1
|
Advances in microglia cellular models: focus on extracellular vesicle production. Biochem Soc Trans 2021; 49:1791-1802. [PMID: 34415299 DOI: 10.1042/bst20210203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
Microglia are the major component of the innate immune system in the central nervous system. They promote the maintenance of brain homeostasis as well as support inflammatory processes that are often related to pathological conditions such as neurodegenerative diseases. Depending on the stimulus received, microglia cells dynamically change their phenotype releasing specific soluble factors and largely modify the cargo of their secreted extracellular vesicles (EVs). Despite the mechanisms at the basis of microglia actions have not been completely clarified, the recognized functions exerted by their EVs in patho-physiological conditions represent the proof of the crucial role of these organelles in tuning cell-to-cell communication, promoting either protective or harmful effects. Consistently, in vitro cell models to better elucidate microglia EV production and mechanisms of their release have been increased in the last years. In this review, the main microglial cellular models that have been developed and validated will be described and discussed, with particular focus on those used to produce and derive EVs. The advantages and disadvantages of their use will be evidenced too. Finally, given the wide interest in applying EVs in diagnosis and therapy too, the heterogeneity of available models for producing microglia EVs is here underlined, to prompt a cross-check or comparison among them.
Collapse
|
2
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
He S, Moutaoufik MT, Islam S, Persad A, Wu A, Aly KA, Fonge H, Babu M, Cayabyab FS. HERG channel and cancer: A mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1873:188355. [PMID: 32135169 DOI: 10.1016/j.bbcan.2020.188355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The human ether-à-go-go related gene (HERG) encodes the alpha subunit of Kv11.1, which is a voltage-gated K+ channel protein mainly expressed in heart and brain tissue. HERG plays critical role in cardiac repolarization, and mutations in HERG can cause long QT syndrome. More recently, evidence has emerged that HERG channels are aberrantly expressed in many kinds of cancer cells and play important roles in cancer progression. HERG could therefore be a potential biomarker for cancer and a possible molecular target for anticancer drug design. HERG affects a number of cellular processes, including cell proliferation, apoptosis, angiogenesis and migration, any of which could be affected by dysregulation of HERG. This review provides an overview of available information on HERG channel as it relates to cancer, with focus on the mechanism by which HERG influences cancer progression. Molecular docking attempts suggest two possible protein-protein interactions of HERG with the ß1-integrin receptor and the transcription factor STAT-1 as novel HERG-directed therapeutic targeting which avoids possible cardiotoxicity. The role of epigenetics in regulating HERG channel expression and activity in cancer will also be discussed. Finally, given its inherent extracellular accessibility as an ion channel, we discuss regulatory roles of this molecule in cancer physiology and therapeutic potential. Future research should be directed to explore the possibilities of therapeutic interventions targeting HERG channels while minding possible complications.
Collapse
Affiliation(s)
- Siyi He
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Saadul Islam
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Amit Persad
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Adam Wu
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
4
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
5
|
Timmerman R, Burm SM, Bajramovic JJ. An Overview of in vitro Methods to Study Microglia. Front Cell Neurosci 2018; 12:242. [PMID: 30127723 PMCID: PMC6087748 DOI: 10.3389/fncel.2018.00242] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a common feature in neurodegenerative diseases and strategies to modulate neuroinflammatory processes are increasingly considered as therapeutic options. In such strategies, glia cells rather than neurons represent the cellular targets. Microglia, the resident macrophages of the central nervous system, are principal players in neuroinflammation and detailed cellular biological knowledge of this particular cell type is therefore of pivotal importance. The last decade has shed new light on the origin, characteristics and functions of microglia, underlining the need for specific in vitro methodology to study these cells in detail. In this review we provide a comprehensive overview of existing methodology such as cell lines, stem cell-derived microglia and primary dissociated cell cultures, as well as discuss recent developments. As there is no in vitro method available yet that recapitulates all hallmarks of adult homeostatic microglia, we also discuss the advantages and limitations of existing models across different species.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | | |
Collapse
|
6
|
Lam D, Lively S, Schlichter LC. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K + channels and migration. J Neuroinflammation 2017; 14:166. [PMID: 28830445 PMCID: PMC5567442 DOI: 10.1186/s12974-017-0941-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.
Collapse
Affiliation(s)
- Doris Lam
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Sousa C, Biber K, Michelucci A. Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Front Immunol 2017; 8:198. [PMID: 28303137 PMCID: PMC5332364 DOI: 10.3389/fimmu.2017.00198] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/09/2017] [Indexed: 12/26/2022] Open
Abstract
Microglia are essential for the development and function of the adult brain. Microglia arise from erythro-myeloid precursors in the yolk sac and populate the brain rudiment early during development. Unlike monocytes that are constantly renewed from bone marrow hematopoietic stem cells throughout life, resident microglia in the healthy brain persist during adulthood via constant self-renewal. Their ontogeny, together with the absence of turnover from the periphery and the singular environment of the central nervous system, make microglia a unique cell population. Supporting this notion, recent genome-wide transcriptional studies revealed specific gene expression profiles clearly distinct from other brain and peripheral immune cells. Here, we highlight the breakthrough studies that, over the last decades, helped elucidate microglial cell identity, ontogeny, and function. We describe the main techniques that have been used for this task and outline the crucial milestones that have been achieved to reach our actual knowledge of microglia. Furthermore, we give an overview of the “microgliome” that is currently emerging thanks to the constant progress in the modern profiling techniques.
Collapse
Affiliation(s)
- Carole Sousa
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, Section Molecular Psychiatry, University of Freiburg, Freiburg, Germany; Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| |
Collapse
|
8
|
Nonequilibrium response of a voltage gated sodium ion channel and biophysical characterization of dynamic hysteresis. J Theor Biol 2017; 415:113-124. [PMID: 27988317 DOI: 10.1016/j.jtbi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/14/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022]
Abstract
Here we have studied the dynamic as well as the non-equilibrium thermodynamic response properties of voltage-gated Na-ion channel. Using sinusoidally oscillating external voltage protocol we have both kinetically and energetically studied the non-equilibrium steady state properties of dynamic hysteresis in details. We have introduced a method of estimating the work done associated with the dynamic memory due to a cycle of oscillating voltage. We have quantitatively characterised the loop area of ionic current which gives information about the work done to sustain the dynamic memory only for ion conduction, while the loop area of total entropy production rate gives the estimate of work done for overall gating dynamics. The maximum dynamic memory of Na-channel not only depends on the frequency and amplitude but it also depends sensitively on the mean of the oscillating voltage and here we have shown how the system optimize the dynamic memory itself in the biophysical range of field parameters. The relation between the average ionic current with increasing frequency corresponds to the nature of the average dissipative work done at steady state. It is also important to understand that the utilization of the energy from the external field can not be directly obtained only from the measurement of ionic current but also requires nonequilibrium thermodynamic study.
Collapse
|
9
|
Abstract
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- a Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| |
Collapse
|
10
|
Conductance hysteresis in the voltage-dependent anion channel. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:465-472. [PMID: 26094068 DOI: 10.1007/s00249-015-1049-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 01/24/2023]
Abstract
Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths.
