1
|
Martinez P, Grant WB. Vitamin D: What role in obesity-related cancer? Semin Cancer Biol 2025; 112:135-149. [PMID: 40194750 DOI: 10.1016/j.semcancer.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Obesity is an important risk factor for incidence and death for many types of cancer. Vitamin D reduces risk of incidence and death for many types of cancer. This review outlines the mechanisms by which obesity increases risk of cancer, how vitamin D reduces risk of cancer, and the extent to which vitamin D counters the effects of obesity in cancer. Vitamin D is a partial ally against some of obesity's pro-carcinogenic effects, notably by reducing inflammation and regulating sex hormone receptors, leptin resistance, cellular energy metabolism, the microbiome, and hypoxia. However, it can act stronger in against the renin-angiotensin system, insulin resistance, and oxidative stress in cancer. Additionally, excess fat tissue sequesters vitamin D and, along with its dilution in increased body volume, further reduces its bioavailability and serum concentration, limiting its protective effects against cancer. In conclusion, while vitamin D cannot reverse obesity, it plays a significant role in mitigating its pro-carcinogenic effects by targeting several mechanisms.
Collapse
Affiliation(s)
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Ste. 504, San Francisco, CA 94109, USA.
| |
Collapse
|
2
|
Mao H, Jiang X, Liang J, Zhang L, Yang Z, Chen Z, Qiao J, An X, Li X, Xie G, Liu HW, Xiao L. FOSL1 promotes keratinocyte migration and wound repair by modulating the IL17 signaling pathway. Sci Rep 2025; 15:16457. [PMID: 40355666 PMCID: PMC12069625 DOI: 10.1038/s41598-025-99128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Keratinocytes, the most important cell type constituting the epidermis, migrate to restore the epithelial barrier during wound healing and are a crucial step in wound healing. This study utilized bioinformatics analysis of comprehensive expression datasets of aberrantly expressed genes in wound healing to identify the abnormal expression of the critical transcription factor Fos-like antigen-1 (FOSL1), which is involved in various diseases. Currently, there is limited research on the role of FOSL1 in wound healing, and its molecular mechanisms remain unclear. This study explores the role and regulatory mechanisms of FOSL1 in the wound-healing process. A comprehensive expression dataset of abnormal genes in wound repair was constructed by bioinformatics analysis. Mouse trauma models and mouse wound splint models were constructed to verify the role of FOSL1 in vivo. Real-time quantitative polymerase chain reaction (qRT-PCR), immunoblot, immunofluorescence staining, and HE staining were used to confirm the analysis, and FOSL1 was used as the target in the wound healing process. At the cellular level, using 5'-ethynyl-2'-deoxyuridine (EdU) assay, Transwell assay, Migration assay, western blotting and immunofluorescence, FOSL1 promoted the molecular mechanism of wound repair by regulating the proliferation and migration of keratinocytes through IL-17 signaling pathway. Bioinformatics analysis revealed differential expression of FOSL1 during wound healing. In the mouse back wound model, qRT-PCR, western blotting (WB), and immunofluorescence staining showed significant upregulation of FOSL1 and IL-17 expression during wound tissue healing, indicating a close association between FOSL1 and mouse wound healing. In the mouse wound splinting model, subcutaneous injection of recombinant FOSL1 protein contributed to wound surface healing. Overexpression of FOSL1 in HaCaT cells promoted their proliferation and migration abilities. When IL-17 inhibitor was added to HaCaT cells, both FOSL1 overexpression and knockdown inhibited the proliferation and migration abilities of HaCaT cells. Thus, this study confirms that FOSL1 promotes keratinocyte proliferation and migration through the IL-17 signaling pathway, facilitating wound healing in epidermal wound repair. The results of this study indicate that FOSL1 plays a key role in epidermal wound healing, and elucidate a new molecular mechanism by which FOSL1 promotes keratinocyte proliferation and migration through IL-17 signaling pathway in epidermal wound repair, thereby promoting wound healing.
Collapse
Affiliation(s)
- Haoran Mao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jiaji Liang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233080, Anhui, People's Republic of China
| | - Zixian Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Zhijing Chen
- Medical Cosmetic Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Jinlong Qiao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xifeng An
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xuangu Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Guanghui Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
- Key Laboratory of Regenerative Medicine, Innovative Technology Research Institute of Tissue Repair and Regeneration, Ministry of Education, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Liling Xiao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Zhang S, Lu M, Shang W, Du H, Wang C, Wen Z, Duan T, Xu W, Liu J, Du J, Chen D. Network pharmacology, molecular docking, and experimental verification reveal the mechanism of Yi-Shen-Hua-Shi granules treating acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119320. [PMID: 39755185 DOI: 10.1016/j.jep.2025.119320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function. AIM OF THE STUDY To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI. MATERIALS AND METHODS Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted. The AKI model was induced by sepsis using the cecal ligation and puncture (CLP) technique. Prior to the operation, YSHSG was administered intragastrically once daily for 1 week. Blood and kidney tissues were collected 48 h post-CLP to verify the network pharmacology analysis. RESULTS The core target proteins of YSHSG in the treatment of sepsis-induced AKI include AKT1, JUN, IL6, PTGS2, NFKBIA, MAPK3, Caspase-3 and MMP9, which were further confirmed by molecular docking. Pathway analyses such as Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) show that YSHSG plays a role in protecting the kidneys from sepsis-induced AKI through the PI3K/AKT, TNF, and IL17 signaling pathways. These findings were validated using qPCR and western blotting. In vivo experiments demonstrated that YSHSG inhibits the activation of TNF and IL17 signaling pathways while protecting against deactivation of the PI3K/AKT signaling pathway in sepsis-induced AKI. YSHSG also exhibits an effect on attenuating inflammation response and pyroptosis processes associated with the PI3K/AKT, TNF, and IL17 signaling pathways. CONCLUSION YSHSG mitigated sepsis-induced AKI by influencing the PI3K/AKT, TNF, and IL17 signaling pathways associated with inflammation and pyroptosis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Minmin Lu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Weifeng Shang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Changnan Wang
- School of Life Sciences, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Tingting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, China
| | - Wei Xu
- Department of Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Jiankui Du
- Department of Physiology, Navy Medical University, No.800 Xiangyin Road, Shanghai, 200433, China.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
4
|
Lee JY, Kim HE, Lee ST, Park J, Nam KH, Park JY, Choi JK. The Repurposing of Nitazoxanide for Psoriasis Treatment Exerts Therapeutic Effects through Skin Metabolic Reprogramming. J Invest Dermatol 2025:S0022-202X(25)00298-2. [PMID: 40043790 DOI: 10.1016/j.jid.2025.02.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Nitazoxanide (NTZ), a Food and Drug Administration-approved drug, was originally developed for the treatment of parasitic infections. Recent studies have revealed that NTZ may also be effective in treating other diseases, including inflammatory diseases, cancer, and bacterial and viral infections. Therefore, we investigated whether NTZ could inhibit specific inflammatory pathways and reprogram metabolic processes in psoriasis to regulate inflammation. To investigate the symptom-alleviating effects of NTZ on psoriasis and its underlying mechanisms, we used an imiquimod-induced psoriatic-like skin inflammation mouse model and IL-17-stimulated human keratinocytes. NTZ inhibited the transition of metabolic programs induced by IL-17-mediated inflammation in human keratinocytes. In particular, NTZ suppressed glucose uptake and the associated actions stimulated by IL-17 and reduced enhanced oxidative phosphorylation. NTZ inhibited the mTOR signaling pathway by inducing AMP-activated protein kinase and prevented the development of dysfunctional mitochondria characterized by high mitochondrial mass and high levels of ROS. Moreover, the administration of NTZ in a mouse model of psoriasis, an IL-17-mediated skin disease, inhibited the accumulation of damaged mitochondria and suppressed T helper 17-mediated inflammatory responses. These findings provide preclinical evidence that NTZ may be effective in treating psoriasis and suggest that targeting the energy metabolic pathways in the skin could be beneficial for the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Taek Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jun-Young Park
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea.
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
5
|
Wang X, Lai J, Xu F, Liu M. Network Pharmacology and Molecular Docking: Exploring the Mechanism of Peppermint in Mastitis Prevention and Treatment in Dairy Cows. Vet Sci 2025; 12:129. [PMID: 40005889 PMCID: PMC11861999 DOI: 10.3390/vetsci12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
In order to elucidate the active ingredients, potential targets, and mechanisms of action of peppermint in treating bovine mastitis, this study utilized network pharmacology analysis and molecular docking to conduct an exploratory, prospective investigation. Using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, all compounds and targets of peppermint were retrieved. After removing duplicates, a total of 133 compounds and 272 targets were obtained. Targets were then standardized to gene names using the UniProt database to construct a drug-component-target network. A total of 183 disease targets related to bovine mastitis were retrieved from the GeneCards database. We obtained 28 cross targets of peppermint targets and bovine mastitis targets, and constructed a protein-protein interaction (PPI) network using the STRING database. A visual network was built using Cytoscape 3.10.0 software, and seven core targets were analyzed and obtained. GO and KEGG pathway enrichment analysis was performed using the Metascape database. Molecular docking was conducted using AutoDockTools-1.5.6 software on some small-molecule compounds and the seven targets to evaluate the stability of binding between peppermint and core targets. Apigenin, luteolin, and ursolic acid are the three main components in peppermint. Core targets (TNF, IL-6, STAT-3, IL-1β, FGF-2, IFNG, and ESR-1) were selected based on the PPI network. The enrichment analysis suggested that the major signaling pathways in network pharmacology may include AGEs-RAGE, IL-17, NF-κB, TLRs, HIF-1, TGF-β, PI3K-Akt, and MAPK. The molecular docking results showed that one of the main components of mint, ursolic acid, exhibited good binding activity with all core targets of bovine mastitis. Other constituents also produced favorable binding with some core targets. This study elucidates the mechanisms of mint in treating bovine mastitis, providing data to support the potential development of new therapies for bovine mastitis using mint and its constituents.
