigators have applied such methods to gain an unprecedented level of insight into maternal-fetal communication. Here, we provide an overview of the dynamic cellular composition and cell-cell communications at the maternal-fetal interface as reported by single-cell investigations. By primarily focusing on data from pregnancies in the second and third trimesters, we aim to showcase how single-cell technologies have bolstered the foundational understanding of each cell's contribution to physiologic gestation. Indeed, single-cell technologies have enabled the examination of classical placental cells, such as the trophoblast, as well as uncovered new roles for structural cells now recognized as active participants in pregnancy and parturition, such as decidual and fetal stromal cells, which are reviewed herein. Furthermore, single-cell data investigating the ontogeny, function, differentiation, and interactions among immune cells present at the maternal-fetal interface, namely macrophages, T cells, dendritic cells, neutrophils, mast cells, innate lymphoid cells, natural killer cells, and B cells are discussed in this review. Moreover, a key output of single-cell investigations is the inference of cell-cell interactions, which has been leveraged to not only dissect the intercellular communications within specific tissues but also between compartments such as the decidua basalis and placental villi. Collectively, this review emphasizes the ways by which single-cell technologies have expanded the understanding of cell composition and cellular processes underlying pregnancy in mid-to-late gestation at the maternal-fetal interface, which can prompt their continued application to reveal new pathways and targets for the treatment of obstetrical disease.
Collapse
Affiliation(s)
- Dustyn Levenson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Derek Miller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Jose Galaz
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Valeria Garcia-Flores
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Barbara Neshek
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
9
|
Xu J, He X, Zhang S, Li L, Li P. Expression of co-signaling molecules TIM-3/Galectin-9 at the maternal-fetal interface. Placenta 2025; 163:43-50. [PMID: 40068377 DOI: 10.1016/j.placenta.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION During early pregnancy, fetal placental tissue implants into maternal decidual tissue, forming a unique interface where maternal immune cells do not reject the invading fetal cells. Given the roles of Galectin-9 and Tim-3 in tumor immune regulation, studying their distribution and function at this interface may provide insights into recurrent pregnancy loss. METHODS This study uses single-cell transcriptomics, spatial transcriptomics, and multiplex immunohistochemistry to examine the expression and localization of Galectin-9 and TIM-3. Hormone-induced decidualization of immortalized human endometrial stromal cells was conducted to investigate Galectin-9 expression. RESULTS The major immune cells in the maternal decidua, such as T cells, NK cells, and macrophages, co-express Galectin-9 and TIM-3. Unlike TIM-3, Galectin-9 is also highly expressed in endothelial cells and decidualized stromal cells. Among placenta-derived cells, Hofbauer cells (HBs) and Placenta-associated maternal monocytes/macrophages (PAMMs) exhibit high expression of both Galectin-9 and TIM-3, while trophoblast cells show relatively low levels of expression. Additionally, hormone-induced decidualization significantly upregulates Galectin-9 expression in endometrial stromal cells. DISCUSSION The research results suggest that Galectin-9 and TIM-3, as important immune co-signaling molecules, may play a crucial role in maintaining the immune-tolerant microenvironment at the maternal-fetal interface. Additionally, the association between decidualization and Galectin-9 expression reveals its potential role in pregnancy maintenance, providing new insights for the study of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jingliang Xu
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China
| | - Xuqing He
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Sujuan Zhang
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China
| | - Li Li
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China.
| | - Penghao Li
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China; Yunnan Jinxin Jiuzhou Hospital, Yunnan, China.
| |
Collapse
|
10
|
Fei H, Lu X, Shi Z, Liu X, Yang C, Zhu X, Lin Y, Jiang Z, Wang J, Huang D, Liu L, Zhang S, Jiang L. Deciphering the preeclampsia-specific immune microenvironment and the role of pro-inflammatory macrophages at the maternal-fetal interface. eLife 2025; 13:RP100002. [PMID: 40152904 PMCID: PMC11952753 DOI: 10.7554/elife.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RA-CCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3-CCR7+Helios-CD127-CD8+) and pro-inflam Macs (CD206-CD163-CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163-CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206- pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1-IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal-fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.
Collapse
Affiliation(s)
- Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaohong Zhu
- Department of Obstetrics and Gynecology, Zhejiang Xiaoshan HospitalHangzhouChina
| | - Yuhan Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Ziqun Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Jianmin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| |
Collapse
|
11
|
Kashiwagi H, Shigehara K, Kubo T, Hirohashi Y, Mariya T, Matsuo K, Minowa T, Ishioka SI, Murata K, Kanaseki T, Tsukahara T, Hasegawa T, Saito T, Torigoe T. Large number of CD68 +/CD163 + Hofbauer cells and characteristic vascular structural alterations in the placental villi of cases with placenta accreta spectrum. Med Mol Morphol 2025:10.1007/s00795-025-00432-4. [PMID: 40082293 DOI: 10.1007/s00795-025-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Placenta accreta spectrum (PAS) is a serious disease leading to complications and maternal death. The objective of the study was to characterize the placental villi and blood vessels of PAS villi histopathologically. We investigated 10 cases of PAS (five cases of placenta increta, two cases of placenta accreta, and three cases of placenta percreta) histologically. Immunohistochemical staining using anti-CD68 or anti-CD163 antibodies was performed to detect and count Hofbauer cells. Immunohistochemical staining with an anti-CD34 antibody was used to detect vascular endothelial cells, and the number and area of vessels were analyzed. The numbers of CD68-positive or CD163-positive Hofbauer cells were larger in PAS cases compared with control cases. The vascular area in villi was smaller in PAS cases compared with control cases. The number of blood vessels in villi was slightly higher in PAS cases than in control cases. The numbers of Hofbauer cells and vessels in villi were larger in PAS cases compared with control cases, whereas the area of vessels in villi was smaller in PAS cases compared with control cases. Although their biological meaning is elusive, these findings provide novel insights into the pathogenesis of PAS, particularly regarding the role of Hofbauer cells in immune-suppressive role and angiogenesis and the alterations in vascular structure and hemodynamics in the chorionic villi.
Collapse
Affiliation(s)
- Hazuki Kashiwagi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Kengo Shigehara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| | - Tasuku Mariya
- Department of Obstetrics and Gynecology, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | | | - Tomoyuki Minowa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shin-Ichi Ishioka
- Department of Obstetrics and Gynecology, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University Hospital, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| |
Collapse
|
12
|
McCutcheon CR, Gaddy JA, Aronoff DM, Manning SD, Petroff MG. Group B Streptococcal Membrane Vesicles Induce Proinflammatory Cytokine Production and Are Sensed in an NLRP3 Inflammasome-Dependent Mechanism in a Human Macrophage-like Cell Line. ACS Infect Dis 2025; 11:453-462. [PMID: 39761308 PMCID: PMC11833861 DOI: 10.1021/acsinfecdis.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Group B Streptococcus (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses. While it is known that mice injected intra-amniotically with GBS MVs exhibit large-scale leukocyte infiltration, preterm birth, and subsequent fetal death, the immune effectors driving this response remain unclear. Here, we hypothesized that THP-1 macrophage-like cells respond to GBS-derived MVs by producing proinflammatory cytokines and are recognized through one or more pattern recognition receptors. We show that THP-1s produce high levels of neutrophil- and monocyte-specific chemokines in response to MVs derived from different clinical isolates of GBS. Using antibody microarrays and multiplex Luminex assays, we found that GBS MVs elicit significantly (p < 0.05) higher levels of CCL1, CCL2, CCL20, CXCL1, CXCL10, and IL-1β relative to untreated THP-1s. Using chemical inhibitors in combination with caspase-1 activity assays and Luminex assays, we further demonstrate that GBS MVs upregulated IL-1β production in a caspase-1 and NLRP3-dependent manner, ultimately identifying NLRP3 as a sensor of GBS MVs. These data indicate that MVs contain one or more pathogen-associated molecular patterns that can be sensed by the immune system and show that the NLRP3 inflammasome is a novel sensor of GBS MVs. Our data additionally indicate that MVs may serve as immune effectors that can be targeted for immunotherapeutics.
Collapse
Affiliation(s)
- Cole R. McCutcheon
- Department
of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer A. Gaddy
- Department
of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Tennessee
Valley Healthcare System, Department of
Veterans Affairs, Nashville, Tennessee 37212, United States
| | - David M. Aronoff
- Department
of Medicine, Indiana University School of
Medicine, Indianapolis, Indiana 46202, United States
| | - Shannon D. Manning
- Department
of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Margaret G. Petroff
- Department
of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Pathobiology and Diagnostic Investigation, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Schepanski S, Ngoumou GB, Buss C, Seifert G. Assessing in-vitro models for microglial development and fetal programming: a critical review. Front Immunol 2025; 16:1538920. [PMID: 39944696 PMCID: PMC11814449 DOI: 10.3389/fimmu.2025.1538920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 05/09/2025] Open
Abstract
This review evaluates in-vitro models for studying how maternal influences during pregnancy impact the development of offspring microglia, the immune cells of the central nervous system. The models examined include primary microglia cultures, microglia cell lines, iPSC-derived microglia, PBMC-induced microglia-like cells, 3D brain organoids derived from iPSCs, and Hofbauer cells. Each model is assessed for its ability to replicate the in-vivo environment of the developing brain, with a focus on their strengths, limitations, and practical challenges. Key factors such as scalability, genetic and epigenetic fidelity, and physiological relevance are highlighted. Microglia cell lines are highly scalable but lack genetic and epigenetic fidelity. iPSC-derived microglia provide moderate physiological relevance and patient-specific genetic insights but face operational and epigenetic challenges inherent to reprogramming. 3D brain organoids, derived from iPSCs, offer an advanced platform for studying complex neurodevelopmental processes but require extensive resources and technical expertise. Hofbauer cells, which are fetal macrophages located in the placenta and share a common developmental origin with microglia, are uniquely exposed to prenatal maternal factors and, depending on fetal barrier maturation, exhibit variable epigenetic fidelity. This makes them particularly useful for exploring the impact of maternal influences on fetal programming of microglial development. The review concludes that no single model comprehensively captures all aspects of maternal influences on microglial development, but it offers guidance on selecting the most appropriate model based on specific research objectives and experimental constraints.
