1
|
Zheng S, Li Y, Chen C, Wang N, Yang F. Solutions to the Dilemma of Antibiotics Use in Livestock and Poultry Farming: Regulation Policy and Alternatives. TOXICS 2025; 13:348. [PMID: 40423429 DOI: 10.3390/toxics13050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025]
Abstract
While the application of antibiotics in livestock production has undeniably propelled the rapid growth of animal husbandry, the escalating crisis of antimicrobial resistance stemming from antibiotic use poses significant threats to global public health and sustainable agricultural development. To address this critical challenge, multifaceted strategies have been implemented through coordinated policy interventions and scientific innovations. This review systematically examines two pivotal dimensions: (1) evolving regulatory frameworks governing antibiotic usage and (2) emerging non-antibiotic alternatives, with a particular focus on their implementation mechanisms and technological maturation. The analysis of transnational antibiotic governance encompasses comparative policy evolution in the European Union, the United States, and China. These regulatory paradigms address critical control points including registration management policies, usage monitoring systems, and integrated surveillance programs. Concerning technological alternatives, six categories of antibiotic substitutes are critically evaluated: Chinese herbal formulations, plant-derived essential oils, antimicrobial peptides, microecological agents, acidifiers, and enzyme preparations. These solutions are functionally categorized into prophylactic agents (enhancing disease resilience) and zootechnical additives (optimizing feed efficiency). These antibiotic alternatives demonstrate certain efficacy in alleviating the challenges of antibiotic overuse, yet they still face multiple implementation barriers. Further investigations are warranted to establish standardized efficacy evaluation protocols and conduct technoeconomic feasibility assessments under commercial-scale production conditions. Ultimately, resolving the antibiotic dilemma requires synergistic collaboration between regulatory bodies, pharmaceutical innovators, and academic researchers. This work emphasizes the crucial interplay between evidence-based policymaking and technological advancement in shaping sustainable livestock production systems.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yongchao Li
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Naiyu Wang
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
2
|
Nametov A, Karmaliyev R, Kadraliyeva B, Murzabayev K, Dushayeva L, Orynkhanov K, Adilbay K, Magzhan M. Natural Antiseptics in Veterinary Practice: Evaluation of Efficacy and Safety. Pathogens 2025; 14:321. [PMID: 40333042 PMCID: PMC12030612 DOI: 10.3390/pathogens14040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
Antiseptics are essential in infection control within veterinary medicine and are widely used for wound care, dermatological treatments, and disinfection. Growing interest in eco-friendly antiseptics has led to research on natural formulations. The aim of this study is to evaluate the efficacy and safety of natural antiseptic agents in combating pathogenic microorganisms and their use in disinfection. This article presents the results of efficacy testing, particularly focusing on Shozan (anolyte + ozone + shungite), which demonstrated strong bactericidal activity against pathogenic bacteria such as Brucella melitensis, effectively inhibiting their growth across various concentrations and exposure times. In contrast, Shuprozan (anolyte + ozone + shungite + propolis) and Prozan (anolyte + ozone + propolis) did not exhibit significant antibacterial effects. No antiviral activity was detected against the lumpy skin disease virus and foot-and-mouth disease virus, and no fungicidal properties were observed against Trichophyton verrucosum and Histoplasma farciminosum. This study's results confirm the high efficacy and safety of natural antiseptics.
Collapse
Affiliation(s)
- Askar Nametov
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| | - Rashid Karmaliyev
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| | - Bakytkanym Kadraliyeva
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| | - Kenzhebek Murzabayev
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| | - Laura Dushayeva
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| | - Kanat Orynkhanov
- Veterinary and Zooengineering Faculty, Kazakh National Agrarian Research University, Abay Ave. 8, Almaty 050010, Kazakhstan;
| | - Karagulov Adilbay
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| | - Marat Magzhan
- Institute of Veterinary and Agrotechnology, Zhangir Khan West Kazakhstan Agrarian Technical University, Zhangir Khan St. 51, Uralsk 090009, Kazakhstan; (B.K.); (K.M.); (L.D.); (K.A.); (M.M.)
| |
Collapse
|
3
|
Ma L, Ma C, Chen G, Gu J, Yang T, Li L, Gao H, Xiong Y, Wu Y, Zhu C, Zhou Y, Hu A, Chen K, Liu Z. Nitrogen and Sulfur co-doped Carbon dots as an "on-off-on" Fluorescent Sensor for the Detection of Hg 2+ and Ampicillin. J Fluoresc 2025; 35:1807-1817. [PMID: 38457076 DOI: 10.1007/s10895-024-03656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Herein, a fluorescent "on-off-on" nanosensor based on N,S-CDs was developed for highly precise and sensitive recognition of Hg2+ and ampicillin (AMP). Nitrogen and sulfur co-doped carbon dots with blue fluorescence were synthesized by one-pot hydrothermal method using ammonium citrate and DL-methionine as precursors. N,S-CDs exhibited a surface abundant in -OH, -COOH, and -NH2 groups, aiding in creating non-fluorescent ground state complexes when combined with Hg2+, leading to the suppression of N,S-CDs' fluorescence. Subsequent to additional AMP application, the mixed system's fluorescence was restored. Based on this N,S-CDs sensing system, the thresholds for detection for AMP and Hg2+ were discovered to be 0.121 µM and 0.493 µM, respectively. Furthermore, this methodology proved effective in identifying AMP in real samples of tap and lake water, yielding satisfactory results. Consequently, in the area of bioanalysis in intricate environmental sample work, the sensing system showed tremendous promise.
Collapse
Affiliation(s)
- LongYao Ma
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - ChaoQun Ma
- School of Science, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China.
| | - GuoQing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Yi Xiong
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Yamin Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Yan Zhou
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Anqi Hu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Kun Chen
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - ZhaoChen Liu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| |
Collapse
|
4
|
Pereira A, de Sousa T, Silva C, Igrejas G, Poeta P. Impact of Antimicrobial Resistance of Pseudomonas aeruginosa in Urine of Small Companion Animals in Global Context: Comprehensive Analysis. Vet Sci 2025; 12:157. [PMID: 40005917 PMCID: PMC11860736 DOI: 10.3390/vetsci12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The isolation of multidrug-resistant (MDR) bacteria from the urinary tracts of pets is increasingly common, particularly in animals with concurrent health conditions. Pseudomonas aeruginosa (PA) is one of the most significant antimicrobial-resistant bacteria affecting cats and dogs within the European Union (EU). This study aims to review the prevalence and antimicrobial resistance patterns of PA isolated from urine samples of small animals globally. This pathogen is known for its opportunistic infections and is a significant concern in veterinary medicine due to its inherent resistance to multiple antibiotics and its ability to acquire additional resistance mechanisms. This review seeks to enhance educational initiatives regarding the management of emerging MDR bacteria.
Collapse
Affiliation(s)
- Ana Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
| | - Telma de Sousa
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Catarina Silva
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Patrícia Poeta
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Alzuheir IM. Veterinarians' perspectives on livestock diseases and antimicrobial use in Palestine. Vet World 2025; 18:519-526. [PMID: 40182805 PMCID: PMC11963569 DOI: 10.14202/vetworld.2025.519-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/29/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim The livestock sector is a crucial component of Palestine's agricultural economy, supporting food security and rural livelihoods. However, challenges such as infectious diseases, limited diagnostic resources, and antimicrobial misuse impact animal health and public safety. This study investigates veterinarians' perspectives on disease prevalence and antimicrobial use in Palestinian livestock, providing the first comprehensive analysis of antimicrobial resistance (AMR) in veterinary practice in the region. Materials and Methods A qualitative study was conducted using focus groups comprising 93 veterinarians from the West Bank, recruited through convenience and snowball sampling. A structured questionnaire collected data on disease prevalence and antimicrobial prescription patterns. Descriptive statistics and Chi-square tests were used to assess associations between demographic characteristics and veterinary practices. Results Respiratory tract infections (RTIs) were the most frequently diagnosed disease (87.5%), followed by gastroenteritis (79.2%) and mastitis (75.0%). Veterinarians predominantly prescribed broad-spectrum antimicrobials, including penicillins (50.5%), tetracyclines (48.4%), and macrolides (46.2%). The use of antimicrobials classified as critically important for human medicine, such as quinolones (43.0%) and third-generation cephalosporins (46.2%), was notable. Some instances of banned antimicrobial use, such as chloramphenicol, were also reported. Conclusion The findings highlight the reliance on empirical antimicrobial treatments and the widespread use of broad-spectrum and human-critical antimicrobials, raising concerns about AMR development. Improved antimicrobial stewardship, diagnostic capabilities, and regulatory frameworks are necessary to mitigate these risks. Policies promoting culture and sensitivity testing, along with targeted antimicrobial use, will enhance veterinary disease management and safeguard public health in Palestine.