Collapse
|
11
|
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86. [PMID: 26067058 DOI: 10.1016/j.pneurobio.2015.05.003] [Citation(s) in RCA: 516] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Macrophages are important players in the fight against viral, bacterial, fungal and parasitic infections. From a resting state they may undertake two activation pathways, the classical known as M1, or the alternative known as M2. M1 markers are mostly mediators of pro-inflammatory responses whereas M2 markers emerge for resolution and cleanup. Microglia exerts in the central nervous system (CNS) a function similar to that of macrophages in the periphery. Microglia activation and proliferation occurs in almost any single pathology affecting the CNS. Often microglia activation has been considered detrimental and drugs able to stop microglia activation were considered for the treatment of a variety of diseases. Cumulative evidence shows that microglia may undergo the alternative activation pathway, express M2-type markers and contribute to neuroprotection. This review focuses on details about the role of M2 microglia and in the approaches available for its identification. Approaches to drive the M2 phenotype and data on its potential in CNS diseases are also reviewed.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Diana Fernández-Suárez
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
12
|
Siddiqui T, Lively S, Ferreira R, Wong R, Schlichter LC. Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the increased migration and invasion of microglia in anti-inflammatory activation states. PLoS One 2014; 9:e106087. [PMID: 25148577 PMCID: PMC4141841 DOI: 10.1371/journal.pone.0106087] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023] Open
Abstract
Microglia rapidly respond to CNS injury and disease and can assume a spectrum of activation states. While changes in gene expression and production of inflammatory mediators have been extensively described after classical (LPS-induced) and alternative (IL4-induced) microglial activation, less is known about acquired de-activation in response to IL10. It is important to understand how microglial activation states affect their migration and invasion; crucial functions after injury and in the developing CNS. We reported that LPS-treated rat microglia migrate very poorly, while IL4-treated cells migrate and invade much better. Having discovered that the lamellum of migrating microglia contains a large ring of podosomes – microscopic structures that are thought to mediate adhesion, migration and invasion – we hypothesized that IL4 and IL10 would differentially affect podosome expression, gene induction, migration and invasion. Further, based on the enrichment of the KCa2.3/SK3 Ca2+-activated potassium channel in microglial podosomes, we predicted that it regulates migration and invasion. We found both similarities and differences in gene induction by IL4 and IL10 and, while both cytokines increased migration and invasion, only IL10 affected podosome expression. KCa2.3 currents were recorded in microglia under all three activation conditions and KCNN3 (KCa2.3) expression was similar. Surprisingly then, of three KCa2.3 inhibitors (apamin, tamapin, NS8593), only NS8593 abrogated the increased migration and invasion of IL4 and IL10-treated microglia (and invasion of unstimulated microglia). This discrepancy was explained by the observed block of TRPM7 currents in microglia by NS8593, which occurred under all three activation conditions. A similar inhibition of both migration and invasion was seen with a TRPM7 inhibitor (AA-861) that does not block KCa2.3 channels. Thus, we conclude that TRPM7 (not KCa2.3) contributes to the enhanced ability of microglia to migrate and invade when in anti-inflammatory states. This will be an important consideration in developing TRPM7 inhibitors for treating CNS injury.
Collapse
Affiliation(s)
- Tamjeed Siddiqui
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Starlee Lively
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
| | - Roger Ferreira
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Wong
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lyanne C. Schlichter
- Toronto Western Research Institute, Genes and Development Division, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Ferreira R, Schlichter LC. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells. PLoS One 2013; 8:e62345. [PMID: 23620825 PMCID: PMC3631179 DOI: 10.1371/journal.pone.0062345] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Microglial activation involves Ca(2+) signaling, and numerous receptors can evoke elevation of intracellular Ca(2+). ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca(2+) rise through release from intracellular Ca(2+) stores and store-operated Ca(2+) entry, and some have been implicated in microglial migration. This Ca(2+) rise is expected to activate small-conductance Ca(2+)-dependent K(+) (SK) channels, if present. We previously found that SK3 (KCa2.3) and KCa3.1 (SK4/IK1) are expressed in rat microglia and contribute to LPS-mediated activation and neurotoxicity. However, neither current has been studied by elevating Ca(2+) during whole-cell recordings. We hypothesized that, rather than responding only to Ca(2+), each channel type might be coupled to different receptor-mediated pathways. Here, our objective was to determine whether the channels are differentially activated by P2Y receptors, and, if so, whether they play differing roles. We used primary rat microglia and a rat microglial cell line (MLS-9) in which riluzole robustly activates both SK3 and KCa3.1 currents. Using electrophysiological, Ca(2+) imaging and pharmacological approaches, we show selective functional coupling of KCa3.1 to UTP-mediated P2Y2 receptor activation. KCa3.1 current is activated by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC/Orai1) channels, and both CRAC/Orai1 and KCa3.1 channels facilitate refilling of Ca(2+) stores. The Ca(2+) dependence of KCa3.1 channel activation was skewed to abnormally high concentrations, and we present evidence for a close physical association of the two channel types. Finally, migration of primary rat microglia was stimulated by UTP and inhibited by blocking either KCa3.1 or CRAC/Orai1 channels. This is the first report of selective coupling of one type of SK channel to purinergic stimulation of microglia, transactivation of KCa3.1 channels by CRAC/Orai1, and coordinated roles for both channels in store refilling, Ca(2+) signaling and microglial migration.
Collapse
Affiliation(s)
- Roger Ferreira
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lyanne C. Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Abstract
To date, research on the human ether-a-go-go related gene (hERG) has focused on this potassium channel's role in cardiac repolarization and Long QT Syndrome (LQTS). However, growing evidence implicates hERG in a diversity of physiologic and pathological processes. Here we discuss these other functions of hERG, particularly their impact on diseases beyond cardiac arrhythmia.
Collapse
|
15
|
Dong H, Ji Z, Liu M, Wang Y, Bai X, Wang T, Liu Z, Wu Y, Zhang B, Luo Y, Li Z, Dong M. Functional expression of ERG1 potassium channels in rat alveolar macrophages. J Mol Histol 2013; 44:117-124. [PMID: 23138560 DOI: 10.1007/s10735-012-9458-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/07/2012] [Indexed: 11/29/2022]
Abstract
Alveolar macrophages (AMs) play a vital role in lung immunity. The recent studies demonstrated that potassium channels were associated with macrophage functions, such as activation, migration and cytokines secretion. However, less is known regarding the expression and function of ERG channels in AMs. Our study showed that ERG1 channel expressed in rat alveolar macrophage, and the expression level was increased when AMs were stimulated with LPS. Furthermore, blockade of ERG1 channels with E4031 down-regulated the mature of ERG1 protein, inhibited NF-κB translocation into the nucleus, and reduced LPS-stimulated IL-6 and IL-1β secretion. These results imply that ERG1 channels are functionally expressed in rat alveolar macrophages and play an important role in inflammatory response.
Collapse
Affiliation(s)
- Haiying Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Despite the fact that microglia cells were first described almost a century ago, microglia-derived immortalized cell lines have only been established in the last two decades. One should be aware of their limitations but also of their advantages. Cell lines offer a potentially powerful tool to investigate some functional aspects of microglia. Cell culturing of human and murine microglia cell lines will be described in this chapter. It includes a presentation of equipment needed, cell culture medium and supplements, cell culture monitoring, and a protocol describing the steps for subculturing of microglia cell lines.
Collapse
|
17
|
Das B, Banerjee K, Gangopadhyay G. Entropy hysteresis and nonequilibrium thermodynamic efficiency of ion conduction in a voltage-gated potassium ion channel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061915. [PMID: 23367983 DOI: 10.1103/physreve.86.061915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/16/2012] [Indexed: 06/01/2023]
Abstract
Here we have studied the nonequilibrium thermodynamic response of a voltage-gated Shaker potassium ion channel using a stochastic master equation. For a constant external voltage, the system reaches equilibrium indicated by the vanishing total entropy production rate, whereas for oscillating voltage the current and entropy production rates show dynamic hysteretic behavior. Here we have shown quantitatively that although the hysteresis loop area vanishes in low and high frequency domains of the external voltage, they are thermodynamically distinguishable. In the very low frequency domain, the system remains close to equilibrium, whereas at high frequencies it goes to a nonequilibrium steady state (NESS) associated with a finite value of dissipation function. At NESS, the efficiency of the ion conduction can also be related with the nonlinear dependence of the dissipation function on the power of the external field. Another intriguing aspect is that, at the high frequency limit, the total entropy production rate oscillates at NESS with half of the time period of the external voltage.
