1
|
Waizman DA, Brown-Soler I, Martin AL, Ma Y, Zhou K, Israni-Winger K, Zhang C, Medzhitov R, Launay P, Michieletto MF, Henao-Mejia J, Palm NW, Craft J, Eisenstein A, Wang A. Skin damage signals mediate allergic sensitization to spatially unlinked antigen. Sci Immunol 2025; 10:eadn0688. [PMID: 40184440 PMCID: PMC12100540 DOI: 10.1126/sciimmunol.adn0688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/10/2024] [Accepted: 03/13/2025] [Indexed: 04/06/2025]
Abstract
Our current understanding of immunity to pathogens suggests that anatomic coupling of antigens with danger signals is a required feature for the formation of immune memory. However, in the context of pathogen-independent inflammation, the stringency of this anatomical coupling is unclear. Here, we demonstrate that multiple modes of skin injury were sufficient to induce a humoral response to antigens introduced in the gut. Skin damage induced a narrow subset of endocrine cytokines that were necessary and sufficient for the priming of antigens introduced at various distal tissues. Thus, in addition to "local priming" of antigen entering through damaged skin, there also exists another paradigm of "remote priming" where anatomical coupling is not essential because of the dissemination of damage-associated intermediaries. Our findings have implications for understanding the fundamental mechanisms of the formation of humoral memory with wide implications for diseases such as food allergy and in vaccinology.
Collapse
Affiliation(s)
- Daniel A. Waizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Isabela Brown-Soler
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anjelica L. Martin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yifan Ma
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kenneth Zhou
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Cuiling Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Pierre Launay
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
| | - Michaël F. Michieletto
- Institute for Immunology and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Institute for Immunology and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, and Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joe Craft
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Internal Medicine (Rheumatology, Allergy, and Immunology), Yale School of Medicine, New Haven, CT 06510, USA
| | - Anna Eisenstein
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Internal Medicine (Rheumatology, Allergy, and Immunology), Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Sabapathy V, Price A, Cheru NT, Venkatadri R, Dogan M, Costlow G, Mohammad S, Sharma R. ST2 + T-Regulatory Cells in Renal Inflammation and Fibrosis after Ischemic Kidney Injury. J Am Soc Nephrol 2025; 36:73-86. [PMID: 39186386 PMCID: PMC11706559 DOI: 10.1681/asn.0000000000000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Key Points IL-33/ST2 alarmin pathway regulates inflammation, fibrosis, and resolution of ischemia-reperfusion injury of kidneys. ST2 regulates the transcriptome of T-regulatory cells related to suppressive and reparative functions. The secretome of ST2+ T-regulatory cells regulates hypoxic injury in an amphiregulin-dependent manner. Background Inflammation is a major cause of kidney injury. IL-1 family cytokine IL-33 is released from damaged cells and modulates the immune response through its receptor ST2 expressed on many cell types, including regulatory T cells (Tregs). Although a proinflammatory role of IL-33 has been proposed, exogenous IL-33 expanded Tregs and suppressed renal inflammation. However, the contribution of endogenous IL-33/ST2 for the role of Tregs in the resolution of kidney injury has not been investigated. Methods We used murine renal ischemia-reperfusion injury and kidney organoids (KDOs) to delineate the role of the ST2 and amphiregulin (AREG) specifically in Tregs using targeted deletion. Bulk and single-cell RNA sequencing were performed on flow-sorted Tregs from spleen and CD4 T cells from postischemic kidneys, respectively. The protective role of ST2-sufficient Tregs was analyzed using a novel coculture system of syngeneic KDOs and Tregs under hypoxic conditions. Results Bulk RNA sequencing of splenic and single-cell RNA sequencing of kidney CD4 T cells showed that ST2+ Tregs are enriched for genes related to Treg proliferation and function. Genes for reparative factors, such as Areg , were also enriched in ST2+ Tregs. Treg-specific deletion of ST2 or AREG exacerbated kidney injury and fibrosis in the unilateral ischemia-reperfusion injury model. In coculture studies, wild-type but not ST2-deficient Tregs preserved hypoxia-induced loss of kidney organoid viability, which was restored by AREG supplementation. Conclusions Our study identified the role of the IL-33/ST2 pathway in Tregs for resolution of kidney injury. The transcriptome of ST2+ Tregs was enriched for reparative factors including Areg . Lack of ST2 or AREG in Tregs worsened kidney injury. Tregs protected KDOs from hypoxia in a ST2- and AREG-dependent manner.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Airi Price
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of International Health, Georgetown University, Washington, DC
| | - Nardos Tesfaye Cheru
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Rajkumar Venkatadri
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Immunology Research Unit, GlaxoSmithKline (GSK), Collegeville, Pennsylvania
| | - Murat Dogan
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of Transplant Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabrielle Costlow
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Saleh Mohammad
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
3
|
Chen Q, Xiang D, Liang Y, Meng H, Zhang X, Lu J. Interleukin-33: Expression, regulation and function in adipose tissues. Int Immunopharmacol 2024; 143:113285. [PMID: 39362016 DOI: 10.1016/j.intimp.2024.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine of the IL-1 family that plays a key role in innate and adaptive immune responses and contributes to tissue homeostasis. Its role in adipose tissue function has been extensively studied, as adipose tissue serves as an important mediator of metabolic dysfunction. In adipose tissue, IL-33 is primarily produced by stromal cells. Its production is regulated by factors, such as androgens, aging, sympathetic innervation, and various inflammatory stimuli that affect the proliferation and differentiation of IL-33-producing stromal cells. Many studies have elucidated the mechanisms by which IL-33 interacts with the immune system components, local nerve fibers, and adipocytes to influence energy balance, with important consequences in obesity, cold-induced thermogenesis, and aging-related metabolic dysfunction. Here, we detail our current understanding of the molecular events that regulate the production of IL-33 within adipose tissue and discuss its role in regulating adipose function.
Collapse
Affiliation(s)
- Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Wu S, Jiao J, Wang N, He N, Wu Y, Jiang H, Fang Z, Chen R, Liu Y, Liu Y, Chen L, Zheng X, Jiang J. Tregs ST2 deficiency enhances the abscopal anti-tumor response induced by microwave ablation. Int Immunopharmacol 2024; 143:113330. [PMID: 39423663 DOI: 10.1016/j.intimp.2024.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Thermal ablation (TA), including radiofrequency ablation (RFA) and Microwave ablation (MWA) could reduce tumor burden and can stimulate an immune response, but it cannot maintain a lasting immune response. The alarming cytokine IL-33 is constitutively expressed by epithelial cells, endothelial cells, and fibroblasts, but is released during tissue injury to alert the immune system. The presence of ST2+Tregs in TME may act as a barrier contributing to this phenomenon. METHODS In this study, we explored the impact of RFA on the expression of ST2 (also known as IL1RL1) in tumor-infiltrating lymphocytes (TILs). Subsequently, we constructed a Treg cell-specific deletion ST2 mouse model (Foxp3CreIl1rl1fl/fl) and evaluated the genetic phenotypes by flow cytometry. A bilateral dorsal tumor-bearing model was established in Foxp3Cre and Foxp3CreIl1rl1fl/fl mice to explore the anti-tumor effect of MWA. Finally, we used flow cytometry and single-cell transcriptome sequencing (scRNA-seq) to profile CD45+ immune cells within TME. RESULTS Our findings suggest that ablation upregulates ST2 expression in Tregs within the contralateral TME. Compared with Foxp3Cre mice, MWA significantly inhibited the growth of contralateral tumors in Foxp3CreIl1rl1fl/fl mice. Its mechanisms include reducing the proportion of Tregs, enhancing the infiltration and effector function of CD8+T cells, increasing the proportion of Effector CD8+T cells, reducing the proportion of Exhausted CD8+T cells, increasing MHC-I molecules in mDC cells and monocytes, and reducing the expression of TAM2 inhibitory molecules and chemokines. CONCLUSIONS Blocking IL-33/ST2 pathway in Tregs offers a new strategy for MWA in clinical studies of metastatic cancer.
