1
|
Prota G, Berloffa G, Awad W, Vacchini A, Chancellor A, Schaefer V, Constantin D, Littler DR, Colombo R, Nosi V, Mori L, Rossjohn J, De Libero G. Mitochondria regulate MR1 protein expression and produce self-metabolites that activate MR1-restricted T cells. Proc Natl Acad Sci U S A 2025; 122:e2418525122. [PMID: 40354545 DOI: 10.1073/pnas.2418525122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondria coordinate several metabolic pathways, producing metabolites that influence the immune response in various ways. It remains unclear whether mitochondria impact antigen presentation by the MHC-class-I-related antigen-presenting molecule, MR1, which presents small molecules to MR1-restricted T-lymphocytes. Here, we demonstrate that mitochondrial complex III and the enzyme dihydroorotate dehydrogenase are essential for the cell-surface expression of MR1 and for generating uridine- and thymidine-related compounds that bind to MR1 and are produced upon oxidation by reactive oxygen species. One mitochondria-derived immunogenic formylated metabolite we identified is 5-formyl-deoxyuridine (5-FdU). Structural studies indicate that 5-FdU binds in the A'-antigen-binding pocket of MR1, positioning the deoxyribose toward the surface of MR1 for TCR interaction. 5-FdU stimulates specific T cells and detects circulating T cells when loaded onto MR1-tetramers. 5-FdU-reactive cells resemble adaptive T cells and express the phenotypes of naïve, memory, and effector cells, indicating prior in vivo stimulation. These findings suggest that mitochondria may play a role in MR1-mediated immune surveillance.
Collapse
Affiliation(s)
- Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4YS, United Kingdom
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| |
Collapse
|
2
|
Awad W, Abdelaal MR, Letoga V, McCluskey J, Rossjohn J. Molecular Insights Into MR1-Mediated T Cell Immunity: Lessons Learned and Unanswered Questions. Immunol Rev 2025; 331:e70033. [PMID: 40338831 PMCID: PMC12058573 DOI: 10.1111/imr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
The major histocompatibility complex class-I related protein, MR1, is an evolutionarily conserved antigen presenting molecule that binds and displays organic metabolites to T cells, including mucosal associated invariant T (MAIT) cells and diverse MR1-restricted T cells (MR1T). Structural studies have elucidated how MR1 can accommodate a range of chemical scaffolds that arise from foreign, synthetic, and self-metabolites, although the full spectrum of metabolites that MR1 presents remains unclear. Presently, MAIT and MR1T cell recognition of MR1-antigen complexes represents a new immune recognition paradigm and is emerging as a critical player in protective immunity, aberrant immunity, tumor immunity, and tissue repair. Moreover, the limited allelic variation of MR1 makes it an attractive therapeutic target. This review will address the unique features and capability of the MR1 molecule to display several classes of small molecules for T cell surveillance. We will also address the molecular basis underlying MAIT and MR1T TCR recognition of MR1-binding ligands.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Mohamed R. Abdelaal
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Victoria Letoga
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Institute of Infection and Immunity, Cardiff University School of MedicineCardiffUK
| |
Collapse
|
3
|
Kronenberg M, Riffelmacher T. Defenders or defectors: mucosal-associated invariant T cells in autoimmune diseases. Curr Opin Immunol 2025; 93:102542. [PMID: 40020256 PMCID: PMC11908677 DOI: 10.1016/j.coi.2025.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/08/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1, a major histocompatibility complex class I-like protein. Activated MAIT cells produce cytokines such as interferon gamma (IFNγ), tumor necrosis factor, and interleukin-17; they traffic to sites of infection and participate in protective responses. They are absent in germ-free mice and are dependent on microbes. MAIT cells not only respond to infections but also have been analyzed in various autoimmune diseases. A trend is that in autoimmune disease, MAIT cells are decreased in the circulation and increased and activated or exhausted in the site of inflammation. Despite a possible pathogenic role, publications show MAIT cells also can function in tissue repair. Mouse autoimmune disease models support the presence of both these MAIT cell functions. The signals driving the balance of inflammatory and tissue repair in MAIT cell responses remain to be fully elucidated.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | |
Collapse
|
4
|
Suckling RJ, Pamukcu C, Simmons RA, Fonseca D, Grant E, Harrison R, Shaikh SA, Khanolkar RC, Ghadbane H, Creese A, Hock M, Gligoris TG, Lepore M, Karuppiah V, Salio M. Molecular basis underpinning MR1 allomorph recognition by an MR1-restricted T cell receptor. Front Immunol 2025; 16:1547664. [PMID: 40207221 PMCID: PMC11979126 DOI: 10.3389/fimmu.2025.1547664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The MHC-class-I-related molecule MR1 presents small metabolites of microbial and self-origin to T cells bearing semi-invariant or variant T cell receptors. One such T cell receptor, MC.7.G5, was previously shown to confer broad MR1-restricted reactivity to tumor cells but not normal cells, sparking interest in the development of non-MHC-restricted immunotherapy approaches. Methods/Results Here we provide cellular, biophysical, and crystallographic evidence that the MC.7.G5 TCR does not have pan-cancer specificity but is restricted to a rare allomorph of MR1, bearing the R9H mutation. Discussion Our results underscore the importance of in-depth characterization of MR1-reactive TCRs against targets expressing the full repertoire of MR1 allomorphs.