Collapse
Affiliation(s)
- Xinyu Wang
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Jiaxin Lai
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Fei Xu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Mingchun Liu
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
6
|
Hirt N, Manchon E, Chen Q, Delaroque C, Corneau A, Hemon P, Saker-Delye S, Bataille P, Bouaziz JD, Bourrat E, Hovnanian A, Le Buanec H, Aoudjit F, El Costa H, Jabrane-Ferrat N, Al-Daccak R. Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa. Nat Commun 2025; 16:664. [PMID: 39809737 PMCID: PMC11733305 DOI: 10.1038/s41467-025-55934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood. To fill this gap, we apply systems immunology approaches using single-cell high-dimensional techniques to capture the signature of peripheral immune cells and the diversity of metabolic profiles in RDEB adults, sampled outside of any opportunistic infection and active cancer. Our study, demonstrates the particular inflammation and immunity characteristics of RDEB adults, with activated / effector T and dysfunctional natural killer cell signatures, concomitant with an overall pro-inflammatory lipid signature. Artificial intelligence prediction models and principal component analysis stress that RDEB is not solely confined to cutaneous issues but has complex systemic endotypes marked by immune dysregulation and hyperinflammation. By characterising the phenotype-endotype association in RDEB adults, our study lays the groundwork for translational interventions that could by lessening inflammation, alleviate the everlasting suffering of RDEB patients, while awaiting curative genetic therapies.
Collapse
Affiliation(s)
- Nell Hirt
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Enzo Manchon
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Qian Chen
- Boston Childrens Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clara Delaroque
- INSERM U1016, The National Centre for Scientific Research (CNRS) UMR 8104, Paris Cité University, 75014, Paris, France
| | - Aurelien Corneau
- Pitié-Salpêtrière Cytometry, UMS037, Sorbonne University, 75013, Paris, France
| | - Patrice Hemon
- LBAI, INSERM UMR1227, Brest University, 29200, Brest, France
| | | | - Pauline Bataille
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Jean-David Bouaziz
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Emmanuelle Bourrat
- Dermatology Department, AP-HP, Saint-Louis Hospital, 75010, Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Paris Cité University, INSERM UMR 1163, 75015, Paris, France
| | - Helene Le Buanec
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Quebec Research Centre, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Hicham El Costa
- Institute for Infectious and Inflammatory Diseases, CNRS UMR5051, INSERM UMR1291, Toulouse III University, 31059, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Institute for Infectious and Inflammatory Diseases, CNRS UMR5051, INSERM UMR1291, Toulouse III University, 31059, Toulouse, France
| | - Reem Al-Daccak
- National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.
| |
Collapse
|
7
|
Sinton MC, Shorthouse O, Costain A, Quintana JF. Interleukin-17 and fat: Timing is everything. Immunity 2025; 58:15-17. [PMID: 39813991 DOI: 10.1016/j.immuni.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Interleukin-17 plays a major role in controlling adipose tissue homeostasis. In a recent study published in Nature, Douglas et al. demonstrate that time-of-day-dependent expression of interleukin-17 by tissue-resident innate lymphocytes in the adipose tissue drives circadian regulation of adipose tissue homeostasis and function.
Collapse
Affiliation(s)
- Matthew C Sinton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Olivia Shorthouse
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alice Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Juan F Quintana
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Vazquez-Jimenez SI, Gonzalez-Sanchez GD, Guerrero-Velazquez C, Guzman-Flores JM. Interpreting the Function of the IL-23/IL-17 Axis through Bioinformatics. Endocr Metab Immune Disord Drug Targets 2025; 25:429-441. [PMID: 39318016 DOI: 10.2174/0118715303316226240823045641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION/OBJECTIVE Bioinformatic analysis is a valuable tool that allows us to collect, archive, analyze, and disseminate biological data for further interpretation. Analysis of the IL-23/IL-17A axis and its receptors will provide us with essential information about their functions, interactions, and relationships with various diseases. This review aims to identify the central genes co-expressed in the IL-23/IL-17A axis and their receptors and to understand their ontology and modifying factors. METHODS We used several databases, including COXPRESdb to obtain the co-expressed genes, ShinyGO and ToppGene platforms to explore gene functional enrichment, and the NetworkAnalyst 3.0 platform for gene expression profiling. RESULTS We found that genes encoding IL-23/IL-17A axis proteins and their receptors mainly respond to microbial components, participate in the inflammatory response, and are primarily associated with inflammatory and autoimmune diseases. In addition, we observed an association of the IL-23/IL-17 axis with Behcet's disease, Graft-versus-host disease, and Hodgkin's disease, although there is no direct evidence of their interaction. CONCLUSION The IL-23/IL-17A axis is associated with several inflammatory and autoimmune pathologies. Therefore, we suggest further research to confirm its role in these pathologies and, if possible, use it as a therapeutic target.
Collapse
Affiliation(s)
- Sonia Isela Vazquez-Jimenez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
- Instituto de Investigación en Odontología, Departamento de clínicas odontológicas integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Grecia Denisse Gonzalez-Sanchez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Celia Guerrero-Velazquez
- Instituto de Investigación en Odontología, Departamento de clínicas odontológicas integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Juan Manuel Guzman-Flores
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| |
Collapse
|
9
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
10
|
Zhang L, Wang Z, Wu Y, Zhang B, Wang Z, Chen S, Meng X, Yu P, Zhou S. RasGRP4 aggravates ischemia-reperfusion injury in diabetic kidneys by mediating communication between macrophages and T cells. JCI Insight 2024; 10:e187653. [PMID: 39656542 PMCID: PMC11790033 DOI: 10.1172/jci.insight.187653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Diabetes mellitus (DM) is acknowledged as an independent risk factor for acute kidney injury. Ras guanine nucleotide-releasing protein-4 (RasGRP4) exerts a notable role in modulating immune-inflammatory responses and kidney disease progression in diabetes. Herein, we delved into the specific role and mechanism of RasGRP4 in diabetic renal ischemia-reperfusion injury. Diabetes was induced by a high-fat diet and streptozocin (STZ) injections, followed by creating an ischemia-reperfusion kidney injury via renal pedicle clamping and reperfusion. In vitro, a high glucose and hypoxia-reoxygenation modeled cellular inflammatory injury. We found RasGRP4-KO mice, compared with C57BL/6J (WT) mice, showed markedly less renal dysfunction and fibrosis in diabetic ischemia-reperfusion injury. There was a significant decrease in the renal infiltration of M1 macrophages and Th17 cells, along with downregulated IL-17 pathway proteins and effectors. In vitro, RasGRP4 deletion restrained M1 macrophage polarization and Th17 cell differentiation, inhibiting the IL-17 signaling pathway in HK-2 cells. Hyperglycemia intensified renal inflammation state. Together, RasGRP4, through the regulation of interactions among M1 macrophages, CD4+ T cells, and HK-2 cells, formed a cascade that intensified the inflammatory storm activity, ultimately exacerbating the inflammatory injury of diabetic ischemia-reperfusion kidneys. DM intensified this inflammatory injury mechanism, worsening the injury from renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhanglong Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Yunqi Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Binshan Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhongli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Sisi Chen
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xuying Meng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Pei Yu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Saijun Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| |
Collapse
|
11
|
Feng Z, Wang K, Huang J, Liu Z, Fu J, Shi J, Ma X, Li L, Wu Q. Exploration of the Active Components and Mechanism of Jiegeng (Platycodonis Radix) in the Treatment of Influenza Virus Pneumonia Through Network Pharmacology Analysis and Experimental Verification. Chem Biol Drug Des 2024; 104:e70007. [PMID: 39523498 DOI: 10.1111/cbdd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to explore the pathogenesis of platycodin D and luteolin, which are both active components in Jiegeng (Platycodonis Radix), in the treatment of influenza virus pneumonia through network pharmacology analysis combined with experimental verification. The bioactive components of Jiegeng (Platycodonis Radix) were screened by TCMSP and literature mining, and the results were standardized via the UniProt database. The action targets for the disease were identified from databases including OMIM, GeneCards, TTD, DisGeNET, and PharmGKB. Then, the visualized key target regulatory network and protein-protein interaction (PPI) network for the active components were established using Cytoscape3.7.1 software. The findings were illustrated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The intervention concentrations of platycodin D and luteolin were screened by the CCK8 method, and the important signaling pathways of platycodin D and luteolin for treating influenza virus pneumonia were verified by RT-qPCR and Western blot tests. From data mining, 89 common drug-disease targets were screened out, and five major active components of Jiegeng (Platycodonis Radix), including platycodin D and luteolin, were obtained. Besides, 11 therapeutic targets including IL-17, IL-6, TNF-α, JUN, and MAKP1 were identified by PPI network analysis. GO and KEGG enrichment analyses showed that the pathways most related to the mechanisms of Jiegeng (Platycodonis Radix) against influenza virus pneumonia included the TNF and IL-17 signaling pathways and apoptosis. In vitro experiments demonstrated that the model group exhibited a notable elevation in mRNA levels of IL-6, IL-17, TNF-α, JUN, MAPK1, and the IL-17/-acting protein ratio, as compared to the control group (p < 0.05). In contrast to the model group, the IL-6, IL-17, TNF-α, JUN, MAPK1 mRNA expression levels, and the IL-17 protein ratio in both the platycodin D group and luteolin group were considerably decreased (p < 0.05). Combined with network pharmacology and experimental verification, this study revealed that platycodin D and luteolin in Jiegeng (Platycodonis Radix) may treat influenza virus pneumonia by regulating inflammation through the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Zhiying Feng
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kangyu Wang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiawang Huang
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhuolin Liu
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingmin Fu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianing Shi
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyue Ma
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiong Wu
- Department of Traditional Chinese Medicine, College of Humanities and Management, Changsha, Hunan, China
| |
Collapse
|
12
|
Qin L, Yue H, Gong Z, Guo Y, Li D, Ma L, YiXi Z, He J, Li Z, Li G, Yan W, Sang N. Maternal NO 2 exposure and fetal growth restriction: Hypoxia transmission and lncRNAs-proinflammation-mediated abnormal hematopoiesis. Proc Natl Acad Sci U S A 2024; 121:e2409597121. [PMID: 39432779 PMCID: PMC11536148 DOI: 10.1073/pnas.2409597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Epidemiological studies show a strong correlation between air pollution and fetal growth restriction (FGR), but existing results are controversial due to inherent limitations, such as causality of specific pollutants, developmental origin, and maternal-fetal transmission. To address this controversy, we first conducted a retrospective analysis of 28,796 newborns and revealed that maternal nitrogen dioxide (NO2) exposure during the second trimester was positively associated with FGR, with an adjusted odds ratio of 1.075 (95% confidence interval: 1.020-1.133) per 10 μg/m3 NO2 increase for small for gestational age. Then, by establishing an animal model of prenatal NO2 exposure, we confirmed its adverse effects on embryonic growth and hematopoiesis in the yolk sac and fetal liver, primarily affecting the differentiation of hematopoietic stem and progenitor cells and erythroid maturation. By applying internal exposure analyses coupled with 15N isotope tracing, we found that maternal NO2 inhalation induced acquired methemoglobinemia through its byproducts and placental hypoxia in pregnant mice. Importantly, by combining transcriptional profiling, bioinformatics analysis, and RNA binding protein immunoprecipitation (RIP)/chromatin immunoprecipitation (CHIP), we clarified that placental-fetal hypoxia transmission activated hypoxia-inducible factors, disturbed hematopoiesis through the hypoxia-inducible factor 1β-long noncoding RNAs-CCAAT/enhancer binding protein alpha-proinflammatory signaling pathway, ultimately contributing to FGR progression. These findings provide insights for risk prevention and clinical intervention to promote child well-being in NO2-polluted areas.