Collapse
Affiliation(s)
- Biswajit Das
- SN Bose National Centre For Basic Sciences Block JD, Sector III, Salt Lake, Kolkata 700098, India
| | | | | |
Collapse
|
18
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
19
|
Mason MJ, Schaffner C, Floto RA, Teo QA. Constitutive expression of a Mg2+-inhibited K+ current and a TRPM7-like current in human erythroleukemia cells. Am J Physiol Cell Physiol 2011; 302:C853-67. [PMID: 22135214 DOI: 10.1152/ajpcell.00071.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole cell patch-clamp experiments were undertaken to define the basal K(+) conductance(s) in human erythroleukemia cells and its contribution to the setting of resting membrane potential. Experiments revealed a non-voltage-activated, noninactivating K(+) current. The magnitude of the current recorded under whole cell conditions was inhibited by an increase in free intracellular Mg(2+) concentration. Activation or inactivation of the Mg(2+)-inhibited K(+) current (MIP) was paralleled by activation or inactivation of a Mg(2+)-inhibited TRPM7-like current displaying characteristics indistinguishable from those reported for molecularly identified TRPM7 current. The MIP and TRPM7 currents were inhibited by 5-lipoxygenase inhibitors. However, inhibition of the MIP current was temporally distinct from inhibition of TRPM7 current, allowing for isolation of the MIP current. Isolation of the MIP conductance revealed a current reversing near the K(+) equilibrium potential, indicative of a highly K(+)-selective conductance. Consistent with this finding, coactivation of the nonselective cation current TRPM7 and the MIP current following dialysis with nominally Mg(2+)-free pipette solution resulted in hyperpolarized whole cell reversal potentials, consistent with an important role for the MIP current in the setting of a negative resting membrane potential. The MIP and TRPM7-like conductances were constitutively expressed under in vivo conditions of intracellular Mg(2+), as judged by their initial detection and subsequent inactivation following dialysis with a pipette solution containing 5 mM free Mg(2+). The MIP current was blocked in a voltage-dependent fashion by extracellular Cs(+) and, to a lesser degree, by Ba(2+) and was blocked by extracellular La(3+) and 2-aminoethoxydiphenyl borate. MIP currents were unaffected by blockers of ATP-sensitive K(+) channels, human ether-à-go-go-related gene current, and intermediate-conductance Ca(2+)-activated K(+) channels. In addition, the MIP current displayed characteristics distinct from conventional inwardly rectifying K(+) channels. A similar current was detected in the leukemic cell line CHRF-288-11, consistent with this current being more generally expressed in cells of leukemic origin.
Collapse
Affiliation(s)
- Michael J Mason
- Department of Physiology, Development, and Neuroscience, University of Cambridge, UK.
| | | | | | | |
Collapse
|
20
|
Liu B, Yao J, Zhu MX, Qin F. Hysteresis of gating underlines sensitization of TRPV3 channels. ACTA ACUST UNITED AC 2011; 138:509-20. [PMID: 22006988 PMCID: PMC3206302 DOI: 10.1085/jgp.201110689] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Vanilloid receptors of the transient receptor potential family have functions in thermal sensation and nociception. Among them, transient receptor potential vanilloid (TRPV)3 displays a unique property by which the repeated stimulation causes successive increases in its activity. The property has been known as sensitization and is observed in both native cells and cells heterologously expressing TRPV3. Transient increases in intracellular calcium levels have been implicated to play a key role in this process by mediating interaction of calmodulin with the channel. In support of the mechanism, BAPTA, a fast calcium chelator, accelerates the sensitization, whereas the slow chelator EGTA is ineffectual. Here, we show that the sensitization of TRPV3 also occurred independently of Ca2+. It was observed in both inside-out and outside-out membrane patches. BAPTA, but not EGTA, has a direct potentiation effect on channel activation. Analogues of BAPTA lacking Ca2+-buffering capability were similarly effective. The stimulation-induced sensitization and the potentiation by BAPTA are distinguishable in reversibility. We conclude that the sensitization of TRPV3 is intrinsic to the channel itself and occurs as a result of hysteresis of channel gating. BAPTA accelerates the sensitization process by potentiating the gating of the channel.
Collapse
Affiliation(s)
- Beiying Liu
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
21
|
Zhang J, Shipston MJ, Brown SB. A Role for Potassium Permeability in the Recognition, Clearance, and Anti-inflammatory Effects of Apoptotic Cells. Mol Neurobiol 2010; 42:17-24. [DOI: 10.1007/s12035-010-8127-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 12/18/2022]
|
22
|
Pennington MW, Beeton C, Galea CA, Smith BJ, Chi V, Monaghan KP, Garcia A, Rangaraju S, Giuffrida A, Plank D, Crossley G, Nugent D, Khaytin I, Lefievre Y, Peshenko I, Dixon C, Chauhan S, Orzel A, Inoue T, Hu X, Moore RV, Norton RS, Chandy KG. Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes. Mol Pharmacol 2009; 75:762-73. [PMID: 19122005 PMCID: PMC2684922 DOI: 10.1124/mol.108.052704] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/02/2009] [Indexed: 12/11/2022] Open
Abstract
Kv1.3 potassium channels maintain the membrane potential of effector memory (T(EM)) T cells that are important mediators of multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. The polypeptide ShK-170 (ShK-L5), containing an N-terminal phosphotyrosine extension of the Stichodactyla helianthus ShK toxin, is a potent and selective blocker of these channels. However, a stability study of ShK-170 showed minor pH-related hydrolysis and oxidation byproducts that were exacerbated by increasing temperatures. We therefore engineered a series of analogs to minimize the formation of these byproducts. The analog with the greatest stability, ShK-192, contains a nonhydrolyzable phosphotyrosine surrogate, a methionine isostere, and a C-terminal amide. ShK-192 shows the same overall fold as ShK, and there is no evidence of any interaction between the N-terminal adduct and the rest of the peptide. The docking configuration of ShK-192 in Kv1.3 shows the N-terminal para-phosphonophenylalanine group lying at the junction of two channel monomers to form a salt bridge with Lys(411) of the channel. ShK-192 blocks Kv1.3 with an IC(50) of 140 pM and exhibits greater than 100-fold selectivity over closely related channels. After a single subcutaneous injection of 100 microg/kg, approximately 100 to 200 pM concentrations of active peptide is detectable in the blood of Lewis rats 24, 48, and 72 h after the injection. ShK-192 effectively inhibits the proliferation of T(EM) cells and suppresses delayed type hypersensitivity when administered at 10 or 100 microg/kg by subcutaneous injection once daily. ShK-192 has potential as a therapeutic for autoimmune diseases mediated by T(EM) cells.
Collapse
Affiliation(s)
- M W Pennington
- Bachem Bioscience Inc., King of Prussia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: Relevance to the pharmacotherapy of brain HIV-1 infection. Glia 2008; 56:1711-35. [DOI: 10.1002/glia.20725] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Babakhanian K, Bendayan M, Bendayan R. Localization of P-glycoprotein at the nuclear envelope of rat brain cells. Biochem Biophys Res Commun 2007; 361:301-6. [PMID: 17651695 DOI: 10.1016/j.bbrc.2007.06.176] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
P-glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.