Collapse
Affiliation(s)
- Ibrahim M. Alzuheir
- Department of Veterinary Medicine, Faculty of Veterinary Medicine and Agricultural Engineer, An-Najah National University, Nablus, Palestine
| |
Collapse
|
6
|
B K V, T R S. Monitoring Antibiotic Pollutants in Water Using Electrochemical Techniques: A Detailed Review. Crit Rev Anal Chem 2025:1-30. [PMID: 39773103 DOI: 10.1080/10408347.2024.2390549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This review article examines the application of electrochemical methods for detecting four prevalent antibiotics - azithromycin (AZM), amoxicillin (AMX), tetracycline (TC), and ciprofloxacin (CIP) - in environmental monitoring. Although, antibiotics are essential to contemporary treatment, their widespread usage has contaminated the environment and given rise to antibiotic resistance. Electrochemical techniques offer sensitive, rapid, and cost-effective solutions for monitoring these antibiotics, addressing the limitations of traditional methods. The review provides a comprehensive analysis of various electrochemical approaches, including voltammetry, amperometry, photoelectrochemical and so on, highlighting their principles, advantages, and limitations. Key findings underscore the effectiveness of these methods in detecting antibiotics at trace levels in complex environmental matrices. Implications for environmental health and policy are discussed, emphasizing the importance of reliable detection techniques in mitigating antibiotic resistance and safeguarding ecosystems. Lastly, the article outlines future research directions aimed at enhancing the sensitivity, selectivity, and field-applicability of electrochemical sensors, thus advancing their utility in environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Vinay B K
- Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
| | - Suranjan T R
- Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
| |
Collapse
|
7
|
Pradhan SS, Mahanty A, Pattanaik KP, Adak T, Mohapatra PK. Entry, fate and impact of antibiotics in rice agroecosystem: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1120-1138. [PMID: 39739186 DOI: 10.1007/s11356-024-35765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems. Rice agroecosystem receives high levels of antibiotics from direct applications, and sources like manure and irrigation water. Consequently, uptake of antibiotic residues by rice (Oryza sativa L.) is resulting in accumulation of antibiotics in plant parts. Accumulation of these antibiotics can be toxic to plant, and can be partitioned to rice grain and straw, and reach the human and animal food chain leading to the development of antibiotic resistance. Moreover, the antibiotics can alter soil microbes, which would result in loss of production. This study compiles information from existing literature on global antibiotic usage and explores how antibiotics enter the rice ecosystem through contaminated wastewater, manure, sewage sludge, and through direct application. A detailed discussion on the persistence and movement of antibiotics in different environment compartments is provided. The review also highlights the impacts of antibiotics on plants and natural microbiota, as well as issues pertaining to antimicrobial resistance in public health sectors. For sustainable mitigation of the issues of antibiotic residues in rice ecosystem, we suggest application of decontaminated manure, microbial bioremediation, optimization of the use of plant-based alternatives, enhancing regulations, and fostering global collaboration. We advocate integrated disease management approaches which can significantly reduce the antibiotic use in rice agroecosystem.
Collapse
Affiliation(s)
- Sophia Subhadarsini Pradhan
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Ravenshaw University, Cuttack, 751003, Odisha, India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | |
Collapse
|
8
|
Abou-Jaoudeh C, Andary J, Abou-Khalil R. Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. J Infect Public Health 2024; 17:102592. [PMID: 39551017 DOI: 10.1016/j.jiph.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing global concern, particularly in poultry farming, where antibiotics are widely used for both disease prevention and growth promotion. This review examines the misuse of antibiotics in poultry production, especially in developing countries, and its contribution to the emergence of antibiotic-resistant bacteria. The findings highlight that factors such as increasing demand for poultry protein, the availability of inexpensive antibiotics, and weak regulatory oversight have led to widespread misuse, accelerating the spread of resistance genes. Although evidence links poultry farming to AMR, significant data gaps remain, especially regarding resistance transmission from poultry to humans. The review underscores the urgent need for stronger regulatory frameworks, phased-out use of antimicrobial growth promoters, and enhanced awareness campaigns to address this issue. Improving the capacity of regulatory bodies and developing more robust national data monitoring systems are essential steps to mitigate the threat of AMR in poultry farming and to protect both animal and human health.
Collapse
Affiliation(s)
- Chantal Abou-Jaoudeh
- Holy Spirit University of Kaslik, Faculty of Arts and Sciences, Biology Department, B.P. 446 Jounieh, Lebanon
| | - Jeanne Andary
- Modern University for Business and Science, Faculty of Health Sciences, Lebanon
| | - Rony Abou-Khalil
- Holy Spirit University of Kaslik, Faculty of Arts and Sciences, Biology Department, B.P. 446 Jounieh, Lebanon.
| |
Collapse
|
9
|
Pi CC, Cheng YC, Chen CC, Lee JW, Lin CN, Chiou MT, Chen HW, Chiu CH. Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function. BMC Vet Res 2024; 20:531. [PMID: 39604968 PMCID: PMC11600677 DOI: 10.1186/s12917-024-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pathogenic infections can significantly impact the health of livestock. Traditionally, antibiotic growth promoters (AGPs) have been used in feed to enhance growth performance and disease control. However, concerns regarding antibiotic resistance have led to the exploration of traditional herbal medicine as a natural alternative, guided by the principle of medicine-food homology. The Taguchi method was employed to optimize the culture formula for cordycepin production, an active component of Cordyceps militaris (C. militaris). The influences of C. militaris supplementing solid-state fermentation (CMSSF) in feed on the growth performance and immune responses of grower pigs were evaluated in the present study. RESULTS The C. militaris ethanol extract (CME) displayed potent free radical scavenging activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) after undergoing fermentation. Additionally, the antibacterial testing revealed that CME effectively inhibits the growth of common pig pathogens such as Glaesserella parasuis, Pasteurella multocida, Staphylococcus hyicus, and Streptococcus suis. In lipopolysaccharide (LPS)-treated intestinal porcine enterocyte cell line (IPEC-J2), CME significantly suppressed the production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, higher antioxidative activity was detected as indicated by elevated concentration of superoxide dismutase (SOD) in pig serum. The levels of immunoglobulin M (IgM), IgA, and IgG antibodies, as well as classical swine fever virus (CSFV) antibodies (S/P ratio) in serum were all increased. Growth performance of pigs fed with dietary CMSSF supplementation was improved in comparison with the control. CONCLUSIONS Results demonstrated that CMSSF has the potential to be used as a natural growth promoter to enhance immunity, antioxidation, as well as overall health and growth performance of grower pigs.