Collapse
Affiliation(s)
- Liyao Qin
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Huifeng Yue
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Zhihua Gong
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi030032, People’s Republic of China
| | - Yuqiong Guo
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Dan Li
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Li Ma
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Zhuoma YiXi
- Xiaodian District Maternal and Child Health Care Hospital, Taiyuan, Shanxi030032, People’s Republic of China
| | - Jing He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi030032, People’s Republic of China
| | - Zhihong Li
- Department of Obstetrics and Gynecology, Taiyuan Taihang Hospital, Taiyuan, Shanxi030006, People’s Republic of China
| | - Guangke Li
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Wei Yan
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu221004, People’s Republic of China
| | - Nan Sang
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| |
Collapse
|
13
|
Guo H, Wang Q, Li T, Sun W, Chen J, Wang C, Wang C. IL-2, IL-17A and TNF-α hold potential as biomarkers for predicting acute mountain sickness prior to ascent. Cytokine 2024; 181:156694. [PMID: 39024679 DOI: 10.1016/j.cyto.2024.156694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Acute mountain sickness (AMS) is the most prevalent condition resulting from hypobaric hypoxia (HH) at high altitudes. Although evidence suggests the involvement of inflammatory cytokines in AMS development, there is currently a lack of reports on variations in cytokine levels between individuals susceptible to AMS and those resistant to AMS prior to ascending to high altitude. Thus our current study aims to assess the predictive capability for AMS occurrence by evaluating differences in cytokine levels at low altitudes. METHODS The present study recruited 48 participants, who ascended from low altitude to middle high-altitude (3700 m) and further to extreme high-altitude (5000 m). Based on Lake Louise Score (LLS) at the two high altitudes, participants were categorized into severe AMS-susceptible (sAMS), moderate AMS-susceptible (mAMS), and non-AMS groups. The Bio-Plex MAGPIX System was employed to measure plasma levels of 11 inflammatory cytokines. Cytokines at low altitude and middle high-altitude were analyzed through receiver operating characteristic (ROC) analysis to obtain area under the ROC curve (AUROC), sensitivity, and specificity. RESULTS Based on LLS at 3700 m, we initially categorized the study subjects into the sAMS group (n = 8) and the Non-AMS group (n = 40). Among individuals in the non-AMS group (n = 40) at the altitude of 3700 m, those who developed AMS at the altitude of 5000 m were assigned to the mAMS group (n = 17), whereas those who did not experience AMS were included into the non-AMS group (n = 23). The concentration of TNF-α at low altitude exhibited robust predictive performance for predicting AMS occurrence at the altitude of 3700 m. Among the non-AMS group at the altitude of 3700 m, we identified that the concentration of IL-2 and IL-17A demonstrated high efficacy in predicting the onset of AMS following ascent to 5000 m. In addition, differentially expressed cytokines including IL-17A, TNF-α and IL-2 at low altitude possessed discriminatory potential among the three groups at 5000 m.. CONCLUSION We posited that the levels of TNF-α, IL-2, IL-17A in serum of low altitude could be considered as potential biomarkers to predict the occurrence of AMS at high altitude. NEW & NOTEWORTHY Through the two comparisons at different two altitudes (baseline level and 3700 m), we provided a model to progressively screen individuals who are susceptible and resistant to different high altitudes (3700 m and 5000 m). TNF-α could firstly screen out the AMS susceptible individuals at the altitude of 3700 m. And through its combination with IL-2 and IL-17A, we could further screen out AMS susceptible individuals at the altitude of 5000 m.
Collapse
Affiliation(s)
- Haoran Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Wang
- Department of Orthopeadics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Department of Surgery, Eastern Medical Branch of PLA General Hospital, 101199 Beijing, China
| | - Tao Li
- Chinese People's Liberation Army No. 69316 Troops, Xinjiang 844800, China
| | - Weiqiang Sun
- Chinese People's Liberation Army No. 69316 Troops, Xinjiang 844800, China
| | - Jingwen Chen
- Department of Hyperbaric Chamber, The First Medical Center of Chinese PLA General Hospital 100853, Beijing, China
| | - Chengbin Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Chi Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
14
|
Yeh YA, Liao HY, Hsiao IH, Hsu HC, Lin YW. Electroacupuncture Reduced Fibromyalgia-Pain-like Behavior through Inactivating Transient Receptor Potential V1 and Interleukin-17 in Intermittent Cold Stress Mice Model. Brain Sci 2024; 14:869. [PMID: 39335365 PMCID: PMC11430684 DOI: 10.3390/brainsci14090869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a widespread musculoskeletal pain associated with psychological disturbances, the etiopathogenesis of which is still not clear. One hypothesis implicates inflammatory cytokines in increasing central and peripheral sensitization along with neuroinflammation, leading to an elevation in pro-inflammatory cytokines, e.g., interleukin-17A (IL-17A), enhanced in FM patients and animal models. The intermittent cold stress (ICS)-induced FM-like model in C57BL/6 mice has been developed since 2008 and proved to have features which mimic the clinical pattern in FM patients such as mechanical allodynia, hyperalgesia, and female predominance of pain. Electroacupuncture (EA) is an effective treatment for relieving pain in FM patients, but its mechanism is not totally clear. It was reported as attenuating pain-like behaviors in the ICS mice model through the transient receptor potential vanilloid 1 (TRPV1) pathway. Limited information indicates that TRPV1-positive neurons trigger IL-17A-mediated inflammation. Therefore, we hypothesized that the IL-17A would be inactivated by EA and TRPV1 deletion in the ICS-induced FM-like model in mice. We distributed mice into a control (CON) group, ICS-induced FM model (FM) group, FM model with EA treatment (EA) group, FM model with sham EA treatment (Sham) group, and TRPV1 gene deletion (Trpv1-/-) group. In the result, ICS-induced mechanical and thermal hyperalgesia increased pro-inflammatory cytokines including IL-6, IL-17, TNFα, and IFNγ in the plasma, as well as TRPV1, IL-17RA, pPI3K, pAkt, pERK, pp38, pJNK, and NF-κB in the somatosensory cortex (SSC) and cerebellum (CB) lobes V, VI, and VII. Moreover, EA and Trpv1-/- but not sham EA countered these effects significantly. The molecular mechanism may involve the pro-inflammatory cytokines, including IL-6, IL-17, TNFα, and IFNγ. IL-17A-IL-17RA play a crucial role in peripheral and central sensitization as well as neuroinflammation and cannot be activated without TRPV1 in the ICS mice model. EA alleviated FM-pain-like behaviors, possibly by abolishing the TRPV1- and IL-17A-related pathways. It suggests that EA is an effective and potential therapeutic strategy in FM.
Collapse
Affiliation(s)
- Yu-An Yeh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Chinese Traumatology Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Hsien-Yin Liao
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; (H.-Y.L.)
| | - I-Han Hsiao
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
| | - Hsin-Cheng Hsu
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu 302056, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
15
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
16
|
Kannan V, Srimadh Bhagavatham SK, Dandamudi RB, Kunchala H, Challa S, Almansour AI, Pargaonkar A, Pulukool SK, Sharma A, Sivaramakrishnan V. Integrated clinical and metabolomic analysis identifies molecular signatures, biomarkers, and therapeutic targets in primary angle closure glaucoma. Front Mol Biosci 2024; 11:1421030. [PMID: 39184151 PMCID: PMC11341363 DOI: 10.3389/fmolb.2024.1421030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Background Glaucoma is the leading cause of permanent blindness. Primary angle closure glaucoma (PACG) is diagnosed only after the onset of symptoms and can result in irreversible blindness despite the standard intraocular pressure (IOP) reduction therapy. The identification of potential biomarkers associated with prognosis will help improve disease management. This study aimed to identify mechanisms associated with disease progression, potential biomarkers, and therapeutic targets of PACG. Methods The clinical data assessment of IOP, cup/disc ratio (CDR), Retinal Nerve Fiber Layer (RNFL) thickness of control, and PACG group were collected and analyzed for significant differences. The ATP levels were estimated, and targeted metabolomic analysis was performed on aqueous humor and cytokines in plasma. The pathways obtained from the metabolomics data set were compared with those obtained for data sets from the literature. Clinical parameters were correlated with cytokine levels. Targeted metabolomic analysis of cell culture supernatant from TNFα-treated N9 microglia was carried out, and overlap analysis was performed with data obtained from PACG patients. Results Elevated IOP, CDR, ATP, cytokines, and reduced RNFL thickness were found in PACG compared to controls. Analysis of PACG and TNFα-treated N9 microglial cell culture supernatant shows activation of immuno-metabolites. The metabolic pathways of PACG, TNFα, and ATP-treated microglia from the literature show considerable overlap. Biomarker analysis identified clinical parameters, ATP, cytokines, and immuno-metabolites. Conclusion This study shows an association between elevated levels of ATP, cytokines, immuno-metabolism, and potential microglial inflammation with disease progression, rendering these levels potential biomarkers. P2 receptors, cytokines, and IDO1/2 could be potential therapeutic targets.