Collapse
Affiliation(s)
- Karlo Babakhanian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ont., Canada M5S 3M2
| | | | | |
Collapse
|
25
|
Vernon-Wilson EF, Auradé F, Tian L, Rowe ICM, Shipston MJ, Savill J, Brown SB. CD31 delays phagocyte membrane repolarization to promote efficient binding of apoptotic cells. J Leukoc Biol 2007; 82:1278-88. [PMID: 17684043 DOI: 10.1189/jlb.0507283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Homophilic ligation of CD31, a member of the Ig superfamily of adhesion receptors, promotes macrophage clearance of apoptotic leukocytes by a mechanism hitherto not described. In studying CD31-dependent regulation of beta1-integrin binding of fibronectin-coated Latex beads, we discovered a role for the voltage-gated potassium channel ether-à-go-go-related gene (ERG) as a downstream effector of CD31 signaling. ERG was identified by tandem mass spectrometry as a 140-kDa protein, which was selectively modified with biotin following the targeted delivery of a biotin-transfer reagent to CD31 using Fab fragments of an anti-CD31 mAb. Similar results were obtained with macrophages but not K562 cells, expressing a truncated cytoplasmic tail of CD31, which failed to regulate bead binding. Colocalization of CD31 with ERG was confirmed by immunofluorescence for K562 cells and macrophages. We now demonstrate that the resting membrane potential of macrophages is depolarized on contact with apoptotic cells and that CD31 inhibits the ERG current, which would otherwise function to repolarize. Sustained depolarization favored the firm binding of phagocytic targets, a prerequisite for efficient engulfment. Our results identify ERG as a downstream effector of CD31 in the regulation of integrin-dependent binding of apoptotic cells by macrophages.
Collapse
|
26
|
Zhang M, Liu XS, Diochot S, Lazdunski M, Tseng GN. APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel. Mol Pharmacol 2007; 72:259-68. [PMID: 17473056 DOI: 10.1124/mol.107.035840] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amplitudes elicited by strong depolarizing pulses that maximally activate the channels. The APETx1 binding site is distinctly different from that of a pore-blocking peptide toxin, BeKm-1. Mutations in the S3b region of hERG have dramatic impact on the responsiveness to APETx1: G514C potentiates whereas E518C abolishes the APETx1 effect. Restoring the negative charge at position 518 (methanethiosulfonate ethylsulfonate modification of 518C) partially restores APETx1 responsiveness, supporting an electrostatic interaction between E518 and APETx1. Among the three hERG isoforms, hERG1 and hERG3 are equally responsive to APETx1, whereas hERG2 is insensitive. The key feature seems to be an arginine residue uniquely present at the 514-equivalent position in hERG2, where the other two isoforms possess a glycine. Our data show that APETx1 is a gating modifier toxin of the hERG channel, and its binding site shares characteristics with those of gating modifier toxin binding sites on other Kv channels.
Collapse
Affiliation(s)
- M Zhang
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
27
|
Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, Wang Z. Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1. J Cell Physiol 2007; 212:137-147. [PMID: 17311278 DOI: 10.1002/jcp.21015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The long QT syndrome gene human ether-a-go-go related gene (HERG) encodes a K(+) channel critical to cardiac repolarization. It peculiarly overexpresses in cancer cells of different histogenesis and promotes tumorigenesis. To decipher the molecular mechanisms for HERG overexpression, we identified and characterized the promoter region of the HERG gene, which contains cis-elements for multiple oncoproteins and tumor suppressors. Oncoprotein Sp1 was found to be essential to driving the HERG promoter thereby transcription. Another oncoprotein NF-kappaB transactivated, while tumor suppressor Nkx3.1 repressed HERG promoter activity and endogenous HERG transcription. Loss-of-function mutations in the corresponding cis-elements rendered a loss of the ability of the oncoproteins Sp1 and NF-kappaB to transactivate, and of the tumor repressor Nkx3.1 to repress, HERG transcription. Either activation of Sp1 and NF-kappaB or silencing of Nkx3.1 promoted tumor cell growth, and the effects were abrogated by HERG inhibition or knockdown, but facilitated by overexpression of HERG, indicating that HERG mediates the cell growth signals generated by activation of oncoproteins or inactivation of tumor suppressors. Binding of Sp1, NF-kappaB, and Nkx3.1 to their respective cis-elements in the HERG promoter in vitro and their presence on the HERG promoter in vivo were confirmed. Therefore, the HERG promoter region is characterized by multiple Sp1 binding sites that are responsible for transcription initiation of the HERG gene and by binding sites for multiple other oncogenes and tumor suppressor genes being important for regulating HERG expression. The HERG K(+) channel is likely a mediator of growth-promoting processes induced by oncoproteins and/or by silencing of tumor suppressors.
Collapse
Affiliation(s)
- Huixian Lin
- Research Center, Montreal Heart Institute, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Tseng GN, Sonawane KD, Korolkova YV, Zhang M, Liu J, Grishin EV, Guy HR. Probing the outer mouth structure of the HERG channel with peptide toxin footprinting and molecular modeling. Biophys J 2007; 92:3524-40. [PMID: 17293393 PMCID: PMC1853143 DOI: 10.1529/biophysj.106.097360] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the unusually long S5-P linker lining human ether a-go-go related gene's (hERG's) outer vestibule is critical for its channel function: point mutations at high-impact positions here can interfere with the inactivation process and, in many cases, also reduce the pore's K+ selectivity. Because no data are available on the equivalent region in the available K channel crystal structures to allow for homology modeling, we used alternative approaches to model its three-dimensional structure. The first part of this article describes mutant cycle analysis used to identify residues on hERG's outer vestibule that interact with specific residues on the interaction surface of BeKm-1, a peptide toxin with known NMR structure and a high binding affinity to hERG. The second part describes molecular modeling of hERG's pore domain. The transmembrane region was modeled after the crystal structure of KvAP pore domain. The S5-P linker was docked to the transmembrane region based on data from previous NMR and mutagenesis experiments, as well as a set of modeling criteria. The models were further restrained by contact points between hERG's outer vestibule and the bound BeKm-1 toxin molecule deduced from the mutant cycle analysis. Based on these analyses, we propose a working model for the open conformation of the outer vestibule of the hERG channel, in which the S5-P linkers interact with the pore loops to influence ion flux through the pore.
Collapse
Affiliation(s)
- Gea-Ny Tseng
- Department of Physiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Pustovoit MA, Berezhkovskii AM, Bezrukov SM. Analytical theory of hysteresis in ion channels: two-state model. J Chem Phys 2007; 125:194907. [PMID: 17129167 DOI: 10.1063/1.2364898] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Channel-forming proteins in a lipid bilayer of a biological membrane usually respond to variation of external voltage by changing their conformations. Periodic voltages with frequency comparable with the inverse relaxation time of the protein produce hysteresis in the occupancies of the protein conformations. If the channel conductance changes when the protein jumps between these conformations, hysteresis in occupancies is observed as hysteresis in ion current through the channel. We develop an analytical theory of this phenomenon assuming that the channel conformational dynamics can be described in terms of a two-state model. The theory describes transient behavior of the channel after the periodic voltage is switched on as well as the shape and area of the hysteretic loop as functions of the frequency and amplitude of the applied voltage. The area vanishes as the voltage period T tends to zero and infinity. Asymptotic behaviors of the loop area A in the high- and low-frequency regimes, respectively, are A approximately T and A approximately T(-1).
Collapse
Affiliation(s)
- M A Pustovoit
- St. Petersburg Nuclear Physics Institute, Gatchina 188300, Russia
| | | | | |
Collapse
|
30
|
Zhang M, Liu J, Jiang M, Wu DM, Sonawane K, Guy HR, Tseng GN. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel. J Membr Biol 2006; 207:169-81. [PMID: 16550488 DOI: 10.1007/s00232-005-0812-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 10/09/2005] [Indexed: 11/30/2022]
Abstract
Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.
