1
|
Baroni D. Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review. Curr Issues Mol Biol 2025; 47:119. [PMID: 39996840 PMCID: PMC11854517 DOI: 10.3390/cimb47020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride and bicarbonate channel localized on the plasma membrane of epithelial cells. Over the last three decades, high-throughput screening assays have been extensively employed in identifying drugs that target specific defects arising from CFTR mutations. The two main categories of such compounds are potentiators, which enhance CFTR gating by increasing the channel's open probability, and correctors, which improve CFTR protein folding and trafficking to the plasma membrane. In addition to these, other investigational molecules include amplifiers and stabilizers, which enhance the levels and the stability of CFTR on the cell surface, and read-through agents that promote the insertion of correct amino acids at premature termination codons. Currently, four CFTR modulators are clinically approved: the potentiator ivacaftor (VX-770), either as monotherapy or in combination with the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Among these, the triple combination VX-445/VX-661/VX-770 (marketed as Trikafta® in the US and Kaftrio® in Europe) has emerged as the most effective CFTR modulator therapy to date, demonstrating significant clinical benefits in phase III trials for patients with at least one F508del CFTR allele. Despite these advancements, the mechanisms of action and binding sites of these modulators on CFTR have only recently begun to be elucidated. A deeper understanding of these mechanisms could provide essential insights for developing more potent and effective modulators, particularly in combination therapies. This narrative review delves into the mechanism of action, binding sites, and combinatorial effects of approved and investigational CFTR modulators, highlighting ongoing efforts to broaden therapeutic options for individuals with CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy
| |
Collapse
|
2
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Rodrat M, Wongdee K, Teerapornpuntakit J, Thongbunchoo J, Tanramluk D, Aeimlapa R, Thammayon N, Thonapan N, Wattano P, Charoenphandhu N. Vasoactive intestinal peptide and cystic fibrosis transmembrane conductance regulator contribute to the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. PLoS One 2022; 17:e0277096. [PMID: 36399482 PMCID: PMC9674163 DOI: 10.1371/journal.pone.0277096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) as a neurocrine factor released by enteric neurons has been postulated to participate in the regulation of transcellular active calcium transport across intestinal epithelium, but the preceding evidence is scant and inconclusive. Herein, transepithelial calcium flux and epithelial electrical parameters were determined by Ussing chamber technique with radioactive tracer in the intestinal epithelium-like Caco-2 monolayer grown on Snapwell. After 3-day culture, Caco-2 cells expressed mRNA of calcium transporters, i.e., TRPV6, calbindin-D9k, PMCA1b and NCX1, and exhibited transepithelial resistance of ~200 Ω cm2, a characteristic of leaky epithelium similar to the small intestine. VIP receptor agonist was able to enhance transcellular calcium flux, whereas VIP receptor antagonist totally abolished calcium fluxes induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Since the intestinal cystic fibrosis transmembrane conductance regulator (CFTR) could be activated by VIP and calciotropic hormones, particularly parathyroid hormone, we sought to determine whether CFTR also contributed to the 1,25(OH)2D3-induced calcium transport. A selective CFTR inhibitor (20-200 μM CFTRinh-172) appeared to diminish calcium fluxes as well as transepithelial potential difference and short-circuit current, both of which indicated a decrease in electrogenic ion transport. On the other hand, 50 μM genistein-a molecule that could rapidly activate CFTR-was found to increase calcium transport. Our in silico molecular docking analysis confirmed direct binding of CFTRinh-172 and genistein to CFTR channels. In conclusion, VIP and CFTR apparently contributed to the intestinal calcium transport, especially in the presence of 1,25(OH)2D3, thereby supporting the existence of the neurocrine control of intestinal calcium absorption.
Collapse
Affiliation(s)
- Mayuree Rodrat
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Jarinthorn Teerapornpuntakit
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
| | - Duangrudee Tanramluk
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Ratchaneevan Aeimlapa
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
| | - Nithipak Thammayon
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Graduate Program in Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Natchayaporn Thonapan
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Graduate Program in Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Pathnaree Wattano
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
6
|
Fossa P, Uggeri M, Orro A, Urbinati C, Rondina A, Milanesi M, Pedemonte N, Pesce E, Padoan R, Ford RC, Meng X, Rusnati M, D’Ursi P. Virtual Drug Repositioning as a Tool to Identify Natural Small Molecules That Synergize with Lumacaftor in F508del-CFTR Binding and Rescuing. Int J Mol Sci 2022; 23:ijms232012274. [PMID: 36293130 PMCID: PMC9602983 DOI: 10.3390/ijms232012274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.
Collapse
Affiliation(s)
- Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Matteo Uggeri
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Rondina
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children’s Hospital—ASST Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Robert C. Ford
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Xin Meng
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: (M.R.); (P.D.)
| | - Pasqualina D’Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
- Correspondence: (M.R.); (P.D.)
| |
Collapse
|
7
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
8
|
Chindarkar M, Medithi S. Nutraceutical Approach for the Management of Cystic Fibrosis. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220415085219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cystic fibrosis is an autosomal recessive monogenic disease marked by a mutation in the cystic fibrosis transmembrane conductance regulator gene. Cystic fibrosis transmembrane conductance regulator gene mutations affect respiratory, digestive and reproductive functions and impede bicarbonate, bile acid and sweat secretion. Moreover, the current trend indicates that CF is no longer only a paediatric disease; but has progressively become a disease that also affects adults. This calls to address the condition with an appropriate nutraceutical approach.
Objective:
The study aims to find and collate nutritional targets in the management of Cystic Fibrosis.
Method:
Studies highlighting the benefits of nutrients or nutraceuticals in the management of Cystic Fibrosis were included from previously published research articles (1971 to 2020). Data including nutrients, nutraceuticals, study design, study model, sample size, age, dose and duration of the dose of the supplement were extracted from the studies included and explored to understand their role.
Results:
About 26 studies are being included in the present review. It was found that nutrient interventions comprising nutraceuticals including dietary fibre, proteins and amino acids (taurine, arginine, glutathione), fats (medium-chain triglycerides, polyunsaturated fatty acids (omega-3 fatty acids)), phytochemicals (apigenin, genistein, quercetin, curcumin, allicin, beta-carotene, Pulmonaria officinalis L, Epigallocatechin-3-gallate), micronutrients including vitamin A, vitamin D, vitamin K, magnesium and zinc in addition to antioxidants exhibit improvement in the symptomatic condition of cystic fibrosis patients.
Conclusion:
The advent of nutraceuticals in the food industry and studies indicating their promising benefits have paved a path for targeted therapies in cystic fibrosis.
Collapse
Affiliation(s)
- Manali Chindarkar
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences (SIHS), Symbiosis International (Deemed University), Pune, India
| | - Srujana Medithi
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences (SIHS), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
9
|
Esc peptides as novel potentiators of defective cystic fibrosis transmembrane conductance regulator: an unprecedented property of antimicrobial peptides. Cell Mol Life Sci 2021; 79:67. [PMID: 34971429 PMCID: PMC8752549 DOI: 10.1007/s00018-021-04030-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.
Collapse
|
10
|
Rodrat M, Jantarajit W, Ng DRS, Harvey BSJ, Liu J, Wilkinson WJ, Charoenphandhu N, Sheppard DN. Carbon monoxide-releasing molecules inhibit the cystic fibrosis transmembrane conductance regulator Cl - channel. Am J Physiol Lung Cell Mol Physiol 2020; 319:L997-L1009. [PMID: 32936026 DOI: 10.1152/ajplung.00440.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1-300 μM) inhibited CFTR channel activity, whereas the control RuCl3 (100 μM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability (Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl- channels inhibited by CO potentially expands the drug's clinical utility.