Collapse
Affiliation(s)
- Vishnu Kannan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| | - Sai Krishna Srimadh Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| | - Rajesh Babu Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| | - Haripriya Kunchala
- Department of Ophthalmology, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthi Gram, Andhra Pradesh, India
| | - Sivateja Challa
- Department of Ophthalmology, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthi Gram, Andhra Pradesh, India
| | | | | | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| | - Anuj Sharma
- Department of Ophthalmology, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthi Gram, Andhra Pradesh, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| |
Collapse
|
17
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Shmarina G, Pukhalskaya D, Shmarin V, Semykin S, Avakyan L, Krasovsky S, Goryainova A, Kostyuk S, Zinchenko R, Kashirskaya N. Burkholderia cepacia in cystic fibrosis children and adolescents: overall survival and immune alterations. Front Cell Infect Microbiol 2024; 14:1374318. [PMID: 39011515 PMCID: PMC11246859 DOI: 10.3389/fcimb.2024.1374318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background In current literature there are only scarce data on the host inflammatory response during Burkholderia cepacia complex (Bcc) persistence. The primary objective of the present research was to carry out cross-sectional analyses of biomarkers and evaluate disease progression in cystic fibrosis (CF) patients with chronic Bcc infection and pathogen-free ones. The secondary aim was to assess prospectively overall survival of the study participants during up to 8 years of follow-up. Methods The study included 116 paediatric patients with CF; 47 CF patients were chronically infected with Bcc, and 69 individuals were Bcc free. Plasma and sputum biomarkers (neutrophil elastase, MMP-8, MMP-9, MMP-12, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, IL-22, IL-23, IL-17, IFN-γ, TGFβ1, TNF-α) were analysed using commercially available kits. Besides, inhibitory effect of dexamethasone on proliferative response of PHA-stimulated peripheral blood lymphocytes had been assessed. Results Bcc infected patients did not differ from Bcc free ones in demographic and clinical parameters, but demonstrated an increased rate of glucose metabolism disturbances and survival disadvantage during prolong follow-up period. Biomarkers analyses revealed elevated TNF-α and reduced IL-17F levels in sputum samples of Bcc infected patients. These patients also demonstrated improvement of peripheral blood lymphocyte sensitivity to steroid treatment and reduction in plasma pro-inflammatory (IL-17F and IL-18) and anti-inflammatory (TGFβ1 and IL-10) cytokine concentrations. Conclusions Reduction in IL-17F levels may have several important consequences including increase in steroid sensitivity and glycemic control disturbances. Further investigations are needed to clarify the role of IL-17 cytokines in CF complication development. Low plasma TGFβ1 and IL-10 levels in Bcc infected group may be a sign of subverted activity of regulatory T cells. Such immune alterations may be one of the factors contributing to the development of the cepacia syndrome.
Collapse
Affiliation(s)
- Galina Shmarina
- Research Centre for Medical Genetics, Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Vassiliy Shmarin
- Research Centre for Medical Genetics, Moscow, Russia
- First Moscow State Medical University, Moscow, Russia
| | - Sergey Semykin
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | - Lusine Avakyan
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | | | - Anastasia Goryainova
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | | | | | | |
Collapse
|
19
|
Liang J, Dai W, Liu C, Wen Y, Chen C, Xu Y, Huang S, Hou S, Li C, Chen Y, Wang W, Tang H. Gingerenone A Attenuates Ulcerative Colitis via Targeting IL-17RA to Inhibit Inflammation and Restore Intestinal Barrier Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400206. [PMID: 38639442 PMCID: PMC11267284 DOI: 10.1002/advs.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.
Collapse
Affiliation(s)
- Jian Liang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Weigang Dai
- Center of Ganstric CancerThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510062China
| | - Chuanghui Liu
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifan Wen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chen Chen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen518033China
| | - Song Huang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Shaozhen Hou
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chun Li
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yongming Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wei Wang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
20
|
Peng P, Shen Y. Identification of shared disease marker genes and underlying mechanisms between rheumatoid arthritis and Crohn disease through bioinformatics analysis. Medicine (Baltimore) 2024; 103:e38690. [PMID: 38941374 PMCID: PMC11466148 DOI: 10.1097/md.0000000000038690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
As chronic autoimmune inflammatory diseases, rheumatoid arthritis (RA) and Crohn disease (CD) are closely associated and display a significant positive correlation. However, the underlying mechanisms and disease markers responsible for their cooccurrence remain unknown and have not been systematically studied. Therefore, this study aimed to identify key molecules and pathways commonly involved in both RA and CD through bioinformatic analysis of public sequencing databases. Datasets for RA and CD were downloaded from the GEO database. Overlapping genes were identified using weighted gene co-expression network analysis and differential analysis crossover, and enrichment analysis was conducted for these genes. Protein-protein interaction networks were then constructed using these overlapping genes to identify hub genes. Expression validation and receiver operating characteristic curve validation were performed for these hub genes using different datasets. Additionally, the immune cell correlation, single-cell expression cluster, and the immune cell expression cluster of the core gene were analyzed. Furthermore, upstream shared microRNAs (miRNA) were predicted and a miRNA-gene network was constructed. Finally, drug candidates were analyzed and predicted. These core genes were found to be positively correlated with multiple immune cells that are infiltrated by the disease. Analysis of gene expression clusters revealed that these genes were mostly associated with inflammatory and immune responses. The miRNA-genes network analysis suggested that hsa-miR-31-5p may play an important role in the common mechanism of RA and CD. Finally, tamibarotene, retinoic acid, and benzo[a]pyrene were identified as potential treatment options for patients with both RA and CD. This bioinformatics study has identified ITGB2, LCP2, and PLEK as key diagnostic genes in patients with both RA and CD. The study has further confirmed that inflammation and immune response play a central role in the development of both RA and CD. Interestingly, the study has highlighted hsa-miR-31-5p as a potential key player in the common mechanism of both diseases, representing a new direction in research and a potential therapeutic target. These shared genes, potential mechanisms, and regulatory networks offer new opportunities for further research and may provide hope for future treatment of patients with both RA and CD.
Collapse
Affiliation(s)
- Peifei Peng
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Ray AK, Shukla A, Yadav A, Kaur U, Singh AK, Mago P, Bhavesh NS, Chaturvedi R, Tandon R, Shalimar, Kumar A, Malik MZ. A Comprehensive Pilot Study to Elucidate the Distinct Gut Microbial Composition and Its Functional Significance in Cardio-Metabolic Disease. Biochem Genet 2024:10.1007/s10528-024-10847-w. [PMID: 38839647 DOI: 10.1007/s10528-024-10847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cardio-metabolic disease is a significant global health challenge with increasing prevalence. Recent research underscores the disruption of gut microbial balance as a key factor in disease susceptibility. We aimed to characterize the gut microbiota composition and function in cardio-metabolic disease and healthy controls. For this purpose, we collected stool samples of 18 subjects (12 diseased, 6 healthy) and we performed metagenomics analysis and functional prediction using QIIME2 and PICRUSt. Furthermore, we carried out assessments of microbe-gene interactions, gene ontology, and microbe-disease associations. Our findings revealed distinct microbial patterns in the diseased group, particularly evident in lower taxonomic levels with significant variations in 14 microbial features. The diseased cohort exhibited an enrichment of Lachnospiraceae family, correlating with obesity, insulin resistance, and metabolic disturbances. Conversely, reduced levels of Clostridium, Gemmiger, and Ruminococcus genera indicated a potential inflammatory state, linked to compromised butyrate production and gut permeability. Functional analyses highlighted dysregulated pathways in amino acid metabolism and energy equilibrium, with perturbations correlating with elevated branch-chain amino acid levels-a known contributor to insulin resistance and type 2 diabetes. These findings were consistent across biomarker assessments, microbe-gene associations, and gene ontology analyses, emphasizing the intricate interplay between gut microbial dysbiosis and cardio-metabolic disease progression. In conclusion, our study unveils significant shifts in gut microbial composition and function in cardio-metabolic disease, emphasizing the broader implications of microbial dysregulation. Addressing gut microbial balance emerges as a crucial therapeutic target in managing cardio-metabolic disease burden.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alka Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Urvinder Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
22
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
23
|
Bonavina G, Mamillapalli R, Krikun G, Zhou Y, Gawde N, Taylor HS. Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation. Stem Cell Res Ther 2024; 15:129. [PMID: 38693588 PMCID: PMC11064399 DOI: 10.1186/s13287-024-03716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA.