Collapse
Affiliation(s)
- M Zhang
- Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
McKay CM, Ye J, Huizinga JD. Characterization of depolarization-evoked ERG K currents in interstitial cells of Cajal. Neurogastroenterol Motil 2006; 18:324-33. [PMID: 16553588 DOI: 10.1111/j.1365-2982.2006.00764.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstitial cells of Cajal (ICC) harbour the ether-a-go-go related gene (ERG) channel as shown by its characteristic rapidly deactivating current upon hyperpolarization. This property, however, does not explain the marked increase in cell excitability by ERG channel blockers, namely an increase in slow wave plateau duration and action potential generation. The objective of the present study was to characterize the depolarization-activated, E4031-sensitive ERG currents in murine ICC within a range of physiologically relevant membrane potentials. Whole cell currents were recorded from ICC isolated from murine neonatal jejunum, superfused with a physiological salt solution and with high intracellular Cs(+) to block most other K(+) currents. Upon depolarizing the cell from the resting membrane potential (approximately -60 mV) towards the region of the slow wave plateau (approximately -30 mV), significant sustained (window) current was generated between the potentials of -40 to 0 mV (maximal at -30 mV) and inhibited by the ERG specific blocker E4031. Channel activation followed by rapid inactivation produced a steady state conductance at -30 mV which was 51.6 +/- 11% of the hyperpolarization-evoked peak conductance value at -100 mV. When the cell repolarized from -30 mV, again, significant currents were generated, indicating recovery from inactivation, a typical characteristic of ERG channels. These data provide evidence that the ERG channel is of significance in the regulation of ICC excitability and provide the mechanism by which ERG channel blockade increases the slow wave duration.
Collapse
Affiliation(s)
- C M McKay
- Intestinal Disease Research Programme, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
32
|
Abstract
Multiple sclerosis is a chronic inflammatory autoimmune disease of the central nervous system characterized by demyelination and axonal damage that result in disabling neurological deficits. Here the authors explain the rationale for the use of inhibitors of the Kv1.3 K+ channel in immune cells as a therapy for multiple sclerosis and other autoimmune disorders.
Collapse
Affiliation(s)
- Christine Beeton
- Department of Physiology and Biophysics, Medical School, University of California, Irvine, 92697, USA
| | | |
Collapse
|
33
|
Zierler S, Kerschbaum HH. Blockade of chloride conductance antagonizes PMA-induced ramification in the murine microglial cell line, BV-2. Brain Res 2005; 1039:162-70. [PMID: 15781058 DOI: 10.1016/j.brainres.2005.01.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 01/19/2005] [Accepted: 01/19/2005] [Indexed: 11/29/2022]
Abstract
In microglial cells, activation of ion channels and ion transporters is associated with the transformation from an amoeboid to a ramified phenotype and vice versa. In the present study, we evaluated the contributions of protein kinase C (PKC) activity and ion conductance to the phorbol 12-myristate 13-acetate (PMA)-dependent ramification in the murine microglial cell line, BV-2. In a first set of experiments, we showed that PMA, a commonly used activator of PKC, but not the bioinactive analog 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), induces ramification in BV-2 cells. Surprisingly, the PKC inhibitors calphostin C, chelerythrine, or bisindolylmaleimide II did not antagonize PMA-induced ramification. In a further set of experiments, we found that 4,4'-diisocyanatostilbene-2,2' disulfonic acid (DIDS), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), which block chloride channels and K-Cl cotransporters, and SKF 96365, a non-selective ion channel blocker, consistently suppressed PMA-induced ramification in BV-2 cells. Additional ion channel blockers, including lanthanides, amiloride, Ba2+, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), and flufenamic acid did not affect PMA-induced ramification in BV-2 cells. Cs+ accentuated the PMA-dependent ramification in BV-2 cells. Thus, our results indicate (1) that a PMA-binding protein, excluding PKC isoforms, is critical in structural remodeling of microglial cells and (2) that chloride conductance plays a pivotal role in induction of ramification in microglial cells.
Collapse
Affiliation(s)
- Susanna Zierler
- Division of Animal Physiology, Department of Cellular Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | | |
Collapse
|
34
|
Miranda P, Giráldez T, de la Peña P, Manso DG, Alonso-Ron C, Gómez-Varela D, Domínguez P, Barros F. Specificity of TRH receptor coupling to G-proteins for regulation of ERG K+ channels in GH3 rat anterior pituitary cells. J Physiol 2005; 566:717-36. [PMID: 15905217 PMCID: PMC1464777 DOI: 10.1113/jphysiol.2005.085803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The identity of the G-protein coupling thyrotropin-releasing hormone (TRH) receptors to rat ether-à-go-go related gene (r-ERG) K+ channel modulation was studied in situ using perforated-patch clamped adenohypophysial GH(3) cells and dominant-negative variants (Galpha-QL/DN) of G-protein alpha subunits. Expression of dominant-negative Galpha(q/11) that minimizes the TRH-induced Ca2+ signal had no effect on r-ERG current inhibition elicited by the hormone. In contrast, the introduction of dominant-negative variants of Galpha13 and the small G-protein Rho caused a significant loss of the inhibitory effect of TRH on r-ERG. A strong reduction of this TRH effect was also obtained in cells expressing either dominant-negative Galpha(s) or transducin alpha subunits, an agent known to sequester free G-protein betagamma dimers. As a further indication of specificity of the dominant-negative effects, only the dominant-negative variants of Galpha13 and Rho (but not Galpha(s)-QL/DN or Galpha(t)) were able to reduce the TRH-induced shifts of human ERG (HERG) activation voltage dependence in HEK293 cells permanently expressing HERG channels and TRH receptors. Our results demonstrate that whereas the TRH receptor uses a G(q/11) protein for transducing the Ca2+ signal during the initial response to TRH, this G-protein is not involved in the TRH-induced inhibition of endogenous r-ERG currents in pituitary cells. They also identify G(s) (or a G(s)-like protein) and G13 as important contributors to the hormonal effect in these cells and suggest that betagamma dimers released from these proteins may participate in modulation of ERG currents triggered by TRH.
Collapse
Affiliation(s)
- Pablo Miranda
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus del Cristo, Universidad de Oviedo, E-33006, Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG. Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol 2005; 67:1369-81. [PMID: 15665253 PMCID: PMC4275123 DOI: 10.1124/mol.104.008193] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The voltage-gated Kv1.3 K(+) channel is a novel target for immunomodulation of autoreactive effector memory T (T(EM)) cells that play a major role in the pathogenesis of autoimmune diseases. We describe the characterization of the novel peptide ShK(L5) that contains l-phosphotyrosine linked via a nine-atom hydrophilic linker to the N terminus of the ShK peptide from the sea anemone Stichodactyla helianthus. ShK(L5) is a highly specific Kv1.3 blocker that exhibits 100-fold selectivity for Kv1.3 (K(d) = 69 pM) over Kv1.1 and greater than 250-fold selectivity over all other channels tested. ShK(L5) suppresses the proliferation of human and rat T(EM) cells and inhibits interleukin-2 production at picomolar concentrations. Naive and central memory human T cells are initially 60-fold less sensitive than T(EM) cells to ShK(L5) and then become resistant to the peptide during activation by up-regulating the calcium-activated K(Ca)3.1 channel. ShK(L5) does not exhibit in vitro cytotoxicity on mammalian cell lines and is negative in the Ames test. It is stable in plasma and when administered once daily by subcutaneous injection (10 mug/kg) attains "steady state" blood levels of approximately 300 pM. This regimen does not cause cardiac toxicity assessed by continuous EKG monitoring and does not alter clinical chemistry and hematological parameters after 2-week therapy. ShK(L5) prevents and treats experimental autoimmune encephalomyelitis and suppresses delayed type hypersensitivity in rats. ShK(L5) might prove useful for therapy of autoimmune disorders.