Collapse
Affiliation(s)
- Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bartholomew S J Harvey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jia Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Uliyakina I, Botelho HM, da Paula AC, Afonso S, Lobo MJ, Felício V, Farinha CM, Amaral MD. Full Rescue of F508del-CFTR Processing and Function by CFTR Modulators Can Be Achieved by Removal of Two Regulatory Regions. Int J Mol Sci 2020; 21:ijms21124524. [PMID: 32630527 PMCID: PMC7350234 DOI: 10.3390/ijms21124524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the CF Transmembrane conductance Regulator (CFTR), the only ATP-binding cassette (ABC) transporter functioning as a channel. Unique to CFTR is a regulatory domain which includes a highly conformationally dynamic region—the regulatory extension (RE). The first nucleotide-binding domain of CFTR contains another dynamic region—regulatory insertion (RI). Removal of RI rescues the trafficking defect of CFTR with F508del, the most common CF-causing mutation. Here we aimed to assess the impact of RE removal (with/without RI or genetic revertants) on F508del-CFTR trafficking and how CFTR modulator drugs VX-809/lumacaftor and VX-770/ivacaftor rescue these variants. We generated cell lines expressing ΔRE and ΔRI CFTR (with/without genetic revertants) and assessed CFTR expression, stability, plasma membrane levels, and channel activity. Our data demonstrated that ΔRI significantly enhanced rescue of F508del-CFTR by VX-809. While the presence of the RI seems to be precluding full rescue of F508del-CFTR processing by VX-809, this region appears essential to rescue its function by VX-770, suggesting some contradictory role in rescue of F508del-CFTR by these two modulators. This negative impact of RI removal on VX-770-stimulated currents on F508del-CFTR can be compensated by deletion of the RE which also leads to the stabilization of this mutant. Despite both regions being conformationally dynamic, RI precludes F508del-CFTR processing while RE affects mostly its stability and channel opening.
Collapse
|
12
|
Chen L, Ding Y, Hou Y, Liu Y, Nie H. Regulation of Cl- Electrolyte Permeability in Epithelia by Active Traditional Chinese Medicine Monomers for Diarrhea. Curr Drug Targets 2020; 21:902-909. [PMID: 32364074 DOI: 10.2174/1389450121666200504073635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/22/2022]
Abstract
The epithelial layer, lining the inner surface of the mammalian alveolar, kidney, brain and colon, is a typical electrolyte transporting tissue. Large quantities of salt and fluid are actively moved from the mucosal side toward the blood vessel. Transepithelial salt re-absorption in epithelial tissues plays an important role in maintaining fluid homeostasis. In absorptive epithelium, fluid and salt flux is controlled by the machinery mainly composed of epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/K+-ATPase. Dysregulation of salt permeability across epithelium contributes to the pathogenesis of organ edema. In numerous ion transporters, epithelial Cl- transportation plays an important role in water secretion across epithelial tissues and regulation of body fluid content. Many traditional Chinese medicines treat diarrhea by regulating the Cl- electrolyte transport. We systematically summarized the recent progress regarding the traditional Chinese medicine on Cl- electrolyte transport in the intestinal epithelial tissues. The pharmaceutical relevance of developing advanced strategies to mitigate edematous disorders is also implicated. In conclusion, the crosstalk between Cl- electrolyte transport and active traditional Chinese medicine monomers may lead to the development of new strategies for diarrhea by manipulating the function and expression of ion channels.
Collapse
Affiliation(s)
- Lei Chen
- China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Fougere B, Barnes KR, Francis ME, Claus LN, Cozzi RRF, Marshall WS. Focal adhesion kinase and osmotic responses in ionocytes of Fundulus heteroclitus, a euryhaline teleost fish. Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110639. [PMID: 31863842 DOI: 10.1016/j.cbpa.2019.110639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022]
Abstract
Cystic Fibrosis Transmembrane conductance Regulator (CFTR) anion channels are the regulated exit pathway in Cl- secretion by teleost salt secreting ionocytes of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase Focal Adhesion Kinase (FAK) phosphorylated at Y407 (FAKpY407) and FAKpY397 are colocalized at the apical membrane and in subjacent membrane vesicles of ionocytes. Hypotonic shock and the α-2 adrenergic agonist clonidine rapidly and reversibly inhibit Cl- secretion by isolated opercular epithelia, simultaneous with dephosphorylation of FAKpY407 and increased FAKpY397, located in the apical membrane of ionocytes in the opercular epithelium. FAKpY407 is re-phosphorylated at the apical membrane of ionocytes and Cl- secretion rapidly restored by hypertonic shock, detectable at 2 min., maximum at 5 min and still elevated at 30 min. In isolated opercular epithelia, the FAK phosphorylation inhibitor Y15 and p38MAP kinase inhibitor SB203580 significantly blunted the recovery of short-circuit current (Isc, equal to Cl- secretion rate) after hypertonic shock. The cSRC inhibitor saracatinib dephosphorylated FAKpY861 seen near tight junctions of pavement cells, and reduced the increase in epithelial resistance normally seen with clonidine inhibition of ion transport, while FAKpY397 was unaffected. The results show rapid osmosensitive responses in teleost fish ionocytes involve phosphorylation of CFTR by FAKpY407, an opposing role for FAKpY397 and a possible role for FAKpY861 in tight junction dynamics.
Collapse
Affiliation(s)
- Breton Fougere
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Katelyn R Barnes
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Magen E Francis
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Lauren N Claus
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Regina R F Cozzi
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada.
| |
Collapse
|
14
|
Kinting S, Li Y, Forstner M, Delhommel F, Sattler M, Griese M. Potentiation of ABCA3 lipid transport function by ivacaftor and genistein. J Cell Mol Med 2019; 23:5225-5234. [PMID: 31210424 PMCID: PMC6652914 DOI: 10.1111/jcmm.14397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022] Open
Abstract
ABCA3 is a phospholipid transporter implicated in pulmonary surfactant homoeostasis and localized at the limiting membrane of lamellar bodies, the storage compartment for surfactant in alveolar type II cells. Mutations in ABCA3 display a common genetic cause for diseases caused by surfactant deficiency like respiratory distress in neonates and interstitial lung disease in children and adults, for which currently no causal therapy exists. In this study, we investigated the effects of ivacaftor and genistein, two potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), on ABCA3-specific lipid transport function. Wild-type (WT) and functional ABCA3 mutations N568D, F629L, G667R, T1114M and L1580P were stably expressed in A549 cells. Three-dimensional modelling predicted functional impairment for all five mutants that was confirmed by in vitro experiments (all <14% of WT functional activity). Treatment with potentiators rescued the mutants N568D (up to 114% of WT), F629L (up to 47% of WT), and G667R (up to 60% of WT), the latter variation needing higher concentrations of genistein, showing reduced affinity of the potentiator to the mutant protein. Our results present a first proof that functional ABCA3 mutations are rescued by CFTR potentiators, making them a potential therapeutical option for patients suffering from surfactant deficiency due to ABCA3 mutations.
Collapse
Affiliation(s)
- Susanna Kinting
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
- Member of the German Center for Lung Research (DZL)MunichGermany
| | - Yang Li
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
| | - Maria Forstner
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
- Member of the German Center for Lung Research (DZL)MunichGermany
| | - Florent Delhommel
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Center for Integrated Protein Science Munich at Department ChemieTechnical University of MunichGarchingGermany
| | - Michael Sattler
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Center for Integrated Protein Science Munich at Department ChemieTechnical University of MunichGarchingGermany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMU MunichMunichGermany
- Member of the German Center for Lung Research (DZL)MunichGermany
| |
Collapse
|
15
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
16
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
17
|
Lord R, Fairbourn N, Mylavarapu C, Dbeis A, Bowman T, Chandrashekar A, Banayat T, Hodges CA, Al-Nakkash L. Consuming Genistein Improves Survival Rates in the Absence of Laxative in ΔF508-CF Female Mice. Nutrients 2018; 10:E1418. [PMID: 30282922 PMCID: PMC6213472 DOI: 10.3390/nu10101418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Genistein is a naturally occurring isoflavone found in soy. Genistein has been shown to increase the open probability of the most common cystic fibrosis (CF) disease-associated mutation, ∆F508-CFTR. Mice homozygous for the ∆F508 mutation are characterized with severe intestinal disease and require constant laxative treatment for survival. This pathology mimics the intestinal obstruction (meconium ileus) seen in some cystic fibrosis patients. This study tested whether dietary supplementation with genistein would reduce the dependence of the ∆F508 CF mouse model on laxatives for survival, thereby improving mortality rates. At weaning (21 days), homozygous ∆F508 mice were maintained on one of three diet regimens for a period of up to 65 days: normal diet, normal diet plus colyte, or genistein diet. Survival rates for males were as follows: standard diet (38%, n = 21), standard diet plus colyte (83%, n = 42) and genistein diet (60%, n = 15). Survival rates for females were as follows: standard diet (47%, n = 19), standard diet plus colyte (71%, n = 38), and genistein diet (87%, n = 15). Average weight of male mice fed genistein diet increased by ~2.5 g more (p = 0.006) compared to those with colyte treatment. Genistein diet did not change final body weight of females. Expression of intestinal SGLT-1 increased 2-fold (p = 0.0005) with genistein diet in females (no change in males, p = 0.722). Expression of GLUT2 and GLUT5 was comparable between all diet groups. Genistein diet reduced the number of goblet cells per micrometer of crypt depth in female (p = 0.0483), yet was without effect in males (p = 0.7267). The results from this study demonstrate that supplementation of diet with genistein for ~45 days increases the survival rate of female ∆F508-CF mice (precluding the requirement for laxatives), and genistein only improves weight gain in males.