Collapse
|
5
|
Loureiro JP, Vacchini A, Berloffa G, Devan J, Schaefer V, Nosi V, Colombo R, Beshirova A, Montanelli G, Meyer B, Sharpe T, Chancellor A, Recher M, Mori L, De Libero G. Recognition of MR1-antigen complexes by TCR Vγ9Vδ2. Front Immunol 2025; 16:1519128. [PMID: 40040716 PMCID: PMC11876030 DOI: 10.3389/fimmu.2025.1519128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
The TCR-mediated activation of T cells expressing the TCR Vγ9Vδ2 relies on an innate-like mechanism involving the butyrophilin 3A1, 3A2 and 2A1 molecules and phospho-antigens, without the participation of classical antigen-presenting molecules. Whether TCR Vγ9Vδ2 cells also recognize complexes composed of antigens and antigen-presenting molecules in an adaptive-like manner is unknown. Here, we identify MR1-autoreactive cells expressing the TCR Vγ9Vδ2. This MR1-restricted response is antigen- and CDR3δ-dependent and butyrophilin-independent. TCR gene transfer reconstitutes MR1-antigen recognition, and engineered TCR Vγ9Vδ2 tetramers interact with soluble MR1-antigen complexes in an antigen-dependent manner. These cells are present in healthy individuals with low frequency and are mostly CD8+ or CD4-CD8 double negative. We also describe a patient with autoimmune symptoms and TCR γδ lymphocytosis in which ~10% of circulating T cells are MR1-self-reactive and express a TCR Vγ9Vδ2. These cells release pro-inflammatory cytokines, suggesting a possible participation in disease pathogenesis. Thus, MR1-self-antigen complexes can interact with some TCRs Vγ9Vδ2, promoting full cell activation and potentially contributing to diseases.
Collapse
Affiliation(s)
- José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Jan Devan
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giulia Montanelli
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Benedikt Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | | | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Chancellor A, Constantin D, Berloffa G, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2025; 58:431-447.e10. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
7
|
Kaur R, Mehanna N, Pradhan A, Xie D, Li K, Aubѐ J, Rosati B, Carlson D, Vorkas CK. CD4 + Mucosal-associated Invariant T (MAIT) cells express highly diverse T cell receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636785. [PMID: 39975233 PMCID: PMC11839023 DOI: 10.1101/2025.02.06.636785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mucosal-associated invariant T cells are highly conserved innate-like T cells in mammals recognized for their high baseline frequency in human blood and cytotoxic effector functions during infectious diseases, autoimmunity, and cancer. While the majority of these cells express a conserved CD8αβ+ TRAV1-2 T cell receptor recognizing microbially-derived Vitamin B2 intermediates presented by the evolutionarily conserved major histocompatibility complex I-related molecule, MR1, there is an emerging appreciation for diverse subsets that may be selected for in humans with distinct functions, including subpopulations that co-express CD4. Prior work has not examined T cell receptor (TCR) heterogeneity in CD4 + MAIT cells, largely due to bias of identifying human MAIT cells as CD8 + TRAV1-2 + cells. In this study, we adopted an unbiased single-cell TCR-sequencing approach of total MR1-5-OP-RU-tetramer-reactive T cells and discovered that CD4 + MAIT cells express highly diverse TRAV1-2 negative TCRs. To specifically characterize this TCR repertoire, we analyzed VDJ sequences of single MR1-5-OP-RU tetramer + MAIT cells across two datasets and identified distinct TCR usage among CD4 + MAIT cells including TRAV21, TRAV8 (TRAV8-1, TRAV8-2, TRAV8-3), and TRAV12 families (TRAV12-2, TRAV12-3), as well as more variable J chain and CDR3 sequences. Non-TRAV1-2 MAIT cell TCRs were also enriched after in vitro expansion, including with Mycobacterial tuberculosis . These results indicate that mature human CD4 + MAIT cells adopt distinct TCR usage from the canonical TRAV1-2 + CD8 + subset and suggest that alternative MR1 ligands in addition to riboflavin intermediates may select them.