Collapse
Affiliation(s)
- Christine Beeton
- Department of Physiology and Biophysics, 291 Irvine Hall, Medical School, University of California-Irvine, Irvine, CA 92697-4561, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim I, Boyle KM, Carroll JL. Postnatal development of E-4031-sensitive potassium current in rat carotid chemoreceptor cells. J Appl Physiol (1985) 2004; 98:1469-77. [PMID: 15591286 DOI: 10.1152/japplphysiol.01254.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The O2 sensitivity of dissociated type I cells from rat carotid body increases with age until approximately 14-16 days. Hypoxia-induced depolarization appears to be mediated by an O2-sensitive K+ current, but other K+ currents may modulate depolarization. We hypothesized that membrane potential may be stabilized in newborn type I cells by human ether-a-go-go-related gene (HERG)-like K+ currents that inhibit hypoxia-induced depolarization and that a decrease in this current with age could underlie, in part, the developmental increase in type I cell depolarization response to hypoxia. In dissociated type I cells from 0- to 1- and 11- to 16-day-old rats, using perforated patch-clamp and 70 mM K+ extracellular solution, we measured repolarization-induced inward K+ tail currents in the absence and presence of E-4031, a specific HERG channel blocker. This allowed isolation of the E-4031-sensitive HERG-like current. E-4031-sensitive peak currents in type I cells from 0- to- 1-day-old rats were 2.5-fold larger than in cells from 11- to 16-day-old rats. E-4031-sensitive current density in newborn type I cells was twofold greater than in cells from 11- to 16-day-old rats. Under current clamp conditions, E-4031 enhanced hypoxia-induced depolarization in type I cells from 0- to- 1-day-old but not 11- to 16-day-old rats. With use of fura 2 to measure intracellular Ca2+, E-4031 increased the cytosolic Ca2+ concentration response to anoxia in cells from 0- to- 1-day-old but not cells from 11- to 16-day-old rats. E-4031-sensitive K+ currents are present in newborn carotid body type I cells and decline with age. These findings are consistent with a role for E-4031-sensitive K+ current, and possibly HERG-like K+ currents, in the type I cell hypoxia response maturation.
Collapse
Affiliation(s)
- Insook Kim
- Pediatric Pulmonary Division, Arkansas Children's Hospital, Slot 512-17, 800 Marshall St., Little Rock, AR 72202, USA
| | | | | |
Collapse
|
37
|
Ronaldson PT, Lee G, Dallas S, Bendayan R. Involvement of P-glycoprotein in the transport of saquinavir and indinavir in rat brain microvessel endothelial and microglia cell lines. Pharm Res 2004; 21:811-8. [PMID: 15180339 DOI: 10.1023/b:pham.0000026433.27773.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Membrane-bound efflux transporters, such as P-glycoprotein (P-gp), may limit the brain entry and distribution of HIV-1 protease inhibitors and be in part responsible for HIV-1-associated dementia treatment failure. The purpose of this study was to characterize the transport properties of saquinavir and indinavir in a brain microvessel endothelial cell line and in microglia, the immune cells of the brain and primary HIV-1 cellular target. METHODS Biochemical and transport studies were performed in an immortalized rat brain endothelial cell line (RBE4), a rat microglia cell line (MLS-9), and a P-gp overexpressing Chinese hamster ovary cell line (CHRC5). RESULTS Western blot analysis using the P-gp monoclonal antibody C219 detected a single band at approximately 170 to 180 kDa (a size previously reported for P-gp) in all cell lines. Cellular accumulation of [14C]saquinavir and [3H]indinavir by RBE4, MLS-9, and CHRC5 monolayers was significantly enhanced in the presence of P-gp inhibitors, HIV-1 protease inhibitors, the ATPase inhibitor sodium azide, and the ATP depleting agent 2',4'-dinitrophenol respectively. [14C]Saquinavir and [3H]indinavir efflux from both cell systems was rapid and significantly reduced in the presence of PSC833. CONCLUSIONS These results provide evidence for P-gp mediated transport of saquinavir and indinavir in RBE4 and MLS-9 and suggest that this transporter can restrict, at least in part, the permeation of HIV-1 protease inhibitors at both the brain barrier site and in brain parenchyma.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Zhang M, Liu J, Tseng GN. Gating charges in the activation and inactivation processes of the HERG channel. J Gen Physiol 2004; 124:703-18. [PMID: 15545400 PMCID: PMC2234031 DOI: 10.1085/jgp.200409119] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 10/13/2004] [Indexed: 12/02/2022] Open
Abstract
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Physiology, Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | |
Collapse
|
39
|
Abstract
Ether-à-go-go-related gene (erg) channels are voltage-dependent K+ channels mediating inward-rectifying K+ currents because of their peculiar gating kinetics. These characteristics are essential for repolarization of the cardiac action potential. Inherited and acquired malfunctioning of erg channels may lead to the long QT-syndrome. However, erg currents have also been recorded in many other excitable cells, like smooth muscle fibres of the gastrointestinal tract, neuroblastoma cells or neuroendocrine cells. In these cells erg currents contribute to the maintenance of the resting potential. Changes in the resting potential are related to cell-specific functions like increase in hormone secretion, frequency adaptation or increase in contractility.
Collapse
Affiliation(s)
- Jürgen R Schwarz
- Institut für Angewandte Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
40
|
Zhu Y, Golden CM, Ye J, Wang XY, Akbarali HI, Huizinga JD. ERG K+ currents regulate pacemaker activity in ICC. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1249-58. [PMID: 12958021 DOI: 10.1152/ajpgi.00149.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.
Collapse
Affiliation(s)
- Yaohui Zhu
- Intestinal Disease Research Program, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | |
Collapse
|
41
|
Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R. Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 2003; 307:282-90. [PMID: 12893836 DOI: 10.1124/jpet.103.054304] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain expression of the multidrug resistance proteins (MRPs), a collection of membrane-associated ATP-dependent efflux transporters, is poorly understood. Although several studies have examined the expression of these proteins within the brain barriers (i.e., the blood-brain barrier and choroid plexus), little information is available with respect to brain parenchyma cells such as microglia and astrocytes. Because microglia are the primary brain cells infected by the human immunodeficiency virus type 1 (HIV-1), MRP1 expression within microglia may contribute to lower brain accumulation of anti-HIV drugs. To examine the expression pattern of MRP1 within microglia, we performed reverse transcriptase-polymerase chain reaction analysis and Western blotting on a rat brain microglia cell line MLS-9, and in primary cultures of rat microglia. Both rat MRP1 (rMPR1) mRNA and protein were expressed in the cell line, as well as the primary cultures. We then characterized rMRP1-mediated transport properties in MLS-9 cells using [3H]vincristine, a known MRP1 substrate. Vincristine accumulation by monolayers of MLS-9 cells increased significantly in the presence of several well established MRP1 inhibitors (MK571, genistein, sulfinpyrazone, probenecid, and indomethacin), protease inhibitors, or the ATPase inhibitor sodium azide. In addition, vincristine accumulation was significantly modulated by altering the intracellular concentration of the reduced form of glutathione, further suggesting the involvement of rMRP1-mediated transport. These results provide strong evidence that the MRP1 protein is both expressed and functional in microglia cells. They also suggest that brain parenchyma can act as a "second" barrier to drug permeability and regulate brain distribution/accumulation of various xenobiotics, including protease inhibitors.