Collapse
Affiliation(s)
- Ryan Lord
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Nathan Fairbourn
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Charisma Mylavarapu
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Ammer Dbeis
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Taylor Bowman
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Archana Chandrashekar
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Tatum Banayat
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Craig A Hodges
- Department of Genetics & Genome Sciences & Department of Pediatrics, Case Western Reserve University, 10900 Euclid Avenue, 830 BRB, Cleveland, OH 44106, USA.
| | - Layla Al-Nakkash
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| |
Collapse
|
18
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
19
|
Sandoval-Skeet N, Kaufman JA, Castro MJ, Al-Nakkash L. Genistein diet does not modify crypt morphology in the ob/ob mouse jejunum: a comparison of cryostat and clearing techniques. Diabetes Metab Syndr Obes 2018; 11:863-873. [PMID: 30568474 PMCID: PMC6276911 DOI: 10.2147/dmso.s182501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Diabetes is commonly associated with gastrointestinal dysfunction. We have previously shown that transepithelial short circuit current, Isc (chloride secretion), is significantly reduced in the jejunum from ob/ob mice vs lean controls, and consumption of 600 mg genistein/kg of diet (600 G) for 4 weeks significantly rescues Isc. We aimed to evaluate whether morphological changes in the jejunal crypts contribute to the rescue of Isc. METHODS Male mice (ob/ob and lean controls) were fed either a genistein-free diet or genistein-containing diet (600 G). Comparisons of crypt morphology were made for crypt depth, length, and numbers of proliferative cells. Assessments of crypt measures using DAPI and 5-ethynyl-2'-deoxyuridine (EdU) were performed using traditional cryostat sectioning and an innovative 3D optical clearing method. RESULTS We found that crypt length in the ob/ob genistein-fed group was significantly greater when measured with cleared tissue (85.19±4.73 µm, P<0.05, n=8) compared to lengths measured with cryostat (65.42±3.48 µm, n=8). In addition, proliferative EdU+ counts were approximately fivefold greater with clearing, compared to counts obtained via single plane images from cryostat sections for all groups measured. The average length to EdU+ ratio was unchanged between groups. CONCLUSION Thus, we conclude that genistein diet does not affect overall cellular proliferation or crypt morphology, other than for the modest increased crypt length measured via clearing in the ob/ob genistein group. The increase in crypt length is likely indicative of the greater accuracy of the 3D measures compared to single plane. Genistein diet-induced increases in the intestinal Isc are therefore likely not attributed to changes in intestinal crypt morphology.
Collapse
Affiliation(s)
| | | | | | - Layla Al-Nakkash
- Department of Physiology, Midwestern University, Glendale, AZ 85308, USA,
| |
Collapse
|
20
|
Lin WY, Sohma Y, Hwang TC. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate. Mol Pharmacol 2016; 90:275-85. [PMID: 27413118 PMCID: PMC4998663 DOI: 10.1124/mol.116.104570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB's effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug-drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| | - Yoshiro Sohma
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (W.-Y.L., T.-C.H.); Department of Pharmacology, School of Medicine, Keio University, Tokyo Japan (Y.S.)
| |
Collapse
|
21
|
Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem Soc Trans 2016; 43:966-74. [PMID: 26517911 DOI: 10.1042/bst20150128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABC subfamily B (ABCB) display very high substrate specificity compared with their mammalian counterparts that are often associated with multi-drug resistance phenomena. In this review, we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins that chaperon both transporters to the plasma membrane in an action that seems to involve heat shock protein (Hsp)90. Further, both transporters are phosphorylated at regulatory domains that connect both nt-binding folds. Taken together, it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein-protein interactions (PPI).
Collapse
|
22
|
Zwick M, Esposito C, Hellstern M, Seelig A. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Biol Chem 2016; 291:14483-98. [PMID: 27226582 DOI: 10.1074/jbc.m116.721415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/25/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.
Collapse
Affiliation(s)
- Matthias Zwick
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Cinzia Esposito
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Manuel Hellstern
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Anna Seelig
- From the Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
23
|
Dekkers JF, Van Mourik P, Vonk AM, Kruisselbrink E, Berkers G, de Winter-de Groot KM, Janssens HM, Bronsveld I, van der Ent CK, de Jonge HR, Beekman JM. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations. J Cyst Fibros 2016; 15:568-78. [PMID: 27160424 DOI: 10.1016/j.jcf.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
The potentiator VX-770 (ivacaftor/KALYDECO™) targets defective gating of CFTR and has been approved for treatment of cystic fibrosis (CF) subjects carrying G551D, S1251N or one of 8 other mutations. Still, the current potentiator treatment does not normalize CFTR-dependent biomarkers, indicating the need for development of more effective potentiator strategies. We have recently pioneered a functional CFTR assay in primary rectal organoids and used this model to characterize interactions between VX-770, genistein and curcumin, the latter 2 being natural food components with established CFTR potentiation capacities. Results indicated that all possible combinations of VX-770, genistein and curcumin synergistically repaired CFTR-dependent forskolin-induced swelling of organoids with CFTR-S1251N or CFTR-G551D, even under suboptimal CFTR activation and compounds concentrations, conditions that may predominate in vivo. Genistein and curcumin also enhanced forskolin-induced swelling of F508del homozygous organoids that were treated with VX-770 and the prototypical CFTR corrector VX-809. These results indicate that VX-770, genistein and curcumin in double or triple combinations can synergize in restoring CFTR-dependent fluid secretion in primary CF cells and support the use of multiple potentiators for treatment of CF.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Peter Van Mourik
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus University Medical Centre/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Inez Bronsveld
- Department of Pulmonology, University Medical Centre, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
24
|
Correction: Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem Soc Trans 2016; 44:663-73. [DOI: 10.1042/bst20150128_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/31/2022]
Abstract
The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABCB subfamily display very high substrate specificity compared with their mammalian counterparts that are often associated with multidrug resistance (MDR) phenomena. In this review we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins (FKBPs) that chaperon both transporters to the plasma membrane in an action that seems to involve Hsp90. Further both transporters are phosphorylated at regulatory domains that connect both nucleotide-binding folds. Taken together it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein–protein interactions (PPI).
Collapse
|
25
|
Park J, Khloya P, Seo Y, Kumar S, Lee HK, Jeon DK, Jo S, Sharma PK, Namkung W. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines. PLoS One 2016; 11:e0149131. [PMID: 26863533 PMCID: PMC4749168 DOI: 10.1371/journal.pone.0149131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.
Collapse
Affiliation(s)
- Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Poonam Khloya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Satish Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ho K. Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Dong-Kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
- * E-mail: (WN); (PKS)
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
- * E-mail: (WN); (PKS)
| |
Collapse
|
26
|
Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel. Proc Natl Acad Sci U S A 2016; 113:E644-53. [PMID: 26792524 DOI: 10.1073/pnas.1423753113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The invertebrate glutamate-gated chloride-selective receptors (GluClRs) are ion channels serving as targets for ivermectin (IVM), a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. The native GluClR is a heteropentamer consisting of α and β subunit types, with yet unknown subunit stoichiometry and arrangement. Based on the recent crystal structure of a homomeric GluClαR, we introduced mutations at the intersubunit interfaces where Glu (the neurotransmitter) binds. By electrophysiological characterization of these mutants, we found heteromeric assemblies with two equivalent Glu-binding sites at β/α intersubunit interfaces, where the GluClβ and GluClα subunits, respectively, contribute the "principal" and "complementary" components of the putative Glu-binding pockets. We identified a mutation in the IVM-binding site (far away from the Glu-binding sites), which significantly increased the sensitivity of the heteromeric mutant receptor to both Glu and IVM, and improved the receptor subunits' cooperativity. We further characterized this heteromeric GluClR mutant as a receptor having a third Glu-binding site at an α/α intersubunit interface. Altogether, our data unveil heteromeric GluClR assemblies having three α and two β subunits arranged in a counterclockwise β-α-β-α-α fashion, as viewed from the extracellular side, with either two or three Glu-binding site interfaces.