Collapse
Affiliation(s)
- Steven Schepanski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| | - Gonza B. Ngoumou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- University of California, Irvine, Development, Health and Disease Research Program, Irvine, CA, United States
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Seifert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| |
Collapse
|
14
|
Doratt BM, True HE, Sureshchandra S, Qiao Q, Rincon M, Marshall NE, Messaoudi I. The immune landscape of fetal chorionic villous tissue in term placenta. Front Immunol 2025; 15:1506305. [PMID: 39872537 PMCID: PMC11769816 DOI: 10.3389/fimmu.2024.1506305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood. Methods To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq). Results Our results indicate that, relative to the first trimester, the frequency of fetal macrophages (HBC, proliferating HBC) is significantly reduced, whereas that of infiltrating maternal monocytes/macrophages (PAMM1b, PAMM1a, PAMM2, MAC_1) increased in T3. PAMM1b and HBCs exhibit the most phagocytic capacity at term highlighting their regulatory role in tissue homeostasis in late pregnancy. The transcriptional profiles of resident villous immune subsets exhibit a heightened activation state relative to the relative to T1, likely to support labor and parturition. Additionally, we provide one of the first insights into the chromatin accessibility profile of villous myeloid cells at term. We next stratified our findings by pre-pregnancy BMI since maternal pregravid obesity is associated with several adverse pregnancy outcomes. Pregravid obesity increased inflammatory gene expression, particularly among HBC and PAMM1a subsets, but dampened the expression of antimicrobial genes, supporting a tolerant-like phenotype of chorionic villous myeloid cells. We report a decline in HBC abundance accompanied by an increase in infiltrating maternal macrophages, which aligns with reports of heightened chorionic villous inflammatory pathologies with pregravid obesity. Finally, given the shared fetal yolk-sac origin of HBCs and microglia, we leveraged an in vitro model of umbilical cord blood-derived microglia to investigate the impact of pregravid obesity on fetal neurodevelopment. Our findings reveal increased expression of activation markers albeit dampened phagocytic capacity in microglia with pregravid obesity. Discussion Overall, our study highlights immune adaptations in the fetal chorionic villous with gestational age and pregravid obesity, as well as insight towards microglia dysfunction possibly underlying poor neurodevelopmental outcomes in offspring of women with pregravid obesity.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Heather E. True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Qi Qiao
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Zheng Y, Fang Z, Wu X, Zhang H, Sun P. Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning. BMC Pregnancy Childbirth 2024; 24:847. [PMID: 39709373 PMCID: PMC11662826 DOI: 10.1186/s12884-024-07028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
PURPOSE This study aimed to identify novel biomarkers for preeclampsia (PE) diagnosis by integrating Weighted Gene Co-expression Network Analysis (WGCNA) with machine learning techniques. PATIENTS AND METHODS We obtained the PE dataset GSE25906 from the gene expression omnibus (GEO) database. Analysis of differentially expressed genes (DEGs) and module genes with Limma and Weighted Gene Co-expression Network analysis (WGCNA). Candidate hub genes for PE were identified using machine learning. Subsequently, we used western-blotting (WB) and real-time fluorescence quantitative (qPCR) to verify the expression of F13A1 and SCCPDH in preeclampsia patients. Finally, we estimated the extent of immune cell infiltration in PE samples by employing the CIBERSORT algorithms. RESULTS Our findings revealed that F13A1 and SCCPDH were the hub genes of PE. The nomogram and two candidate hub genes had high diagnostic values (AUC: 0.90 and 0.88, respectively). The expression levels of F13A1 and SCCPDH were verified by WB and qPCR. CIBERSORT analysis confirmed that the PE group had a significantly larger proportion of plasma cells and activated dendritic cells and a lower portion of resting memory CD4 + T cells. CONCLUSION The study proposes F13A1 and SCCPDH as potential biomarkers for diagnosing PE and points to an improvement in early detection. Integration of WGCNA with machine learning could enhance biomarker discovery in complex conditions like PE and offer a path toward more precise and reliable diagnostic tools.
Collapse
Affiliation(s)
- Yihan Zheng
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Zhuanji Fang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Xizhu Wu
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Huale Zhang
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Pengming Sun
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
16
|
Yoshida N, Thomas JR, Appios A, Brember MP, Aye IL, Edgar JR, Firth AE, Chung BY, McGovern N, Stewart H. Human placental cells are resistant to SARS-CoV-2 infection and replication. Wellcome Open Res 2024; 9:209. [PMID: 39640372 PMCID: PMC11617822 DOI: 10.12688/wellcomeopenres.20514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Infection during pregnancy with SARS-CoV-2 can have a serious impact on both maternal and foetal health. Clinical studies have shown that SARS-CoV-2 transmission from the mother to the foetus typically does not occur. However, there is evidence that SARS-CoV-2 can infect the placenta in utero. Here we sought to quantify the permissiveness of placental cells to SARS-CoV-2 infection and to determine if they support viral release. Methods By using publicly available single-cell RNA sequencing (scRNAseq) data sets and confocal microscopy we compared ACE2 transcript and protein expression across human first trimester and term placental cells. We also used in vitro infection assays to quantify the infection rates of a range of placenta-derived cells. Finally, we quantified the viral egress from these cells. Results ACE2 transcripts are found in a range of placental cell types across gestation, including trophoblast. However, ACE2 protein expression does not significantly change across placental cell types from first trimester to term. We find that 0.5±0.15 % of term trophoblast cells can be infected with SARS-CoV-2 while primary placental fibroblasts and macrophages, and JEG-3, JAR and HUVEC cell lines are resistant to infection. Furthermore, primary trophoblast cells poorly support viral release while JEG-3 cells allow relatively high levels of viral release. Conclusions The low level of viral release by primary placental cells provides insight into how the virus is impaired from crossing the placenta to the foetus.
Collapse
Affiliation(s)
- Nagisa Yoshida
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Jake R. Thomas
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Anna Appios
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Matthew P. Brember
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Irving L.M.H. Aye
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, England, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Betty Y.W. Chung
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge, England, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, England, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
17
|
Ojwach D, Annels N, Sunshine S, Simpkin D, Duruanyanwu J, Webber T, Alinde B, Ikumi N, Zulu M, Madlala H, Myer L, Malaba T, Newell ML, Campagnolo P, Gordon S, Jaspan H, Gray CM, Estrada FM. Diminished placental Factor XIIIA1 expression associates with pre-conception antiretroviral treatment and preterm birth in pregnant people living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620906. [PMID: 39554009 PMCID: PMC11565750 DOI: 10.1101/2024.10.30.620906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We previously showed a link between maternal vascular malperfusion and pre-term birth (PTB) in pregnant people living with HIV (PPLH) initiating antiretroviral treatment (ART) before pregnancy, indicating poor placental vascularisation. After measuring antenatal plasma angiogenic factors to seek mechanistic insights, low levels of plasma Factor XIIIA1 (FXIIIA1) and vascular-endothelial-growth-factor (VEGF) was significantly associated with PTB at the time closest to delivery (median 34 weeks) in PPLH initiating ART before pregnancy. Knowing that FXIIIA1 is crucial for haemostasis, angiogenesis, implantation and pregnancy maintenance and that expression is found on placental macrophages (Hofbauer cells), we examined placentae at delivery from matching participants who either initiating ART before pregnancy or during gestation. Highest FXIIIA1 expression was on Hofbauer cells but was significantly lower in PTB regardless of HIV infection, but was significantly lower in PPLH in PTB from women who initiated ART before pregnancy. To test the hypothesis that antiretroviral drugs may disrupt vascularisation in the placenta, we used a human umbilical vein endothelial cell (HUVEC) matrigel angiogenesis assay. We identified that addition of pre-treated FXIIIA1-expressing MCSF- and IL-10-induced placenta-like macrophages with physiological concentrations of tenofovir, 3TC, and efavirenz resulted in significantly inhibited angiogenesis; akin to the inhibition observed with titratable concentrations of ZED1301, an inhibitor of FXIIIA1. Overall, an efavirenz-containing ART combination inhibits vasculogenesis without causing toxicity and likely does so through inhibition of a FXIIIA1-mediated-placental macrophage pathway.