Collapse
Affiliation(s)
- Shannon Dallas
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Liu JH, König S, Michel M, Arnaudeau S, Fischer-Lougheed J, Bader CR, Bernheim L. Acceleration of human myoblast fusion by depolarization: graded Ca2+ signals involved. Development 2003; 130:3437-46. [PMID: 12810591 DOI: 10.1242/dev.00562] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that human myoblasts do not fuse when their voltage fails to reach the domain of a window T-type Ca(2+) current. We demonstrate, by changing the voltage in the window domain, that the Ca(2+) signal initiating fusion is not of the all-or-none type, but can be graded and is interpreted as such by the differentiation program. This was carried out by exploiting the properties of human ether-à-go-go related gene K(+) channels that we found to be expressed in human myoblasts. Methanesulfonanilide class III antiarrhythmic agents or antisense-RNA vectors were used to suppress completely ether-à-go-go related gene current. Both procedures induced a reproducible depolarization from -74 to -64 mV, precisely in the window domain where the T-type Ca(2+) current increases with voltage. This 10 mV depolarization raised the cytoplasmic free Ca(2+) concentration, and triggered a tenfold acceleration of myoblast fusion. Our results suggest that any mechanism able to modulate intracellular Ca(2+) concentration could affect the rate of myoblast fusion.
Collapse
Affiliation(s)
- Jian-Hui Liu
- Département de Physiologie, Centre Médical Universitaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
Farrelly AM, Ro S, Callaghan BP, Khoyi MA, Fleming N, Horowitz B, Sanders KM, Keef KD. Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastrointest Liver Physiol 2003; 284:G883-G895. [PMID: 12736144 DOI: 10.1152/ajpgi.00394.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies suggest that ether-a-go-go related gene (ERG) KCNH2 potassium channels contribute to the control of motility patterns in the gastrointestinal tract of animal models. The present study examines whether these results can be translated into a role in human gastrointestinal muscles. Messages for two different variants of the KCNH2 gene were detected: KCNH2 V1 human ERG (HERG) (28) and KCNH2 V2 (HERG(USO)) (13). The amount of V2 message was greater than V1 in both human jejunum and brain. The base-pair sequence that gives rise to domains S3-S5 of the channel was identical to that previously published for human KCNH2 V1 and V2. KCNH2 protein was detected immunohistochemically in circular and longitudinal smooth muscle and enteric neurons but not in interstitial cells of Cajal. In the presence of TTX (10(-6) M), atropine (10(-6) M). and l-nitroarginine (10(-4) M) human jejunal circular muscle strips contracted phasically (9 cycles/min) and generated slow waves with superimposed spikes. Low concentrations of the KCNH2 blockers E-4031 (10(-8) M) and MK-499 (3 x 10(-8) M) increased phasic contractile amplitude and the number of spikes per slow wave. The highest concentration of E-4031 (10(-6) M) produced a 10-20 mV depolarization, eliminated slow waves, and replaced phasic contractions with a small tonic contracture. E-4031 (10(-6) M) did not affect [(14)C]ACh release from enteric neurons. We conclude that KCNH2 channels play a fundamental role in the control of motility patterns in human jejunum through their ability to modulate the electrical behavior of smooth muscle cells.
Collapse
Affiliation(s)
- A M Farrelly
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang M, Korolkova YV, Liu J, Jiang M, Grishin EV, Tseng GN. BeKm-1 is a HERG-specific toxin that shares the structure with ChTx but the mechanism of action with ErgTx1. Biophys J 2003; 84:3022-36. [PMID: 12719233 PMCID: PMC1302864 DOI: 10.1016/s0006-3495(03)70028-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide toxins with disulfide-stabilized structures have been used as molecular calipers to probe the outer vestibule structure of K channels. We want to apply this approach to the human ether-a-go-go-related gene (HERG) channel, whose outer vestibule is unique in structure and function among voltage-gated K channels. Our focus here is BeKm-1, a HERG-specific peptide toxin that can suppress HERG in the low nM concentration range. Although BeKm-1 shares the three-dimensional scaffold with the well-studied charybdotoxin, the two use different mechanisms in suppressing currents through their target K channels. BeKm-1 binds near, but not inside, the HERG pore, and it is possible that BeKm-1-bound HERG channels can conduct currents although with markedly altered voltage-dependence and kinetics of gating. BeKm-1 and ErgTx1 differ in three-dimensional scaffold, but the two share mechanism of action and have overlapping binding sites on the HERG channel. For both, residues in the middle of the S5-P linker (the putative 583-597 helix) and residues at the pore entrance are critical for binding, although specific contact points vary between the two. Toxin foot printing using BeKm-1 and ErgTx1 will likely provide complementary information about the unique outer vestibule structure of the HERG channel.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Physiology, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | | | | | |
Collapse
|
45
|
Gomez-Varela D, Giraldez T, de la Pena P, Dupuy SG, Garcia-Manso D, Barros F. Protein kinase C is necessary for recovery from the thyrotropin-releasing hormone-induced r-ERG current reduction in GH3 rat anterior pituitary cells. J Physiol 2003; 547:913-29. [PMID: 12562894 PMCID: PMC2342738 DOI: 10.1113/jphysiol.2002.034611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The biochemical cascade linking activation of phospholipase C-coupled thyrotropin-releasing hormone (TRH) receptors to rat ERG (r-ERG) channel modulation was studied in situ using perforated-patch clamped adenohypophysial GH3 cells and pharmacological inhibitors. To check the recent suggestion that Rho kinase is involved in the TRH-induced r-ERG current suppression, the hormonal effects were studied in cells pretreated with the Rho kinase inhibitors Y-27632 and HA-1077. The TRH-induced r-ERG inhibition was not significantly modified in the presence of the inhibitors. Surprisingly, the hormonal effects became irreversible in the presence of HA-1077 but not in the presence of the more potent Rho kinase inhibitor Y-27632. Further experiments indicated that the effect of HA-1077 correlated with its ability to inhibit protein kinase C (PKC). The hormonal effects also became irreversible in cells in which PKC activity was selectively impaired with GF109203X, Gö6976 or long-term incubation with phorbol esters. Furthermore, the reversal of the effects of TRH, but not its ability to suppress r-ERG currents, was blocked if diacylglycerol generation was prevented by blocking phospholipase C activity with U-73122. Our results suggest that a pathway involving an as yet unidentified protein kinase is the main cause of r-ERG inhibition in perforated-patch clamped GH3 cells. Furthermore, they demonstrate that although not necessary to trigger the ERG current reductions induced by TRH, an intracellular signal cascade involving phosphatidylinositol-4,5-bisphosphate hydrolysis by phospholipase C, activation of an alpha/betaII conventional PKC and one or more dephosphorylation steps catalysed by protein phosphatase 2A, mediates recovery of ERG currents following TRH withdrawal.
Collapse
Affiliation(s)
- David Gomez-Varela
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus del Cristo, Universidad de Oviedo, E-33006, Oviedo, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Shoeb F, Malykhina AP, Akbarali HI. Cloning and functional characterization of the smooth muscle ether-a-go-go-related gene K+ channel. Potential role of a conserved amino acid substitution in the S4 region. J Biol Chem 2003; 278:2503-14. [PMID: 12427763 DOI: 10.1074/jbc.m208525200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human ether-a-go-go-related gene (HERG) product forms the pore-forming subunit of the delayed rectifier K(+) channel in the heart. Unlike the cardiac isoform, the erg K(+) channels in native smooth muscle demonstrate gating properties consistent with a role in maintaining resting potential. We have cloned the smooth muscle isoform of HERG, denoted as erg1-sm, from human and rabbit colon. erg1-sm is truncated by 101 amino acids in the C terminus due to a single nucleotide deletion in the 14th exon. Sequence alignment against HERG showed a substitution of alanine for valine in the S4 domain. When expressed in Xenopus oocytes, erg1-sm currents had much faster activation and deactivation kinetics compared with HERG. Step depolarization positive to -20 mV consistently produced a transient outward component. The threshold for activation of erg1-sm was -60 mV and steady-state conductance was approximately 10-fold greater than HERG near the resting potential of smooth muscle. Site-directed mutagenesis of alanine to valine in the S4 region of erg1-sm converted many of the properties to that of the cardiac HERG, including shifts in the voltage dependence of activation and slowing of deactivation. These studies define the functional role of a novel isoform of the ether-a-go-go-related gene K(+) channel in smooth muscle.