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| |
Collapse
|
24
|
Xie D, Quan J, Yu X, Liang Z, Chen Y, Wu L, Lin L, Fan L. Molecular mechanism of Jianpiyifei II granules in the treatment of chronic obstructive pulmonary disease: Network pharmacology analysis, molecular docking, and experimental assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155273. [PMID: 38342020 DOI: 10.1016/j.phymed.2023.155273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is defined by persistent airway and lung inflammation, excessive mucus production, remodeling of the airways, and damage to the alveolar tissue. Based on clinical experience, it has been observed that Jianpiyifei II (JPYF II) granules exhibit a significant therapeutic impact on individuals suffering from stable COPD. Nevertheless, the complete understanding of JPYF II's potential mode of action against COPD remains to be further clarified. PURPOSE To further investigate the underlying mechanism of JPYF II for treating COPD and clarify the role of the IL-17 pathway in the treatment. METHODS A variety of databases were utilized to acquire JPYF II's bioactive components, as well as related targets of JPYF II and COPD. Cytoscape was utilized to establish multiple interaction networks for the purpose of topological analyses and core-target screening. The Metascape was utilized to identify the function of target genes and crucial signaling pathways. To evaluate the interactions between bioactive ingredients and central target proteins, molecular docking simulations were conducted. Following that, a sequence of experiments was conducted both in the laboratory and in living organisms, which included analyzing the cell counts in bronchoalveolar lavage fluid (BALF), examining lung tissue for histopathological changes, conducting immunohistochemistry, RT‒qPCR, ELISA, and Western blotting. RESULTS In JPYF II, 88 bioactive ingredients were predicted to have a total of 342 targets. After conducting Venn analysis, it was discovered that 284 potential targets of JPYF II were linked to the provision of defensive benefits against COPD. The PPI network yielded a total of twenty-four core targets. The findings from the analysis of enrichment and gene‒pathway network suggested that JPYF II targeted Hsp90, MAPKs, ERK, AP-1, TNF-α, IL-6, COX-2, CXCL8, and MMP-9 as crucial elements for COPD treatment through the IL-17 pathway. Additionally, JPYF II might modulate MAPK signaling pathways and the downstream transcription factor AP-1 via IL-17 regulation. According to the findings from molecular docking, it was observed that the 24 core target proteins exhibited robust binding affinities towards the top 10 bioactive compounds. Furthermore, the treatment of COPD through the regulation of MAPKs in the IL-17 pathway was significantly influenced by flavonoids and sterols found in JPYF II. In vitro, these observations were further confirmed. In vivo results demonstrated that JPYF II reduced inflammatory cell infiltration in pulmonary tissues and the quantity of inflammatory cells in BALF obtained from LPS- and CS-stimulated mice. Moreover, the administration of JPYF II resulted in the inhibition of IL-17 mRNA and protein levels, phosphorylation levels of MAPK proteins, and expression of phosphorylated AP-1 proteins. It also suppressed the expression of downstream effector genes and proteins associated with the IL-17/MAPK/AP-1 signaling axis in lung tissues and BALF. CONCLUSION This research reveals that JPYF II improves COPD by controlling the IL-17/MAPK/AP-1 signaling axis within the IL-17 pathway for the first time. These findings offer potential approaches for the creation of novel medications that specifically target IL-17 and proteins involved in the IL-17 pathway to address COPD.
Collapse
Affiliation(s)
- Dan Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingyu Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Lin Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; Guangdong‒Hong Kong‒Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
25
|
Grodsky L, Wilson M, Rathinasabapathy T, Komarnytsky S. Triptolide Administration Alters Immune Responses to Mitigate Insulin Resistance in Obese States. Biomolecules 2024; 14:395. [PMID: 38672413 PMCID: PMC11048574 DOI: 10.3390/biom14040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals who are overweight or obese are at increased risk of developing prediabetes and type 2 diabetes, yet the direct molecular mechanisms that connect diabetes to obesity are not clear. Chronic, sustained inflammation is considered a strong risk factor in these interactions, directed in part by the short-lived gene expression programs encoding for cytokines and pro-inflammatory mediators. In this study, we show that triptolide administration in the C57BL/6 diet-induced obese mice at up to 10 μg/kg/day for 10 weeks attenuated the development of insulin resistance and diabetes, but not obesity, in these animals. Significant reductions in adipose tissue inflammation and improved insulin sensitivity were observed in the absence of changes in food intake, body weight, body composition, or energy expenditure. Analysis of the core cluster of biomarkers that drives pro-inflammatory responses in the metabolic tissues suggested TNF-α as a critical point that affected the co-development of inflammation and insulin resistance, but also pointed to the putatively protective roles of increased COX-2 and IL-17A signaling in the mediation of these pathophysiological states. Our results show that reduction of diet-induced inflammation confers partial protection against insulin resistance, but not obesity, and suggest the possibility of achieving overweight phenotypes that are accompanied by minimal insulin resistance if inflammation is controlled.
Collapse
Affiliation(s)
- Lyudmila Grodsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
- Department of Post-Baccalaureate Studies, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
- School of Medicine, University of North Carolina at Chapel Hill, 150 Medical Drive, Chapel Hill, NC 27514, USA
| | - Mickey Wilson
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
26
|
Chen C, He Y, Ni Y, Tang Z, Zhang W. Identification of crosstalk genes relating to ECM-receptor interaction genes in MASH and DN using bioinformatics and machine learning. J Cell Mol Med 2024; 28:e18156. [PMID: 38429902 PMCID: PMC10907849 DOI: 10.1111/jcmm.18156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/03/2024] Open
Abstract
This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Chao Chen
- Instrumentation and Service Center for Science and TechnologyBeijing Normal UniversityZhuhaiChina
| | - Yuxi He
- Pediatric Research InstituteThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ying Ni
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Zhanming Tang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| | - Wensheng Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural SciencesBeijing Normal UniversityZhuhaiChina
| |
Collapse
|
27
|
Lin Q, Su J, Fang Y, Zhong Z, Chen J, Zhang C. S100A8 is a prognostic signature and associated with immune response in diffuse large B-cell lymphoma. Front Oncol 2024; 14:1344669. [PMID: 38361783 PMCID: PMC10867108 DOI: 10.3389/fonc.2024.1344669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Background S100A8, a calcium-binding protein belonging to the S100 family, is involved in immune responses and multiple tumor pathogens. Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of B-cell lymphoma and remains incurable in 40% of patients. However, the role of S100A8 and its regulation of the immune response in DLBCL remain unclear. Methods The differential expression of S100A8 was identified via the GEO and TCGA databases. The prognostic role of S100A8 in DLBCL was calculated using the Kaplan-Meier curve. The function enrichment of differentially expressed genes (DEGs) was explored through GO, KEGG, GSEA, and PPI analysis. In our cohort, the expression of S100A8 was verified. Meanwhile, the biological function of S100A8 was applied after the inhibition of S100A8 in an in vitro experiment. The association between S100A8 and immune cell infiltration and treatment response in DLBCL was analyzed. Results S100A8 was significantly overexpressed and related to a poor prognosis in DLBCL patients. Function enrichment analysis revealed that DEGs were mainly enriched in the IL-17 signaling pathway. Our cohort also verified this point. In vitro experiments suggested that inhibition of S100A8 should promote cell apoptosis and suppress tumor growth. Single-cell RNA sequence analysis indicated that S100A8 might be associated with features of the tumor microenvironment (TME), and immune infiltration analyses discovered that S100A8 expression was involved in TME. In terms of drug screening, we predicted that many drugs were associated with preferable sensitivity. Conclusion Elevated S100A8 expression is associated with a poor prognosis and immune infiltration in DLBCL. Inhibition of S100A8 could promote cell apoptosis and suppress tumor growth. Meanwhile, S100A8 has the potential to be a promising immunotherapeutic target for patients with DLBCL.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Jianlin Su
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Yuanyuan Fang
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Zhihao Zhong
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Jie Chen
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Chaofeng Zhang
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
28
|
Dhamija B, Marathe S, Sawant V, Basu M, Attrish D, Mukherjee D, Kumar S, Pai MGJ, Wad S, Sawant A, Nayak C, Venkatesh KV, Srivastava S, Barthel SR, Purwar R. IL-17A Orchestrates Reactive Oxygen Species/HIF1α-Mediated Metabolic Reprogramming in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:302-316. [PMID: 38019129 PMCID: PMC11100423 DOI: 10.4049/jimmunol.2300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Immune cell-derived IL-17A is one of the key pathogenic cytokines in psoriasis, an immunometabolic disorder. Although IL-17A is an established regulator of cutaneous immune cell biology, its functional and metabolic effects on nonimmune cells of the skin, particularly keratinocytes, have not been comprehensively explored. Using multiomics profiling and systems biology-based approaches, we systematically uncover significant roles for IL-17A in the metabolic reprogramming of human primary keratinocytes (HPKs). High-throughput liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy revealed IL-17A-dependent regulation of multiple HPK proteins and metabolites of carbohydrate and lipid metabolism. Systems-level MitoCore modeling using flux-balance analysis identified IL-17A-mediated increases in HPK glycolysis, glutaminolysis, and lipid uptake, which were validated using biochemical cell-based assays and stable isotope-resolved metabolomics. IL-17A treatment triggered downstream mitochondrial reactive oxygen species and HIF1α expression and resultant HPK proliferation, consistent with the observed elevation of these downstream effectors in the epidermis of patients with psoriasis. Pharmacological inhibition of HIF1α or reactive oxygen species reversed IL-17A-mediated glycolysis, glutaminolysis, lipid uptake, and HPK hyperproliferation. These results identify keratinocytes as important target cells of IL-17A and reveal its involvement in multiple downstream metabolic reprogramming pathways in human skin.