Collapse
|
27
|
Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, Borot F, Szollosi D, Wu YS, Finkbeiner WE, Hegedus T, Verkman AS, Lukacs GL. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med 2015; 6:246ra97. [PMID: 25101887 DOI: 10.1126/scitranslmed.3008889] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770-induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)-NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Radu G Avramescu
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Doranda Perdomo
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | - Miklos Bagdany
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Pirjo M Apaja
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Florence Borot
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Daniel Szollosi
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1444 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, 1444 Budapest P.O. Box 263, Hungary
| | - Yu-Sheng Wu
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143-0511, USA
| | - Tamas Hegedus
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1444 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, 1444 Budapest P.O. Box 263, Hungary
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada. Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada. Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
28
|
Rayyan E, Polito S, Leung L, Bhakta A, Kang J, Willey J, Mansour W, Drumm ML, Al-Nakkash L. Effect of genistein on basal jejunal chloride secretion in R117H CF mice is sex and route specific. Clin Exp Gastroenterol 2015; 8:77-87. [PMID: 25674010 PMCID: PMC4321419 DOI: 10.2147/ceg.s72111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) results from the loss or reduction in function of the CFTR (cystic fibrosis transmembrane conductance regulatory protein) chloride channel. The third most common CFTR mutation seen clinically is R117H. Genistein, a naturally occurring phytoestrogen, is known to stimulate CFTR function in vitro. We aimed to determine whether route of administration of genistein could mediate differential effects in R117H male and female CF mice. Mice were fed (4 weeks) or injected subcutaneously (1 week) with the following: genistein 600 mg/kg diet (600Gd); genistein-free diet (0Gd); genistein injection 600 mg/kg body weight (600Gi); dimethyl sulfoxide control (0Gi). In male R117H mice fed 600Gd, basal short circuit current (Isc) was unchanged. In 600Gd-fed female mice, there was a subgroup that demonstrated a significant increase in basal Isc (53.14±7.92 μA/cm(2), n=6, P<0.05) and a subgroup of nonresponders (12.05±6.59 μA/cm(2), n=4), compared to 0Gd controls (29.3±6.5 μA/cm(2), n=7). In R117H mice injected with 600Gi, basal Isc was unchanged in both male and female mice compared to 0Gi controls. Isc was measured in response to the following: the adenylate cyclase activator forskolin (10 μM, bilateral), bumetanide (100 μM, basolateral) to indicate the Cl(-) secretory component, and acetazolamide (100 μM, bilateral) to indicate the HCO3 (-) secretory component; however, there was no effect of genistein (diet or injection) on any of these parameters. Jejunal morphology (ie, villi length, number of goblet cells per villus, crypt depth, and number of goblet cells per crypt) in R117H mice suggested no genistein-mediated difference among the groups. Serum levels of genistein were significantly elevated, compared to respective controls, by either 600Gd (equally elevated in males and females) or 600Gi (elevated more in females versus males). These data suggest a sex-dependent increase in basal Isc of R117H mice and that the increase is also specific for route of administration.
Collapse
Affiliation(s)
- Esa Rayyan
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Sarah Polito
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Lana Leung
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Ashesh Bhakta
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jonathan Kang
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Justin Willey
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Wasim Mansour
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Mitchell L Drumm
- Pediatric Pulmonology Division, Case Western Reserve University, Cleveland, OH, USA
| | - Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
29
|
Leung L, Bhakta A, Cotangco K, Al-Nakkash L. Genistein stimulates jejunum chloride secretion via an Akt-mediated pathway in intact female mice. Cell Physiol Biochem 2015; 35:1317-25. [PMID: 25721972 PMCID: PMC4386721 DOI: 10.1159/000373953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background/Aims We have previously shown that daily subcutaneous injections with the naturally occurring phytoestrogen genistein (600 mg genistein/kg body weight/day, 600G) results in a significantly increased basal intestinal chloride, Cl−, secretion (Isc, a measure of transepithelial secretion) in intact C57BL/6J female mice after 1-week of treatment, compared to controls (DMSO vehicle injected). Removal of endogenous estrogen via ovariectomy (OVX) had no effect on the 600G-mediated increase in basal Isc. Methods Given the estrogen-like characteristics of genistein, we compared the effects of daily estradiol (E2) injections (10 mg E2/kg body weight/day, 10E2) on basal Isc in intact and OVX mice. In intact mice, 10E2 was without effect on basal Isc, however, in OVX mice, 10E2 significantly increased basal Isc (mimicked 600G). The goal of the current study was to characterize the intracellular signaling pathways responsible for mediating 600G- or 10E2-stimulated increases in basal Isc in intact female or OVX mice. Results We measured total protein expression in isolated segments of jejunum using western blot from the following six groups of mice; intact or OVX with; 600G, 10E2 or control. The proteins of interest were: Akt, p-Akt, p-PDK1, p-PTEN, p-c-Raf, p-GSK-3β, rap-1 and ERK1/2. All blots were normalized to GAPDH levels (n = 6–18/group). Conclusion These data suggest that the presence of the endogenous sex steroid, estrogen, modifies the intracellular signaling pathway required to mediate Cl− secretion when the intestine is exposed to exogenous 600G or E2. These studies may have relevance for designing pharmacological tools for women with intestinal chloride secretory dysfunctions.
Collapse
Affiliation(s)
- Lana Leung
- Department of Physiology, Midwestern University, Glendale, AZ, USA
| | | | | | | |
Collapse
|
30
|
Xu Z, Pissarra LS, Farinha CM, Liu J, Cai Z, Thibodeau PH, Amaral MD, Sheppard DN. Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D-CFTR. J Physiol 2014; 592:1931-47. [PMID: 24591578 DOI: 10.1113/jphysiol.2014.271817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cystic fibrosis (CF) is caused by dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). One strategy to restore function to CF mutants is to suppress defects in CFTR processing and function using revertant mutations. Here, we investigate the effects of the revertant mutations G550E and 4RK (the simultaneous disruption of four arginine-framed tripeptides (AFTs): R29K, R516K, R555K and R766K) on the CF mutant G551D, which impairs severely channel gating without altering protein processing and which affects a residue in the same α-helix as G550 and R555. Both G550E and 4RK augmented strongly CFTR-mediated iodide efflux from BHK cells expressing G551D-CFTR. To learn how revertant mutations influence G551D-CFTR function, we studied protein processing and single-channel behaviour. Neither G550E nor 4RK altered the expression and maturation of G551D-CFTR protein. By contrast, both revertants had marked effects on G551D-CFTR channel gating, increasing strongly opening frequency, while 4RK also diminished noticeably the duration of channel openings. Because G551D-CFTR channel gating is ATP independent, we investigated whether revertant mutations restore ATP dependence to G551D-CFTR. Like wild-type CFTR, the activity of 4RK-G551D-CFTR varied with ATP concentration, suggesting that 4RK confers some ATP dependence on the G551D-CFTR channel. Thus, the revertant mutations G550E and 4RK alter the gating pattern and ATP dependence of G551D-CFTR without restoring single-channel activity to wild-type levels. Based on their impact on the CF mutants F508del and G551D, we conclude that G550E and 4RK have direct effects on CFTR structure, but that their action on CFTR processing and channel function is CF mutation specific.