Collapse
Affiliation(s)
- Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jing Jiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Nuo Wang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - You Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yungang Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213011 Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
5
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
6
|
Troch KF, Jakob MO, Forster PM, Jarick KJ, Schreiber J, Preusser A, Guerra GM, Durek P, Tizian C, Sterczyk N, Helfrich S, Duerr CU, Voehringer D, Witkowski M, Artis D, Rollenske T, Kruglov AA, Mashreghi MF, Klose CSN. Group 2 innate lymphoid cells are a non-redundant source of interleukin-5 required for development and function of murine B1 cells. Nat Commun 2024; 15:10566. [PMID: 39632879 PMCID: PMC11618303 DOI: 10.1038/s41467-024-54780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Tissue-resident immune cells, such as innate lymphoid cells, mediate protective or detrimental immune responses at barrier surfaces. Upon activation by stromal or epithelial cell-derived alarmins, group 2 innate lymphoid cells (ILC2s) are a rapid source of type 2 cytokines, such as IL-5. However, due to the overlap in effector functions, it remains unresolved whether ILC2s are an essential component of the type 2 response or whether their function can be compensated by other cells, such as T cells. Here we show a non-redundant role of ILC2s in supporting the development and function of B1 cells. We demonstrate that B1 cells fail to develop properly in the absence of ILC2s and identify the IL-33 receptor on ILC2s as an essential cell-intrinsic regulator of IL-5 production. Further, conditional deletion of Il5 in ILC2s results in defective B1 cell development and immunoglobulin production. Consequently, B1 cells with phosphatidylcholine specific B cell receptor rearrangements are diminished in ILC2-deficient mice. Thus, our data establish an essential function of ILC2s in supporting B1 cells and antibody production at barrier surfaces.
Collapse
Affiliation(s)
- Karoline F Troch
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Manuel O Jakob
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Patrycja M Forster
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Katja J Jarick
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Jonathan Schreiber
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Preusser
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Gabriela M Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Caroline Tizian
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Nele Sterczyk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Sofia Helfrich
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - Claudia U Duerr
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tim Rollenske
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Andrey A Kruglov
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Christoph S N Klose
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany.
| |
Collapse
|
7
|
Hattori K, Tanaka S, Hashiba D, Tamura J, Etori K, Kageyama T, Ito T, Meguro K, Iwata A, Suto A, Suzuki K, Nakamura J, Ohtori S, Ziegler SF, Nakajima H. Synovial regulatory T cells expressing ST2 deteriorate joint inflammation through the suppression of immunoregulatory eosinophils. J Autoimmun 2024; 149:103333. [PMID: 39509740 DOI: 10.1016/j.jaut.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic polyarthritis. It is well-established that helper T cells play crucial roles in the development and deterioration of RA. Recent studies also revealed the significant roles of regulatory T (Treg) cells in this context. Although Treg cells distributed in peripheral tissues exhibit various functions, the characteristics of synovial Treg cells remain unknown. In this study, we demonstrate that synovial Treg cells exacerbate synovial inflammation by reducing the number of immunoregulatory eosinophils through competitive consumption of IL-33. Synovial Treg cells expressed ST2 in a murine arthritis model, and surprisingly, Treg-specific ST2 knockout (ST2ΔTreg) mice exhibited attenuated arthritis. In ST2ΔTreg mice, an increase in immunoregulatory synovial eosinophils was observed. Additionally, immunoregulatory eosinophils were found to express ST2, and ST2-expressing Treg cells controlled the abundance of immunoregulatory eosinophils, possibly by consuming IL-33. Our results highlight that a subset of synovial Treg cells possesses the machinery to worsen arthritis by suppressing eosinophils. In the future landscape where Treg cell-based therapies are employed for autoimmune diseases, it is important to comprehend the characteristics of disease-related Treg cells. Understanding these aspects is crucial for ensuring safer treatment modalities that do not inadvertently worsen the diseases.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Eosinophils/immunology
- Eosinophils/metabolism
- Mice
- Interleukin-1 Receptor-Like 1 Protein/metabolism
- Interleukin-1 Receptor-Like 1 Protein/genetics
- Mice, Knockout
- Interleukin-33/metabolism
- Interleukin-33/immunology
- Interleukin-33/genetics
- Synovial Membrane/immunology
- Synovial Membrane/pathology
- Synovial Membrane/metabolism
- Disease Models, Animal
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Humans
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Koto Hattori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Daisuke Hashiba
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Jun Tamura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Keishi Etori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101-2795, USA.
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| |
Collapse
|
8
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024; 54:e2451055. [PMID: 39240039 PMCID: PMC11628923 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Julie C. Ribot
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| |
Collapse
|
9
|
Yuan X, Rech JC, Ramaraju A, Patil AD, Rajanayake K, Yuan H, Kazemi Sabzvar M, Mandal M, Cho EB, Wen B, Jiang J, Leo MD, Singh UP, Sun D, Yang CY. Studies of Structure-Activity Relationship of 2-(Pyrrolidin-1ylmethyl)-1 H-pyrrole-Based ST2 Inhibitors and Their Inhibition of Mast Cells Activation. ACS Med Chem Lett 2024; 15:2053-2059. [PMID: 39563831 PMCID: PMC11571090 DOI: 10.1021/acsmedchemlett.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
ST2 belongs to the interleukin 1 receptor family and is expressed in immune cells including certain CD4+ T cells and mast cells. Binding of ST2 with interleukin 33 (IL-33) induces downstream signaling that activates NF-κB pathway. Although the ST2/IL-33 axis exerts immune tolerance via expansion of regulator T cells, the same axis also activates a subset of immune cells to produce proinflammatory cytokines in host defense or in tissue repair. Here, we reported the development of ST2 inhibitors with improved inhibitory activities against ST2 and metabolic stability based on a previous lead, iST2-14e. Using the human mast cell line (LAD2), we showed that ST2 inhibitors mitigated ST2 upregulation and reduced IL-1β released through degranulation, demonstrating that small-molecule ST2 inhibitors effectively attenuated the ST2/IL-33 signaling in human mast cells. Further optimization of the compounds may lay the foundation for developing ST2 inhibitors for the treatment of mast cells mediated diseases.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jason C. Rech
- Department
of Internal Medicine, Hematology and Oncology, Michigan Center for Therapeutic Innovation, Ann Arbor, Michigan 48109, United States
| | - Andhavaram Ramaraju
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Amol D. Patil
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Krishani Rajanayake
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hebao Yuan
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mona Kazemi Sabzvar
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mousumi Mandal
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Eun Bee Cho
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bo Wen
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianxiong Jiang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - M. Dennis Leo
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Udai P. Singh
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duxin Sun
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
Huang X, Rudensky AY. Regulatory T cells in the context: deciphering the dynamic interplay with the tissue environment. Curr Opin Immunol 2024; 89:102453. [PMID: 39173413 PMCID: PMC11428145 DOI: 10.1016/j.coi.2024.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The delicate balance between protective immunity against pathogens and the prevention of autoimmunity requires finely tuned generation and function of regulatory CD4+ T (Treg) cells. Here, we review recent progress in the understanding of a complex set of cues, which converge on Treg cells in lymphoid and nonlymphoid organs and in tumors and how these cues modulate Treg functions. We highlight the versatility of Treg cells underlying their ability to dynamically adapt to local microenvironments and perform a wide range of functions that extend beyond the archetypal role of Treg cells in moderating adverse effects of immune response-associated inflammation and in suppressing autoimmunity.