Collapse
Affiliation(s)
- Bhavuk Dhamija
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Soumitra Marathe
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Vinanti Sawant
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Moumita Basu
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Diksha Attrish
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Siddhi Wad
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Abhijeet Sawant
- Plastic Surgery Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Chitra Nayak
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - KV Venkatesh
- Department of Chemical Engineering, IIT Bombay, Mumbai, India
| | | | - Steven R. Barthel
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
29
|
Yang Y, Koga H, Nakagawa Y, Nakamura T, Katagiri H, Takada R, Katakura M, Tsuji K, Sekiya I, Miyatake K. Characteristics of the synovial microenvironment and synovial mesenchymal stem cells with hip osteoarthritis of different bone morphologies. Arthritis Res Ther 2024; 26:17. [PMID: 38200556 PMCID: PMC10777653 DOI: 10.1186/s13075-023-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Variations in bone morphology in patients with hip osteoarthritis (HOA) can be broadly categorized into three types: atrophic, normotrophic, and hypertrophic. Despite the investigations examining clinical elements, such as bone morphology, pain, and range of motion, our understanding of the pathogenesis of HOA remains limited. Previous studies have suggested that osteophytes typically originate at the interface of the joint cartilage, periosteum, and synovium, potentially implicating synovial mesenchymal stem cells (SMSCs) in the process. This study aimed to investigate the potential factors that drive the development of bone morphological features in HOA by investigating the characteristics of the synovium, differentiation potential of SMSCs, and composition of synovial fluid in different types of HOA. METHODS Synovial tissue and fluid were collected from 30 patients who underwent total hip arthroplasty (THA) with the variable bone morphology of HOA patients. RNA sequencing analysis and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were performed to analyse the genes in the normotrophic and hypertrophic synovial tissue. SMSCs were isolated and cultured from the normotrophic and hypertrophic synovial tissues of each hip joint in accordance with the variable bone morphology of HOA patients. Cell differentiation potential was compared using differentiation and colony-forming unit assays. Cytokine array was performed to analyse the protein expression in the synovial fluid. RESULTS In the RNA sequencing analysis, 103 differentially expressed genes (DEGs) were identified, predominantly related to the interleukin 17 (IL-17) signalling pathway. Using a protein-protein interaction (PPI) network, 20 hub genes were identified, including MYC, CXCL8, ATF3, NR4A1, ZC3H12A, NR4A2, FOSB, and FOSL1. Among these hub genes, four belonged to the AP-1 family. There were no significant differences in the tri-lineage differentiation potential and colony-forming capacity of SMSCs. However, RT-qPCR revealed elevated SOX9 expression levels in synovial tissues from the hypertrophic group. The cytokine array demonstrated significantly higher levels of CXCL8, MMP9, and VEGF in the synovial fluid of the hypertrophic group than in the normotrophic group, with CXCL8 and MMP9 being significantly expressed in the hypertrophic synovium. CONCLUSION Upregulation of AP-1 family genes in the synovium and increased concentrations of CXCL8, MMP9, and VEGF were detected in the synovial fluid of the hypertrophic group of HOA patients, potentially stimulating the differentiation of SMSCs towards the cartilage and thereby contributing to severe osteophyte formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Nakamura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ryohei Takada
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Katakura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
30
|
Gutmann D, Dressler M, Eickmeier O, Herrmann E, Kirwil M, Schubert R, Zielen S, Zissler UM. Proinflammatory pattern in the lower airways of non-asthmatic obese adolescents. Cytokine 2024; 173:156452. [PMID: 38039695 DOI: 10.1016/j.cyto.2023.156452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Obesity is known to be a pro-inflammatory condition affecting multiple organs. Obesity as a systemic pro-inflammatory state, might be associated with bronchial inflammation in non-smoking adolescents with a BMI ≥ 30 kg/m2 without evidence of concomitant chronic diseases. MATERIALS AND METHODS We studied non-asthmatic obese patients (n = 20; median age 15.8 years; BMI 35.0 kg/m2) compared to age matched healthy control subjects (n = 20; median age 17.5 years; BMI 21.5 kg/m2). Induced sputum differential cell counts and sputum mRNA levels were assessed for all study subjects. Serum levels of CRP, IL-6, and IL-8 were measured. Further, IL-5, IL-6, IL-8, IL-13, IL-17, TNF-α, IFN-γ, and IP-10 protein levels were analyzed in induced sputum was. RESULTS Serum CRP levels, sputum inflammatory cell load and sputum eosinophils differed significantly between obese and non-obese subjects, for sputum neutrophils, a correlation was shown with BMI ≥ 30 kg/m2. Differences were also observed for sputum mRNA expression of IL6, IL8, IL13, IL17, IL23, and IFN-γ, as well as the transcription factors T-bet, GATA3, and FoxP3. CONCLUSIONS Increased bronchial inflammation, triggered by systemic or local inflammatory effects of obesity itself, may account for the higher rates of airway disease in obese adolescents.
Collapse
Affiliation(s)
- Desiree Gutmann
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Melanie Dressler
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt, Germany
| | - Marta Kirwil
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Center for Environmental Health (HMGU), Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.
| |
Collapse
|
31
|
Lu Y, Zhang P, Xu F, Zheng Y, Zhao H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front Neurol 2023; 14:1284304. [PMID: 38046578 PMCID: PMC10690603 DOI: 10.3389/fneur.2023.1284304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Interleukin-17 (IL-17), a cytokine characteristically secreted by T helper 17 (Th17) cells, has attracted increasing attention in recent years because of its importance in the pathogenesis of many autoimmune or chronic inflammatory diseases. Recent studies have shown that neurological diseases and mental disorders are closely related to immune function, and varying degrees of immune dysregulation may disrupt normal expression of immune molecules at critical stages of neural development. Starting from relevant mechanisms affecting immune regulation, this article reviews the research progress of IL-17 in a selected group of neurological diseases and mental disorders (autism spectrum disorder, Alzheimer's disease, epilepsy, and depression) from the perspective of neuroinflammation and the microbiota-gut-brain axis, summarizes the commonalities, and provides a prospective outlook of target application in disease treatment.
Collapse
Affiliation(s)
- Yu Lu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Piaopiao Zhang
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
Bosnić Z, Babič F, Wittlinger T, Anderková V, Šahinović I, Majnarić LT. Influence of Age, Gender, Frailty, and Body Mass Index on Serum IL-17A Levels in Mature Type 2 Diabetic Patients. Med Sci Monit 2023; 29:e940128. [PMID: 37837182 PMCID: PMC10583604 DOI: 10.12659/msm.940128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/09/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The cytokine IL-17A is emerging as a marker of chronic inflammation in cardio-metabolic conditions. This study aimed to identify relevant factors that in older primary care patients with type 2 diabetes (T2D) could influence serum IL-17A concentrations. The results have a potential to improve risk stratification and therapy options for these patients. MATERIAL AND METHODS The study was conducted during a period of 4 months, in 2020, in the south-eastern region of Croatia. Patients from primary health care, diagnosed with T2D (N=170, M: F 75: 95, ≥50 years old), were recruited at their visits. Those with malignant diseases, on chemotherapy or biological therapy, with amputated legs, or at hemodialysis, were excluded. The multinomial regression models were used to determine independent associations of the groups of variables, indicating sociodemographic and clinical characteristics of these patients, with increasing values (quartiles) of serum IL-17A. RESULTS The regression models indicated the frailty index and sex bias are the key modifying factors in associations of other variables with IL-17A serum values. CONCLUSIONS Sex bias and the existence of different frailty phenotypes could be the essential determining factors of the serum IL-17A levels in community-dwelling patients with T2D age 50 years and older. The results support the concept of T2D as a complex disorder.
Collapse
Affiliation(s)
- Zvonimir Bosnić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - František Babič
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Košice, Slovakia
| | - Thomas Wittlinger
- Department of Cardiology, Asklepios Hospital, Goslar, Germany
- University of Göttingen, Göttingen, Germany
| | - Viera Anderková
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Košice, Slovakia
| | - Ines Šahinović
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
33
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
34
|
Tomlinson KL, Chen YT, Junker A, Urso A, Wong Fok Lung T, Ahn D, Hofstaedter CE, Baskota SU, Ernst RK, Prince A, Riquelme SA. Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection. Cell Metab 2023; 35:1767-1781.e6. [PMID: 37793346 PMCID: PMC10558090 DOI: 10.1016/j.cmet.2023.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infection, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environment enables host-P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.
Collapse
Affiliation(s)
- Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Ying-Tsun Chen
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Alex Junker
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - AndreaCarola Urso
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | - Danielle Ahn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Swikrity U Baskota
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
35
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
36
|
Yang C, Liu H, Li X, Peng X, Rao G, Xie Z, Yang Q, Du L, Xie C. Modular characteristics and mechanism of action of herbs for type 2 diabetes treatment in Chinese medicine. Heliyon 2023; 9:e20106. [PMID: 37809579 PMCID: PMC10559873 DOI: 10.1016/j.heliyon.2023.e20106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Type 2 diabetes (T2D) has emerged as a global epidemic, and conventional treatment approaches often face limitations in achieving long-term glycemic control and preventing complications. Traditional Chinese Medicine (TCM) offers a valuable alternative for managing T2D, with a long history of effectively using herbal formulations in clinical practice. However, the modular characteristics of these herbs and their specific mechanisms of action remain poorly understood. To comprehensively investigate the modular characteristics and mechanisms of Chinese herbs in treating T2D, as well as explore the synergistic interactions among different herbs and their modular components, we employed data mining, systematic pharmacology, and molecular docking. Our aim was to gain a comprehensive understanding of the potential therapeutic targets and pathways involved in herbal T2D treatment. In this study, a total of 1114 studies investigating the effects of TCM interventions in the treatment of T2D in adults were included. The analysis revealed 170 distinct types of Chinese herbs, 118 active components, and 238 common targets shared between the medicine and T2D. Additionally, this study identified six hub proteins (TNF, MMP2, PTGS, CASP3, CASP8, and CASP9) and two key chemicals (Diosgenin and Formononetin) found in TCM-mediated T2D suppression. It was observed that these proteins could bind with the ingredients. The MMP2-Diosgenin interaction exhibited the lowest binding free energy (-13.05 kJ/mol) and was primarily driven by hydrogen bonds with ALA-165. TNF-Diosgenin (-10.5 kcal/mol) showed three hydrogen bonds with LEU-37, ARG-82, and ASN-30. PTGS2 and Diosgenin (-8.71 kJ/mol) demonstrated a hydrogen bond with HIS-214. Furthermore, CASP9-Formononetin (-6.53 kcal/mol) exhibited the lowest binding free energy and hydrogen bonds with GLU-261 and SER-339 as the primary forces involved. CASP3-Formononetin (-6.07 kcal/mol) displayed three hydrogen bonds with ASN-342, TRP-348, and GLU-379. Lastly, CASP8 and Formononetin (-6.06 kJ/mol) formed a hydrogen bond with THR-390, TYR-392, and TYR-334. Moreover, critical therapeutic pathways, such as the immune inflammatory response, AGE-RAGE, and IL-17 signaling pathway, were found to be associated with T2D Chinese herb therapy. In conclusion, this study sheded light on the modular characteristics and mechanism of action of herbs used in Chinese Medicine for the treatment of T2D, which provided valuable insights for both researchers and practitioners in the field of Chinese Medicine, offering potential avenues for improved treatment strategies and personalized approaches to address the complex nature of T2D.