Collapse
Affiliation(s)
- Zhe Xu
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Conger BT, Zhang S, Skinner D, Hicks SB, Sorscher EJ, Rowe SM, Woodworth BA. Comparison of cystic fibrosis transmembrane conductance regulator (CFTR) and ciliary beat frequency activation by the CFTR Modulators Genistein, VRT-532, and UCCF-152 in primary sinonasal epithelial cultures. JAMA Otolaryngol Head Neck Surg 2013; 139:822-7. [PMID: 23949358 DOI: 10.1001/jamaoto.2013.3917] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IMPORTANCE Pharmacologic activation of mucociliary clearance (MCC) represents an emerging therapeutic strategy for patients with chronic rhinosinusitis, even in the absence of congenital mutations of the CFTR gene. Drug discovery efforts have identified small molecules that activate the cystic fibrosis transmembrane conductance regulator (CFTR), including potentiators under development for treatment of cystic fibrosis. OBJECTIVE To evaluate the properties of CFTR modulators and their effects on ciliary beat frequency (CBF) in human sinonasal epithelium (HSNE). DESIGN Primary HSNE cultures (wild type and F508del/F508del) were used to compare stimulation of CFTR-mediated Cl- conductance and CBF by the CFTR modulators genistein, VRT-532, and UCCF-152. MAIN OUTCOMES AND MEASURES Increase in CFTR-dependent anion transport and CBF. RESULTS HSNE cultures were analyzed using pharmacologic manipulation of ion transport (change in short-circuit current [∆ISC]) and high-speed digital imaging (CBF). Activation of CFTR-dependent anion transport was significantly different among agonists (P < .001), with genistein exerting the greatest effect (mean [SD] ∆ISC, genistein, 23.1 [1.8] μA/cm2² > VRT-532, 8.1 [1.0] μA/cm² > UCCF-152, 3.4 [1.4] μA/cm² > control, 0.7 [0.2] μA/cm²; Tukey-Kramer P < .05) in the absence of forskolin. Genistein and UCCF-152 augmented CBF (under submerged conditions) significantly better (Tukey-Kramer P < .05) than cells treated with VRT-532 or dimethyl sulfoxide vehicle control (mean [SD] fold change over baseline, genistein, 1.63 [0.06]; UCCF-152, 1.56 [0.06]; VRT-532, 1.38 [0.08]; control, 1.27 [0.02]). Activation of CBF was blunted in F508del/F508del HSNE cultures. CONCLUSIONS AND RELEVANCE The degree of CBF stimulation was not dependent on the magnitude of Cl- secretion, suggesting that different mechanisms of action may underlie MCC activation by these small molecule potentiators. Agents that activate both CFTR-dependent ISC and CBF are particularly attractive as therapeutics because they may address 2 independent pathways that contribute to deficient MCC in chronic rhinosinusitis.
Collapse
Affiliation(s)
- Bryant T Conger
- Division of Otolaryngology, Department of Surgery, University of Alabama at Birmingham
| | | | | | | | | | | | | |
Collapse
|
32
|
Cai Z, Li H, Chen JH, Sheppard DN. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms. Am J Physiol Cell Physiol 2013; 305:C817-28. [PMID: 23784545 PMCID: PMC3798681 DOI: 10.1152/ajpcell.00052.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
The chemical structures of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) resemble those of small-molecules that inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We therefore tested the acute effects of T3, T4 and reverse T3 (rT3) on recombinant wild-type human CFTR using the patch-clamp technique. When added directly to the intracellular solution bathing excised membrane patches, T3, T4, and rT3 (all tested at 50 μM) inhibited CFTR in several ways: they strongly reduced CFTR open probability by impeding channel opening; they moderately decreased single-channel current amplitude, and they promoted transitions to subconductance states. To investigate the mechanism of CFTR inhibition, we studied T3. T3 (50 μM) had multiple effects on CFTR gating kinetics, suggestive of both allosteric inhibition and open-channel blockade. Channel inhibition by T3 was weakly voltage dependent and stronger than the allosteric inhibitor genistein, but weaker than the open-channel blocker glibenclamide. Raising the intracellular ATP concentration abrogated T3 inhibition of CFTR gating, but not the reduction in single-channel current amplitude nor the transitions to subconductance states. The decrease in single-channel current amplitude was relieved by membrane depolarization, but not the transitions to subconductance states. We conclude that T3 has complex effects on CFTR consistent with both allosteric inhibition and open-channel blockade. Our results suggest that there are multiple allosteric mechanisms of CFTR inhibition, including interference with ATP-dependent channel gating and obstruction of conformational changes that gate the CFTR pore. CFTR inhibition by thyroid hormones has implications for the development of innovative small-molecule CFTR inhibitors.
Collapse
Affiliation(s)
- Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
33
|
Figueiras-Fierro D, Acevedo JJ, Martínez-López P, Escoffier J, Sepúlveda FV, Balderas E, Orta G, Visconti PE, Darszon A. Electrophysiological evidence for the presence of cystic fibrosis transmembrane conductance regulator (CFTR) in mouse sperm. J Cell Physiol 2013; 228:590-601. [PMID: 22833409 DOI: 10.1002/jcp.24166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Mammalian sperm must undergo a maturational process, named capacitation, in the female reproductive tract to fertilize the egg. Sperm capacitation is regulated by a cAMP/protein kinase A (PKA) pathway and involves increases in intracellular Ca(2+), pH, Cl(-), protein tyrosine phosphorylation, and in mouse and some other mammals a membrane potential hyperpolarization. The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel modulated by cAMP/PKA and ATP, was detected in mammalian sperm and proposed to modulate capacitation. Our whole-cell patch-clamp recordings from testicular mouse sperm now reveal a Cl(-) selective component to membrane current that is ATP-dependent, stimulated by cAMP, cGMP, and genistein (a CFTR agonist, at low concentrations), and inhibited by DPC and CFTR(inh) -172, two well-known CFTR antagonists. Furthermore, the Cl(-) current component activated by cAMP and inhibited by CFTR(inh) -172 is absent in recordings on testicular sperm from mice possessing the CFTR ΔF508 loss-of-function mutation, indicating that CFTR is responsible for this component. A Cl(-) selective like current component displaying CFTR characteristics was also found in wild type epididymal sperm bearing the cytoplasmatic droplet. Capacitated sperm treated with CFTR(inh) -172 undergo a shape change, suggesting that CFTR is involved in cell volume regulation. These findings indicate that functional CFTR channels are present in mouse sperm and their biophysical properties are consistent with their proposed participation in capacitation.
Collapse
Affiliation(s)
- Dulce Figueiras-Fierro
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roomans GM. Pharmacological Approaches to Correcting the Ion Transport Defect in Cystic Fibrosis. ACTA ACUST UNITED AC 2012; 2:413-31. [PMID: 14719993 DOI: 10.1007/bf03256668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), which mainly (but not exclusively) functions as a chloride channel. The main clinical symptoms are chronic obstructive lung disease, which is responsible for most of the morbidity and mortality associated with CF, and pancreatic insufficiency. About 1000 mutations of the gene coding for CFTR are currently known; the most common of these, present in the great majority of the patients (Delta508) results in the deletion of a phenylalanine at position 508. In this mutation, the aberrant CFTR is not transported to the membrane but degraded in the ubiquitin-proteasome pathway. The aim of this review is to give an overview of the pharmacologic strategies currently used in attempts to overcome the ion transport defect in CF. One strategy to develop pharmacologic treatment for CF is to inhibit the breakdown of DeltaF508-CFTR by interfering with the chaperones involved in the folding of CFTR. At least in in vitro systems, this can be accomplished by sodium phenylbutyrate, or S-nitrosoglutathione (GSNO), and also by genistein or benzo[c]quinolizinium compounds. It is also possible to stimulate CFTR or its mutated forms, when present in the plasma membrane, using xanthines, genistein, and various other compounds, such as benzamidizoles and benzoxazoles, benzo[c]quinolizinium compounds or phenantrolines. Experimental results are not always unambiguous, and adverse effects have been incompletely tested. Some clinical tests have been done on sodium phenyl butyrate, GSNO and genistein, mostly in respect to other diseases, and the results demonstrate that these drugs are reasonably well tolerated. Their efficiency in the treatment of CF has not yet been demonstrated, however. An alternative strategy is to compensate for the defective chloride transport by CFTR by stimulation of other chloride channels. This can be done via purinergic receptors. A phase I study using a stable uridine triphosphate analog has recently been completed. A second alternative strategy is to attempt to maintain hydration of the airway mucus by inhibiting Na(+) uptake by the epithelial Na(+) channel using amiloride or stable analogs of amiloride. Clinical tests so far have been inconclusive. A number of other suggestions are currently being explored. The minority of patients with CF who have a stop mutation may benefit from treatment with gentamicin. The difficulties in finding a pharmacologic treatment for CF may be due to the fact that CFTR has additional functions besides chloride transport, and interfering with CFTR biosynthesis or activation implies interference with central cellular processes, which may have undesirable adverse effects.