Collapse
Affiliation(s)
- Xiao Huang
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Stockis J, Yip T, Moreno-Vicente J, Burton O, Samarakoon Y, Schuijs MJ, Raghunathan S, Garcia C, Luo W, Whiteside SK, Png S, Simpson C, Monk S, Sawle A, Yin K, Barbieri J, Papadopoulos P, Wong H, Rodewald HR, Vyse T, McKenzie ANJ, Cragg MS, Hoare M, Withers DR, Fehling HJ, Roychoudhuri R, Liston A, Halim TYF. Cross-talk between ILC2 and Gata3 high T regs locally constrains adaptive type 2 immunity. Sci Immunol 2024; 9:eadl1903. [PMID: 39028828 DOI: 10.1126/sciimmunol.adl1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.
Collapse
Affiliation(s)
- Julie Stockis
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Thomas Yip
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Oliver Burton
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Youhani Samarakoon
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martijn J Schuijs
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Celine Garcia
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Weike Luo
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sarah K Whiteside
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaun Png
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Charlotte Simpson
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stela Monk
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ashley Sawle
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kelvin Yin
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Johanna Barbieri
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Hannah Wong
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Hoare
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hans Jörg Fehling
- Institute of Immunology, University Hospital Ulm, Ulm 89081, Germany
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | |
Collapse
|
12
|
Elkins C, Li C. Deciphering visceral adipose tissue regulatory T cells: Key contributors to metabolic health. Immunol Rev 2024; 324:52-67. [PMID: 38666618 PMCID: PMC11262988 DOI: 10.1111/imr.13336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Iamsawat S, Yu R, Kim S, Dvorina N, Qiu K, Choi J, Baldwin WM, Min B. Single-Cell Analysis Uncovers Striking Cellular Heterogeneity of Lung-Infiltrating Regulatory T Cells during Eosinophilic versus Neutrophilic Allergic Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1867-1876. [PMID: 38647384 PMCID: PMC11147735 DOI: 10.4049/jimmunol.2300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Allergic airway inflammation results from uncontrolled immune responses to environmental Ags. Although it is well established that allergic immune responses exhibit a high degree of diversity, driven by primary effector cell types such as eosinophils, neutrophils, or CD4 T cells with distinct effector signatures, the mechanisms responsible for such pathogenesis remain elusive. Foxp3+ regulatory T cells (Tregs) are essential immune regulators during chronic inflammation, including allergic airway inflammation. Emerging evidence suggests that Tregs infiltrating inflamed tissues exhibit distinct phenotypes dependent on the specific tissue sites and can display heterogeneity and tissue residency. Whether diverse allergic airway inflammatory responses influence infiltrating Treg heterogeneity or Treg lung residency has not been explored. We employed an unbiased single-cell RNA sequencing approach to investigate lung-infiltrating Tregs in models of eosinophilic and neutrophilic airway inflammation. We found that lung-infiltrating Tregs are highly heterogeneous, and that Tregs displaying lung-resident phenotypes are significantly different depending on the types of inflammation. Treg expression of ST2, a receptor for alarmin IL-33, was predominantly associated with eosinophilic inflammation and tissue residency. Nevertheless, Treg-specific ST2 deficiency did not affect the development of eosinophilic allergic inflammation or the generation of lung-resident Tregs. These results uncover a stark heterogeneity among Tregs infiltrating the lungs during allergic airway inflammation. The results indicate that varying types of inflammation may give rise to phenotypically distinct lung-resident Tregs, underscoring a (to our knowledge) novel mechanism by which inflammatory cues may shape the composition of infiltrating Tregs, allowing them to regulate inflammatory responses through tissue-adapted mechanisms.
Collapse
Affiliation(s)
- Supinya Iamsawat
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
14
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
15
|
Soedono S, Sharlene S, Vo DHN, Averia M, Rosalie EE, Lee YK, Cho KW. Obese visceral adipose dendritic cells downregulate regulatory T cell development through IL-33. Front Immunol 2024; 15:1335651. [PMID: 38566998 PMCID: PMC10985834 DOI: 10.3389/fimmu.2024.1335651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sharlene Sharlene
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Dan Hoang Nguyet Vo
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Maria Averia
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Eufrasia Elaine Rosalie
- Faculty of Biotechnology, Department of Food Technology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
16
|
Becker M, Dirschl SM, Scherm MG, Serr I, Daniel C. Niche-specific control of tissue function by regulatory T cells-Current challenges and perspectives for targeting metabolic disease. Cell Metab 2024; 36:229-239. [PMID: 38218187 DOI: 10.1016/j.cmet.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Tissue regulatory T cells (Tregs) exert pivotal functions in both immune and metabolic regulation, maintaining local tissue homeostasis, integrity, and function. Accordingly, Tregs play a crucial role in controlling obesity-induced inflammation and supporting efficient muscle function and repair. Depending on the tissue context, Tregs are characterized by unique transcriptomes, growth, and survival factors and T cell receptor (TCR) repertoires. This functional specialization offers the potential to selectively target context-specific Treg populations, tailoring therapeutic strategies to specific niches, thereby minimizing potential side effects. Here, we discuss challenges and perspectives for niche-specific Treg targeting, which holds promise for highly efficient and precise medical interventions to combat metabolic disease.
Collapse
Affiliation(s)
- Maike Becker
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Sandra M Dirschl
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Martin G Scherm
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Isabelle Serr
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Carolin Daniel
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany; Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
17
|
Brunner TM, Serve S, Marx AF, Fadejeva J, Saikali P, Dzamukova M, Durán-Hernández N, Kommer C, Heinrich F, Durek P, Heinz GA, Höfer T, Mashreghi MF, Kühn R, Pinschewer DD, Löhning M. A type 1 immunity-restricted promoter of the IL-33 receptor gene directs antiviral T-cell responses. Nat Immunol 2024; 25:256-267. [PMID: 38172258 PMCID: PMC10834369 DOI: 10.1038/s41590-023-01697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.