Collapse
Affiliation(s)
- Chia-Chen Pi
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- King's Ground Biotech Co., Ltd, Pingtung, 91252, Taiwan.
| | | | | | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
10
|
Kilonzo-Nthenge A, Rafiqullah I, Netherland M, Nzomo M, Mafiz A, Nahashon S, Hasan NA. Comparative metagenomics of microbial communities and resistome in southern farming systems: implications for antimicrobial stewardship and public health. Front Microbiol 2024; 15:1443292. [PMID: 39659424 PMCID: PMC11628260 DOI: 10.3389/fmicb.2024.1443292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Agricultural practices significantly influence microbial diversity and the distribution of virulence and antimicrobial resistance (AMR) genes, with implications for ecosystem health and food safety. This study used metagenomic sequencing to analyze 60 samples (30 per state) including water, soil, and manure (10 each) from Alabama (a mix of cattle and poultry sources) and Tennessee (primarily from cattle). The results highlighted a rich microbial diversity, predominantly comprising Bacteria (67%) and Viruses (33%), with a total of over 1,950 microbial species identified. The dominant bacterial phyla were Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, with the viral communities primarily represented by Phixviricota and Uroviricota. Distinct state-specific microbial profiles were evident, with Alabama demonstrating a higher prevalence of viral populations and unique bacterial phyla compared to Tennessee. The influence of environmental and agricultural practices was reflected in the microbial compositions: soil samples were notably rich in Actinobacteria, water samples were dominated by Proteobacteria and Cyanobacteria, and manure samples from Alabama showed a predominance of Actinobacteria. Further analyses, including diversity assessment and enterotype clustering, revealed complex microbial structures. Tennessee showed higher microbial diversity and phylogenetic complexity across most sample types compared to Alabama, with poultry-related samples displaying distinct diversity trends. Principal Coordinate Analysis (PCoA) highlighted notable state-specific variations, particularly in manure samples. Differential abundance analysis demonstrated elevated levels of Deinococcus and Ligilactobacillus in Alabama, indicating regional effects on microbial distributions. The virulome analysis revealed a significant presence of virulence genes in samples from Alabama. The community resistome was extensive, encompassing 109 AMR genes across 18 antibiotic classes, with manure samples displaying considerable diversity. Ecological analysis of the interactions between AMR gene subtypes and microbial taxa revealed a sophisticated network, often facilitated by bacteriophages. These findings underscore the critical role of agricultural practices in shaping microbial diversity and resistance patterns, highlighting the need for targeted AMR mitigation strategies in agricultural ecosystems to protect both public health and environmental integrity.
Collapse
Affiliation(s)
- Agnes Kilonzo-Nthenge
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States
| | | | | | - Maureen Nzomo
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States
| | - Abdullah Mafiz
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States
| | - Samuel Nahashon
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States
| | - Nur A. Hasan
- EzBiome Inc., Gaithersburg, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
11
|
Ranabhat G, Subedi D, Karki J, Paudel R, Luitel H, Bhattarai RK. Molecular detection of avian pathogenic Escherichia coli (APEC) in broiler meat from retail meat shop. Heliyon 2024; 10:e35661. [PMID: 39170517 PMCID: PMC11336815 DOI: 10.1016/j.heliyon.2024.e35661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen responsible for the most widespread form of colibacillosis, resulting in substantial economic losses within the poultry sector and posing a potential public health risk. From July to September 2021, our study investigated the antibiotic resistance pattern of Escherichia coli (E. coli) and the presence of virulence-associated genes (iucD, iutA, iss, and ompT) linked to APEC using 105 broiler meat samples comprising liver, thigh, and breast muscle, in Chitwan, Nepal. E. coli was isolated and identified by culturing samples on MacConkey's agar, Eosin-methylene blue (EMB) agar and performing different biochemical tests. Antibiotic resistance patterns of E. coli were determined by the Kirby-Bauer disc diffusion method. Following the isolation of E. coli, the molecular detection of APEC was performed using conventional polymerase chain reaction (PCR). Out of the 105 samples analyzed, 61 (58.1 %) tested positive for E. coli. In antibiotic susceptibility test (AST), gentamicin and tetracycline exhibited the highest resistance rates, with 90.2 % and 67.2 %, respectively and 29.5 % of the E. coli isolates displayed multidrug-drug resistance. Out of 61 confirmed E. coli isolates, iutA was detected in 47 (77.0 %) samples, iucD in 46 (75.4 %), iss in 53 (86.8 %), and ompT in 39 (63.9 %) samples. This study reports the occurrence of MDR E. coli in meat samples, together with virulence genes associated with APEC which poses a public health threat. Continuous surveillance is vital for monitoring APEC transmission within poultry farms, coupled with efforts to raise awareness of food safety among consumers of broiler meat.
Collapse
Affiliation(s)
- Ganesh Ranabhat
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Deepak Subedi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jasmina Karki
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Rupandehi, Nepal
| | - Roshan Paudel
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Himal Luitel
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Rebanta Kumar Bhattarai
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| |
Collapse
|
12
|
Sarkar S, Okafor CC. Impact of Veterinary Feed Directive Rules Changes on the Prevalence of Antibiotic Resistance Bacteria Isolated from Cecal Samples of Food-Producing Animals at US Slaughterhouses. Pathogens 2024; 13:631. [PMID: 39204232 PMCID: PMC11357339 DOI: 10.3390/pathogens13080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
This study examined the impact of the 2017 Veterinary Feed Directive (VFD) rule changes on the prevalence of tetracycline-resistant and erythromycin-resistant bacteria (Salmonella spp., Campylobacter spp., and Escherichia coli) in cecal samples of food animals (cattle, swine, chicken, and turkey) at US slaughterhouses. Multivariable logistic regression was used to analyze 2013-2019 cecal samples of food-producing animals surveillance data from the National Antimicrobial Resistance Monitoring System (NARMS) in the U.S. The variables included year (used to evaluate VFD rule changes), host, and quarter of year. The analysis of surveillance data showed that the VFD rule changes have varying effects on tetracycline-resistant and erythromycin-resistant bacteria in food animals. For example, the odds of detecting tetracycline-resistant Salmonella spp. decreased in cattle but increased in chickens following the implementation of the VFD rule changes. Similarly, the odds of detecting tetracycline-resistant Escherichia coli decreased in chickens but increased in swine after the VFD rule changes. The odds of detecting erythromycin-resistant Campylobacter spp. increased in cattle but decreased in chickens after the VFD rule changes. In conclusion, the implementation of VFD rule changes has been beneficial in reducing the odds of detecting tetracycline-resistant Escherichia coli and erythromycin-resistant Campylobacter spp. in chickens, as well as tetracycline-resistant Salmonella spp. in cattle at US slaughterhouses.
Collapse
Affiliation(s)
| | - Chika C. Okafor
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
13
|
Chen D, Wang J, Li N, Luo X, Yu H, Fu H, Chen Z, Yu B, Jin Y, Kopchuk DS. Application of Bimetallic Hydroxide/Graphene Composites in Wastewater Treatment. Molecules 2024; 29:3157. [PMID: 38999111 PMCID: PMC11243626 DOI: 10.3390/molecules29133157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
The increasing discharge of antibiotic wastewater leads to increasing water pollution. Most of these antibiotic wastewaters are persistent, strongly carcinogenic, easy to bioaccumulate, and have other similar characteristics, seriously jeopardizing human health and the ecological environment. As a commonly used wastewater treatment technology, non-homogeneous electro-Fenton technology avoids the hazards of H2O2 storage and transportation as well as the loss of desorption and reabsorption. It also facilitates electron transfer on the electrodes and the reduction of Fe3+ on the catalysts, thereby reducing sludge production. However, the low selectivity and poor activity of electro-synthesized H2O2, along with the low concentration of its products, combined with the insufficient activity of electrically activated H2O2, results in a low ∙OH yield. To address the above problems, composites of layered bimetallic hydroxides and carbon materials were designed and prepared in this paper to enhance the performance of electro-synthesized H2O2 and non-homogeneous electro-Fenton by changing the composite mode of the materials. Three composites, NiFe layered double hydroxides (LDHs)/reduced graphene oxide (rGO), NiMn LDHs/rGO, and NiMnFe LDHs/rGO, were constructed by the electrostatic self-assembly of exfoliated LDHs with few-layer graphene. The LDHs/rGO was loaded on carbon mats to construct the electro-Fenton cathode materials, and the non-homogeneous electro-Fenton oxidative degradation of organic pollutants was realized by the in situ electrocatalytic reduction of O2 to ∙OH. Meanwhile, the effects of solution pH, applied voltage, and initial concentration on the performance of non-homogeneous electro-Fenton were investigated with ceftazidime as the target pollutant, which proved that the cathode materials have an excellent electro-Fenton degradation effect.