Collapse
Affiliation(s)
- Godfried M Roomans
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
35
|
Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 2012; 125:1106-17. [PMID: 22302988 DOI: 10.1242/jcs.089086] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) mutation ΔF508CFTR still causes regulatory defects when rescued to the apical membrane, suggesting that the intracellular milieu might affect its ability to respond to cAMP regulation. We recently reported that overexpression of the Na(+)/H(+) exchanger regulatory factor NHERF1 in the cystic fibrosis (CF) airway cell line CFBE41o-rescues the functional expression of ΔF508CFTR by promoting F-actin organization and formation of the NHERF1-ezrin-actin complex. Here, using real-time FRET reporters of both PKA activity and cAMP levels, we find that lack of an organized subcortical cytoskeleton in CFBE41o-cells causes both defective accumulation of cAMP in the subcortical compartment and excessive cytosolic accumulation of cAMP. This results in reduced subcortical levels and increased cytosolic levels of PKA activity. NHERF1 overexpression in CFBE41o-cells restores chloride secretion, subcortical cAMP compartmentalization and local PKA activity, indicating that regulation of ΔF508CFTR function requires not only stable expression of the mutant CFTR at the cell surface but also depends on both generation of local cAMP signals of adequate amplitude and activation of PKA in proximity of its target. Moreover, we found that the knockdown of wild-type CFTR in the non-CF 16HBE14o-cells results in both altered cytoskeletal organization and loss of cAMP compartmentalization, whereas stable overexpression of wt CFTR in CF cells restores cytoskeleton organization and re-establishes the compartmentalization of cAMP at the plasma membrane. This suggests that the presence of CFTR on the plasma membrane influences the cytoskeletal organizational state and, consequently, cAMP distribution. Our data show that a sufficiently high concentration of cAMP in the subcortical compartment is required to achieve PKA-mediated regulation of CFTR activity.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of General and Environmental Physiology, University of Bari, Bari, 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
With knowledge of the molecular behaviour of the cystic fibrosis transmembrane conductance regulator (CFTR), its physiological role and dysfunction in cystic fibrosis (CF), therapeutic strategies are now being developed that target the root cause of CF rather than disease symptoms. Here, we review progress towards the development of rational new therapies for CF. We highlight the discovery of small molecules that rescue the cell surface expression and defective channel gating of CF mutants, termed CFTR correctors and CFTR potentiators, respectively. We draw attention to alternative approaches to restore epithelial ion transport to CF epithelia, including inhibitors of the epithelial Na(+) channel (ENaC) and activators of the Ca(2+)-activated Cl(-) channel TMEM16A. The expertise required to translate small molecules identified in the laboratory to drugs for CF patients depends on our ability to coordinate drug development at an international level and our ability to provide pertinent biological information using suitable disease models.
Collapse
|
37
|
Al-Nakkash L, Batia L, Bhakta M, Peterson A, Hale N, Skinner R, Sears S, Jensen J. Stimulation of murine intestinal secretion by daily genistein injections: gender-dependent differences. Cell Physiol Biochem 2011; 28:239-50. [PMID: 21865731 DOI: 10.1159/000331736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The effect of daily injections with genistein (naturally occurring phytoestrogen) on intestinal chloride (Cl(-)) secretion was measured with Ussing chamber short circuit current (I(sc), μA/cm(2)), in C57BL/6J male and female mice, using 600 mg/kg genistein/day (600G), 300 mg/kg genistein/day (300G), 150 mg/kg genistein/day (150G) or genistein-free vehicle control (0G) for 1- or 2-weeks. METHODS AND RESULTS Injecting with 600G elicited significant increases in basal I(sc) in females after 1-week (ñ70 μA/cm(2), n=15, p < 0.05) and in males after 2-weeks (ñ80 μA/cm(2), n=5, p < 0.05) compared to their 0G counterparts. Chloride-free ringer significantly reduced basal I(sc) by 65% in 600G males and 72% in 600G females, suggesting that Cl(-) was the major anion comprising the genistein-stimulated secretion. The forskolin-stimulated (10 μM) I(sc) was significantly inhibited by the CFTR chloride channel inhibitors, glibenclamide (500 μM) and CFTR(inh)-172 (100 μM) in 600G males and females, suggesting some contribution by genistein-dependent CFTR-mediated Cl(-) secretion. We found no associated changes in intestinal morphology, nor change in total CFTR protein with 600G. There was a 5% increase in apical/subapical ratio in 600G males compared to controls (no change in females). CONCLUSION These data suggest that male and female mice both exhibit increased Cl- secretion with 600G, however, the mechanisms mediating this are gender-dependent.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- Department of Physiology, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pyle LC, Ehrhardt A, Mitchell LH, Fan L, Ren A, Naren AP, Li Y, Clancy JP, Bolger GB, Sorscher EJ, Rowe SM. Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators. Am J Physiol Lung Cell Mol Physiol 2011; 301:L587-97. [PMID: 21724857 DOI: 10.1152/ajplung.00465.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Modulator compounds intended to overcome disease-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) show significant promise in clinical testing for cystic fibrosis. However, the mechanism(s) of action underlying these compounds are not fully understood. Activation of CFTR ion transport requires PKA-regulated phosphorylation of the regulatory domain (R-D) and dimerization of the nucleotide binding domains. Using a newly developed assay, we evaluated nine compounds including both CFTR potentatiators and activators discovered via various high-throughput screening strategies to acutely augment CFTR activity. We found considerable differences in the effects on R-D phosphorylation. Some (including UC(CF)-152) stimulated robust phosphorylation, and others had little effect (e.g., VRT-532 and VX-770). We then compared CFTR activation by UC(CF)-152 and VRT-532 in Ussing chamber studies using two epithelial models, CFBE41o(-) and Fischer rat thyroid cells, expressing various CFTR forms. UC(CF)-152 activated wild-type-, G551D-, and rescued F508del-CFTR currents but did not potentiate cAMP-mediated CFTR activation. In contrast, VRT-532 moderately activated CFTR short-circuit current and strongly potentiated forskolin-mediated current. Combined with the result that UC(CF)-152, but not VRT-532 or VX-770, acts by increasing CFTR R-D phosphorylation, these findings indicate that potentiation of endogenous cAMP-mediated activation of mutant CFTR is not due to a pathway involving augmented R-D phosphorylation. This study presents an assay useful to distinguish preclinical compounds by a crucial mechanism underlying CFTR activation, delineates two types of compound able to acutely augment CFTR activity (e.g., activators and potentiators), and demonstrates that a number of different mechanisms can be successfully employed to activate mutant CFTR.
Collapse
Affiliation(s)
- Louise C Pyle
- Departments of Genetics, University of Alabama at Birmingham, 35294-0006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The mutation F508del is the commonest cause of the genetic disease cystic fibrosis (CF). CF disrupts the function of many organs in the body, most notably the lungs, by perturbing salt and water transport across epithelial surfaces. F508del causes harm in two principal ways. First, the mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to its correct cellular location, the apical (lumen-facing) membrane of epithelial cells. Second, F508del perturbs the Cl(-) channel function of CFTR by disrupting channel gating. Here, we discuss the development of rational new therapies for CF that target F508del-CFTR. We highlight how structural studies provide new insight into the role of F508 in the regulation of channel gating by cycles of ATP binding and hydrolysis. We emphasize the use of high-throughput screening to identify lead compounds for therapy development. These compounds include CFTR correctors that restore the expression of F508del-CFTR at the apical membrane of epithelial cells and CFTR potentiators that rescue the F508del-CFTR gating defect. Initial results from clinical trials of CFTR correctors and potentiators augur well for the development of small molecule therapies that target the root cause of CF: mutations in CFTR.
Collapse
|
40
|
Pedemonte N, Tomati V, Sondo E, Caci E, Millo E, Armirotti A, Damonte G, Zegarra-Moran O, Galietta LJV. Dual activity of aminoarylthiazoles on the trafficking and gating defects of the cystic fibrosis transmembrane conductance regulator chloride channel caused by cystic fibrosis mutations. J Biol Chem 2011; 286:15215-26. [PMID: 21383017 PMCID: PMC3083174 DOI: 10.1074/jbc.m110.184267] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 02/04/2011] [Indexed: 11/30/2022] Open
Abstract
A large fraction of mutations causing cystic fibrosis impair the function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel by causing reduced channel activity (gating defect) and/or impaired exit from the endoplasmic reticulum (trafficking defect). Such defects need to be treated with separate pharmacological compounds termed potentiators and correctors, respectively. Here, we report the characterization of aminoarylthiazoles (AATs) as compounds having dual activity. Cells expressing mutant CFTR were studied with functional assays (fluorescence-based halide transport and short circuit current measurements) to assess the effect of acute and chronic treatment with compounds. We found that AATs are effective on F508del, the most frequent cystic fibrosis mutation, which is associated with both a gating and a trafficking defect. AATs are also effective on mutations like G1349D and G551D, which cause only a gating defect. Evaluation of a panel of AAT analogs identified EN277I as the most effective compound. Incubation of cells expressing mutant CFTR with EN277I caused a strong stimulation of channel activity as demonstrated by single channel recordings. Compounds with dual activity such as AATs may be useful for the development of effective drugs for the treatment of cystic fibrosis.