Collapse
Affiliation(s)
- Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| | - Sebastian Serve
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Philippe Saikali
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Maria Dzamukova
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Nayar Durán-Hernández
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christoph Kommer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Frederik Heinrich
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
18
|
Griffith JW, Faustino LD, Cottrell VI, Nepal K, Hariri LP, Chiu RSY, Jones MC, Julé A, Gabay C, Luster AD. Regulatory T cell-derived IL-1Ra suppresses the innate response to respiratory viral infection. Nat Immunol 2023; 24:2091-2107. [PMID: 37945820 PMCID: PMC11887468 DOI: 10.1038/s41590-023-01655-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Regulatory T (Treg) cell modulation of adaptive immunity and tissue homeostasis is well described; however, less is known about Treg cell-mediated regulation of the innate immune response. Here we show that deletion of ST2, the receptor for interleukin (IL)-33, on Treg cells increased granulocyte influx into the lung and increased cytokine production by innate lymphoid and γδ T cells without alteration of adaptive immunity to influenza. IL-33 induced high levels of the interleukin-1 receptor antagonist (IL-1Ra) in ST2+ Treg cells and deletion of IL-1Ra in Treg cells increased granulocyte influx into the lung. Treg cell-specific deletion of ST2 or IL-1Ra improved survival to influenza, which was dependent on IL-1. Adventitial fibroblasts in the lung expressed high levels of the IL-1 receptor and their chemokine production was suppressed by Treg cell-produced IL-1Ra. Thus, we define a new pathway where IL-33-induced IL-1Ra production by tissue Treg cells suppresses IL-1-mediated innate immune responses to respiratory viral infection.
Collapse
Affiliation(s)
- Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas D Faustino
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria I Cottrell
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keshav Nepal
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Suet-Yan Chiu
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael C Jones
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amélie Julé
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cem Gabay
- Division of Rheumatology, University Hospitals of Geneva and University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Ramanan D, Pratama A, Zhu Y, Venezia O, Sassone-Corsi M, Chowdhary K, Galván-Peña S, Sefik E, Brown C, Gélineau A, Mathis D, Benoist C. Regulatory T cells in the face of the intestinal microbiota. Nat Rev Immunol 2023; 23:749-762. [PMID: 37316560 DOI: 10.1038/s41577-023-00890-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Regulatory T cells (Treg cells) are key players in ensuring a peaceful coexistence with microorganisms and food antigens at intestinal borders. Startling new information has appeared in recent years on their diversity, the importance of the transcription factor FOXP3, how T cell receptors influence their fate and the unexpected and varied cellular partners that influence Treg cell homeostatic setpoints. We also revisit some tenets, maintained by the echo chambers of Reviews, that rest on uncertain foundations or are a subject of debate.
Collapse
Affiliation(s)
| | - Alvin Pratama
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Esen Sefik
- Department of Immunology, Yale University, New Haven, CT, USA
| | - Chrysothemis Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
21
|
Maes B, Fayazpour F, Catrysse L, Lornet G, Van De Velde E, De Wolf C, De Prijck S, Van Moorleghem J, Vanheerswynghels M, Deswarte K, Descamps B, Vanhove C, Van der Schueren B, Vangoitsenhoven R, Hammad H, Janssens S, Lambrecht BN. STE20 kinase TAOK3 regulates type 2 immunity and metabolism in obesity. J Exp Med 2023; 220:e20210788. [PMID: 37347461 PMCID: PMC10287548 DOI: 10.1084/jem.20210788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Leen Catrysse
- Cellular and Molecular (Patho)Physiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Guillaume Lornet
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Evelien Van De Velde
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP-Infinity Lab, Ghent University, Ghent, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam Netherlands
| |
Collapse
|
22
|
Sivasami P, Elkins C, Diaz-Saldana PP, Goss K, Peng A, Hamersky M, Bae J, Xu M, Pollack BP, Horwitz EM, Scharer CD, Seldin L, Li C. Obesity-induced dysregulation of skin-resident PPARγ + Treg cells promotes IL-17A-mediated psoriatic inflammation. Immunity 2023; 56:1844-1861.e6. [PMID: 37478855 PMCID: PMC10527179 DOI: 10.1016/j.immuni.2023.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Obesity is a major risk factor for psoriasis, but how obesity disrupts the regulatory mechanisms that keep skin inflammation in check is unclear. Here, we found that skin was enriched with a unique population of CD4+Foxp3+ regulatory T (Treg) cells expressing the nuclear receptor peroxisome proliferation-activated receptor gamma (PPARγ). PPARγ drove a distinctive transcriptional program and functional suppression of IL-17A+ γδ T cell-mediated psoriatic inflammation. Diet-induced obesity, however, resulted in a reduction of PPARγ+ skin Treg cells and a corresponding loss of control over IL-17A+ γδ T cell-mediated inflammation. Mechanistically, PPARγ+ skin Treg cells preferentially took up elevated levels of long-chain free fatty acids in obese mice, which led to cellular lipotoxicity, oxidative stress, and mitochondrial dysfunction. Harnessing the anti-inflammatory properties of these PPARγ+ skin Treg cells could have therapeutic potential for obesity-associated inflammatory skin diseases.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pamela P Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kyndal Goss
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Hamersky
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer Bae
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Cheru N, Hafler DA, Sumida TS. Regulatory T cells in peripheral tissue tolerance and diseases. Front Immunol 2023; 14:1154575. [PMID: 37197653 PMCID: PMC10183596 DOI: 10.3389/fimmu.2023.1154575] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Maintenance of peripheral tolerance by CD4+Foxp3+ regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome. In more common human autoimmune diseases, defects in Treg function are accompanied with aberrant effector cytokines such as IFNγ. It has recently become appreciated that Tregs plays an important role in not only maintaining immune homeostasis but also in establishing the tissue microenvironment and homeostasis of non-lymphoid tissues. Tissue resident Tregs show profiles that are unique to their local environments which are composed of both immune and non-immune cells. Core tissue-residence gene signatures are shared across different tissue Tregs and are crucial to homeostatic regulation and maintaining the tissue Treg pool in a steady state. Through interaction with immunocytes and non-immunocytes, tissue Tregs exert a suppressive function via conventional ways involving contact dependent and independent processes. In addition, tissue resident Tregs communicate with other tissue resident cells which allows Tregs to adopt to their local microenvironment. These bidirectional interactions are dependent on the specific tissue environment. Here, we summarize the recent advancements of tissue Treg studies in both human and mice, and discuss the molecular mechanisms that maintain tissue homeostasis and prevent pathogenesis.
Collapse
Affiliation(s)
- Nardos Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Tomokazu S. Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Sbierski-Kind J, Cautivo KM, Wagner JC, Dahlgren MW, Nilsson J, Krasilnikov M, Mroz NM, Lizama CO, Gan AL, Matatia PR, Taruselli MT, Chang AA, Caryotakis S, O'Leary CE, Kotas M, Mattis AN, Peng T, Locksley RM, Molofsky AB. Group 2 innate lymphoid cells constrain type 3/17 lymphocytes in shared stromal niches to restrict liver fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.537913. [PMID: 37163060 PMCID: PMC10168323 DOI: 10.1101/2023.04.26.537913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.