Collapse
Affiliation(s)
- Dan Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Jiao Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Nana Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaoqin Luo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Hua Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Haichang Fu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Binbin Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Yanxian Jin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Dmitry S Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| |
Collapse
|
14
|
Feye KM, Rasmussen MA, Yeater KM, Anderson RC, Crippen TL, Harvey RB, Poole TL, Ricke SC. Chlorophyllin Supplementation of Medicated or Unmedicated Swine Diets Impact on Fecal Escherichia coli and Enterococci. Animals (Basel) 2024; 14:1955. [PMID: 38998066 PMCID: PMC11240447 DOI: 10.3390/ani14131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Considering that certain catabolic products of anaerobic chlorophyll degradation inhibit efflux pump activity, this study was conducted to test if feeding pigs a water-soluble chlorophyllin product could affect the antibiotic resistance profiles of select wild-type populations of fecal bacteria. Trial 1 evaluated the effects of chlorophyllin supplementation (300 mg/meal) on fecal E. coli and enterococcal populations in pigs fed twice daily diets supplemented without or with ASP 250 (containing chlortetracycline, sulfamethazine and penicillin at 100, 100 and 50 g/ton, respectively). Trial 2, conducted similarly, evaluated chlorophyllin supplementation in pigs fed diets supplemented with or without 100 g tylosin/ton. Each trial lasted 12 days, and fecal samples were collected and selectively cultured at 4-day intervals to enumerate the total numbers of E. coli and enterococci as well as populations of these bacteria phenotypically capable of growing in the presence of the fed antibiotics. Performance results from both studies revealed no adverse effect (p > 0.05) of chlorophyllin, antibiotic or their combined supplementation on average daily feed intake or average daily gain, although the daily fed intake tended to be lower (p = 0.053) for pigs fed diets supplemented with tylosin than those fed diets without tylosin. The results from trial 1 showed that the ASP 250-medicated diets, whether without or with chlorophyllin supplementation, supported higher (p < 0.05) fecal E. coli populations than the non-medicated diets. Enterococcal populations, however, were lower, albeit marginally and not necessarily significantly, in feces from pigs fed the ASP 250-medicated diet than those fed the non-medicated diet. Results from trial 2 likewise revealed an increase (p < 0.05) in E. coli and, to a lesser extent, enterococcal populations in feces collected from pigs fed the tylosin-medicated diet compared with those fed the non-medicated diet. Evidence indicated that the E. coli and enterococcal populations in trial 1 were generally insensitive to penicillin or chlortetracycline, as there were no differences between populations recovered without or with antibiotic selection. Conversely, a treatment x day of treatment interaction observed in trial 2 (p < 0.05) provided evidence, albeit slight, of an enrichment of tylosin-insensitive enterococci in feces from the pigs fed the tylosin-medicated but not the non-medicated diet. Under the conditions of the present study, it is unlikely that chlorophyllin-derived efflux pump inhibitors potentially present in the chlorophyllin-fed pigs were able to enhance the efficacy of the available antibiotics. However, further research specifically designed to optimize chlorophyll administration could potentially lead to practical applications for the swine industry.
Collapse
Affiliation(s)
- Kristina M. Feye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mark A. Rasmussen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Kathleen M. Yeater
- United States Department of Agriculture/Agricultural Research Service, Plains Area Office of the Director, Fort Collins, CO 80521, USA;
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Tawni L. Crippen
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Roger B. Harvey
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Toni L. Poole
- Southern Plains Agricultural Research Center, United States Department of Agriculture/Agricultural Research Service, College Station, TX 77845, USA; (R.C.A.); (T.L.C.); (R.B.H.); (T.L.P.)
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
15
|
Mitchaothai J, Grabowski NT, Lertpatarakomol R, Trairatapiwan T, Lukkananukool A. Bacterial Contamination and Antimicrobial Resistance in Two-Spotted ( Gryllus bimaculatus) and House ( Acheta domesticus) Cricket Rearing and Harvesting Processes. Vet Sci 2024; 11:295. [PMID: 39057979 PMCID: PMC11281677 DOI: 10.3390/vetsci11070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Food safety for cricket production is a crucial factor in producing edible crickets with safety for consumers and sustainability for two-spotted (Gryllus bimaculatus) as well as house (Acheta domesticus) cricket production. This study was conducted by simultaneously rearing two cricket species, comprising two-spotted crickets (G. bimaculatus) and house crickets (A. domesticus). A total of 16 rearing crates were used for the present study, which were allocated into 8 rearing crates for each studied cricket species, including paper egg cartons. Cricket eggs were incubated in the rearing crates. Once the crickets hatched, tap water and powdered feed were provided ad libitum throughout the experiment. At the end of this study (35 and 42 days for the two-spotted and house crickets, respectively), all crickets were harvested, rinsed in tap water, and boiled in water for 5 min. During the rearing and harvesting processes, samples were collected from various potential contamination points for bacteria, including E. coli and Salmonella spp. There were samples of the initial input (feed, drinking water, and staff hands), rearing environment (water pipe, crate wall, living cartons, frass, and cricket surface), and harvesting crickets (harvested, washed, and boiled crickets), with a 2-week sampling interval, except for the last round of sampling for the two-spotted crickets. Subsequently, all samples were submitted to isolate and identify contaminated bacteria. The samples from the last round of sampling for both kinds of crickets were submitted to quantify the level of contamination for E. coli and Salmonella spp., including antimicrobial resistance by the disk diffusion method for the positive isolate. The results showed that bacterial contamination was found in the rearing of both cricket species, primarily involving Klebsiella spp. and Enterobacter spp., mainly found in prepared drinking water and the water pipes of drinking water supply equipment, which are potential sources of contamination with cricket frass. E. coli was found in 4.8% and 4.3% of the two-spotted and house crickets, respectively, while no presence of Salmonella spp. was detected in any submitted samples. The quantification of E. coli and Salmonella spp. indicated E. coli contamination near the water pipe and the frass of two-spotted crickets, but Salmonella spp. was undetectable in both two-spotted and house crickets. The antimicrobial resistance of isolated E. coli mainly involved penicillin G, amoxicillin, ampicillin, erythromycin, lincomycin, and tiamulin. Thus, good farm management with proper sanitation practices (such as cleaning and keeping the environment dry), as well as boiling crickets during the harvesting process, may help ensure the safety of edible cricket production.
Collapse
Affiliation(s)
- Jamlong Mitchaothai
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand
| | - Nils T. Grabowski
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover (TiHo), 30173 Hannover, Germany;
| | - Rachakris Lertpatarakomol
- Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand; (R.L.); (T.T.)
| | - Tassanee Trairatapiwan
- Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand; (R.L.); (T.T.)
| | - Achara Lukkananukool
- Department of Animal Production Technology and Fisheries, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand;
| |
Collapse
|
16
|
Duc HM, Hoa TTK, Ha CTT, Hung LV, Thang NV, Son HM, Flory GA. Antibiotic Resistance Profile and Bio-Control of Multidrug-Resistant Escherichia coli Isolated from Raw Milk in Vietnam Using Bacteriophages. Pathogens 2024; 13:494. [PMID: 38921792 PMCID: PMC11206458 DOI: 10.3390/pathogens13060494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
E. coli is an important zoonotic pathogen capable of causing foodborne illness and bovine mastitis. Bacteriophages have been increasingly considered a promising tool to control unwanted bacteria. The aim of this study is to determine the antibiotic resistance profile of E. coli isolated from raw milk and the efficacy of phage in controlling multidrug-resistant E. coli in raw milk. Antibiotic susceptibility testing showed the highest resistance rates of E. coli isolates to co-trime (27.34%) and ampicillin (27.34%), followed by streptomycin (25.18%), tetracycline (23.02%), and the lowest resistance rates to ciprofloxacin, gentamycin, and ceftazidime, all at a rate of 2.16%. All isolates were susceptible to meropenem. Of the 139 E. coli isolates, 57 (41.01%) were resistant to at least one antibiotic, and 35 (25.18%) were classified as MDR strains. Molecular characterization indicated that 5 (3.6%) out of the 139 isolates were STEC strains carrying stx1 gene. Seven (5.04%) isolates were phenotypically identified as ESBLEC, and four isolates (2.88%) were resistant to colistin. The results of the genotypic test revealed that four out of seven ESBLEC strains carried both blaTEM and blaCTX-M-1, two harbored blaTEM, and one possessed blaCTX-M-1, while mcr-1 was detected in all four colistin-resistant E. coli isolates. In particular, one isolated E. coli strain (EM148) was determined to be a multidrug-resistant strain simultaneously carrying blaTEM, blaCTX-M-1, and mcr-1. A total of eight phages were successfully recovered from raw milk. The application of phage PEM3 significantly reduced viable counts of multidrug-resistant host EM148 in raw milk by at least 2.31 log CFU/mL at both 24 °C and 4 °C.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Tran Thi Khanh Hoa
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Cam Thi Thu Ha
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Le Van Hung
- Veterinary Hospital, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Nguyen Van Thang
- Veterinary Hospital, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | | |
Collapse
|
17
|
Sung K, Nawaz M, Park M, Chon J, Khan SA, Alotaibi K, Revollo J, Miranda JA, Khan AA. Whole-Genome Sequence Analysis of Antibiotic Resistance, Virulence, and Plasmid Dynamics in Multidrug-Resistant E. coli Isolates from Imported Shrimp. Foods 2024; 13:1766. [PMID: 38890994 PMCID: PMC11171581 DOI: 10.3390/foods13111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
We analyzed antimicrobial resistance and virulence traits in multidrug-resistant (MDR) E. coli isolates obtained from imported shrimp using whole-genome sequences (WGSs). Antibiotic resistance profiles were determined phenotypically. WGSs identified key characteristics, including their multilocus sequence type (MLST), serotype, virulence factors, antibiotic resistance genes, and mobile elements. Most of the isolates exhibited resistance to gentamicin, streptomycin, ampicillin, chloramphenicol, nalidixic acid, ciprofloxacin, tetracycline, and trimethoprim/sulfamethoxazole. Multilocus sequence type (MLST), serotype, average nucleotide identity (ANI), and pangenome analysis showed high genomic similarity among isolates, except for EC15 and ECV01. The EC119 plasmid contained a variety of efflux pump genes, including those encoding the acid resistance transcriptional activators (gadE, gadW, and gadX), resistance-nodulation-division-type efflux pumps (mdtE and mdtF), and a metabolite, H1 symporter (MHS) family major facilitator superfamily transporter (MNZ41_23075). Virulence genes displayed diversity, particularly EC15, whose plasmids carried genes for adherence (faeA and faeC-I), invasion (ipaH and virB), and capsule (caf1A and caf1M). This comprehensive analysis illuminates antimicrobial resistance, virulence, and plasmid dynamics in E. coli from imported shrimp and has profound implications for public health, emphasizing the need for continued surveillance and research into the evolution of these important bacterial pathogens.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Mohamed Nawaz
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Jungwhan Chon
- Department of Companion Animal Health, Inje University, Gimhae 50834, Republic of Korea;
| | - Saeed A. Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Khulud Alotaibi
- Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia;
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.R.); (J.A.M.)