Collapse
Affiliation(s)
- Doty Ojwach
- School of Biosciences and Medicine, University of Surrey, UK
- Division of Immunology, Stellenbosch University, South Africa
| | - Nicola Annels
- School of Biosciences and Medicine, University of Surrey, UK
| | - Sunny Sunshine
- School of Biosciences and Medicine, University of Surrey, UK
| | - Daniel Simpkin
- School of Biosciences and Medicine, University of Surrey, UK
| | | | - Tariq Webber
- Division of Immunology, Stellenbosch University, South Africa
| | - Berenice Alinde
- Division of Immunology, Stellenbosch University, South Africa
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | - Nadia Ikumi
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | - Michael Zulu
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | - Hlengiwe Madlala
- Division of Epidemiology and Biostatistics, University of Cape Town, Observatory, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, University of Cape Town, Observatory, South Africa
| | - Thoko Malaba
- Division of Epidemiology and Biostatistics, University of Cape Town, Observatory, South Africa
| | - Marie-Louise Newell
- Institute for Developmental Science, University of Southampton Faculty of Medicine, UK
| | | | - Siamon Gordon
- Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Heather Jaspan
- Seattle Children's Research Institute, Seattle, WA, USA
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Department of Pathology and Institute of Infectious disease and molecular medicine, University of Cape Town, Observatory, South Africa
| | - Clive M Gray
- School of Biosciences and Medicine, University of Surrey, UK
- Faculty of health sciences, University of Cape Town, Observatory, South Africa
| | | |
Collapse
|
18
|
Paparini DE, Grasso E, Aguilera F, Arslanian MA, Lella V, Lara B, Schafir A, Gori S, Merech F, Hauk V, Schuster C, Martí M, Meller C, Ramhorst R, Vota D, Leirós CP. Sex-specific phenotypical, functional and metabolic profiles of human term placenta macrophages. Biol Sex Differ 2024; 15:80. [PMID: 39420346 PMCID: PMC11484421 DOI: 10.1186/s13293-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Placental macrophages, Hofbauer cells (HBC) are the only fetal immune cell population within the stroma of healthy placenta along pregnancy. They are central players in maintaining immune tolerance during pregnancy. Immunometabolism emerged a few years ago as a new field that integrates cellular metabolism with immune responses, however, the immunometabolism of HBC has not been explored yet. Here we studied the sex-specific differences in the phenotypic, functional and immunometabolic profile of HBC. METHODS HBC were isolated from human term placentas (N = 31, 16 from male and 15 female neonates). Ex vivo assays were carried out to assess active metabolic and endoplasmic reticulum stress pathways by flow cytometry, confocal microscopy, gene expression and in silico approaches. RESULTS HBC from female placentas displayed a stronger M2 phenotype accompanied by high rates of efferocytosis majorly sustained on lipid metabolism. On the other hand, male HBC expressed a weaker M2 phenotype with higher glycolytic metabolism. LPS stimulation reinforced the glycolytic metabolism in male but not in female HBC. Physiological endoplasmic reticulum stress activates IRE-1 differently, since its pharmacological inhibition increased lipid mobilization, accumulation and efferocytosis only in female HBC. Moreover, differential sex-associated pathways accompanying the phenotypic and functional profiles of HBC appeared related to the placental villi environment. CONCLUSIONS These results support sex-associated effects on the immunometabolism of the HBC and adds another layer of complexity to the intricate maternal-fetal immune interaction.
Collapse
Affiliation(s)
- Daniel E Paparini
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Esteban Grasso
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Aguilera
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Victoria Lella
- Obstetric Service, Hospital Italiano, Buenos Aires, Argentina
| | - Brenda Lara
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Schafir
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soledad Gori
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fátima Merech
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanesa Hauk
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio Schuster
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Martí
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cesar Meller
- Obstetric Service, Hospital Italiano, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Condac C, Lozneanu L, Matasariu DR, Ursache A, Bujor IE, Niță ME, Boiculese VL, Bîrluțiu V. Shedding Light on the COVID-19 Pandemic: Placental Expression of Cell Biomarkers in Negative, Vaccinated, and Positive Pregnant Women. J Clin Med 2024; 13:5546. [PMID: 39337033 PMCID: PMC11432756 DOI: 10.3390/jcm13185546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: We investigated the expression of inflammation, placental development, and function markers, including cluster of differentiation 44 (CD44), osteopontin (OPN), and cyclooxygenase-2 (COX-2), to shed light on the controversy regarding the impact of the COVID-19 epidemic on fetal development and pregnancy outcomes. Methods: We immunohistochemically analyzed placental tissue from 170 patients (65 COVID-positive and unvaccinated women; 35 Pfeizer-vaccinated and COVID-negative women; and 70 COVID-negative and unvaccinated women, without any other associated pathology) for particularities in the expression of these three molecules. Results: CD44 expression was highest in COVID-negative and unvaccinated women, moderate in COVID-positive cases, and lowest in vaccinated and COVID-negative women. OPN expression was highest in COVID-negative and Pfeizer-vaccinated cases, moderate in COVID-negative and unvaccinated cases, and lowest in COVID-positive cases. COX-2 expression was increased in COVID-negative and unvaccinated women, modestly elevated in COVID-positive and unvaccinated cases, and lowest in vaccinated cases. Conclusions: These findings reflected an alteration in the placental structure and consequent function due to altered expression of the three studied molecules.
Collapse
Affiliation(s)
- Constantin Condac
- Department of Anesthesia and Intensive Care, "Cuza Vodă" Hospital, 700038 Iasi, Romania
- Department of Infectious Diseases, University of Medicine and Pharmacy "Lucian Blaga", 550169 Sibiu, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I-Histology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Daniela Roxana Matasariu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| | - Alexandra Ursache
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Iuliana Elena Bujor
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Maria Elena Niță
- Department of Obstetrics and Gynecology, "Cuza Vodă" Hospital, 700038 Iasi, Romania
| | - Vasile Lucian Boiculese
- Biostatistics, Department of Preventive Medicine and Interdisciplinarity, University of Medicine and Pharmacy "Gr. T. Popa", 700115 Iasi, Romania
| | - Victoria Bîrluțiu
- Department of Infectious Diseases, University of Medicine and Pharmacy "Lucian Blaga", 550169 Sibiu, Romania
| |
Collapse
|
20
|
Gay L, Madariaga Zarza S, Abou Atmeh P, Rouvière MS, Andrieu J, Richaud M, Boumaza A, Miquel L, Diallo AB, Bechah Y, Otmani Idrissi M, La Scola B, Olive D, Resseguier N, Bretelle F, Mezouar S, Mege JL. Protective role of macrophages from maternal-fetal interface in unvaccinated coronavirus disease 2019 pregnant women. J Med Virol 2024; 96:e29819. [PMID: 39030992 DOI: 10.1002/jmv.29819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Pregnant women represent a high-risk population for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. The presence of SARS-CoV-2 has been reported in placenta from infected pregnant women, but whether the virus influences placenta immune response remains unclear. We investigated the properties of maternal-fetal interface macrophages (MFMs) in a cohort of unvaccinated women who contracted coronavirus disease 2019 (COVID-19) during their pregnancy. We reported an infiltration of CD163+ macrophages in placenta from COVID-19 women 19 whereas lymphoid compartment was not affected. Isolated MFMs exhibited nonpolarized activated signature (NOS2, IDO1, IFNG, TNF, TGFB) mainly in women infected during the second trimester of pregnancy. COVID-19 during pregnancy primed MFM to produce type I and III interferon response to SARS-CoV-2 (Wuhan and δ strains), that were unable to elicit this in MFMs from healthy pregnant women. COVID-19 also primed SARS-CoV-2 internalization by MFM in an angiotensin-converting enzyme 2-dependent manner. Activation and recall responses of MFMs were influenced by fetal sex. Collectively, these findings support a role for MFMs in the local immune response to SARS-CoV-2 infection, provide a basis for protective placental immunity in COVID-19, and highlight the interest of vaccination in pregnant women.
Collapse
Affiliation(s)
- Laetitia Gay
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Sandra Madariaga Zarza
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Perla Abou Atmeh
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Marie-Sarah Rouvière
- Institut Paoli-Calmettes, UM105, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Jonatane Andrieu
- Centre National de la Recherche Scientifique, Etablissement Français du Sang, Anthropologie bio-culturelle, Droit, Ethique et Santé, Aix-Marseille University, Marseille, France
| | - Manon Richaud
- Institut Paoli-Calmettes, UM105, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Asma Boumaza
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Laura Miquel
- Department of Gynaecology-Obstetrics, La Conception Hospital, Marseille, France
| | - Aïssatou Bailo Diallo
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Yassina Bechah
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Myriem Otmani Idrissi
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Bernard La Scola
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
| | - Daniel Olive
- Institut Paoli-Calmettes, UM105, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Noémie Resseguier
- Assistance Publique-Hôpitaux de Marseille, La Timone Hospital, Department of Epidemiology and Health Economics, Clinical Research Unit, Direction of Health Research, Aix Marseille University, Marseille, France
| | - Florence Bretelle
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
- Department of Gynaecology-Obstetrics, La Conception Hospital, Marseille, France
| | - Soraya Mezouar
- Centre National de la Recherche Scientifique, Etablissement Français du Sang, Anthropologie bio-culturelle, Droit, Ethique et Santé, Aix-Marseille University, Marseille, France
| | - Jean-Louis Mege
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny and Infection, Aix-Marseille University, Marseille, France
- Department of Immunology, Timone Hospital, Marseille, France
| |
Collapse
|
21
|
Ozarslan N, Robinson JF, Buarpung S, Kim MY, Ansbro MR, Akram J, Montoya DJ, Kamya MR, Kakuru A, Dorsey G, Rosenthal PJ, Cheng G, Feeney ME, Fisher SJ, Gaw SL. Gravidity influences distinct transcriptional profiles of maternal and fetal placental macrophages at term. Front Immunol 2024; 15:1384361. [PMID: 38994356 PMCID: PMC11237841 DOI: 10.3389/fimmu.2024.1384361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Maternal intervillous monocytes (MIMs) and fetal Hofbauer cells (HBCs) are myeloid-derived immune cells at the maternal-fetal interface. Maternal reproductive history is associated with differential risk of pregnancy complications. The molecular phenotypes and roles of these distinct monocyte/macrophage populations and the influence of gravidity on these phenotypes has not been systematically investigated. Methods Here, we used RNA sequencing to study the transcriptional profiles of MIMs and HBCs in normal term pregnancies. Results Our analyses revealed distinct transcriptomes of MIMs and HBCs. Genes involved in differentiation and cell organization pathways were more highly expressed in MIMs vs. HBCs. In contrast, HBCs had higher expression of genes involved in inflammatory responses and cell surface receptor signaling. Maternal gravidity influenced monocyte programming, as expression of pro-inflammatory molecules was significantly higher in MIMs from multigravidae compared to primigravidae. In HBCs, multigravidae displayed enrichment of gene pathways involved in cell-cell signaling and differentiation. Discussion Our results demonstrated that MIMs and HBCs have highly divergent transcriptional signatures, reflecting their distinct origins, locations, functions, and roles in inflammatory responses. Furthermore, maternal gravidity influences the gene signatures of MIMs and HBCs, potentially modulating the interplay between tolerance and trained immunity. The phenomenon of reproductive immune memory may play a novel role in the differential susceptibility of primigravidae to pregnancy complications.