Collapse
|
25
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
26
|
Zarin P, Shwartz Y, Ortiz-Lopez A, Hanna BS, Sassone-Corsi M, Hsu YC, Mathis D, Benoist C. Treg cells require Izumo1R to regulate γδT cell-driven inflammation in the skin. Proc Natl Acad Sci U S A 2023; 120:e2221255120. [PMID: 36972453 PMCID: PMC10083566 DOI: 10.1073/pnas.2221255120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Izumo1R is a pseudo-folate receptor with an essential role in mediating tight oocyte/spermatozoa contacts during fertilization. Intriguingly, it is also expressed in CD4+ T lymphocytes, in particular Treg cells under the control of Foxp3. To understand Izumo1R function in Treg cells, we analyzed mice with Treg-specific Izumo1r deficiency (Iz1rTrKO). Treg differentiation and homeostasis were largely normal, with no overt autoimmunity and only marginal increases in PD1+ and CD44hi Treg phenotypes. pTreg differentiation was also unaffected. Iz1rTrKO mice proved uniquely susceptible to imiquimod-induced, γδT cell-dependent, skin disease, contrasting with normal responses to several inflammatory or tumor challenges, including other models of skin inflammation. Analysis of Iz1rTrKO skin revealed a subclinical inflammation that presaged IMQ-induced changes, with an imbalance of Rorγ+ γδT cells. Immunostaining of normal mouse skin revealed the expression of Izumo1, the ligand for Izumo1R, electively in dermal γδT cells. We propose that Izumo1R on Tregs enables tight contacts with γδT cells, thereby controlling a particular path of skin inflammation.
Collapse
Affiliation(s)
- Payam Zarin
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | | | - Bola S. Hanna
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | | - Ya-chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
27
|
Topczewska PM, Rompe ZA, Jakob MO, Stamm A, Leclère PS, Preußer A, Duerr CU, Thole LML, Kotsch K, Artis D, Klose CSN. ILC2 require cell-intrinsic ST2 signals to promote type 2 immune responses. Front Immunol 2023; 14:1130933. [PMID: 37063913 PMCID: PMC10104602 DOI: 10.3389/fimmu.2023.1130933] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
The initiation of type 2 immune responses at mucosal barriers is regulated by rapidly secreted cytokines called alarmins. The alarmins IL-33, IL-25 and TSLP are mainly secreted by stromal and epithelial cells in tissues and were linked to chronic inflammatory diseases, such as allergic lung inflammation, or to resistance against worm infections. Receptors for alarmins are expressed by a variety of immune cells, including group 2 innate lymphoid cells (ILC2s), an early source of the type 2 cytokines, such as IL-5 and IL-13, which have been linked to atopic diseases and anti-worm immunity as well. However, the precise contribution of the IL-33 receptor signals for ILC2 activation still needs to be completed due to limitations in targeting genes in ILC2. Using the newly established Nmur1 iCre-eGFP mouse model, we obtained specific conditional genetic ablation of the IL-33 receptor subunit ST2 in ILC2s. ST2-deficient ILC2s were unresponsive to IL-33 but not to stimulation with the alarmin IL-25. As a result of defective ST2 signals, ILC2s produced limited amounts of IL-5 and IL-13 and failed to support eosinophil homeostasis. Further, ST2-deficient ILC2s were unable to expand and promote the recruitment of eosinophils during allergic lung inflammation provoked by papain administration. During infection with Nippostrongylus brasiliensis, ILC2-intrinsic ST2 signals were required to mount an effective type 2 immune response against the parasite leading to higher susceptibility against worm infection in conditional knockout mice. Therefore, this study argues for a non-redundant role of cell-intrinsic ST2 signals triggering proper activation of ILC2 for initiation of type 2 immunity.
Collapse
Affiliation(s)
- Patrycja M. Topczewska
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Zoe A. Rompe
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Manuel O. Jakob
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Anton Stamm
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Pierre S. Leclère
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Alexandra Preußer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Claudia U. Duerr
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| | - Linda Marie Laura Thole
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department for General and Visceral Surgery, Hindenburgdamm, Berlin, Germany
| | - Katja Kotsch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department for General and Visceral Surgery, Hindenburgdamm, Berlin, Germany
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Christoph S. N. Klose
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm, Berlin, Germany
| |
Collapse
|
28
|
Autoreactive T-Cells in Psoriasis: Are They Spoiled Tregs and Can Therapies Restore Their Functions? Int J Mol Sci 2023; 24:ijms24054348. [PMID: 36901778 PMCID: PMC10002349 DOI: 10.3390/ijms24054348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, which affects 2-4% of the population worldwide. T-cell derived factors such as Th17 and Th1 cytokines or cytokines such as IL-23, which favors Th17-expansion/differentiation, dominate in the disease. Therapies targeting these factors have been developed over the years. An autoimmune component is present, as autoreactive T-cells specific for keratins, the antimicrobial peptide LL37 and ADAMTSL5 have been described. Both autoreactive CD4 and CD8 T-cells exist, produce pathogenic cytokines, and correlate with disease activity. Along with the assumption that psoriasis is a T-cell-driven disease, Tregs have been studied extensively over the years, both in the skin and in circulation. This narrative review resumes the main findings about Tregs in psoriasis. We discuss how Tregs increase in psoriasis but are impaired in their regulatory/suppressive function. We debate the possibility that Tregs convert into T-effector cells under inflammatory conditions; for instance, they may turn into Th17-cells. We put particular emphasis on therapies that seem to counteract this conversion. We have enriched this review with an experimental section analyzing T-cells specific for the autoantigen LL37 in a healthy subject, suggesting that a shared specificity may exist between Tregs and autoreactive responder T-cells. This suggests that successful psoriasis treatments may, among other effects, restore Tregs numbers and functions.
Collapse
|
29
|
Braband KL, Kaufmann T, Floess S, Zou M, Huehn J, Delacher M. Stepwise acquisition of unique epigenetic signatures during differentiation of tissue Treg cells. Front Immunol 2022; 13:1082055. [PMID: 36569861 PMCID: PMC9772052 DOI: 10.3389/fimmu.2022.1082055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells in non-lymphoid tissues are not only critical for maintaining self-tolerance, but are also important for promoting organ homeostasis and tissue repair. It is proposed that the generation of tissue Treg cells is a stepwise, multi-site process, accompanied by extensive epigenome remodeling, finally leading to the acquisition of unique tissue-specific epigenetic signatures. This process is initiated in the thymus, where Treg cells acquire core phenotypic and functional properties, followed by a priming step in secondary lymphoid organs that permits Treg cells to exit the lymphoid organs and seed into non-lymphoid tissues. There, a final specialization process takes place in response to unique microenvironmental cues in the respective tissue. In this review, we will summarize recent findings on this multi-site tissue Treg cell differentiation and highlight the importance of epigenetic remodeling during these stepwise events.