| | - Jaime A. Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.R.); (J.A.M.)
| | - Ashraf A. Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| |
Collapse
|
18
|
Zelalem A, Koran T, Abegaz K, Abera Z, Mummed B, Olani A, Aliy A, Chimdessa M, Fentahun S, Schwan CL, Vipham JL. Hygienic status of beef butcher shop facilities and antibiotic resistance profile of Salmonella enterica in Ethiopia. Braz J Microbiol 2024; 55:1703-1714. [PMID: 38592593 PMCID: PMC11153418 DOI: 10.1007/s42770-024-01312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The microbiological quality of meat is influenced by the conditions of hygiene prevailing during production and handling. Thus, this study aimed to assess the prevalence of Salmonella enterica and its antimicrobial resistance, load of hygiene indicator bacteria including E. coli (ECC), coliforms (CC), total coliform (TCC), Enterobacteriaceae (EB) and aerobic plate count (APC), and meat handler's food safety knowledge and hygiene practices in butcher shops in two cities, Addis Ababa and Hawassa in Ethiopia, during 2020 and 2021. A total of 360 samples of beef carcasses (n = 120), knives (n = 60), chopping boards (n = 60), weighing balance (n = 60), and personnel's hands (n = 60) were randomly collected for microbial analysis. Besides, 120 participants were selected to participate in a food safety knowledge and hygiene practices assessment. The S. enterica isolates were identified by agglutination test followed by qPCR targeting invA gene. Phenotypic antimicrobial resistance profiles of S. enterica were determined using disk diffusion assays as described in CLSI. The ECC, CC, TCC, EB, and APC populations were quantified by plating onto petrifilm plates. A structured questionnaire was used to determine food safety knowledge and hygiene practices of participants. Overall prevalence of S. enterica was 16.7% (95% CI, 8.3-26.7) and location seems to have no effect (p = 0.806). Only 20% of the S. enterica were resistant to ampicillin and tetracycline. However, the majority (80%) of S. enterica isolates were susceptible to the panel of 11 antimicrobials tested. The overall mean ± SD (log CFU/cm2) of ECC, CC, TCC, EB, and APC were 4.31 ± 1.15; 4.61 ± 1.33; 4.77 ± 1.32; 4.59 ± 1.38 and 5.87 ± 1.52, respectively. No significant difference (p = 0.123) in E. coli contamination was observed between samples of beef carcasses and chopping boards. The EB contamination showed no significant difference (p > 0.05) among sample sources. The APC contamination levels on beef carcass were significantly higher (p > 0.05) than other sample sources. A total of 56% (95% CI: 46.7 - 65.0) of the participants had poor knowledge and 65% (95% CI: 56.7 - 73.3) had poor hygiene practices towards food safety. This study highlighted the poor hygiene status of butcher facilities with a potential risk of beef safety. Thus, appropriate food safety control strategies and inspection is needed at retail establishments.
Collapse
Affiliation(s)
- Andarge Zelalem
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia.
| | | | - Kebede Abegaz
- Department of Food Science & Technology, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Zelalem Abera
- Univeristy Laboratory Management Directorate, Central Laboratories, Haramaya University, Dire Dawa, Ethiopia
| | - Bahar Mummed
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
| | | | - Abde Aliy
- Animal Health Institute, Sebeta, Ethiopia
| | - Meseret Chimdessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Selam Fentahun
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Carla L Schwan
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jessie L Vipham
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Joo S, Park H, Chun MS. Attitudes of South Korean consumers toward the prudent use of antimicrobials in livestock animals. One Health 2024; 18:100754. [PMID: 38770401 PMCID: PMC11103933 DOI: 10.1016/j.onehlt.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Antimicrobial resistance (AMR) in livestock is a complicated and multi-sectoral risk that threatens public health in the interactions between humans, animals, and environment. Through their increased awareness of AMR issues, consumers can make a significant impact on regulations and strategies to reduce or eliminate the use of antimicrobials use. This study aims to provide evidence-based data for promoting the prudent use of antimicrobials (PUA) in the livestock industry to reduce the risk of AMR and increase animal welfare by identifying consumers' intentions to support PUA practices in livestock farming. An online survey was conducted on 1000 respondents in South Korea to examine their intention to pay more for PUA practices in livestock farming at state and individual levels against their pro-animal attitude, risk perception of antimicrobial overuse, trust in antimicrobial overuse control, and perceived value of PUA practices. The survey data was analyzed using multiple linear regression to identify the determinants of Korean consumers' support for PUA practices. Approximately 86.3% of the respondents supported government-level spending for PUA in livestock farming, and the same portion of respondents intended to pay more for livestock products that complied with the PUA principle. The four attitudinal variables-pro-animal attitude, consumers' risk perception, trust in antimicrobial resistance control, and perceived value of PUA-positively affected both state- and individual-level support. Overall, our findings highlight the Korean consumers' demand for reducing the risk of AMR and their perceived universal value of PUA for humans and animals.
Collapse
Affiliation(s)
- Seola Joo
- Center for Animal Welfare Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyomin Park
- Department of Urban Sociology, College of Urban Science, University of Seoul, Seoul, South Korea
| | - Myung-Sun Chun
- Center for Animal Welfare Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Cappello A, Murgia Y, Giacobbe DR, Mora S, Gazzarata R, Rosso N, Giacomini M, Bassetti M. Automated extraction of standardized antibiotic resistance and prescription data from laboratory information systems and electronic health records: a narrative review. FRONTIERS IN ANTIBIOTICS 2024; 3:1380380. [PMID: 39816258 PMCID: PMC11731964 DOI: 10.3389/frabi.2024.1380380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 01/18/2025]
Abstract
Antimicrobial resistance in bacteria has been associated with significant morbidity and mortality in hospitalized patients. In the era of big data and of the consequent frequent need for large study populations, manual collection of data for research studies on antimicrobial resistance and antibiotic use has become extremely time-consuming and sometimes impossible to be accomplished by overwhelmed healthcare personnel. In this review, we discuss relevant concepts pertaining to the automated extraction of antibiotic resistance and antibiotic prescription data from laboratory information systems and electronic health records to be used in clinical studies, starting from the currently available literature on the topic. Leveraging automatic extraction and standardization of antimicrobial resistance and antibiotic prescription data is an tremendous opportunity to improve the care of future patients with severe infections caused by multidrug-resistant organisms, and should not be missed.