Collapse
Affiliation(s)
- Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan province, 610075, Sichuan, Chengdu, China
| | - Xinqiong Li
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Xi Peng
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Guocheng Rao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan province, 610075, Sichuan, Chengdu, China
| | - Qiangfei Yang
- Jianyang City People's Hospital, 610040,Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan province, 610075, Sichuan, Chengdu, China
| |
Collapse
|
37
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
38
|
Hoch J, Burkhard N, Zhang S, Rieder M, Marchini T, Geest V, Krauel K, Zahn T, Schommer N, Hamad MA, Bauer C, Gauchel N, Stallmann D, Normann C, Wolf D, Scharf RE, Duerschmied D, Schanze N. Serotonin transporter-deficient mice display enhanced adipose tissue inflammation after chronic high-fat diet feeding. Front Immunol 2023; 14:1184010. [PMID: 37520561 PMCID: PMC10372416 DOI: 10.3389/fimmu.2023.1184010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Serotonin is involved in leukocyte recruitment during inflammation. Deficiency of the serotonin transporter (SERT) is associated with metabolic changes in humans and mice. A possible link and interaction between the inflammatory effects of serotonin and metabolic derangements in SERT-deficient mice has not been investigated so far. Methods SERT-deficient (Sert -/-) and wild type (WT) mice were fed a high-fat diet, starting at 8 weeks of age. Metabolic phenotyping (metabolic caging, glucose and insulin tolerance testing, body and organ weight measurements, qPCR, histology) and assessment of adipose tissue inflammation (flow cytometry, histology, qPCR) were carried out at the end of the 19-week high-fat diet feeding period. In parallel, Sert -/- and WT mice received a control diet and were analyzed either at the time point equivalent to high-fat diet feeding or as early as 8-11 weeks of age for baseline characterization. Results After 19 weeks of high-fat diet, Sert -/- and WT mice displayed similar whole-body and fat pad weights despite increased relative weight gain due to lower starting body weight in Sert -/-. In obese Sert -/- animals insulin resistance and liver steatosis were enhanced as compared to WT animals. Leukocyte accumulation and mRNA expression of cytokine signaling mediators were increased in epididymal adipose tissue of obese Sert -/- mice. These effects were associated with higher adipose tissue mRNA expression of the chemokine monocyte chemoattractant protein 1 and presence of monocytosis in blood with an increased proportion of pro-inflammatory Ly6C+ monocytes. By contrast, Sert -/- mice fed a control diet did not display adipose tissue inflammation. Discussion Our observations suggest that SERT deficiency in mice is associated with inflammatory processes that manifest as increased adipose tissue inflammation upon chronic high-fat diet feeding due to enhanced leukocyte recruitment.
Collapse
Affiliation(s)
- Johannes Hoch
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Niklas Burkhard
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shanshan Zhang
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marina Rieder
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Inselspital, Bern, Switzerland
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vincent Geest
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Krystin Krauel
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timm Zahn
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolas Schommer
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Muataz Ali Hamad
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolina Bauer
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadine Gauchel
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Stallmann
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rüdiger Eberhard Scharf
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Experimental and Clinical Hemostasis, Hemotherapy, and Transfusion Medicine, Blood and Hemophilia Comprehensive Care Center, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Daniel Duerschmied
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Nancy Schanze
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Li JH, Hepworth MR, O'Sullivan TE. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 2023; 56:1168-1186. [PMID: 37315533 PMCID: PMC10321269 DOI: 10.1016/j.immuni.2023.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA; Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
41
|
Brembilla NC, Boehncke WH. Revisiting the interleukin 17 family of cytokines in psoriasis: pathogenesis and potential targets for innovative therapies. Front Immunol 2023; 14:1186455. [PMID: 37283755 PMCID: PMC10239979 DOI: 10.3389/fimmu.2023.1186455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with substantial comorbidity. TH17 lymphocytes, differentiating under the influence of dendritic cell-derived IL-23, and mediating their effects via IL-17A, are believed to be central effector cells in psoriasis. This concept is underlined by the unprecedented efficacy of therapeutics targeting this pathogenetic axis. In recent years, numerous observations made it necessary to revisit and refine this simple "linear" pathogenetic model. It became evident that IL-23 independent cells exist that produce IL-17A, that IL-17 homologues may exhibit synergistic biological effects, and that the blockade of IL-17A alone is clinically less effective compared to the inhibition of several IL-17 homologues. In this review, we will summarize the current knowledge around IL-17A and its five currently known homologues, namely IL-17B, IL-17C, IL-17D, IL-17E (also known as IL-25) and IL-17F, in relation to skin inflammation in general and psoriasis in particular. We will also re-visit the above-mentioned observations and integrate them into a more comprehensive pathogenetic model. This may help to appreciate current as well as developing anti-psoriatic therapies and to prioritize the selection of future drugs' mode(s) of action.
Collapse
Affiliation(s)
| | - Wolf-Henning Boehncke
- Divison of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Shi X, Huang B, Zhu J, Yamaguchi T, Hu A, Tabuchi M, Watanabe D, Yoshikawa S, Mizushima S, Mizushima A, Xia S. A network pharmacology-based investigation of emodin against pancreatic adenocarcinoma. Medicine (Baltimore) 2023; 102:e33521. [PMID: 37335741 PMCID: PMC10194452 DOI: 10.1097/md.0000000000033521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/21/2023] [Indexed: 06/21/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most common malignancies worldwide with an increasing incidence and poor outcome due to the lack of effective diagnostic and treatment methods. Emerging evidence implicates that emodin displays extensive spectrum anticancer properties. Differential expression genes in PAAD patients were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) website, and the targets of emodin were obtained via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Subsequently, enrichment analyses were performed using R software. A protein-protein interaction (PPI) network was constructed by STRING database and Cytoscape software was used to identify the hub genes. Prognostic value and immune infiltration landscapes were explored through Kaplan-Meier plotter (KM plotter) website and the Single-Sample Gene Set Enrichment Analysis package of R. Finally, molecular docking was used to computationally verify the interaction of ligand and receptor proteins. A total of 9191 genes were significantly differentially expressed in PAAD patients and 34 potential targets of emodin were obtained. Intersections of the 2 groups were considered as potential targets of emodin against PAAD. Functional enrichment analyses illustrated that these potential targets were linked to numerous pathological processes. Hub genes identified through PPI networks were correlated with poor prognosis and infiltration level of different immune cells in PAAD patients. Perhaps emodin interacted with the key molecules and regulate the activity of them. We revealed the inherent mechanism of emodin against PAAD with the aid of network pharmacology, which provided reliable evidence and a novel guideline for clinical treatment.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bingqian Huang
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jingyi Zhu
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Takuji Yamaguchi
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ailing Hu
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Tabuchi
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Seiichiro Yoshikawa
- Cancer therapeutic center, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | - Akio Mizushima
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Palliative Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Cao G, Liu J, Liu H, Chen X, Yu N, Li X, Xu F. Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis. Vet Sci 2023; 10:350. [PMID: 37235433 PMCID: PMC10223180 DOI: 10.3390/vetsci10050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The active components, potential targets, and mechanisms of action of oregano essential oil in the treatment of bovine mastitis disease were investigated using network pharmacology and molecular docking approaches. The TCMSP and literature databases were examined for the main compounds in oregano essential oil. Afterward, the physical, chemical, and bioavailability characteristics of the components were evaluated. The PubChem, BATMAN, PharmMapper, and Uniprot databases were utilized to predict the target genes of the major components of oregano essential oil. Via the databases of DrugBank, OMIM, GeneCards, TTD, and DisGenet, the disease targets of bovine mastitis were discovered. We analyzed common targets and built protein-protein interaction (PPI) networks using the STRING database. Key genes were analyzed, obtained, and compound-target-pathway-disease visualization networks were created using Cytoscape. For the GO function and KEGG pathway enrichment analysis, the DAVID database was utilized. Molecular docking via Autodock Tools was utilized to evaluate the reliability of the interactions between oregano essential oil and hub targets. Thymol, carvacrol, and p-cymene are the three major components found in oregano essential oil. The potential targets (TNF, TLR4, ALB, IL-1β, TLR2, IL-6, IFNG, and MyD88) were screened according to the visual network. The enrichment analysis suggested that the major signaling pathways in network pharmacology may include PI3K-Akt, MAPK, IL-17, and NF-κ B. Molecular docking analysis shows that thymol had good docking activity with TNF, IL-6, and MyD88, carvacrol had good docking activity with TNF, and p-cymene had good docking activity with ALB. This study clarified the mechanism of action of oregano essential oil in the treatment of bovine mastitis, thus providing data supporting the potential for the use of oregano essential oil in the development of new therapeutics for bovine mastitis.