Collapse
Affiliation(s)
- Kathrin L. Braband
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Tamara Kaufmann
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mangge Zou
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany,Hannover Medical School, Hannover, Germany
| | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany,*Correspondence: Michael Delacher,
| |
Collapse
|
30
|
Cytokine and metabolic regulation of adipose tissue Tregs. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00013. [PMID: 36337732 PMCID: PMC9624380 DOI: 10.1097/in9.0000000000000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 01/24/2023]
Abstract
Since their discovery over a decade ago, much has been learned regarding the importance and function of visceral adipose tissue (VAT)-resident regulatory T cells (Tregs). VAT Tregs play a critical role in controlling VAT inflammation and alleviating metabolic disease. However, this population is disrupted in obesity which exacerbates VAT inflammation and metabolic abnormalities. Therefore, understanding the factors governing the accumulation and maintenance of VAT Tregs, both at steady state and under disease conditions, is crucial for identifying the mechanisms underlying obesity-associated metabolic disease and developing novel therapies. Expansion and maintenance of the VAT Treg compartment is strongly influenced by factors in the local tissue microenvironment, including cytokines, T-cell receptor ligands, hormones, and various metabolites. This mini-review will primarily focus on recent advances in our understandings regarding the regulation of mouse epididymal VAT (eVAT) Tregs, which are the most thoroughly characterized VAT Treg population, by tissue microenvironmental factors and cellular metabolic processes. We will also briefly discuss the limited knowledge available regarding the regulation of mouse ovarian VAT (oVAT) Tregs and human omental VAT Tregs, highlight some lingering questions, and provide a prospective view on where the field is heading.
Collapse
|
31
|
Spath S, Roan F, Presnell SR, Höllbacher B, Ziegler SF. Profiling of Tregs across tissues reveals plasticity in ST2 expression and hierarchies in tissue-specific phenotypes. iScience 2022; 25:104998. [PMID: 36093048 PMCID: PMC9460833 DOI: 10.1016/j.isci.2022.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are critical mediators of peripheral tolerance and immune homeostasis and exert tissue-specific functions. In many nonlymphoid tissues, Tregs show enriched expression of the IL-33 receptor ST2. Through comprehensive profiling of murine ST2+ and ST2- Tregs, we found that Treg transcriptomes and phenotypes formed a hierarchical relationship across tissues. Only a small core signature distinguished ST2+ Tregs from ST2- Tregs across all tissues, and differences in transcriptional profiles were predominantly tissue-specific. We also identified unique, highly proliferative, circulating ST2+ Tregs with high migratory potential. In adoptive transfers, both ST2+ and ST2- Tregs seeded various host tissues and demonstrated plasticity in ST2 expression. Furthermore, Tregs from donor lungs were differentially recovered from host nonlymphoid tissues in an IL-33-dependent manner. In summary, our work identified tissue residency rather than ST2 expression as a primary driver of tissue Treg identity and highlights the unique, tissue-specific adaption of ST2+ Tregs. Tissue of residency rather than ST2 expression is a primary driver of Treg identity A small core signature distinguishes ST2+ Tregs from ST2- Tregs across tissues Circulating ST2+ Tregs have diverse chemokine receptor profiles Plasticity of ST2 expression on transferred Tregs occurs in a tissue-specific manner
Collapse
Affiliation(s)
- Sabine Spath
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Florence Roan
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Scott R. Presnell
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Barbara Höllbacher
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
- Institute of Computational Biology (ICB), Helmholtz Zentrum Muenchen (HMGU), 85764 Munich, Neuherberg, Germany
- Department of Informatics, TUM, 85748 Munich, Garching, Germany
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Corresponding author
| |
Collapse
|
32
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
33
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
de Picciotto S, DeVita N, Hsiao CJ, Honan C, Tse SW, Nguyen M, Ferrari JD, Zheng W, Wipke BT, Huang E. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat Commun 2022; 13:3866. [PMID: 35790728 PMCID: PMC9256694 DOI: 10.1038/s41467-022-31130-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Interleukin-2 (IL-2) is critical for regulatory T cell (Treg) function and homeostasis. At low doses, IL-2 can suppress immune pathologies by expanding Tregs that constitutively express the high affinity IL-2Rα subunit. However, even low dose IL-2, signaling through the IL2-Rβ/γ complex, may lead to the activation of proinflammatory, non-Treg T cells, so improving specificity toward Tregs may be desirable. Here we use messenger RNAs (mRNA) to encode a half-life-extended human IL-2 mutein (HSA-IL2m) with mutations promoting reliance on IL-2Rα. Our data show that IL-2 mutein subcutaneous delivery as lipid-encapsulated mRNA nanoparticles selectively activates and expands Tregs in mice and non-human primates, and also reduces disease severity in mouse models of acute graft versus host disease and experimental autoimmune encephalomyelitis. Single cell RNA-sequencing of mouse splenic CD4+ T cells identifies multiple Treg states with distinct response dynamics following IL-2 mutein treatment. Our results thus demonstrate the potential of mRNA-encoded HSA-IL2m immunotherapy to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zheng
- Moderna, Inc, Cambridge, MA, 02139, USA
| | | | - Eric Huang
- Moderna, Inc, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Yang K. Regulation of Treg Cell Metabolism and Function in Non-Lymphoid Tissues. Front Immunol 2022; 13:909705. [PMID: 35720275 PMCID: PMC9200993 DOI: 10.3389/fimmu.2022.909705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Regulator T cells (Tregs) play pivotal roles in maintaining immune tolerance and regulating immune responses against pathogens and tumors. Reprogramming of cellular metabolism has been determined as a crucial process that connects microenvironmental cues and signaling networks to influence homeostasis and function of tissue Tregs. In adaptation to a variety of non-lymphoid tissues, Tregs coordinate local immune signals and signaling networks to rewire cellular metabolic programs to sustain their suppressive function. Altered Treg metabolism in turn shapes Treg activation and function. In light of the advanced understanding of immunometabolism, manipulation of systemic metabolites has been emerging as an attractive strategy aiming to modulate metabolism and function of tissue Tregs and improve the treatment of immune-related diseases. In this review, we summarize key immune signals and metabolic programs involved in the regulation of tissue Tregs, review the mechanisms underlying the differentiation and function of Tregs in various non-lymphoid tissues, and discuss therapeutic intervention of metabolic modulators of tissue Tregs for the treatment of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Kai Yang
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
36
|
Tariq M, Gallien S, Surenaud M, Wiedemann A, Jean-Louis F, Lacabaratz C, Lopez Zaragoza JL, Zeitoun JD, Ysmail-Dalhouk S, Lelièvre JD, Lévy Y, Hüe S. Profound Defect of Amphiregulin Secretion by Regulatory T Cells in the Gut of HIV-Treated Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2300-2308. [PMID: 35500933 DOI: 10.4049/jimmunol.2100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The persistence of a leaky gut in HIV-treated patients leads to chronic inflammation with increased rates of cardiovascular, liver, kidney, and neurological diseases. Tissue regulatory T (tTreg) cells are involved in the maintenance of intestinal homeostasis and wound repair through the IL-33 pathway. In this study, we investigated whether the persistence of gut mucosal injury during HIV infection might be explained in part by a flaw in the mechanisms involved in tissue repair. We observed an increased level of IL-33 in the gut of HIV-infected patients, which is associated with an increased level of fibrosis and a low peripheral reconstitution of CD4+ T cells. Our results showed that intestinal Treg cells from HIV-infected patients were enriched in tTreg cells prone to support tissue repair. However, we observed a functional defect in tTreg cells caused by the lack of amphiregulin secretion, which could contribute to the maintenance of intestinal damage. Our data suggest a mechanism by which the lack of amphiregulin secretion by tTreg may contribute to the lack of repair of the epithelial barrier.