Collapse
Affiliation(s)
- Alice Cappello
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Sara Mora
- UO Information and Communication Technologies (ICT), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Gazzarata
- Healthropy, Savona, Italy
- Health Level 7 (HL7) Europe, Brussels, Belgium
| | - Nicola Rosso
- UO Information and Communication Technologies (ICT), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Bulcha B, Motuma B, Tamiru Y, Gurmessa WT. Assessment of Knowledge, Attitude and Practice (KAP) Regarding Antimicrobial Usage and Resistance Among Animal Health Professionals of East Wallaga Zone, Oromiya, Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:57-70. [PMID: 38476215 PMCID: PMC10927371 DOI: 10.2147/vmrr.s443043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Background Antimicrobial resistance (AMR) is one of the top global public health and economic threats. The use of antimicrobials (AMs) in animal production is a major contributor to the development of AMR globally. Animal health professionals (AHPs) play a key role in ensuring judicious use of AMs. Objective To assess the knowledge, attitude and practice (KAP) of antimicrobial usage (AMU) and AMR among healthcare professionals in Nekemte town, Leka Dulecha and Sibu Sire districts. Methods A cross-sectional study was conducted with 120 purposively chosen AHPs residing in the districts and the town. A semi-structured questionnaire consisting of 49 questions was used to ascertain the KAP. The chi-square test (X2) was used to analyze the association between the knowledge score and demographic profile of the study participants. Results In the study the overall knowledge of the participants was moderately appreciable, and all participants had positive attitudes toward AMR and appropriate usage. In terms of knowledge of antibiotic use, the majority (93.33%) of the participants correctly answered the statement that antibiotics can kill viruses. About 84.17% of the participants correctly knew that antibiotics killed or stopped the growth of both bad and good bacteria. The majority of the participants (74.17%) always or (25.83%) sometimes rely on usage of antibiotics without a doctor's prescription. It was shown that comparing respondents from Sibu Sire, Leka Dulecha and Nekemte town, the scores of knowledge of AMU were significantly (X2=14.13, p=0.007) different. Most animal healthcare professionals from the Sibu sire have a good knowledge of AMU, and contribute to AMR development. Conclusion The study revealed that there was moderate knowledge and positive attitude toward AMU and resistance. This warrants continuing capacity building programs for the professionals on AM usage and resistance, and development of field-friendly disease diagnosis and management tools is essential in the need to reduce AMR.
Collapse
Affiliation(s)
- Begna Bulcha
- Department of Veterinary Medicine, School of Veterinary Medicine, Wallaga University, Nekemte, Oromia, Ethiopia
| | - Bayisa Motuma
- Department of Veterinary Medicine, School of Veterinary Medicine, Wallaga University, Nekemte, Oromia, Ethiopia
| | - Yobsan Tamiru
- Department of Veterinary Medicine, School of Veterinary Medicine, Wallaga University, Nekemte, Oromia, Ethiopia
| | - Waktola Tadesse Gurmessa
- Department of Veterinary Medicine, School of Veterinary Medicine, Wallaga University, Nekemte, Oromia, Ethiopia
| |
Collapse
|
22
|
Aslani R, Mazaheri Y, Jafari M, Sadighara P, Molaee-Aghaee E, Ozcakmak S, Reshadat Z. Implementation of hazard analysis and critical control point (HACCP) in yogurt production. J DAIRY RES 2024; 91:125-135. [PMID: 38646882 DOI: 10.1017/s0022029924000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This study aimed to review hazard analysis and critical control points (HACCP) in the dairy industry for the production of yogurt. The food safety management system (FSMS) was implemented over the last several decades with several amendments. The need for practical and proactive procedures in the dairy industry was identified so that HACCP implementation could ensure that consumers would always have safe food. The concept of HACCP is a systemic and science-based method that can result in safe dairy products such as yogurt based on the complete analysis of manufacturing processes, recognition of hazards potentially present at all stages of production, and risk prevention. In yogurt production, raw milk receipt, pasteurization, packaging, and storage are the steps most susceptible to contamination and were considered critical control points. Further steps also need to be implemented to achieve other related control measures, and these will be discussed.
Collapse
Affiliation(s)
- Ramin Aslani
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yeganeh Mazaheri
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jafari
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Division of Food Safety & Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sibel Ozcakmak
- Provincial Directorate of Agriculture and Livestock, Ministry of Agriculture and Forestry, Samsun, Türkiye
| | - Zahra Reshadat
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Benevides VP, Saraiva MMS, Nascimento CF, Delgado-Suárez EJ, Oliveira CJB, Silva SR, Miranda VFO, Christensen H, Olsen JE, Berchieri Junior A. Genomic Features and Phylogenetic Analysis of Antimicrobial-Resistant Salmonella Mbandaka ST413 Strains. Microorganisms 2024; 12:312. [PMID: 38399716 PMCID: PMC10893270 DOI: 10.3390/microorganisms12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, Salmonella enterica subsp. enterica serovar Mbandaka (S. Mbandaka) has been increasingly isolated from laying hens and shell eggs around the world. Moreover, this serovar has been identified as the causative agent of several salmonellosis outbreaks in humans. Surprisingly, little is known about the characteristics of this emerging serovar, and therefore, we investigated antimicrobial resistance, virulence, and prophage genes of six selected Brazilian strains of Salmonella Mbandaka using Whole Genome Sequencing (WGS). Multi-locus sequence typing revealed that the tested strains belong to Sequence Type 413 (ST413), which has been linked to recent multi-country salmonellosis outbreaks in Europe. A total of nine resistance genes were detected, and the most frequent ones were aac(6')-Iaa, sul1, qacE, blaOXA-129, tet(B), and aadA1. A point mutation in ParC at the 57th position (threonine → serine) associated with quinolone resistance was present in all investigated genomes. A 112,960 bp IncHI2A plasmid was mapped in 4/6 strains. This plasmid harboured tetracycline (tetACDR) and mercury (mer) resistance genes, genes contributing to conjugative transfer, and genes involved in plasmid maintenance. Most strains (four/six) carried Salmonella genomic island 1 (SGI1). All S. Mbandaka genomes carried seven pathogenicity islands (SPIs) involved in intracellular survival and virulence: SPIs 1-5, 9, and C63PI. The virulence genes csgC, fimY, tcfA, sscA, (two/six), and ssaS (one/six) were absent in some of the genomes; conversely, fimA, prgH, and mgtC were present in all of them. Five Salmonella bacteriophage sequences (with homology to Escherichia phage phiV10, Enterobacteria phage Fels-2, Enterobacteria phage HK542, Enterobacteria phage ST64T, Salmonella phage SW9) were identified, with protein counts between 31 and 54, genome lengths of 24.7 bp and 47.7 bp, and average GC content of 51.25%. In the phylogenetic analysis, the genomes of strains isolated from poultry in Brazil clustered into well-supported clades with a heterogeneous distribution, primarily associated with strains isolated from humans and food. The phylogenetic relationship of Brazilian S. Mbandaka suggests the presence of strains with high epidemiological significance and the potential to be linked to foodborne outbreaks. Overall, our results show that isolated strains of S. Mbandaka are multidrug-resistant and encode a rather conserved virulence machinery, which is an epidemiological hallmark of Salmonella strains that have successfully disseminated both regionally and globally.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Camila F Nascimento
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Enrique J Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celso J B Oliveira
- Center for Agricultural Sciences, Department of Animal Science, Federal University of Paraiba (CCA/UFPB), Areia 58051-900, Brazil
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH 43210, USA
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| |
Collapse
|
24
|
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics (Basel) 2024; 13:148. [PMID: 38391534 PMCID: PMC10885956 DOI: 10.3390/antibiotics13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.