Collapse
Affiliation(s)
| | - Valeria Tomati
- From the Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini
- Centro Biotecnologie Avanzate
| | - Elvira Sondo
- From the Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini
- Centro Biotecnologie Avanzate
| | - Emanuela Caci
- From the Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini
| | - Enrico Millo
- Dipartimento di Medicina Sperimentale, Sezione Biochimica, and
- Centro di Eccellenza per la Ricerca Biomedica, 16100 Genova, Italy
| | | | - Gianluca Damonte
- Dipartimento di Medicina Sperimentale, Sezione Biochimica, and
- Centro di Eccellenza per la Ricerca Biomedica, 16100 Genova, Italy
| | | | | |
Collapse
|
41
|
Yu YC, Miki H, Nakamura Y, Hanyuda A, Matsuzaki Y, Abe Y, Yasui M, Tanaka K, Hwang TC, Bompadre SG, Sohma Y. Curcumin and genistein additively potentiate G551D-CFTR. J Cyst Fibros 2011; 10:243-52. [PMID: 21441077 DOI: 10.1016/j.jcf.2011.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/19/2011] [Accepted: 03/01/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND The G551D mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is a common cause of cystic fibrosis (CF). G551D-CFTR is characterized by an extremely low open probability despite its normal trafficking to the plasma membrane. Numerous small molecules have been shown to increase the activity of G551D-CFTR presumably by binding to the CFTR protein. METHODS We investigated the effect of curcumin, genistein and their combined application on G551D-CFTR activity using the patch clamp technique. RESULTS Curcumin increased G551D-CFTR whole-cell and single-channel currents less than genistein did at their maximally effective concentrations. However, curcumin further increased the channel activity of G551D-CFTR that had been already maximally potentiated by genistein, up to ~50% of the WT-CFTR level. In addition, the combined application of genistein and curcumin over a lower concentration range synergistically rescued the gating defect of G551D-CFTR. CONCLUSIONS The additive effects between curcumin and genistein not only support the hypothesis that multiple mechanisms are involved in the action of CFTR potentiators, but also pose pharmaceutical implications in the development of drugs for CF pharmacotherapy.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Pharmacology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 2011; 9:956-70. [PMID: 21119733 DOI: 10.1038/nrd3297] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor and non-receptor tyrosine kinases are involved in multiple proliferative signalling pathways. Imatinib, one of the first tyrosine kinase inhibitors (TKIs) to be approved, revolutionized the treatment of chronic myelogenous leukaemia, and other TKIs with different spectra of kinase inhibition are used to treat renal cell carcinoma, non-small-cell lung cancer and colon cancer. Studies also support the potential use of TKIs as anti-proliferative agents in non-malignant disorders such as cardiac hypertrophy, and in benign-proliferative disorders including pulmonary hypertension, lung fibrosis, rheumatoid disorders, atherosclerosis, in-stent restenosis and glomerulonephritis. In this Review, we provide an overview of the most recent developments--both experimental as well as clinical--regarding the therapeutic potential of TKIs in non-malignant disorders.
Collapse
|
43
|
Pyle LC, Fulton JC, Sloane PA, Backer K, Mazur M, Prasain J, Barnes S, Clancy JP, Rowe SM. Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue. Am J Respir Cell Mol Biol 2010; 43:607-616. [PMID: 20042712 PMCID: PMC2970857 DOI: 10.1165/rcmb.2009-0281oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/24/2009] [Indexed: 12/10/2023] Open
Abstract
Therapies to correct the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) folding defect require sensitive methods to detect channel activity in vivo. The β₂ adrenergic receptor agonists, which provide the CFTR stimuli commonly used in nasal potential difference assays, may not overcome the channel gating defects seen in ΔF508 CFTR after plasma membrane localization. In this study, we identify an agent, quercetin, that enhances the detection of surface ΔF508 CFTR, and is suitable for nasal perfusion. A screen of flavonoids in CFBE41o⁻ cells stably transduced with ΔF508 CFTR, corrected to the cell surface with low temperature growth, revealed that quercetin stimulated an increase in the short-circuit current. This increase was dose-dependent in both Fisher rat thyroid and CFBE41o⁻ cells. High concentrations inhibited Cl⁻ conductance. In CFBE41o⁻ airway cells, quercetin (20 μg/ml) activated ΔF508 CFTR, whereas the β₂ adrenergic receptor agonist isoproterenol did not. Quercetin had limited effects on cAMP levels, but did not produce detectable phosphorylation of the isolated CFTR R-domain, suggesting an activation independent of channel phosphorylation. When perfused in the nares of Cftr(+) mice, quercetin (20 μg/ml) produced a hyperpolarization of the potential difference that was absent in Cftr(-/-) mice. Finally, quercetin-induced, dose-dependent hyperpolarization of the nasal potential difference was also seen in normal human subjects. Quercetin activates CFTR-mediated anion transport in respiratory epithelia in vitro and in vivo, and may be useful in studies intended to detect the rescue of ΔF508 CFTR by nasal potential difference.
Collapse
Affiliation(s)
- Louise C. Pyle
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer C. Fulton
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter A. Sloane
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyle Backer
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marina Mazur
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeevan Prasain
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - J. P. Clancy
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Medicine, Pediatrics, Pharmacology, Genetics, and Physiology, and Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Melani R, Tomati V, Galietta LJV, Zegarra-Moran O. Modulation of cystic fibrosis transmembrane conductance regulator (CFTR) activity and genistein binding by cytosolic pH. J Biol Chem 2010; 285:41591-6. [PMID: 20974851 DOI: 10.1074/jbc.m110.166850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potentiators are molecules that increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Some potentiators can also inhibit CFTR at higher concentrations. The activating binding site is thought to be located at the interface of the dimer formed by the two nucleotide-binding domains. We have hypothesized that if binding of potentiators involves titratable residues forming salt bridges, then modifications of cytosolic pH (pH(i)) would alter the binding affinity. Here, we analyzed the effect of pH(i) on CFTR activation and on the binding of genistein, a well known CFTR potentiator. We found that pH(i) does modify CFTR maximum current (I(m)) and half-activation concentration (K(d)): I(m) = 127.7, 185.5, and 231.8 μA/cm(2) and K(d) = 32.7, 56.6 and 71.9 μm at pH 6, 7.35, and 8, respectively. We also found that the genistein apparent dissociation constant for activation (K(a)) increased at alkaline pH(i), near cysteine pK (K(a) = 1.83, 1.81 and 4.99 μm at pH(i) 6, 7.35, and 8, respectively), suggesting the involvement of cysteines in the binding site. Mutations of cysteine residues predicted to be within (Cys-491) or outside (Cys-1344) the potentiator-binding site showed that Cys-491 is responsible for the sensitivity of potentiator binding to alkaline pH(i). Effects of pH(i) on inhibition by high genistein doses were also analyzed. Our results extend previous data about multiple effects of pH(i) on CFTR activity and demonstrate that binding of potentiators involves salt bridge formation with amino acids of nucleotide-binding domain 1.
Collapse
Affiliation(s)
- Raffaella Melani
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, 16148 Genoa, Italy
| | | | | | | |
Collapse
|
45
|
Rowe SM, Pyle LC, Jurkevante A, Varga K, Collawn J, Sloane PA, Woodworth B, Mazur M, Fulton J, Fan L, Li Y, Fortenberry J, Sorscher EJ, Clancy JP. DeltaF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers. Pulm Pharmacol Ther 2010; 23:268-78. [PMID: 20226262 PMCID: PMC2885545 DOI: 10.1016/j.pupt.2010.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/13/2010] [Accepted: 02/17/2010] [Indexed: 12/21/2022]
Abstract
We examined the activity of DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) stably expressed in polarized cystic fibrosis bronchial epithelial cells (CFBE41o(-)) human airway cells and Fisher Rat Thyroid (FRT) cells following treatment with low temperature and a panel of small molecule correctors of DeltaF508 CFTR misprocessing. Corr-4a increased DeltaF508 CFTR-dependent Cl(-) conductance in both cell types, whereas treatment with VRT-325 or VRT-640 increased activity only in FRT cells. Total currents stimulated by forskolin and genistein demonstrated similar dose/response effects to Corr-4a treatment in each cell type. When examining the relative contribution of forskolin and genistein to total stimulated current, CFBE41o(-) cells had smaller forskolin-stimulated I(sc) following either low temperature or corr-4a treatment (10-30% of the total I(sc) produced by the combination of both CFTR agonists). In contrast, forskolin consistently contributed greater than 40% of total I(sc) in DeltaF508 CFTR-expressing FRT cells corrected with low temperature, and corr-4a treatment preferentially enhanced forskolin dependent currents only in FRT cells (60% of total I(sc)). DeltaF508 CFTR cDNA transcript levels, DeltaF508 CFTR C band levels, or cAMP signaling did not account for the reduced forskolin response in CFBE41o(-) cells. Treatment with non-specific inhibitors of phosphodiesterases (papaverine) or phosphatases (endothall) did not restore DeltaF508 CFTR activation by forskolin in CFBE41o(-) cells, indicating that the Cl(-) transport defect in airway cells is distal to cAMP or its metabolism. The results identify important differences in DeltaF508 CFTR activation in polarizing epithelial models of CF, and have important implications regarding detection of rescued of DeltaF508 CFTR in vivo.