Collapse
Affiliation(s)
- Mubashira Tariq
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Sébastien Gallien
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Aurélie Wiedemann
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Francette Jean-Louis
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Christine Lacabaratz
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - José Luis Lopez Zaragoza
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | | | - Saliha Ysmail-Dalhouk
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Jean-Daniel Lelièvre
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Yves Lévy
- INSERM U955, Team 16, Créteil, France
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service de Maladies Infectieuses et Immunologie Clinique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Sophie Hüe
- INSERM U955, Team 16, Créteil, France;
- Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
- Service d'Immunologie Biologique, Groupe Hospitalier Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
37
|
Wang YM, Shaw K, Zhang GY, Chung EY, Hu M, Cao Q, Wang Y, Zheng G, Wu H, Chadban SJ, McCarthy HJ, Harris DC, Mackay F, Grey ST, Alexander SI. Interleukin-33 Exacerbates IgA Glomerulonephritis in Transgenic Mice Overexpressing B Cell Activating Factor. J Am Soc Nephrol 2022; 33:966-984. [PMID: 35387873 PMCID: PMC9063894 DOI: 10.1681/asn.2021081145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The cytokine IL-33 is an activator of innate lymphoid cells 2 (ILC2s) in innate immunity and allergic inflammation. B cell activating factor (BAFF) plays a central role in B cell proliferation and differentiation, and high levels of this protein cause excess antibody production, including IgA. BAFF-transgenic mice overexpress BAFF and spontaneously develop glomerulonephritis that resembles human IgA nephropathy. METHODS We administered IL-33 or PBS to wild-type and BAFF-transgenic mice. After treating Rag1-deficient mice with IL-33, with or without anti-CD90.2 to preferentially deplete ILC2s, we isolated splenocytes, which were adoptively transferred into BAFF-transgenic mice. RESULTS BAFF-transgenic mice treated with IL-33 developed more severe kidney dysfunction and proteinuria, glomerular sclerosis, tubulointerstitial damage, and glomerular deposition of IgA and C3. Compared with wild-type mice, BAFF-transgenic mice exhibited increases of CD19+ B cells in spleen and kidney and ILC2s in kidney and intestine, which were further increased by administration of IL-33. Administering IL-33 to wild-type mice had no effect on kidney function or histology, nor did it alter the number of ILC2s in spleen, kidney, or intestine. To understand the role of ILC2s, splenocytes were transferred from IL-33-treated Rag1-deficient mice into BAFF-transgenic mice. Glomerulonephritis and IgA deposition were exacerbated by transfer of IL-33-stimulated Rag1-deficient splenocytes, but not by ILC2 (anti-CD90.2)-depleted splenocytes. Wild-type mice infused with IL-33-treated Rag1-deficient splenocytes showed no change in kidney function or ILC2 numbers or distribution. CONCLUSIONS IL-33-expanded ILC2s exacerbated IgA glomerulonephritis in a mouse model. These findings indicate that IL-33 and ILC2s warrant evaluation as possible mediators of human IgA nephropathy.
Collapse
Affiliation(s)
- Yuan Min Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Karli Shaw
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Geoff Yu Zhang
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Edmund Y.M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Huiling Wu
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Steven J. Chadban
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Hugh J. McCarthy
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - David C.H. Harris
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Fabienne Mackay
- QIMR, University of Queensland, Brisbane, Queensland, Australia
| | - Shane T. Grey
- Transplantation Immunology Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
38
|
Xie D, Miao W, Xu F, Yuan C, Li S, Wang C, Junagade A, Hu X. IL-33/ST2 Axis Protects Against Traumatic Brain Injury Through Enhancing the Function of Regulatory T Cells. Front Immunol 2022; 13:860772. [PMID: 35432343 PMCID: PMC9006950 DOI: 10.3389/fimmu.2022.860772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a devastating condition due to its long-term sequelae on neurological functions. Inflammatory responses after TBI are critical for injury expansion and repair. Recent research in central nervous system (CNS) disorders reveals the importance of IL-33 and its receptor (ST2) as an alarmin system to initiate immune responses. This study explored the role of IL-33/ST2 signaling in TBI. TBI was induced in adult male C57BL/6J mice using a controlled cortical impact (CCI) model. We found that the expression of IL-33 increased in the injured brain and blood, and ST2 was elevated in the circulating and infiltrating regulatory T cells (Tregs) early after TBI. ST2 deficient mice exhibited reduced Treg numbers in the blood and brain 5 days after TBI. The brain lesion size was enlarged in ST2 knockout mice, which was accompanied by deteriorated sensorimotor function 5 days after TBI. In contrast, post-TBI treatment with IL-33 (2 μg/30 g body weight, intranasal) for 3 days significantly reduced brain lesion size and improved neurological functions 5 days after TBI. Meanwhile, IL-33 treatment increased ST2 expression in circulating and brain infiltrating Tregs. To further explore the involvement of Tregs in IL-33/ST2-mediated neuroprotection, Tregs were depleted by CD25 antibody injection. The absence of Tregs significantly reduced the protective effect of IL-33 after TBI. In vitro study confirmed that IL-33 (50 ng/ml) increased the production of IL-10 and TGFβ from activated Tregs and boosted the inhibitory effect of Tregs on T effector cell proliferation. Taken together, this study suggests that the activation of IL-33/ST2 signaling reduces brain lesion size and alleviates functional deficits after TBI at least partially through regulating the Treg response. IL-33 may represent a new immune therapeutic strategy to improve TBI outcomes.
Collapse
Affiliation(s)
- Di Xie
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wanying Miao
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fei Xu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Chunling Yuan
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sicheng Li
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chujun Wang
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aditi Junagade
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoming Hu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Kos K, Aslam MA, van de Ven R, Wellenstein MD, Pieters W, van Weverwijk A, Duits DEM, van Pul K, Hau CS, Vrijland K, Kaldenbach D, Raeven EAM, Quezada SA, Beyaert R, Jacobs H, de Gruijl TD, de Visser KE. Tumor-educated T regs drive organ-specific metastasis in breast cancer by impairing NK cells in the lymph node niche. Cell Rep 2022; 38:110447. [PMID: 35235800 DOI: 10.1016/j.celrep.2022.110447] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is accompanied by systemic immunosuppression, which facilitates metastasis formation, but how this shapes organotropism of metastasis is poorly understood. Here, we investigate the impact of mammary tumorigenesis on regulatory T cells (Tregs) in distant organs and how this affects multi-organ metastatic disease. Using a preclinical mouse mammary tumor model that recapitulates human metastatic breast cancer, we observe systemic accumulation of activated, highly immunosuppressive Tregs during primary tumor growth. Tumor-educated Tregs show tissue-specific transcriptional rewiring in response to mammary tumorigenesis. This has functional consequences for organotropism of metastasis, as Treg depletion reduces metastasis to tumor-draining lymph nodes, but not to lungs. Mechanistically, we find that Tregs control natural killer (NK) cell activation in lymph nodes, thereby facilitating lymph node metastasis. In line, an increased Treg/NK cell ratio is observed in sentinel lymph nodes of breast cancer patients compared with healthy controls. This study highlights that immune regulation of metastatic disease is highly organ dependent.