Collapse
Affiliation(s)
- Guangjie Cao
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
| | - Jing Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
| | - Huan Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
| | - Xiaojie Chen
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Fei Xu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.C.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
44
|
Wu X, He C, Liu C, Xu X, Chen C, Yang H, Shi H, Fei Y, Sun Y, Zhou S, Fang B. Mechanisms of JinHong Formula on treating sepsis explored by randomized controlled trial combined with network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116040. [PMID: 36539071 DOI: 10.1016/j.jep.2022.116040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE JinHong Formula (JHF) was derived from the famous Rhubarb and Moutan Decoction which was prescribed for appendicitis. It was originally recorded in the classic of "Jingui Yaolve" written by Zhang Zhongjing. It is a kind of traditional Chinese medicine, widely used in the treatment of inflammation. However, the clinical effect of JHF for sepsis and its comprehensive mechanism in sepsis remained largely unknown. RESEARCH PURPOSE The aim of our study was to evaluate the clinical effect of JHF in the treatment of sepsis, and to explore its mechanism from the perspective of network pharmacology. RESEARCH METHODS The single-center randomized clinical trial was conducted to assess the effect of JHF in the treatment of sepsis. Additionally, we used the Chinese herbal medicine pharmacology database and analysis platform to identify the active components and therapeutic target of JHF. Numerous well-known disease target databases have been used to screen therapeutic target proteins for sepsis. Furthermore, we have established a Protein-Protein Interaction (PPI) network and carried out Gene Onotology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis. In order to conclude which active compounds from JHF may be responsible for signaling pathway, we performed network analysis. RESEARCH RESULTS The study included 114 patients. By comparing participants with and without JHF, the results suggested that JHF significantly reduced all-cause mortality on 28 and 60 days after intervention, and improved Sequential Organ Failure Assessment (SOFA) on 7th day after intervention as well as. JHF had an effect of anti-inflammatories and antioxidants (SOD). By using network pharmacological analysis, we identified 72 active components and 426 target genes of JHF, and successfully constructed a "JHF-compound target-sepsis" network. 116 mentioned targets revealed by GO/KEGG enrichment analysis played a significant role in the inflammatory reaction and immunoregulation via interleukin-17 (IL-17) and tumor necrosis factor (TNF) signaling pathway. Moreover, the analysis of "pathway target-active component" revealed that Sennidin A, Rheidin A, Rheidin B, Rheidin C, (E)-4-Phenyl-3-Buten-2-One, Osmanthuside H, Esculetin, and Caffeicacid were responsible for IL-17, TNF signaling pathways. CONCLUSION JHF contains potential active substance of anti-inflammatory and antioxidant. These active compounds may come into play through IL-17 and TNF signaling pathways. For sepsis, JHF may be a promising and effective treatment strategy.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chenming He
- Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian New Area, Shaanxi Province, Shaanxi, China
| | - Changya Liu
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Xiangru Xu
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Caiyu Chen
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Hongqiang Yang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Haimei Shi
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Yuerong Fei
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Yuting Sun
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Shuang Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bangjiang Fang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China; Emergency and Critical Care Institute of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
45
|
Many GM, Sanford JA, Sagendorf TJ, Hou Z, Nigro P, Whytock K, Amar D, Caputo T, Gay NR, Gaul DA, Hirshman M, Jimenez-Morales D, Lindholm ME, Muehlbauer MJ, Vamvini M, Bergman B, Fern Ndez FM, Goodyear LJ, Ortlund EA, Sparks LM, Xia A, Adkins JN, Bodine SC, Newgard CB, Schenk S. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527012. [PMID: 36778330 PMCID: PMC9915732 DOI: 10.1101/2023.02.03.527012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.
Collapse
|
46
|
Hayashi Y, Kimura S, Yano E, Yoshimoto S, Saeki A, Yasukochi A, Hatakeyama Y, Moriyama M, Nakamura S, Jimi E, Kawakubo-Yasukochi T. Id4 modulates salivary gland homeostasis and its expression is downregulated in IgG4-related disease via miR-486-5p. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119404. [PMID: 36535369 DOI: 10.1016/j.bbamcr.2022.119404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Salivary glands are physiologically orchestrated by the coordinated balance between cell differentiation, proliferation, apoptosis, and interactions between epithelial, mesenchymal endothelial, and neuronal cells, and they are frequent sites of manifestations of Sjögren's syndrome (SS) or IgG4-related disease (IgG4-RD). However, little is known about salivary gland homeostasis and its involvement in those diseases. Inhibitor of DNA binding/differentiation 4 (Id4) is an Id protein involved in the transcriptional control of many biological events, including differentiation. Studies of Id4-deficient mice revealed that Id4-deficient submandibular glands were smaller and exhibited accelerated differentiation, compared with those from wild-type littermates. In addition, dry mouth symptoms and Th17 expansion in splenocytes were also observed in the absence of Id4. Furthermore, Id4 levels in the salivary glands of patients with IgG4-RD, but not SS, were significantly decreased compared with those of healthy controls. miRNA-mRNA integrated analysis demonstrated that miR-486-5p was upregulated in IgG4-RD patients and that it might regulate Id4 in the lesion sites. Together, these results provide evidence for the inhibitory role of Id4 in salivary differentiation, and a critical association between Id4 downregulation and IgG4-RD.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Ayaka Saeki
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Masafumi Moriyama
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoyo Kawakubo-Yasukochi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
47
|
Li Y, Zhao Y, Gao Y, Li Y, Liu M, Xu N, Zhu H. Age-related macrophage alterations are associated with carcinogenesis of colorectal cancer. Carcinogenesis 2022; 43:1039-1049. [PMID: 36346184 DOI: 10.1093/carcin/bgac088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Older age is a major risk factor for colorectal cancer. Macrophage is one of the most abundant immune cell types infiltrated in colorectal cancer, but the contribution of macrophages in elder tumor microenvironment is far from clear. In this study, we first detected the expression of CD206, CD68 in colorectal cancer tissues by multiplex fluorescence immunohistochemical staining. The infiltration of CD68+/CD206+ cells in tumor tissues from old patients was higher than those from young patients. When mixed with CT26 cells, both young and aged TAMs enhanced tumor growth of CT26 cells, but CT26 mixed with aged TAMs form larger tumors compared with young TAMs. CT26 formed more and larger tumors in the abdominal cavity of aged mice compared with young. Total macrophage infiltration and the CD206+ macrophages infiltration were both higher in aged mice compared with young mice. The expression signatures of tumor-associated macrophages altered with ageing and p-NF-κB translocation to nucleus was more significant in TAMs from aged mice compared with young. Our results showed that infiltration of macrophages in colorectal cancer tissues increased with ageing. Macrophages from aged host were more likely to polarize to pro-tumor phenotype, and more powerful in promoting tumor cell proliferation.
Collapse
Affiliation(s)
- Yinuo Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Yang Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Yu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Ningzhi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| | - Hongxia Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,100021, China
| |
Collapse
|
48
|
Zhang J, Wang AX, Wu Y, Zhang S. IL-1 receptor antagonist (IL-1RA) suppresses a hyper-IL-17 response-mediated bone loss in a murine experimental periodontitis. Arch Oral Biol 2022; 144:105555. [DOI: 10.1016/j.archoralbio.2022.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
49
|
Jin B, Zhang Y, Miller HD, He L, Ge D, Wang AR, You Z. Defect of IL17 Signaling, but Not Centrinone, Inhibits the Development of Psoriasis and Skin Papilloma in Mouse Models. Biomedicines 2022; 10:biomedicines10081976. [PMID: 36009523 PMCID: PMC9405709 DOI: 10.3390/biomedicines10081976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with psoriasis tend to develop skin cancer, and the hyperproliferation of the epidermis is a histopathological hallmark of both psoriasis and cutaneous squamous cell carcinoma (SCC), indicating that they may share pathogenic mechanisms. Interleukin-17 (IL17) stimulates the proliferation of the epidermis, leading to psoriasis. Overexpression of Polo-like kinase 4 (PLK4), which controls centriole duplication, has been identified in SCC, which also shows the hyperproliferation of keratinocytes. To investigate the cooperation between IL17 signaling and centriole duplication in epidermal proliferation, we established psoriasis and skin papilloma models in wild type (WT), IL17 receptor A (T779A) knockin (Il17ra(T779A)-KI), and IL17 receptor C knockout (Il17rc-KO) mouse strains. Bioinformatics, Western blot, immunohistochemical staining, colony formation, and real-time PCR were used to determine the effect of IL17 signaling and centrinone on epithelial proliferation. In the psoriasis model, compared to WT and Il17ra(T779A)-KI, Il17rc-KO dramatically suppressed epidermal thickening. The proliferation of keratinocytes significantly decreased in this order from WT to Il17ra(T779A)-KI and Il17rc-KO mice. In the skin papilloma model, Il17ra(T779A)-KI significantly decreased tumor burden compared to the WT, while Il17rc-KO abolished papilloma development. However, centrinone, a selective inhibitor of PLK4, did not affect skin lesion formation in either model. Our data demonstrated that Il17ra(T779A)-KI and Il17rc-KO prevent the development of psoriasis and tumorigenesis in the skin, while the topical administration of centrinone does not have any effect.
Collapse
Affiliation(s)
- Ben Jin
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Yongfeng Zhang
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Haiyan D. Miller
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Ling He
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zongbing You
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University, New Orleans, LA 70112, USA
- Correspondence: or ; Tel.: +1-504-507-2000 (ext. 67364) or +1-504-988-0467
| |
Collapse
|
50
|
Conway R, Rockhold JD, SantaCruz-Calvo S, Zukowski E, Pugh GH, Hasturk H, Kern PA, Nikolajczyk BS, Bharath LP. Obesity and Fatty Acids Promote Mitochondrial Translocation of STAT3 Through ROS-Dependent Mechanisms. FRONTIERS IN AGING 2022; 3:924003. [PMID: 35928250 PMCID: PMC9344057 DOI: 10.3389/fragi.2022.924003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Obesity promotes the onset and progression of metabolic and inflammatory diseases such as type 2 diabetes. The chronic low-grade inflammation that occurs during obesity triggers multiple signaling mechanisms that negatively affect organismal health. One such mechanism is the persistent activation and mitochondrial translocation of STAT3, which is implicated in inflammatory pathologies and many types of cancers. STAT3 in the mitochondria (mitoSTAT3) alters electron transport chain activity, thereby influencing nutrient metabolism and immune response. PBMCs and CD4+ T cells from obese but normal glucose-tolerant (NGT) middle-aged subjects had higher phosphorylation of STAT3 on residue serine 727 and more mitochondrial accumulation of STAT3 than cells from lean subjects. To evaluate if circulating lipid overabundance in obesity is responsible for age- and sex-matched mitoSTAT3, cells from lean subjects were challenged with physiologically relevant doses of the saturated and monounsaturated fatty acids, palmitate and oleate, respectively. Fatty acid treatment caused robust accumulation of mitoSTAT3 in all cell types, which was independent of palmitate-induced impairments in autophagy. Co-treatment of cells with fatty acid and trehalose prevented STAT3 phosphorylation and mitochondrial accumulation in an autophagy-independent but cellular peroxide-dependent mechanism. Pharmacological blockade of mitoSTAT3 either by a mitochondria-targeted STAT3 inhibitor or ROS scavenging prevented obesity and fatty acid-induced production of proinflammatory cytokines IL-17A and IL-6, thus establishing a mechanistic link between mitoSTAT3 and inflammatory cytokine production.
Collapse
Affiliation(s)
- Rachel Conway
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| | - Jack Donato Rockhold
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Emelia Zukowski
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| | - Gabriella H. Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | | | - Philip A. Kern
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- Department of Medicine, University of Kentucky, Lexington, KY, United States
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Leena P. Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, United States
| |
Collapse
|