Collapse
Affiliation(s)
- Nida Ozarslan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Joshua F. Robinson
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Sirirak Buarpung
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - M. Yvonne Kim
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Megan R. Ansbro
- Obstetrics & Gynecology Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Jason Akram
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Dennis J. Montoya
- Department of Molecular, Cellular & Developmental Biology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Division of HIV, Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Philip J. Rosenthal
- Division of HIV, Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Genhong Cheng
- Department of Molecular Immunology and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Margaret E. Feeney
- Division of Experimental Medicine, Department of Medicine and Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Susan J. Fisher
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States
| |
Collapse
|
22
|
Shook LL, Batorsky RE, De Guzman RM, McCrea LT, Brigida SM, Horng JE, Sheridan SD, Kholod O, Cook AM, Li JZ, Slonim DK, Goods BA, Perlis RH, Edlow AG. Maternal SARS-CoV-2 impacts fetal placental macrophage programs and placenta-derived microglial models of neurodevelopment. J Neuroinflammation 2024; 21:163. [PMID: 38918792 PMCID: PMC11197235 DOI: 10.1186/s12974-024-03157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 virus activates maternal and placental immune responses. Such activation in the setting of other infections during pregnancy is known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. METHODS AND RESULTS We assessed the impact of maternal SARS-CoV-2 on HBCs isolated from 24 term placentas (N = 10 SARS-CoV-2 positive cases, 14 negative controls). Using single-cell RNA-sequencing, we demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells (HBC-iMGs), with impaired synaptic pruning behavior compared to HBC models from negative controls. CONCLUSION These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rose M De Guzman
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liam T McCrea
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara M Brigida
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA
| | - Joy E Horng
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven D Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olha Kholod
- Thayer School of Engineering and Program, Dartmouth College, Hanover, NH, USA
| | - Aidan M Cook
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Brittany A Goods
- Thayer School of Engineering and Program, Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Roy H Perlis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA.
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. Cell Rep 2024; 43:114326. [PMID: 38848212 PMCID: PMC11808824 DOI: 10.1016/j.celrep.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Ji K, Chen Y, Pan X, Chen L, Wang X, Wen B, Bao J, Zhong J, Lv Z, Zheng Z, Liu H. Single-cell and spatial transcriptomics reveal alterations in trophoblasts at invasion sites and disturbed myometrial immune microenvironment in placenta accreta spectrum disorders. Biomark Res 2024; 12:55. [PMID: 38831319 PMCID: PMC11149369 DOI: 10.1186/s40364-024-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Placenta accreta spectrum disorders (PAS) are a severe complication characterized by abnormal trophoblast invasion into the myometrium. The underlying mechanisms of PAS involve a complex interplay of various cell types and molecular pathways. Despite its significance, both the characteristics and intricate mechanisms of this condition remain poorly understood. METHODS Spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq), were performed on the tissue samples from four PAS patients, including invasive tissues (ST, n = 3; scRNA-seq, n = 4), non-invasive normal placenta samples (ST, n = 1; scRNA-seq, n = 2). Three healthy term pregnant women provided normal myometrium samples (ST, n = 1; scRNA-seq, n = 2). ST analysis characterized the spatial expression landscape, and scRNA-seq was used to identify specific cellular components in PAS. Immunofluorescence staining was conducted to validate the findings. RESULTS ST slices distinctly showed the myometrium in PAS was invaded by three subpopulations of trophoblast cells, extravillous trophoblast cells, cytotrophoblasts, and syncytiotrophoblasts, especially extravillous trophoblast cells. The pathways enriched by genes in trophoblasts, smooth muscle cells (SMC), and immune cells of PAS were mainly associated with immune and inflammation. We identified elevated expression of the angiogenesis-stimulating gene PTK2, alongside the cell proliferation-enhancing gene EGFR, within the trophoblasts of PAS group. Trophoblasts mainly contributed the enhancement of HLA-G and EBI3 signaling, which is crucial in establishing immune escape. Meanwhile, SMC regions in PAS exhibited upregulation of immunomodulatory markers such as CD274, HAVCR2, and IDO1, with CD274 expression experimentally verified to be increased in the invasive SMC areas of the PAS group. CONCLUSIONS This study provided information of cellular composition and spatial organization in PAS at single-cell and spatial level. The dysregulated expression of genes in PAS revealed a complex interplay between enhanced immune escape in trophoblasts and immune tolerance in SMCs during invasion in PAS. These findings will enhance our understanding of PAS pathogenesis for developing potential therapeutic strategies.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Junmin Zhong
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Zi Lv
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Zheng Zheng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China.
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China.
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Adamo KB, Goudreau AD, Corson AE, MacDonald ML, O'Rourke N, Tzaneva V. Physically active pregnancies: Insights from the placenta. Physiol Rep 2024; 12:e16104. [PMID: 38872466 PMCID: PMC11176744 DOI: 10.14814/phy2.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Physical activity (PA) positively influences pregnancy, a critical period for health promotion, and affects placental structure and function in ways previously overlooked. Here, we summarize the current body of literature examining the association between PA, placenta biology, and physiology while also highlighting areas where gaps in knowledge exist. PA during pregnancy induces metabolic changes, influencing nutrient availability and transporter expression in the placenta. Hormones and cytokines secreted during PA contribute to health benefits, with intricate interactions in pro- and anti-inflammatory markers. Extracellular vesicles and placental "-omics" data suggest that gestational PA can shape placental biology, affecting gene expression, DNA methylation, metabolite profiles, and protein regulation. However, whether cytokines that respond to PA alter placental proteomic profiles during pregnancy remains to be elucidated. The limited research on placenta mitochondria of physically active gestational parents (gesP), has shown improvements in mitochondrial DNA and antioxidant capacity, but the relationship between PA, placental mitochondrial dynamics, and lipid metabolism remains unexplored. Additionally, PA influences the placenta-immune microenvironment, angiogenesis, and may confer positive effects on neurodevelopment and mental health through placental changes, vascularization, and modulation of brain-derived neurotrophic factor. Ongoing exploration is crucial for unraveling the multifaceted impact of PA on the intricate placental environment.
Collapse
Affiliation(s)
- Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandra D Goudreau
- Department of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Abbey E Corson
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Meaghan L MacDonald
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas O'Rourke
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Tauber Z, Burianova A, Koubova K, Mrstik M, Jirkovska M, Cizkova K. The interplay of inflammation and placenta in maternal diabetes: insights into Hofbauer cell expression patterns. Front Immunol 2024; 15:1386528. [PMID: 38590527 PMCID: PMC10999664 DOI: 10.3389/fimmu.2024.1386528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Inflammation of the placenta is harmful to both the fetus and the mother. Inflammation is strongly associated with diabetes, a common complication of pregnancy. Hofbauer cells (HBCs), unique immune system cells of fetal origin in the placenta, play complex roles, including growth of placental villi and their branching, stromal remodelling, and angiogenesis. Methods Our study investigated the expression of IL-1β, IL-10, CYP2C8, CYP2C9, CYP2J2 and sEH in HBCs from patients with type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM) compared to healthy controls using immunohistochemistry. We also assessed the structure of the villus stroma using Masson´s trichrome. Results In T1DM, HBCs showed inflammatory activation characterised by increased IL-1β and decreased CYP epoxygenase expression compared to normal placentas. Conversely, significant inflammation in HBCs appeared less likely in GDM, as levels of IL-1β and CYP epoxygenases remained stable compared to normal placentas. However, GDM showed a significant increase in sEH expression. Both types of diabetes showed delayed placental villous maturation and hypovascularisation, with GDM showing a more pronounced effect. Conclusion The expression profiles of IL-1β, CYP epoxygenases and sEH significantlly differ between controls and diabetic placentas and between T1DM and GDM. These facts suggest an association of the CYP epoxygenase-EETs-sEH axis with IL-1β expression as well as villous stromal hypovascularisation. Given the stable high expression of IL-10 in both controls and both types of diabetes, it appears that immune tolerance is maintained in HBCs.