Collapse
Affiliation(s)
- Kevin Kos
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Muhammad A Aslam
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rieneke van de Ven
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Max D Wellenstein
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Wietske Pieters
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Antoinette van Weverwijk
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Danique E M Duits
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kim van Pul
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Cheei-Sing Hau
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Kim Vrijland
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elisabeth A M Raeven
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, WC1E 6DD London, UK
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam and Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, the Netherlands
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
40
|
Dragan M, Sun P, Chen Z, Ma X, Vu R, Shi Y, Villalta SA, Dai X. Epidermis-Intrinsic Transcription Factor Ovol1 Coordinately Regulates Barrier Maintenance and Neutrophil Accumulation in Psoriasis-Like Inflammation. J Invest Dermatol 2022; 142:583-593.e5. [PMID: 34461129 PMCID: PMC9968377 DOI: 10.1016/j.jid.2021.08.397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022]
Abstract
Skin epidermis constitutes the exterior barrier that protects the body from dehydration and environmental assaults. Barrier defects underlie common inflammatory skin diseases, but the molecular mechanisms that maintain barrier integrity and regulate epidermal-immune cell cross-talk in inflamed skin are not fully understood. In this study, we show that skin epithelia-specific deletion of Ovol1, which encodes a skin disease‒linked transcriptional repressor, impairs the epidermal barrier and aggravates psoriasis-like skin inflammation in mice in part by enhancing neutrophil accumulation and abscess formation. Through molecular studies, we identify IL-33, a cytokine with known pro-inflammatory and anti-inflammatory activities, and Cxcl1, a neutrophil-attracting chemokine, as potential weak and strong direct targets of Ovol1, respectively. Furthermore, we provide functional evidence that elevated Il33 expression reduces disease severity in imiquimod-treated Ovol1-deficient mice, whereas persistent accumulation and epidermal migration of neutrophils exacerbate it. Collectively, our study uncovers the importance of an epidermally expressed transcription factor that regulates both the integrity of the epidermal barrier and the behavior of neutrophils in psoriasis-like inflammation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Zeyu Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xianghui Ma
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA
| | - Yuling Shi
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - S Armando Villalta
- Institute for Immunology, University of California, Irvine, Irvine, California, USA; Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Institute for Immunology, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
41
|
Harkins AL, Kopec AL, Keeler AM. Regulatory T Cell Therapeutics for Neuroinflammatory Disorders. Crit Rev Immunol 2022; 42:1-27. [PMID: 37017285 PMCID: PMC11465901 DOI: 10.1615/critrevimmunol.2022045080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A delicate balance of immune regulation exists in the central nervous system (CNS) that is often dysreg-ulated in neurological diseases, making them complicated to treat. With altered immune surveillance in the diseased or injured CNS, signals that are beneficial in the homeostatic CNS can be disrupted and lead to neuroinflammation. Recent advances in niche immune cell subsets have provided insight into the complicated cross-talk between the nervous system and the immune system. Regulatory T cells (Tregs) are a subset of T cells that are capable of suppressing effector T-cell activation and regulating immune tolerance, and play an important role in neuroprotection. Tregs have been shown to be effective therapies in a variety of immune-related disorders including, graft-versus-host disease (GVHD), type 1 diabetes (T1D), and inflammatory bowel disease (IBD), as well as within the CNS. Recently, significant advancements in engineering T cells, such as chimeric antigen receptor (CAR) T cells, have led to several approved therapies suggesting the safety and efficacy for similar engineered Treg therapies. Further, as understanding of the immune system's role in neuroinflammation has progressed, Tregs have recently become a potential therapeutic in the neurology space. In this review, we discuss Tregs and their evolving role as therapies for neuroinflammatory related disorders.
Collapse
Affiliation(s)
- Ashley L. Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Allison M. Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
42
|
Sjaastad LE, Owen DL, Tracy SI, Farrar MA. Phenotypic and Functional Diversity in Regulatory T Cells. Front Cell Dev Biol 2021; 9:715901. [PMID: 34631704 PMCID: PMC8495164 DOI: 10.3389/fcell.2021.715901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
The concept that a subset of T cells exists that specifically suppresses immune responses was originally proposed over 50 years ago. It then took the next 30 years to solidify the concept of regulatory T cells (Tregs) into the paradigm we understand today - namely a subset of CD4+ FOXP3+ T-cells that are critical for controlling immune responses to self and commensal or environmental antigens that also play key roles in promoting tissue homeostasis and repair. Expression of the transcription factor FOXP3 is a defining feature of Tregs, while the cytokine IL2 is necessary for robust Treg development and function. While our initial conception of Tregs was as a monomorphic lineage required to suppress all types of immune responses, recent work has demonstrated extensive phenotypic and functional diversity within the Treg population. In this review we address the ontogeny, phenotype, and function of the large number of distinct effector Treg subsets that have been defined over the last 15 years.
Collapse
Affiliation(s)
- Louisa E. Sjaastad
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - David L. Owen
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Sean I. Tracy
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Sbierski-Kind J, Mroz N, Molofsky AB. Perivascular stromal cells: Directors of tissue immune niches. Immunol Rev 2021; 302:10-31. [PMID: 34075598 DOI: 10.1111/imr.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Perivascular niches are specialized microenvironments where stromal and immune cells interact with vasculature to monitor tissue status. Adventitial perivascular niches surround larger blood vessels and other boundary sites, supporting collections of immune cells, stromal cells, lymphatics, and neurons. Adventitial fibroblasts (AFs), a subtype of mesenchymal stromal cell, are the dominant constituents in adventitial spaces, regulating vascular integrity while organizing the accumulation and activation of a variety of interacting immune cells. In contrast, pericytes are stromal mural cells that support microvascular capillaries and surround organ-specific parenchymal cells. Here, we outline the unique immune and non-immune composition of perivascular tissue immune niches, with an emphasis on the heterogeneity and immunoregulatory functions of AFs and pericytes across diverse organs. We will discuss how perivascular stromal cells contribute to the regulation of innate and adaptive immune responses and integrate immunological signals to impact tissue health and disease.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Mroz
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Darrigues J, Ribot JC. γδ T cells, Tregs and epithelial cells interact with IL-33 in the lung. Cell Mol Immunol 2021; 18:790-791. [PMID: 33437049 PMCID: PMC8115535 DOI: 10.1038/s41423-020-00631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|