Collapse
|
8
|
McInerney MP, Awad W, Souter MNT, Kang Y, Wang CJH, Chan Yew Poa K, Abdelaal MR, Le NH, Shepherd CM, McNeice C, Meehan LJ, Nelson AG, Raynes JM, Mak JYW, McCluskey J, Chen Z, Ang CS, Fairlie DP, Le Nours J, Illing PT, Rossjohn J, Purcell AW. MR1 presents vitamin B6-related compounds for recognition by MR1-reactive T cells. Proc Natl Acad Sci U S A 2024; 121:e2414792121. [PMID: 39589872 PMCID: PMC11626183 DOI: 10.1073/pnas.2414792121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024] Open
Abstract
The major histocompatibility complex class I related protein (MR1) presents microbially derived vitamin B2 precursors to mucosal-associated invariant T (MAIT) cells. MR1 can also present other metabolites to activate MR1-restricted T cells expressing more diverse T cell receptors (TCRs), some with anti-tumor reactivity. However, knowledge of the range of the antigen(s) that can activate diverse MR1-reactive T cells remains incomplete. Here, we identify pyridoxal (vitamin B6) as a naturally presented MR1 ligand using unbiased mass spectrometry analyses of MR1-bound metabolites. Pyridoxal, and the related compound, pyridoxal 5-phosphate bound to MR1 and enabled cell surface upregulation of wild type MR1*01 and MR1 expressing the Arg9His polymorphism associated with the MR1*04 allotype in a manner dependent on Lys43-mediated Schiff-base formation. Crystal structures of MR1*01 in complex with pyridoxal and pyridoxal 5-phosphate showed how these ligands were accommodated within the A-pocket of MR1. T cell lines transduced with the 7.G5 TCR, which has reported "pan-cancer" specificity, were specifically activated by pyridoxal presented by antigen-presenting cells expressing MR1*01 and MR1 allotypes bearing the less common Arg9His polymorphism. 7.G5 T cells also recognized, to a lesser extent, pyridoxal 5-phosphate and, importantly, recognition of both vitamers was blocked by an anti-MR1 antibody. 7.G5 TCR reactivity toward pyridoxal was enhanced when presented by the Arg9His polymorphism-bearing MR1 allotypes. Vitamin B6, and vitamers thereof, have been associated with various cancers, and here we describe a link between this ligand, MR1, and its allomorphs, and the pan-cancer 7.G5 TCR. This work identifies an MR1 ligand that can activate a diverse MR1-restricted TCR.
Collapse
Affiliation(s)
- Mitchell P. McInerney
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Wael Awad
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Yang Kang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Carl J. H. Wang
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Kean Chan Yew Poa
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Mohamed R. Abdelaal
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Ngoc H. Le
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Chloe M. Shepherd
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Conor McNeice
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Adam G. Nelson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Jeremy M. Raynes
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Jérôme Le Nours
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CardiffCF10 3AT, United Kingdom
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
9
|
Cornforth TV, Moyo N, Cole S, Lam EPS, Lobry T, Wolchinsky R, Lloyd A, Ward K, Denham EM, Masi G, Qing Yun PT, Moore C, Dhaouadi S, Besra GS, Veerapen N, Illing PT, Vivian JP, Raynes JM, Le Nours J, Purcell AW, Kundu S, Silk JD, Williams L, Papa S, Rossjohn J, Howie D, Dukes J. Conserved allomorphs of MR1 drive the specificity of MR1-restricted TCRs. Front Oncol 2024; 14:1419528. [PMID: 39445059 PMCID: PMC11496959 DOI: 10.3389/fonc.2024.1419528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Background Major histocompatibility complex class-1-related protein (MR1), unlike human leukocyte antigen (HLA) class-1, was until recently considered to be monomorphic. MR1 presents metabolites in the context of host responses to bacterial infection. MR1-restricted TCRs specific to tumor cells have been described, raising interest in their potential therapeutic application for cancer treatment. The diversity of MR1-ligand biology has broadened with the observation that single nucleotide variants (SNVs) exist within MR1 and that allelic variants can impact host immunity. Methods The TCR from a MR1-restricted T-cell clone, MC.7.G5, with reported cancer specificity and pan-cancer activity, was cloned and expressed in Jurkat E6.1 TCRαβ- β2M- CD8+ NF-κB:CFP NFAT:eGFP AP-1:mCherry cells or in human donor T cells. Functional activity of 7G5.TCR-T was demonstrated using cytotoxicity assays and by measuring cytokine release after co-culture with cancer cell lines with or without loading of previously described MR1 ligands. MR1 allele sequencing was undertaken after the amplification of the MR1 gene region by PCR. In vivo studies were undertaken at Labcorp Drug Development (Ann Arbor, MI, USA) or Epistem Ltd (Manchester, UK). Results The TCR cloned from MC.7.G5 retained MR1-restricted functional cytotoxicity as 7G5.TCR-T. However, activity was not pan-cancer, as initially reported with the clone MC.7.G5. Recognition was restricted to cells expressing a SNV of MR1 (MR1*04) and was not cancer-specific. 7G5.TCR-T and 7G5-like TCR-T cells reacted to both cancer and healthy cells endogenously expressing MR1*04 SNVs, which encode R9H and H17R substitutions. This allelic specificity could be overcome by expressing supraphysiological levels of the wild-type MR1 (MR1*01) in cell lines. Conclusions Healthy individuals harbor T cells reactive to MR1 variants displaying self-ligands expressed in cancer and benign tissues. Described "cancer-specific" MR1-restricted TCRs need further validation, covering conserved allomorphs of MR1. Ligands require identification to ensure targeting MR1 is restricted to those specific to cancer and not normal tissues. For the wider field of immunology and transplant biology, the observation that MR1*04 may behave as an alloantigen warrants further study. .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Patricia T. Illing