Collapse
Affiliation(s)
- Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Adela Burianova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Max Mrstik
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Marie Jirkovska
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| |
Collapse
|
28
|
Mani S, Garifallou J, Kim SJ, Simoni MK, Huh DD, Gordon SM, Mainigi M. Uterine macrophages and NK cells exhibit population and gene-level changes after implantation but maintain pro-invasive properties. Front Immunol 2024; 15:1364036. [PMID: 38566989 PMCID: PMC10985329 DOI: 10.3389/fimmu.2024.1364036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Prior to pregnancy, hormonal changes lead to cellular adaptations in the endometrium allowing for embryo implantation. Critical for successful pregnancy establishment, innate immune cells constitute a significant proportion of uterine cells prior to arrival of the embryo and throughout the first trimester in humans and animal models. Abnormal uterine immune cell function during implantation is believed to play a role in multiple adverse pregnancy outcomes. Current work in humans has focused on uterine immune cells present after pregnancy establishment, and limited in vitro models exist to explore unique functions of these cells. Methods With single-cell RNA-sequencing (scRNAseq), we comprehensively compared the human uterine immune landscape of the endometrium during the window of implantation and the decidua during the first trimester of pregnancy. Results We uncovered global and cell-type-specific gene signatures for each timepoint. Immune cells in the endometrium prior to implantation expressed genes associated with immune metabolism, division, and activation. In contrast, we observed widespread interferon signaling during the first trimester of pregnancy. We also provide evidence of specific inflammatory pathways enriched in pre- and post-implantation macrophages and natural killer (NK) cells in the uterine lining. Using our novel implantation-on-a-chip (IOC) to model human implantation ex vivo, we demonstrate for the first time that uterine macrophages strongly promote invasion of extravillous trophoblasts (EVTs), a process essential for pregnancy establishment. Pre- and post-implantation uterine macrophages promoted EVT invasion to a similar degree as pre- and post-implantation NK cells on the IOC. Conclusions This work provides a foundation for further investigation of the individual roles of uterine immune cell subtypes present prior to embryo implantation and during early pregnancy, which will be critical for our understanding of pregnancy complications associated with abnormal trophoblast invasion and placentation.
Collapse
Affiliation(s)
- Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - James Garifallou
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Se-jeong Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael K. Simoni
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Dan Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- National Science Foundation (NSF) Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
29
|
Vidal MS, Richardson LS, Kumar Kammala A, Kim S, Lam PY, Cherukuri R, Thomas TJ, Bettayeb M, Han A, Rusyn I, Menon R. Endocrine-disrupting compounds and their impact on human placental function: evidence from placenta organ-on-chip studies. LAB ON A CHIP 2024; 24:1727-1749. [PMID: 38334486 PMCID: PMC10998263 DOI: 10.1039/d3lc00998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The effects of endocrine-disrupting compounds (EDCs) on the placenta, a critical gestational organ for xenobiotic protection, are well reported; however, models to determine the role of EDCs in placental disruption are limited. An advanced 2nd-trimester human placenta organ-on-chip model (2TPLA-OOC) was developed and validated, with six representative cells of the maternal and the fetal interface interconnected with microchannels. Various EDCs (150 ng mL-1 each of bisphenol A, bisphenol S, and polybrominated diphenyl ethers-47 and -99) were gradually propagated across the chip for 72 hours, and their various effects were determined. Cigarette smoke extract (CSE), an environmental risk factor, was used as a positive control. EDCs produced overall oxidative stress in the placental/decidual cells, induced cell-specific endocrine effects, caused limited (<10%) apoptosis/necrosis in trophoblasts and mesenchymal cells, induced localized inflammation but an overall anti-inflammatory shift, did not change immune cell migration from stroma to decidua, and did not affect placental nutrient transport. Overall, (1) the humanized 2TPLA-OOC recreated the placental organ and generated data distinct from the trophoblast and other cells studied in isolation, and (2) at doses associated with adverse pregnancies, EDCs produced limited and localized insults, and the whole organ compensated for the exposure.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA.
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Tilu Jain Thomas
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Mohammed Bettayeb
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, USA.
| |
Collapse
|
30
|
White M, Abdo H, Grynspan D, Mieghem TV, Connor KL. Altered placental immune cell composition and gene expression with isolated fetal spina bifida. Am J Reprod Immunol 2024; 91:e13836. [PMID: 38528656 DOI: 10.1111/aji.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
PROBLEM Fetal spina bifida (SB) is more common in pregnant people with folate deficiency or anomalies of folate metabolism. It is also known that fetuses with SB have a higher risk of low birthweight, a condition that is typically placental-mediated. We therefore hypothesized that fetal SB would associate with altered expression of key placental folate transporters and an increase in Hofbauer cells (HBCs), which are folate-dependent placental macrophages. METHOD OF STUDY Folate receptor-α (FRα), proton coupled folate receptor (PCFT), and reduced folate carrier (RFC) protein localization and expression (immunohistochemistry) and HBC phenotypes (HBC abundance and folate receptor-β [FRβ] expression; RNA in situ hybridization) were assessed in placentae from fetuses with SB (cases; n = 12) and in term (n = 10) and gestational age (GA) - and maternal body mass index - matched (n = 12) controls without congenital anomalies. RESULTS Cases had a higher proportion of placental villous cells that were HBCs (6.9% vs. 2.4%, p = .0001) and higher average HBC FRβ expression (3.2 mRNA molecules per HBC vs. 2.3, p = .03) than GA-matched controls. HBCs in cases were largely polarized to a regulatory phenotype (median 92.1% of HBCs). In sex-stratified analyses, only male cases had higher HBC levels and HBC FRβ expression than GA-matched controls. There were no differences between groups in the total percent of syncytium and stromal cells that were positive for FRα, PCFT, or RFC protein immunolabeling. CONCLUSIONS HBC abundance and FRβ expression by HBCs are increased in placentae of fetuses with SB, suggesting immune-mediated dysregulation in placental phenotype, and could contribute to SB-associated comorbidities.
Collapse
Affiliation(s)
- Marina White
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Hasan Abdo
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - David Grynspan
- Vernon Jubilee Hospital, Vernon, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tim Van Mieghem
- Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, Ontario, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Barrozo ER, Seferovic MD, Hamilton MP, Moorshead DN, Jochum MD, Do T, O'Neil DS, Suter MA, Aagaard KM. Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. Am J Obstet Gynecol 2024; 230:251.e1-251.e17. [PMID: 37598997 PMCID: PMC10840961 DOI: 10.1016/j.ajog.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-β signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-β gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Mark P Hamilton
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Hematology & Medical Oncology, Stanford School of Medicine, Stanford University, Palo Alto, CA
| | - David N Moorshead
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Trang Do
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Derek S O'Neil
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX.
| |
Collapse
|
32
|
Enninga EAL, Quach HQ, Jang JS, de Araujo Correia MCM, Fedyshyn Y, Fedyshyn B, Lemens M, Littlefield D, Behl S, Sintim-Aboagye E, Mejia Plazas MC, Cardenas MC, Chakraborty S, Yamaoka S, Ebihara H, Pandey A, Li H, Badley AD, Johnson EL, Sun J, Norgan AP, Theiler RN, Chakraborty R. Maternal SARS-CoV-2 infection in pregnancy disrupts gene expression in Hofbauer cells with limited impact on cytotrophoblasts. PLoS Pathog 2024; 20:e1011990. [PMID: 38324589 PMCID: PMC10878512 DOI: 10.1371/journal.ppat.1011990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Hofbauer cells (HBCs) and cytotrophoblasts (CTBs) are major cell populations in placenta. The indirect impact of maternal SARS-CoV-2 disease on these cells that are not directly infected has not been extensively studied. Herein, we profiled gene expression in HBCs and CTBs isolated from placentae of recovered pregnant subjects infected with SARS-CoV-2 during all trimesters of pregnancy, placentae from subjects with active infection, SARS-CoV-2 vaccinated subjects, and those who were unexposed to the virus. METHODS Placentae were collected within 4 h post-delivery and membrane-free tissues were enzymatically digested for the isolation of HBCs and CTBs. RNA extracted from HBCs and CTBs were sequenced using 150bp paired-end reads. Differentially expressed genes (DEGs) were identified by DESeq2 package in R and enriched in GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, and Canonical Pathways. Protein-protein interactions among the DEGs were modelled using STRING and BioGrid. RESULTS Pregnant subjects (n = 30) were recruited and categorized into six groups: infected with SARS-CoV-2 in i) the first (1T, n = 4), ii) second (2T, n = 5), iii) third (3T, n = 5) trimester, iv) tested positive at delivery (Delivery, n = 5), v) never infected (Control, n = 6), and vi) fully mRNA-vaccinated by delivery (Vaccinated, n = 5). Compared to the Control group, gene expression analysis showed that HBCs from infected subjects had significantly altered gene expression profiles, with the 2T group having the highest number of DEGs (1,696), followed by 3T and 1T groups (1,656 and 958 DEGs, respectively). These DEGs were enriched for pathways involved in immune regulation for host defense, including production of cytokines, chemokines, antimicrobial proteins, ribosomal assembly, neutrophil degranulation inflammation, morphogenesis, and cell migration/adhesion. Protein-protein interaction analysis mapped these DEGs with oxidative phosphorylation, translation, extracellular matrix organization, and type I interferon signaling. Only 95, 23, and 8 DEGs were identified in CTBs of 1T, 2T, and 3T groups, respectively. Similarly, 11 and 3 DEGs were identified in CTBs and HBCs of vaccinated subjects, respectively. Reassuringly, mRNA vaccination did not induce an inflammatory response in placental cells. CONCLUSIONS Our studies demonstrate a significant impact of indirect SARS-CoV-2 infection on gene expression of inner mesenchymal HBCs, with limited effect on lining CTB cells isolated from pregnant subjects infected and recovered from SARS-CoV-2. The pathways associated with these DEGs identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth Ann L. Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jin Sung Jang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Yaroslav Fedyshyn
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bohdana Fedyshyn
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maureen Lemens
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Dawn Littlefield
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Supriya Behl
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Elise Sintim-Aboagye
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria C. Mejia Plazas
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria C. Cardenas
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shree Chakraborty
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
- Carter Immunology Center University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Andrew P. Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Regan N. Theiler
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rana Chakraborty
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Children Research Center, Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
33
|
Garcia-Flores V, Romero R, Tarca AL, Peyvandipour A, Xu Y, Galaz J, Miller D, Chaiworapongsa T, Chaemsaithong P, Berry SM, Awonuga AO, Bryant DR, Pique-Regi R, Gomez-Lopez N. Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci Transl Med 2024; 16:eadh8335. [PMID: 38198568 PMCID: PMC11238316 DOI: 10.1126/scitranslmed.adh8335] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| | - Azam Peyvandipour
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Vishnyakova P, Gantsova E, Kiseleva V, Lazarev D, Knyazev E, Poltavets A, Iskusnykh M, Muminova K, Potapova A, Khodzhaeva Z, Elchaninov A, Fatkhudinov T, Sukhikh G. MicroRNA miR-27a as a possible regulator of anti-inflammatory macrophage phenotype in preeclamptic placenta. Placenta 2024; 145:151-161. [PMID: 38141416 DOI: 10.1016/j.placenta.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The role of the TGFβ signaling pathway, an important cascade responsible for the anti-inflammatory polarization of macrophages, in the development of both early- and late-onset preeclampsia (eoPE and loPE), remains poorly understood. In this study, we examined the components of the TGFβ signaling cascade and macrophage markers within placental tissue in normal pregnancy and in PE. METHODS Patients with eoPE, loPE, and normal pregnancy were enrolled in the study (n = 10 in each group). Following techniques were used for the investigation: immunohistochemistry analysis, western blotting, qRT-PCR, isolation of monocytes by magnetic sorting, transfection, microRNA sequencing, and bioinformatic analysis. RESULTS We observed a significant decrease in the anti-inflammatory macrophage marker CD206 in the loPE group, alongside with a significant down-regulation of CD206 protein production in both eoPE and loPE groups. The level of CD68-positive cells and relative levels of CD163 and MARCO production were comparable across the groups. However, we identified a significant decrease in the TGFβ receptor 2 production and its gene expression in the PE group. Further analysis revealed a link between TGFBR2 and MRC1 (CD206) genes through a single miRNA, hsa-miR-27a-3p. Transfecting CD14-derived macrophages with the hsa-miR-27a-3p mimic significantly changed TGFBR2 production, indicating the potential role of this miRNA in regulating the TGFβ signaling pathway. We also revealed the up-regulation of hsa-miR-27a-5p and hsa-miR-27a-3p in the trophoblast BeWo b30 cell line under the severe hypoxia condition and the fact that TGFBR2 3' UTR could serve as a potential target for these miRNAs. DISCUSSION Our findings uncover a novel potential therapeutic target for managing patients with PE, significantly contributing to a deeper comprehension of the underlying mechanisms involved in the development of this pathology.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia.