Collapse
Affiliation(s)
- Hoang My Tran
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Si Thu Hein
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Aguilera M, Tobar-Calfucoy E, Rojas-Martínez V, Norambuena R, Serrano MJ, Cifuentes O, Zamudio MS, San Martín D, Lara P, Sabag A, Zabner M, Tichy D, Camejo P, León L, Pino M, Ulloa S, Rojas F, Pieringer C, Muster C, Castillo D, Ferreira N, Avendaño C, Canaval M, Pieringer H, Cifuentes P, Cifuentes Muñoz N. Development and characterization of a bacteriophage cocktail with high lytic efficacy against field-isolated Salmonella enterica. Poult Sci 2023; 102:103125. [PMID: 37879168 PMCID: PMC10618821 DOI: 10.1016/j.psj.2023.103125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Salmonella spp. is a prevalent pathogen that causes great public health concern worldwide. Bacteriophage-based cocktails have arisen as an alternative to antibiotics to inhibit the growth of Salmonella. However, the bactericidal effect of bacteriophage cocktails in vivo largely differs from their observed effect in vitro. This is partly because in vitro developments of cocktails do not always consider the bacterial diversity nor the environmental conditions where bacteriophages will have to replicate. Here, we isolated and sequenced 47 bacteriophages that showed variable degrees of lytic activity against 258 Salmonella isolates from a commercial broiler company in Brazil. Three of these bacteriophages were characterized and selected to assemble a cocktail. In vitro quantitative assays determined the cocktail to be highly effective against multiple serovars of Salmonella, including Minnesota and Heidelberg. Remarkably, the in vitro lytic activity of the cocktail was retained or improved in conditions that more closely resembled the chicken gut, such as anaerobiosis, 42°C, and Salmonella mono-strain biofilms. Analysis of bacterial cross-resistance between the 3 bacteriophages composing the cocktail revealed limited or no generation of cross-resistance. Our results highlight the relevance of an optimized flux of work to develop bacteriophage cocktails against Salmonella with high lytic efficacy and strong potential to be applied in vivo in commercial broiler farms.
Collapse
Affiliation(s)
- Matías Aguilera
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Eduardo Tobar-Calfucoy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Victoria Rojas-Martínez
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Rodrigo Norambuena
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Jesús Serrano
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Onix Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Sofía Zamudio
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel San Martín
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pabla Lara
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Andrea Sabag
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Marcela Zabner
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Tichy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pamela Camejo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Luis León
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Michael Pino
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Soledad Ulloa
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Felipe Rojas
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Christian Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Cecilia Muster
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Castillo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Ferreira
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Camilo Avendaño
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Mauro Canaval
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Hans Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pablo Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Cifuentes Muñoz
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile..
| |
Collapse
|
26
|
Best CM, Bard AM, Rees GM, Reyher KK. Validation, visibility, vagueness and variation: A qualitative assessment of existing veterinary guidelines for antimicrobial use in cattle and sheep in the UK. PLoS One 2023; 18:e0294733. [PMID: 38032877 PMCID: PMC10688698 DOI: 10.1371/journal.pone.0294733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Antimicrobials are essential in veterinary medicine to treat and control bacterial disease in animals. Their prudent use in food-producing animals has been encouraged to reduce the development and spread of antimicrobial resistance. National and international guidelines for responsible antimicrobial use have been developed as tools to guide and rationalise antimicrobial prescribing decisions by veterinarians and usage decisions by farmers. Yet, there is little understanding of whether these existing guidelines are fit for purpose. Accordingly, this study rigorously assessed 128 veterinary guidelines for antimicrobial use in ruminants in the UK, following established qualitative methodologies. Findings revealed four pertinent themes: validation of the veterinarian as the prescriber, visibility of responsible use realities, vagueness in interpretation and variation in directing behaviour. These themes encompassed the roles and responsibilities of the veterinarian and the realities of prescribing scenarios, alongside concerns relating to the specificity within and variation between guidelines. Resultant recommendations to inform and support the future development of guidelines include establishing species-specific and disease-specific guidelines, expanding guidelines to include disease prevention measures, including definitions to resolve vagueness and promoting congruence in interpretation, encouraging the development of practice-level guidelines to endorse collaboration and ownership, and fostering active working between stakeholders to align priorities and messaging.
Collapse
Affiliation(s)
- Caroline M. Best
- University of Bristol Veterinary School, Langford, Bristol, United Kingdom
| | - Alison M. Bard
- University of Bristol Veterinary School, Langford, Bristol, United Kingdom
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Gwen M. Rees
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Kristen K. Reyher
- University of Bristol Veterinary School, Langford, Bristol, United Kingdom
| |
Collapse
|
27
|
Brătfelan DO, Tabaran A, Colobatiu L, Mihaiu R, Mihaiu M. Prevalence and Antimicrobial Resistance of Escherichia coli Isolates from Chicken Meat in Romania. Animals (Basel) 2023; 13:3488. [PMID: 38003106 PMCID: PMC10668644 DOI: 10.3390/ani13223488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The current study was conducted in order to analyze the prevalence of Escherichia coli (E. coli) in samples of chicken meat (100 chicken meat samples), as well as to evaluate the antimicrobial susceptibility of these isolates. A total of 30 samples were positive for E. coli among the collected chicken samples. Most isolates proved to be highly resistant to tetracycline (80%), ampicillin (80%), sulfamethoxazole (73.33%), chloramphenicol (70%) and nalidixic acid (60%). Strong resistance to ciprofloxacin (56.66%), trimethoprim (50%), cefotaxime (46.66%), ceftazidime (43.33%) and gentamicin (40%) was also observed. Notably, one E. coli strain also proved to be resistant to colistin. The antimicrobial resistance determinants detected among the E. coli isolates recovered in our study were consistent with their resistance phenotypes. Most of the isolates harbored the tetA (53.33%), tetB (46.66%), blaTEM (36.66%) and sul1 (26.66%) genes, but also aadA1 (23.33%), blaCTX (16.66%), blaOXA (16.66%), qnrA (16.66%) and aac (10%). In conclusion, to the best of our knowledge, this is among the first studies analyzing the prevalence and antimicrobial resistance of E. coli strains isolated from chicken meat in Romania and probably the first study reporting colistin resistance in E. coli isolates recovered from food sources in our country.
Collapse
Affiliation(s)
- Dariana Olivia Brătfelan
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Alexandra Tabaran
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Liora Colobatiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Department of Management, Faculty of Economic Sciences and Business Administration, Babes Bolyai University, Mihail Kogalniceanu Street No.1, 400084 Cluj-Napoca, Romania;
| | - Marian Mihaiu
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| |
Collapse
|
28
|
Rao RT, Madhavan V, Kumar P, Muniraj G, Sivakumar N, Kannan J. Epidemiology and zoonotic potential of Livestock-associated Staphylococcus aureus isolated at Tamil Nadu, India. BMC Microbiol 2023; 23:326. [PMID: 37923998 PMCID: PMC10625228 DOI: 10.1186/s12866-023-03024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is part of normal flora and also an opportunistic pathogen responsible for a wide range of infections in both humans and animals. Livestock-associated S. aureus (LA-SA) has gained importance in recent years due to its increased prevalence in recent years, becoming a worry in public health view. This study aimed to study the epidemiology of LA-SA strains in Madurai district, Tamil Nadu, India. METHODS A total of 255 samples were collected from bovine and other small ruminants like goats and sheep nares (n = 129 and n = 126 respectively). Nasal swab samples were collected from study animals with sterile sample collecting cotton swabs (Hi-Media, Mumbai). Samples were transported to the lab in Cary-Blair Transport media for further analysis. The samples were tested for S. aureus using antibiotic selection and PCR-based assays. The pathogenicity of the bacteria was assessed using chicken embryo models and liver cross-sections were used for histopathology studies. RESULTS The prevalence rate in bovine-associated samples was 42.63% but relatively low in the case of small ruminants associated samples with 28.57% only. The overall prevalence of S. aureus is found to 35.6% and MRSA 10.98% among the study samples. The antibiogram results that LA-SA isolates were susceptible to aminoglycosides and tetracyclines but resistant to β-lactam drugs. The biofilm formation results showed that the LA-SA isolates are weak to high-capacity biofilm formers. The enterotoxigenic patterns revealed that most of the isolated strains are enterotoxigenic and possess classical enterotoxins. The survival analysis of chicken embryos suggested that the Bovine-associated strains were moderately pathogenic. CONCLUSION The study concluded that economically important livestock animals can act as reservoirs for multi-drug resistant and pathogenic which in-turn is a concern for public health as well as livestock health.