Collapse
Affiliation(s)
- Fouzia Shoeb
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City 73104, USA
| | | | | |
Collapse
|
47
|
Cayabyab FS, Tsui FWL, Schlichter LC. Modulation of the ERG K+ current by the tyrosine phosphatase, SHP-1. J Biol Chem 2002; 277:48130-8. [PMID: 12361947 DOI: 10.1074/jbc.m208448200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously (Cayabyab, F. S., and Schlichter, L. C. (2002) J. Biol. Chem. 277, 13673-13681) a functional interaction between the ERG-1 K(+) channel and Src tyrosine kinase, which increased the current. We now show that the tyrosine phosphatase, SHP-1, which is present in microglia, is increased after brain damage, and is activated by colony-stimulating factor-1, associates with ERG-1 and regulates the current. Patch clamp recordings from the MLS-9 microglia cells were made with pipette solutions containing a recombinant SHP-1 protein: wild type (SHP-1 wild type (wt)), catalytically active (SHP-1 S6), or the substrate-trapping mutant (SHP-1 Cys --> Ser). SHP-1 wt and SHP-1 S6 proteins decreased the current, an effect that was reversed by the phosphatase inhibitor, pervanadate, whereas SHP-1 Cys --> Ser increased the current. Moreover, transient transfection with cDNA for SHP-1 wt or SHP-1 S6 decreased the ERG current without decreasing the protein level. Tyrosine phosphorylation of ERG-1 was decreased by transfection with SHP-1 wt and increased by SHP-1 Cys --> Ser. The decrease in current by active SHP-1 was partly attributed to changes in the voltage dependence of activation and steady-state conductance, whereas inactivation kinetics and voltage dependence were not affected. Our results show that ERG-1 is a SHP-1 substrate constituting the first report that an ion current is regulated by SHP-1.
Collapse
Affiliation(s)
- Francisco S Cayabyab
- Cellular and Molecular Biology Division, Toronto Western Research Institute, Ontario M5T 2S8, Canada
| | | | | |
Collapse
|
48
|
Ohya S, Horowitz B, Greenwood IA. Functional and molecular identification of ERG channels in murine portal vein myocytes. Am J Physiol Cell Physiol 2002; 283:C866-77. [PMID: 12176743 DOI: 10.1152/ajpcell.00099.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels encoded by ether-à-go-go-related genes (ERG) have been implicated in repolarization of the cardiac action potential and also as components of the resting membrane conductance in various cells. The aim of the present study was to determine whether ERG channels were expressed in smooth muscle cells isolated from portal vein. RT-PCR demonstrated the expression of murine ERG (mERG), and real-time quantitative PCR showed that the mERG1b isoform predominated over the mERG1a, mERG2, and mERG3 in portal vein. Single myocytes from portal vein displayed membrane staining with an ERG1-specific antibody. Whole cell voltage-clamp experiments were performed to determine whether portal vein myocytes expressed functional ERG channels. Large inward currents with distinctive kinetics were elicited that were inhibited rapidly by E-4031 (mean amplitude of the E-4031-sensitive current at -120 mV was -205 +/- 24 pA; n = 14). Deactivation of the E-4031-sensitive current was voltage dependent (mean time constants at -80 and -120 mV were 103 +/- 9 and 33 +/- 2 ms, respectively; n = 13). Because of the rapid kinetics of mERG currents at more negative potentials, there was a substantial noninactivating "window" current that reached a maximum of -66 +/- 10 pA at -70 mV. Complete portal veins exhibited spontaneous contractile activity in isometric tension experiments, and this activity was modified significantly by E-4031. These data show that ERG channels are expressed in murine portal vein myocytes that may contribute to the resting membrane conductance.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557-0046, USA
| | | | | |
Collapse
|
49
|
Becchetti A, De Fusco M, Crociani O, Cherubini A, Restano-Cassulini R, Lecchi M, Masi A, Arcangeli A, Casari G, Wanke E. The functional properties of the human ether-à-go-go-like (HELK2) K+ channel. Eur J Neurosci 2002; 16:415-28. [PMID: 12193184 DOI: 10.1046/j.1460-9568.2002.02079.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The voltage-dependent K+ channels belonging to the ether-à-go-go family (eag, erg, elk) are widely expressed in the mammalian CNS. Their neuronal function, however, is poorly understood. Among the elk clones, elk2 is the most abundantly expressed in the brain. We have characterized the human ELK2 channel (HELK2) expressed in mammalian cell lines. Moreover, we have detected helk2 mRNA and ELK2-like currents in freshly dissociated human astrocytoma cells. HELK2 was inhibited by Cs+ in a voltage-dependent way (Kd was 0.7 mm, at -120 mV). It was not affected by Way 123398 (5 micro m), dofetilide (10 micro m), quinidine (10 micro m), verapamil (20 micro m), haloperidol (2 micro m), astemizole (1 micro m), terfenadine (1 micro m) and hydroxyzine (30 micro m), compounds known to inhibit the biophysically related HERG channel. The crossover of the activation and inactivation curves produced a steady state 'window' current with a peak around -20 mV and considerably broader than it usually is in voltage-dependent channels, including HERG. Similar features were observed in the ELK2 clone from rat, in the same experimental conditions. Thus, ELK2 channels are active within a wide range of membrane potentials, both sub- and suprathreshold. Moreover, the kinetics of channel deactivation and removal of inactivation was about one order of magnitude quicker in HELK2, compared to HERG. Overall, these properties suggest that ELK2 channels are very effective at dampening the neuronal excitability, but less so at producing adaptation of action potential firing frequency. In addition, we suggest experimental ways to recognize HELK2 currents in vivo and raise the issue of the possible function of these channels in astrocytoma.
Collapse
Affiliation(s)
- Andrea Becchetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Smith GAM, Tsui HW, Newell EW, Jiang X, Zhu XP, Tsui FWL, Schlichter LC. Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J Biol Chem 2002; 277:18528-34. [PMID: 11893742 DOI: 10.1074/jbc.m200592200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kv1.3 channels regulate proliferation of normal lymphocytes, but the role of voltage-gated potassium channels in transformed hematopoietic cells is not known. We examined transcripts for Kv1.3, h-erg, h-eag, and BEC1 genes in primary lymphocytes and leukemias and in several hematopoietic cell lines. Surprisingly, BEC1, formerly thought to be brain-specific, was present in all the primary leukemias examined, in resting peripheral blood lymphocytes, and in proliferating activated tonsillar cells, lymphocytes from Sjögren's patients, and Epstein-Barr virus-transformed B-cells. Only h-erg mRNA was up-regulated in the cancer cells, but this was not due to proliferation per se, because it was not elevated in any of the proliferating noncancerous lymphocyte types examined. Nor did h-erg transcript levels correlate with the B-cell subset, because it was elevated in immature neoplastic B-CLL cells (CD5(+)) and in a CD5(-) Burkitt's lymphoma cell line (Raji) but not in Sjögren's syndrome cells (enriched in CD5(+) B-cells) or Epstein-Barr virus-transformed B-cells, which are mature CD5(-) B-cells. The protein and whole cell current levels roughly corresponded with the amount of mRNA expressed in three hematopoietic cell lines: CEM (an acute lymphoblastic leukemic line), K562 (a chronic myelogenous leukemic line), and U937 (an acute promyelocytic leukemic line). The selective HERG channel blocker, E-4031, reduced proliferation of CEM, U937, and K562 cells, and this appears to be the first direct evidence of a functional role for the HERG current in cancer cells. Selective up-regulation of h-erg appears to occur in neoplastic hematopoietic cells, thus providing a marker and potential therapeutic target.
Collapse
Affiliation(s)
- Garth A M Smith
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|