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Dmitry Lazarev
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Marina Iskusnykh
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia; Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
35
|
Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 2024; 21:35-45. [PMID: 38097774 DOI: 10.1038/s41575-023-00864-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.
Collapse
Affiliation(s)
- Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liza Konnikova
- Department of Paediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
36
|
Branco ACC, Rogers LM, Aronoff DM. Folate Receptor Beta Signaling in the Regulation of Macrophage Antimicrobial Immune Response: A Scoping Review. Biomed Hub 2024; 9:31-37. [PMID: 38406385 PMCID: PMC10890800 DOI: 10.1159/000536186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Folate, vitamin B9, is a water-soluble vitamin that is essential to cellular proliferation and division. In addition to the reduced folate carrier, eukaryotic cells take up folate through endocytosis mediated by one of two GPI-anchored folate receptors (FRs), FRα or FRβ. Two other isoforms of FR exist, FRγ and FRδ, neither of which support endocytic activities of FR signaling. FRβ is expressed primarily by monocytes and macrophages and highly expressed on activated macrophages. Macrophage expression of FRβ suggests a role for this receptor in modulating function of these immune sentinels, particularly as they engage in inflammatory processes. Despite several studies suggesting that folates can suppress inflammatory responses of macrophages to proinflammatory stimuli, there appears to be a lack of basic research examining the role of FRβ in modulating macrophage responses to microbial sensing. We therefore conducted a scoping review to assess evidence within the published literature addressing the question, "what is known about the extent to which FRβ regulates macrophage responses to sensing, and responding to, microorganisms?". Methods As a strategy for the study selection, we queried articles indexed in the research database PubMed and the search engine Google Scholar (up until August 12, 2023), including combinations of the research words: macrophage, folate receptor beta, FOLR2. Results We identified 2 relevant articles out of 153 that are worth discussing here, none of which directly addressed our research question. Conclusion There is an unmet need to better define the contribution of FRβ to regulating the macrophage response to microbes.
Collapse
Affiliation(s)
- Anna C.C. Castelo Branco
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Lisa M. Rogers
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
37
|
Shook LL, Batorsky RA, De Guzman RM, McCrea LT, Brigida SM, Horng JE, Sheridan SD, Kholod O, Cook AM, Li JZ, Goods BA, Perlis RH, Edlow AG. Maternal SARS-CoV-2 impacts fetal placental macrophage programs and placenta-derived microglial models of neurodevelopment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.29.23300544. [PMID: 38234776 PMCID: PMC10793528 DOI: 10.1101/2023.12.29.23300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The SARS-CoV-2 virus activates maternal and placental immune responses, which in the setting of other infections occurring during pregnancy are known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. Here, we assessed the impact of maternal SARS-CoV-2 on HBCs isolated from term placentas using single-cell RNA-sequencing. We demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells, with altered morphology and impaired synaptic pruning behavior compared to HBC models from negative controls. These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.
Collapse
|
38
|
Dai M, Xu Y, Gong G, Zhang Y. Roles of immune microenvironment in the female reproductive maintenance and regulation: novel insights into the crosstalk of immune cells. Front Immunol 2023; 14:1109122. [PMID: 38223507 PMCID: PMC10786641 DOI: 10.3389/fimmu.2023.1109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/25/2023] [Indexed: 01/16/2024] Open
Abstract
Female fertility decline is an accumulative consequence caused by complex factors, among them, the disruption of the immune profile in female reproduction stands out as a crucial contributor. Presently, the effects of immune microenvironment (IME) on the female reproductive process have attracted increasing attentions for their dynamic but precisive roles. Immunocytes including macrophages, dendritic cells, T cells, B cells and neutrophils, with diverse subpopulations as well as high plasticity functioned dynamically in the process of female reproduction through indirect intercellular communication via specific cytokine release transduced by molecular signal networks or direct cell-cell contact to maintain the stability of the reproductive process have been unveiled. The immune profile of female reproduction in each stage has also been meticulously unveiled. Especially, the application of single-cell sequencing (scRNA-seq) technology in this process reveals the distribution map of immune cells, which gives a novel insight for the homeostasis of IME and provides a research direction for better exploring the role of immune cells in female reproduction. Here, we provide an all-encompassing overview of the latest advancements in immune modulation within the context of the female reproductive process. Our approach involves structuring our summary in accordance with the physiological sequence encompassing gonadogenesis, folliculogenesis within the ovaries, ovulation through the fallopian tubes, and the subsequent stages of embryo implantation and development within the uterus. Our overarching objective is to construct a comprehensive portrayal of the immune microenvironment (IME), thereby accentuating the pivotal role played by immune cells in governing the intricate female reproductive journey. Additionally, we emphasize the pressing need for heightened attention directed towards strategies that focus on immune interventions within the female reproductive process, with the ultimate aim of enhancing female fertility.
Collapse
Affiliation(s)
- Mengyuan Dai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Guidong Gong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571680. [PMID: 38187648 PMCID: PMC10769274 DOI: 10.1101/2023.12.16.571680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide novel insights into fetal brain microglial programs, and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders in the setting of maternal exposures.
Collapse
Affiliation(s)
| | - Alexis M. Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L. Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin A. Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H. Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna K. Slonim
- Department of Computer Science, Tufts University, Medford, MA
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, MA
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Eskandar S, Bezemer RE, Eggen BJL, Prins JR. Cold Mechanical Isolation of Placental Macrophages as a Method to Limit Procedure-Induced Activation of Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1868-1876. [PMID: 37909834 PMCID: PMC10694029 DOI: 10.4049/jimmunol.2300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Isolation of placental macrophages using enzymatic digestion at warm temperatures is widely used for in vitro studies. However, studies in brain and kidney tissue show that this method activates immune cells, immediate early genes, and heat shock proteins. Isolating placental macrophages while preserving their tissue-specific characteristics as much as possible is pivotal to reliably studying their functions. We therefore developed a mechanical dissociation protocol at low temperatures and compared this to enzymatic digestion at high temperatures. Decidual and villous macrophages were isolated from term human placentas. A cell suspension was generated by mechanical dissociation using a gentleMACS. For warm enzymatic digestion, Accutase was added, followed by incubation at 37°C. Macrophages were isolated after Ficoll density gradient centrifugation. Cell types were analyzed with flow cytometry (CD45, CD14, CD80, CD86, CD163, and CD206) and their activation status with real-time PCR (FOS, JUN, HSP27, HSP70, IL1β, TNFα, IL10, and TGFβ) after cell sorting. A higher proportion of leukocytes and macrophages was obtained from the villi with cold mechanical dissociation (p < 0.05). Compared to warm enzymatic digestion, cold mechanical dissociation resulted in a higher expression of CD163 in villous and decidual macrophages (p < 0.05). Warm enzymatic digestion showed higher levels of TNFα, IL1β, and IL10 in decidual and villous macrophages, and HSP70 in villous macrophages. Our data show that mechanical dissociation of placental tissue at low temperatures is associated with less activation of placental macrophages. This suggests that cold mechanical dissociation is a preferred method, resulting in macrophages that more closely resemble their in-tissue state.