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Julian P. Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jeremy M. Raynes
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | | | | - Sophie Papa
- Enara Bio Ltd., Oxford, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | | | | |
Collapse
|
10
|
Ito E, Yamasaki S. Regulation of MAIT cells through host-derived antigens. Front Immunol 2024; 15:1424987. [PMID: 38979423 PMCID: PMC11228242 DOI: 10.3389/fimmu.2024.1424987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
11
|
Edmans MD, Connelley TK, Morgan S, Pediongco TJ, Jayaraman S, Juno JA, Meehan BS, Dewar PM, Maze EA, Roos EO, Paudyal B, Mak JYW, Liu L, Fairlie DP, Wang H, Corbett AJ, McCluskey J, Benedictus L, Tchilian E, Klenerman P, Eckle SBG. MAIT cell-MR1 reactivity is highly conserved across multiple divergent species. J Biol Chem 2024; 300:107338. [PMID: 38705391 PMCID: PMC11190491 DOI: 10.1016/j.jbc.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αβ T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.
Collapse
Affiliation(s)
- Matthew D Edmans
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| | - Timothy K Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom
| | - Sophie Morgan
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Troi J Pediongco
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Siddharth Jayaraman
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phoebe M Dewar
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emmanuel A Maze
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Eduard O Roos
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Basudev Paudyal
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ligong Liu
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom; Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elma Tchilian
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Vacchini A, Chancellor A, Yang Q, Colombo R, Spagnuolo J, Berloffa G, Joss D, Øyås O, Lecchi C, De Simone G, Beshirova A, Nosi V, Loureiro JP, Morabito A, De Gregorio C, Pfeffer M, Schaefer V, Prota G, Zippelius A, Stelling J, Häussinger D, Brunelli L, Villalta P, Lepore M, Davoli E, Balbo S, Mori L, De Libero G. Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells. Sci Immunol 2024; 9:eadn0126. [PMID: 38728413 DOI: 10.1126/sciimmunol.adn0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Chiara Lecchi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| |
Collapse
|
13
|
Samer C, McWilliam HE, McSharry BP, Velusamy T, Burchfield JG, Stanton RJ, Tscharke DC, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Multi-targeted loss of the antigen presentation molecule MR1 during HSV-1 and HSV-2 infection. iScience 2024; 27:108801. [PMID: 38303725 PMCID: PMC10831258 DOI: 10.1016/j.isci.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Thilaga Velusamy
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - James G. Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
| | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Talvard-Balland N, Lambert M, Chevalier MF, Minet N, Salou M, Tourret M, Bohineust A, Milo I, Parietti V, Yvorra T, Socié G, Lantz O, Caillat-Zucman S. Human MAIT cells inhibit alloreactive T cell responses and protect against acute graft-versus-host disease. JCI Insight 2024; 9:e166310. [PMID: 38300704 PMCID: PMC11143928 DOI: 10.1172/jci.insight.166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Nana Talvard-Balland
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Lambert
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Norbert Minet
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Salou
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
| | - Marie Tourret
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Armelle Bohineust
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Idan Milo
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Véronique Parietti
- Université Paris Cité, INSERM, CNRS, UMS Saint-Louis (US53/UAR2030), Paris, France
| | - Thomas Yvorra
- Institut Curie, Université PSL, CNRS UMR3666, INSERM U1143, Paris, France
| | - Gérard Socié
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Hematology Transplantation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
- Clinical Immunology Laboratory, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Flemming A. Self-reactive MAIT cells are common in healthy individuals. Nat Rev Immunol 2023; 23:543. [PMID: 37507469 DOI: 10.1038/s41577-023-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
|