Collapse
Affiliation(s)
- S M Rowe
- Department of Medicine, University of Alabama at Birmingham, 1530 3rd Ave. South, Birmingham, AL 35294-0005, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li H, Sheppard DN. Therapeutic potential of cystic fibrosis transmembrane conductance regulator (CFTR) inhibitors in polycystic kidney disease. BioDrugs 2010; 23:203-16. [PMID: 19697963 DOI: 10.2165/11313570-000000000-00000] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the common genetic disorder autosomal dominant polycystic kidney disease (ADPKD), kidney function is disrupted by multiple fluid-filled epithelial cysts. Cyst growth in ADPKD involves fluid accumulation within the cyst lumen driven by cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial Cl- secretion. This suggests that inhibitors of the CFTR Cl- channel might retard cyst growth. This review considers how knowledge of CFTR structure and function and its role in transepithelial salt and water movements provides insight into the mechanism of action of CFTR inhibitors. Some small molecules, termed open-channel blockers, inhibit directly the CFTR Cl- channel by physically obstructing the CFTR pore and preventing Cl- flow. By contrast, other small molecules, termed allosteric inhibitors, bind to CFTR at a site remote from the channel pore and interfere with conformational changes that open the pore. The application of high-throughput screening to CFTR drug discovery has led to the identification of new inhibitors of the CFTR Cl- channel including the thiazolidinone CFTR(inh)-172 and the glycine hydrazide GlyH-101. The demonstration that CFTR inhibitors retard cyst expansion and kidney enlargement in mouse models of ADPKD provides proof of concept for the use of small-molecule CFTR inhibitors in the treatment of ADPKD.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Physiology and Pharmacology, University of Bristol, School of Medical Sciences, Bristol, UK
| | | |
Collapse
|
47
|
Kreindler JL. Cystic fibrosis: exploiting its genetic basis in the hunt for new therapies. Pharmacol Ther 2009; 125:219-29. [PMID: 19903491 DOI: 10.1016/j.pharmthera.2009.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 01/11/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel expressed in epithelial cells throughout the body. In the lungs, absence or dysfunction of CFTR results in altered epithelial salt and water transport eventuating in impaired mucociliary clearance, chronic infection and inflammation, and tissue damage. CF lung disease is the major cause of morbidity and mortality in CF despite the many therapies aimed at reducing it. However, recent technological advances combined with two decades of research driven by the discovery of the CFTR gene have resulted in the development and clinical testing of novel therapies aimed at the principal underlying defect in CF, thereby ushering in a new age of therapy for CF.
Collapse
Affiliation(s)
- James L Kreindler
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Boulevard, Abramson Research Center, Rm 1016-D, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Marshall WS, Watters KD, Hovdestad LR, Cozzi RRF, Katoh F. CFTR Cl- channel functional regulation by phosphorylation of focal adhesion kinase at tyrosine 407 in osmosensitive ion transporting mitochondria rich cells of euryhaline killifish. ACTA ACUST UNITED AC 2009; 212:2365-77. [PMID: 19617429 DOI: 10.1242/jeb.030015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) anion channels are the regulated exit pathway in Cl(-) secretion by teleost mitochondria rich salt secreting (MR) cells of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry, immunogold transmission electron microscopy (TEM), and co-immunoprecipitation, using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase focal adhesion kinase (FAK) phosphorylated at Y407 (FAK pY407) are colocalized in the apical membrane and in subjacent membrane vesicles of MR cells. We showed previously that basolateral FAK pY407, unlike other FAK phosphorylation sites, is osmosensitive and dephosphorylates during hypotonic shock of epithelial cells (Marshall et al., 2008). In the present study, we found that hypotonic shock and the alpha(2)-adrenergic agonist clonidine (neither of which affects cAMP levels) rapidly and reversibly inhibit Cl(-) secretion by isolated opercular membranes, simultaneous with dephosphorylation of FAK pY407, located in the apical membrane. FAK pY407 is rephosphorylated and Cl(-) secretion rapidly restored by hypertonic shock as well as by forskolin and isoproterenol, which operate via cAMP and protein kinase A. We conclude that hormone mediated, cAMP dependent and osmotically mediated, cAMP independent pathways converge on a mechanism to activate CFTR and Cl(-) secretion, possibly through tyrosine phosphorylation of CFTR by FAK.
Collapse
Affiliation(s)
- William S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | | | | | |
Collapse
|
49
|
Chao PC, Hamilton KL. Genistein stimulates electrogenic Cl− secretion via phosphodiesterase modulation in the mouse jejunum. Am J Physiol Cell Physiol 2009; 297:C688-98. [DOI: 10.1152/ajpcell.00152.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that genistein stimulated Cl− secretion in the mouse jejunum (Baker MJ and Hamilton KL, Am J Physiol Cell Physiol 287: C1636–C1645, 2004); however, the mode of action of genistein still remains unclear. Here, we examined the activation of Cl− secretion by the modulation of phosphodiesterases (PDEs) by genistein (75 μM) in the mouse jejunum with the Ussing short-circuit current ( Isc) technique. Drugs tested included theophylline (10 mM), a nonspecific PDE inhibitor; 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MM-IBMX; 100 μM), erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA; 40 μM), milrinone (100 μM), and rolipram (40 and 100 μM), which are specific inhibitors of PDE1–PDE4, respectively. Theophylline stimulated a bumetanide-sensitive Isc, indicative of Cl− secretion, and abolished genistein's stimulatory action on Isc. Neither 8-MM-IBMX nor EHNA altered the basal Isc nor did these PDE inhibitors affect the stimulatory action of genistein on the Isc of the mouse jejunum. Rolipram had no effect on basal Isc, but it reduced the genistein-stimulated Isc compared with time-matched control tissues. Milrinone stimulated a concentration-dependent increase in Isc. Bumetanide (10 μM) inhibited 60 ± 4% of milrinone-induced Isc. Pretreating tissues with milrinone prevented genistein from stimulating Isc, and pretreatment with genistein reduced the effect of milrinone on Isc. H89 (50 μM), a PKA inhibitor, reduced the milrinone-stimulated Isc. Likewise, H89 reduced the genistein-stimulated Isc. Here, we demonstrate, for the first time, that genistein activates Cl− secretion of the mouse jejunum via inhibition of a PDE3-dependent pathway.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirk L. Hamilton
- Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Hwang TC, Sheppard DN. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol 2009; 587:2151-61. [PMID: 19332488 PMCID: PMC2697289 DOI: 10.1113/jphysiol.2009.171595] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/23/2009] [Indexed: 01/26/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a fundamental role in fluid and electrolyte transport across epithelial tissues. Based on its structure, function and regulation, CFTR is an ATP-binding cassette (ABC) transporter. These transporters are assembled from two membrane-spanning domains (MSDs) and two nucleotide-binding domains (NBDs). In the vast majority of ABC transporters, the NBDs form a common engine that utilises the energy of ATP hydrolysis to pump a wide spectrum of substrates through diverse transmembrane pathways formed by the MSDs. By contrast, in CFTR the MSDs form a pathway for passive anion flow that is gated by cycles of ATP binding and hydrolysis by the NBDs. Here, we consider how the interaction of ATP with two ATP-binding sites, formed by the NBDs, powers conformational changes in CFTR structure to gate the channel pore. We explore how conserved sequences from both NBDs form ATP-binding sites at the interface of an NBD dimer and highlight the distinct roles that each binding site plays during the gating cycle. Knowledge of how ATP gates the CFTR Cl- channel is critical for understanding CFTR's physiological role, its malfunction in disease and the mechanism of action of small molecules that modulate CFTR channel gating.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|