Collapse
Affiliation(s)
- Sharon Eskandar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Romy E. Bezemer
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelmer R. Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
41
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
42
|
Fitzgerald E, Shen M, Yong HEJ, Wang Z, Pokhvisneva I, Patel S, O'Toole N, Chan SY, Chong YS, Chen H, Gluckman PD, Chan J, Lee PKM, Meaney MJ. Hofbauer cell function in the term placenta associates with adult cardiovascular and depressive outcomes. Nat Commun 2023; 14:7120. [PMID: 37963865 PMCID: PMC10645763 DOI: 10.1038/s41467-023-42300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Pathological placental inflammation increases the risk for several adult disorders, but these mediators are also expressed under homeostatic conditions, where their contribution to adult health outcomes is unknown. Here we define an inflammation-related expression signature, primarily expressed in Hofbauer cells of the term placenta and use expression quantitative trait loci to create a polygenic score (PGS) predictive of its expression. Using this PGS in the UK Biobank we conduct a phenome-wide association study, followed by Mendelian randomization and identify protective, sex-dependent effects of the placental module on cardiovascular and depressive outcomes. Genes differentially regulated by intra-amniotic infection and preterm birth are over-represented within the module. We also identify aspirin as a putative modulator of this inflammation-related signature. Our data support a model where disruption of placental Hofbauer cell function, due to preterm birth or prenatal infection, contributes to the increased risk of depression and cardiovascular disease observed in these individuals.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montréal, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Canada.
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada.
| | - Mojun Shen
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research, Singapore, Singapore
| | - Hannah Ee Juen Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research, Singapore, Singapore
| | - Zihan Wang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Sachin Patel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Nicholas O'Toole
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montréal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Helen Chen
- KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research, Singapore, Singapore
- The University of Auckland, Auckland, New Zealand
| | - Jerry Chan
- KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore, Singapore, Singapore
| | - Patrick Kia Ming Lee
- Brain - Body Initiative, Agency for Science, Technology & Research, Singapore, Singapore
| | - Michael J Meaney
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montréal, Canada.
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology & Research, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Brain - Body Initiative, Agency for Science, Technology & Research, Singapore, Singapore.
| |
Collapse
|
43
|
Hume DA, Teakle N, Keshvari S, Irvine KM. Macrophage deficiency in CSF1R-knockout rat embryos does not compromise placental or embryo development. J Leukoc Biol 2023; 114:421-433. [PMID: 37167456 DOI: 10.1093/jleuko/qiad052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Macrophages are an abundant cell population in the placenta and developing embryo and appear to be involved in processes of vascularization, morphogenesis, organogenesis, and hematopoiesis. The proliferation, differentiation, and survival are dependent on signals from the macrophage colony-stimulating factor receptor, CSF1R. Aside from the role in macrophages, Csf1r mRNA is highly expressed in placental trophoblasts. To explore the function of macrophages and Csf1r in placental and embryonic development, we analyzed the impact of homozygous Csf1r null mutation (Csf1rko) in the rat. In late gestation, IBA1+ macrophages were abundant in control embryos in all tissues, including the placenta, and greatly reduced in the Csf1rko. CSF1R was also detected in stellate macrophage-like cells and in neurons using anti-CSF1R antibody but was undetectable in trophoblasts. However, the neuronal signal was not abolished in the Csf1rko. CD163 was most abundant in cells forming the center of erythroblastic islands in the liver and was also CSF1R dependent. Despite the substantial reduction in macrophage numbers, we detected no effect of the Csf1rko on development of the placenta or any organs, the relative abundance of vascular elements (CD31 staining), or cell proliferation (Ki67 staining). The loss of CD163+ erythroblastic island macrophages in the liver was not associated with anemia or any reduction in the proliferative activity in the liver, but there was a premature expansion of CD206+ cells, presumptive precursors of liver sinusoidal endothelial cells. We suggest that many functions of macrophages in development of the placenta and embryo can be provided by other cell types in their absence.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woollongabba, Brisbane, Qld 4102, Australia
| |
Collapse
|
44
|
Admati I, Skarbianskis N, Hochgerner H, Ophir O, Weiner Z, Yagel S, Solt I, Zeisel A. Two distinct molecular faces of preeclampsia revealed by single-cell transcriptomics. MED 2023; 4:687-709.e7. [PMID: 37572658 DOI: 10.1016/j.medj.2023.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/04/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Preeclampsia is a multisystemic, pregnancy-specific disorder united by new-onset hypertension but with considerable variation in clinical manifestation, onset, and severity. For symptoms to regress, delivery of the placenta is required. For symptoms to regress, delivery of the placenta is required, making the placenta central to preeclampsia pathophysiology. To dissect which placental functions were impacted in two forms of preeclampsia, we studied molecular changes across the cell types of the placenta. METHODS We performed a transcriptomic survey of single-cells and single-nuclei on cases of early- and late-onset preeclampsia with gestation-matched controls. FINDINGS Our data revealed massive dysregulation of gene expression in all cell classes that was almost exclusive to early preeclampsia. For example, an important known receptor/ligand imbalance hallmarking angiogenic disfunction, sFLT1/placental growth factor (PGF), was reflected in striking, cell-autonomous dysregulation of FLT1 and PGF transcription in the syncytium in early preeclampsia only. Stromal cells and vasculature echoed an inflamed, stressed, anti-angiogenic environment. Finally, the placental immune niche set the tone for inflammation in early but not late preeclampsia. Here, fetal-origin Hofbauer and maternal-origin TREM2 macrophages were revealed as surprising main actors, while local cells of the adaptive immune system were largely unaffected. Late preeclampsia showed minimal cellular impact on the placenta. CONCLUSIONS Our survey provides systematic molecular evidence for two distinct diseases. We resolved systematic molecular dysregulation to individual cell types with strong implications for definition, early detection, diagnosis, and treatment. FUNDING Funded by the Preeclampsia Foundation through the Peter Joseph Pappas Research Grant.
Collapse
Affiliation(s)
- Inbal Admati
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Niv Skarbianskis
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Simcha Yagel
- Division of Obstetrics and Gynecology Hadassah, Hebrew University Medical Centers, Jerusalem, Israel
| | - Ido Solt
- Department of Obstetrics and Gynecology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
45
|
Ozarslan N, Robinson JF, Buarpung S, Kim MY, Ansbro MR, Akram J, Montoya DJ, Kamya MR, Kakuru A, Dorsey G, Rosenthal PJ, Cheng G, Feeney ME, Fisher SJ, Gaw SL. Distinct transcriptional profiles of maternal and fetal placental macrophages at term are associated with gravidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559419. [PMID: 37808856 PMCID: PMC10557660 DOI: 10.1101/2023.09.25.559419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Maternal intervillous monocytes (MIMs) and fetal Hofbauer cells (HBCs) are myeloid-derived immune cells at the maternal-fetal interface. Little is known regarding the molecular phenotypes and roles of these distinct monocyte/macrophage populations. Here, we used RNA sequencing to investigate the transcriptional profiles of MIMs and HBCs in six normal term pregnancies. Our analyses revealed distinct transcriptomes of MIMs and HBCs. Genes involved in differentiation and cell organization pathways were more highly expressed in MIMs vs. HBCs. In contrast, HBCs had higher expression of genes involved in inflammatory responses and cell surface receptor signaling. Maternal gravidity influenced monocyte programming, as expression of pro-inflammatory molecules was significantly higher in MIMs from multigravidas compared to primigravidas. In HBCs, multigravidas displayed enrichment of gene pathways involved in cell-cell signaling and differentiation. In summary, our results demonstrated that MIMs and HBCs have highly divergent transcriptional signatures, reflecting their distinct origins, locations, functions, and roles in inflammatory responses. Our data further suggested that maternal gravidity influences the gene signatures of MIMs and HBCs, potentially modulating the interplay between tolerance and trained immunity. The phenomenon of reproductive immune memory may play a novel role in the differential susceptibility of primigravidas to pregnancy complications.
Collapse
|
46
|
Spencer R, Maksym K, Hecher K, Maršál K, Figueras F, Ambler G, Whitwell H, Nené NR, Sebire NJ, Hansson SR, Diemert A, Brodszki J, Gratacós E, Ginsberg Y, Weissbach T, Peebles DM, Zachary I, Marlow N, Huertas-Ceballos A, David AL. Maternal PlGF and umbilical Dopplers predict pregnancy outcomes at diagnosis of early-onset fetal growth restriction. J Clin Invest 2023; 133:e169199. [PMID: 37712421 PMCID: PMC10503803 DOI: 10.1172/jci169199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/27/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUNDSevere, early-onset fetal growth restriction (FGR) causes significant fetal and neonatal mortality and morbidity. Predicting the outcome of affected pregnancies at the time of diagnosis is difficult, thus preventing accurate patient counseling. We investigated the use of maternal serum protein and ultrasound measurements at diagnosis to predict fetal or neonatal death and 3 secondary outcomes: fetal death or delivery at or before 28+0 weeks, development of abnormal umbilical artery (UmA) Doppler velocimetry, and slow fetal growth.METHODSWomen with singleton pregnancies (n = 142, estimated fetal weights [EFWs] below the third centile, less than 600 g, 20+0 to 26+6 weeks of gestation, no known chromosomal, genetic, or major structural abnormalities) were recruited from 4 European centers. Maternal serum from the discovery set (n = 63) was analyzed for 7 proteins linked to angiogenesis, 90 additional proteins associated with cardiovascular disease, and 5 proteins identified through pooled liquid chromatography and tandem mass spectrometry. Patient and clinician stakeholder priorities were used to select models tested in the validation set (n = 60), with final models calculated from combined data.RESULTSThe most discriminative model for fetal or neonatal death included the EFW z score (Hadlock 3 formula/Marsal chart), gestational age, and UmA Doppler category (AUC, 0.91; 95% CI, 0.86-0.97) but was less well calibrated than the model containing only the EFW z score (Hadlock 3/Marsal). The most discriminative model for fetal death or delivery at or before 28+0 weeks included maternal serum placental growth factor (PlGF) concentration and UmA Doppler category (AUC, 0.89; 95% CI, 0.83-0.94).CONCLUSIONUltrasound measurements and maternal serum PlGF concentration at diagnosis of severe, early-onset FGR predicted pregnancy outcomes of importance to patients and clinicians.TRIAL REGISTRATIONClinicalTrials.gov NCT02097667.FUNDINGThe European Union, Rosetrees Trust, Mitchell Charitable Trust.
Collapse
Affiliation(s)
- Rebecca Spencer
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Kasia Maksym
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karel Maršál
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Francesc Figueras
- Institut D’Investigacions Biomèdiques August Pi í Sunyer, University of Barcelona, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Barcelona, Spain
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, United Kingdom
| | - Harry Whitwell
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction and
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nuno Rocha Nené
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Neil J. Sebire
- Population, Policy and Practice Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Stefan R. Hansson
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Brodszki
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Eduard Gratacós
- Institut D’Investigacions Biomèdiques August Pi í Sunyer, University of Barcelona, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Barcelona, Spain
| | - Yuval Ginsberg
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- Department of Obstetrics and Gynecology, Rambam Medical Centre, Haifa, Israel
| | - Tal Weissbach
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- Department of Obstetrics and Gynecology, Sheba Medical Center Tel Hashomer, Tel Aviv, Israel
| | - Donald M. Peebles
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Ian Zachary
- Division of Medicine, Faculty of Medical Sciences, University College London, United Kingdom
| | - Neil Marlow
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Angela Huertas-Ceballos
- Neonatal Department, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Anna L. David
- UCL Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
47
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall NE, Messaoudi I. Mild/asymptomatic COVID-19 in unvaccinated pregnant mothers impairs neonatal immune responses. JCI Insight 2023; 8:e172658. [PMID: 37698937 PMCID: PMC10629812 DOI: 10.1172/jci.insight.172658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Maternal SARS-CoV-2 infection triggers placental inflammation and alters cord blood immune cell composition. However, most studies focus on outcomes of severe maternal infection. Therefore, we analyzed cord blood and chorionic villi from newborns of unvaccinated mothers who experienced mild/asymptomatic SARS-CoV-2 infection during pregnancy. We investigated immune cell rewiring using flow cytometry, single-cell RNA sequencing, and functional readouts using ex vivo stimulation with TLR agonists and pathogens. Maternal infection was associated with increased frequency of memory T and B cells and nonclassical monocytes in cord blood. Ex vivo T and B cell responses to stimulation were attenuated, suggesting a tolerogenic state. Maladaptive responses were also observed in cord blood monocytes, where antiviral responses were dampened but responses to bacterial TLRs were increased. Maternal infection was also associated with expansion and activation of placental Hofbauer cells, secreting elevated levels of myeloid cell-recruiting chemokines. Moreover, we reported increased activation of maternally derived monocytes/macrophages in the fetal placenta that were transcriptionally primed for antiviral responses. Our data indicate that even in the absence of vertical transmission or symptoms in the neonate, mild/asymptomatic maternal COVID-19 altered the transcriptional and functional state in fetal immune cells in circulation and in the placenta.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, and
- Institute for Immunology, University of California, Irvine, California, USA
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
48
|
Barrozo ER, Seferovic MD, Castro ECC, Major AM, Moorshead DN, Jochum MD, Rojas RF, Shope CD, Aagaard KM. SARS-CoV-2 niches in human placenta revealed by spatial transcriptomics. MED 2023; 4:612-634.e4. [PMID: 37423216 PMCID: PMC10527005 DOI: 10.1016/j.medj.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Functional placental niches are presumed to spatially separate maternal-fetal antigens and restrict the vertical transmission of pathogens. We hypothesized a high-resolution map of placental transcription could provide direct evidence for niche microenvironments with unique functions and transcription profiles. METHODS We utilized Visium Spatial Transcriptomics paired with H&E staining to generate 17,927 spatial transcriptomes. By integrating these spatial transcriptomes with 273,944 placental single-cell and single-nuclei transcriptomes, we generated an atlas composed of at least 22 subpopulations in the maternal decidua, fetal chorionic villi, and chorioamniotic membranes. FINDINGS Comparisons of placentae from uninfected healthy controls (n = 4) with COVID-19 asymptomatic (n = 4) and symptomatic (n = 5) infected participants demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in syncytiotrophoblasts occurred in both the presence and the absence of maternal clinical disease. With spatial transcriptomics, we found that the limit of detection for SARS-CoV-2 was 1/7,000 cells, and placental niches without detectable viral transcripts were unperturbed. In contrast, niches with high SARS-CoV-2 transcript levels were associated with significant upregulation in pro-inflammatory cytokines and interferon-stimulated genes, altered metallopeptidase signaling (TIMP1), with coordinated shifts in macrophage polarization, histiocytic intervillositis, and perivillous fibrin deposition. Fetal sex differences in gene expression responses to SARS-CoV-2 were limited, with confirmed mapping limited to the maternal decidua in males. CONCLUSIONS High-resolution placental transcriptomics with spatial resolution revealed dynamic responses to SARS-CoV-2 in coordinate microenvironments in the absence and presence of clinically evident disease. FUNDING This work was supported by the NIH (R01HD091731 and T32-HD098069), NSF (2208903), the Burroughs Welcome Fund and the March of Dimes Preterm Birth Research Initiatives, and a Career Development Award from the American Society of Gene and Cell Therapy.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Maxim D Seferovic
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eumenia C C Castro
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - David N Moorshead
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ricardo Ferral Rojas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cynthia D Shope
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
49
|
Shook LL, James KE, Roberts DJ, Powe CE, Perlis RH, Thornburg KL, O'Tierney-Ginn PF, Edlow AG. Sex-specific impact of maternal obesity on fetal placental macrophages and cord blood triglycerides. Placenta 2023; 140:100-108. [PMID: 37566941 PMCID: PMC10529163 DOI: 10.1016/j.placenta.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Maternal obesity is associated with increased risk of offspring obesity and cardiometabolic disease. Altered fetoplacental immune programming is a potential candidate mechanism. Differences in fetal placental macrophages, or Hofbauer cells (HBCs), have been observed in maternal obesity, and lipid metabolism is a key function of resident macrophages that may be deranged in inflammation/immune activation. We sought to test the following hypotheses: 1) maternal obesity is associated with altered HBC density and phenotype in the term placenta and 2) obesity-associated HBC changes are associated with altered placental lipid transport to the fetus. The impact of fetal sex was evaluated in all experiments. METHODS We quantified the density and morphology of CD163-and CD68-positive HBCs in placental villi in 34 full-term pregnancies undergoing cesarean delivery (N = 15, maternal BMI ≥30 kg/m2; N = 19, BMI <30 kg/m2). Antibody-positive cells in terminal villi were detected and cell size and circularity analyzed using a semi-automated method for thresholding of bright-field microscopy images (ImageJ). Placental expression of lipid transporter genes was quantified using RTqPCR, and cord plasma triglycerides (TGs) were profiled using modified Wahlefeld method. The impact of maternal obesity and fetal sex on HBC features, lipid transporters, and cord TGs were evaluated by two-way ANOVA. Spearman correlations of cord TGs, HBC metrics and gene expression levels were calculated. RESULTS Maternal obesity was associated with significantly increased density of HBCs, with male placentas most affected (fetal sex by maternal obesity interaction p = 0.04). CD163+ HBCs were larger and rounder in obesity-exposed male placentas. Sexually dimorphic expression of placental FATP4, FATP6, FABPPM, AMPKB1 and AMPKG and cord TGs was noted in maternal obesity, such that levels were higher in males and lower in females relative to sex-matched controls. Cord TGs were positively correlated with HBC density and FATP1 expression. DISCUSSION Maternal obesity is associated with sex-specific alterations in HBC density and placental lipid transporter expression, which may impact umbilical cord blood TG levels and offspring cardiometabolic programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kaitlyn E James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Camille E Powe
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Department of Medicine, Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA; Center for Quantitative Health, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Perrie F O'Tierney-Ginn
- Tufts Medical Center, Mother Infant Research Institute, Box# 394, 800 Washington Street, Boston, MA, 02111, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
50
|
Mao J, Feng Y, Zhu X, Ma F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023; 13:1213. [PMID: 37627278 PMCID: PMC10452754 DOI: 10.3390/biom13081213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal-fetal interface during pregnancy and is essential in establishing immune tolerance. This review provides a comprehensive understanding of the multiple molecular mechanisms by which HLA-G regulates the immune function of NK cells. It highlights that HLA-G binds to microRNA to suppress NK cell cytotoxicity and stimulate the secretion of growth factors to support fetal growth. The interactions between HLA-G and NK cells also activate senescence signaling, promoting spiral artery remodeling and maintaining the balance of maternal-fetal immune responses. In addition, HLA-G can inhibit the function of decidual T cells, dendritic cells, and macrophages. Overall, the interaction between trophoblast cells and immune cells mediated by HLA-G plays a crucial role in understanding immune regulation at the maternal-fetal interface and offers insights into potential treatments for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jia Mao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|