Collapse
Affiliation(s)
- Relangi Tulasi Rao
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Vinoth Madhavan
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, Anna University, Tamil Nadu, Chennai, 600044, India
| | - Gnanaraj Muniraj
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirapalli, 620017, India
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Jayakumar Kannan
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India.
| |
Collapse
|
29
|
Giannessi J, De Marchi L, Meucci V, Intorre L, Monni G, Baratti M, Pretti C. Subcellular tissues-specific responses of Mytilus galloprovincialis to fluoroquinolone antibiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104306. [PMID: 39491228 DOI: 10.1016/j.etap.2023.104306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The study aimed to investigate the in vitro effects of the fluoroquinolone antibiotics (FQs) Ciprofloxacin (CIP), Enrofloxacin (ENR) and Danofloxacin (DAN) on the mussel Mytilus galloprovincialis exposed to environmentally relevant concentrations. In vitro exposure was performed on subcellular fractions of the digestive gland and gills through a multi-biomarker approach, which included the assessment of cellular damage, antioxidant and biotransformation enzyme activities, neurotoxicity, and DNA single-strand breaks (DNAssb). Results showed a decrease in protein carbonyl content in the gills when exposed to all concentrations of ENR. A significant overall decrease in the enzymatic activity of antioxidant defences was observed in the digestive gland exposed to the highest concentration of DAN and CIP, with a similar trend observed in the gills. Neurotoxicity was observed in the digestive gland at all tested concentrations of all FQs, but no effects were detected in the gills. DNAssb was evident in both tissues at all higher FQ concentrations.
Collapse
Affiliation(s)
- Joanna Giannessi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Luigi Intorre
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Mariella Baratti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, 57128, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy; Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
30
|
Roskam JL, Oude Lansink AGJM, Saatkamp HW. The Economic Value of Antimicrobial Use in Livestock Production. Antibiotics (Basel) 2023; 12:1537. [PMID: 37887238 PMCID: PMC10603833 DOI: 10.3390/antibiotics12101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Introduction: Antimicrobial agents have played an important role in improving the productivity of worldwide livestock production by reducing the impact of livestock diseases. However, a major drawback of antimicrobial use is the emergence of antimicrobial-resistant pathogens in food-producing animals. To reduce the use of antimicrobials, it is important to know the economic value of the use of antimicrobials and factors that determine that economic value. (2) Results: A theoretical framework was developed to assess the economic value of antimicrobial use. Three situations were distinguished: firstly, a baseline model for a farm with a conventional production system; secondly, an extension of the baseline model that includes the impact of production system improvements; and thirdly, an extension of the baseline model that includes the impacts of risk and risk attitude. This framework shows that the economic value of antimicrobial use is negatively affected by the price of productive inputs and damage-abatement inputs, and positively affected by the output price, the input-output combination, the damage abatement effect, risk aversion and variance in profit. (3) Conclusions: The theoretical framework presented in this study shows that there are several factors that (can) affect the economic value of antimicrobial use. The knowledge about the effect of these factors can be utilized to affect the economic value of antimicrobials and, consequently, affect antimicrobial use.
Collapse
|
31
|
Georgakakos CB, Martínez CE, Helbling DE, Walter MT. More movement with manure: increased mobility of erythromycin through agricultural soil in the presence of manure. JOURNAL OF WATER AND HEALTH 2023; 21:1143-1157. [PMID: 37756186 PMCID: wh_2023_051 DOI: 10.2166/wh.2023.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Antibiotic residues in the environment threaten soil and aquatic organisms and human and livestock health through the building of antimicrobial resistance. Manure spreading associated with animal agriculture is one source of environmental antibiotic residues. To better understand the risk of contamination, we studied the adsorption of erythromycin, a model macrolide antibiotic used across human and animal medicine. We conducted a series of equilibrium batch experiments to determine the kinetics and extent of adsorption and a continuous-flow column adsorption experiment to observe non-equilibrium adsorption patterns. We determined that the adsorption equilibration time to soil was approximately 72 h in our batch experiments. Erythromycin adsorbed to soil relatively strongly (K = 8.01 × 10-2 L/mg; qmax = 1.53 × 10-3 mg/mg), adsorbed to the soil in the presence of manure with less affinity (K = 1.99 × 10-4 L/mg) at a soil: manure ratio of 10:1 by mass, and did not adsorb to manure across the solid ratios tested. We observed multi-phased adsorption of erythromycin to the soil during the non-equilibrium column experiment, which was largely absent from the treatments with both soil and manure present. These results suggest that erythromycin is more mobile in the environment when introduced with manure, which is likely the largest source of agriculturally sourced environmental antibiotics.
Collapse
Affiliation(s)
- Christine B Georgakakos
- Department of Natural Resources and Environment, University of Connecticut, Storrs, CT, USA E-mail:
| | | | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Cella E, Giovanetti M, Benedetti F, Scarpa F, Johnston C, Borsetti A, Ceccarelli G, Azarian T, Zella D, Ciccozzi M. Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens 2023; 12:1074. [PMID: 37764882 PMCID: PMC10535744 DOI: 10.3390/pathogens12091074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance is a significant global health concern that affects both human and animal populations. The One Health approach acknowledges the interconnectedness of human health, animal health, and the environment. It emphasizes the importance of collaboration and coordination across these sectors to tackle complex health challenges such as antibiotic resistance. In the context of One Health, antibiotic resistance refers to the ability of bacteria to withstand the efficacy of antibiotics, rendering them less effective or completely ineffective in treating infections. The emergence and spread of antibiotic-resistant bacteria pose a threat to human and animal health, as well as to the effectiveness of medical treatments and veterinary interventions. In particular, One Health recognizes that antibiotic use in human medicine, animal agriculture, and the environment are interconnected factors contributing to the development and spread of antibiotic resistance. For example, the misuse and overuse of antibiotics in human healthcare, including inappropriate prescribing and patient non-compliance, can contribute to the selection and spread of resistant bacteria. Similarly, the use of antibiotics in livestock production for growth promotion and disease prevention can contribute to the development of antibiotic resistance in animals and subsequent transmission to humans through the food chain. Addressing antibiotic resistance requires a collaborative One Health approach that involves multiple participants, including healthcare professionals, veterinarians, researchers, and policymakers.
Collapse
Affiliation(s)
- Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (C.J.); (T.A.)
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Roma, 00128 Roma, Italy;
- Instituto Rene Rachou Fundação Oswaldo Cruz, Belo Horizonte 31310-260, Minas Gerais, Brazil
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (C.J.); (T.A.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), National Institute of Health, 00161 Rome, Italy;
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy;
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (C.J.); (T.A.)
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
33
|
Sarkar S, Okafor C. Effect of veterinary feed directive rule changes on tetracycline-resistant and erythromycin-resistant bacteria (Salmonella, Escherichia, and Campylobacter) in retail meats in the United States. PLoS One 2023; 18:e0289208. [PMID: 37535600 PMCID: PMC10399851 DOI: 10.1371/journal.pone.0289208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Antimicrobial-resistant bacteria are a growing public health threat. In 2017 the U.S. Food and Drug Administration implemented Veterinary Feed Directive (VFD) rules changes to limit medically important antimicrobial use in food-producing animals, combating antimicrobial-resistant bacteria. The effect of the VFD rule changes on the occurrence of bacteria resistant to medically-important antimicrobials in retail meats is yet to be investigated in the U.S. This study investigates whether the VFD rule changes affected the occurrence of tetracycline-resistant and erythromycin-resistant bacteria (Salmonella, Escherichia, and Campylobacter) in retail meats in the U.S. METHODS Multivariable mixed effect logistic regression models were used to analyze 2002-2019 retail meats surveillance data from the National Antimicrobial Resistance Monitoring System (NARMS) in the U.S. Variables included VFD rule changes, meat type, quarter of year, and raising claims. A potential association between these variables and the occurrence of tetracycline-resistant and erythromycin-resistant bacteria (Salmonella, Escherichia, and Campylobacter) in retail meats was estimated. RESULTS Analysis included data regarding tetracycline-resistant Salmonella (n = 8,501), Escherichia (n = 20, 283), Campylobacter (n = 9,682), and erythromycin-resistant Campylobacter (n = 10,446) in retail meats. The odds of detecting tetracycline-resistant Escherichia (OR = 0.60), Campylobacter (OR = 0.89), and erythromycin-resistant Campylobacter (OR = 0.43) in chicken breast significantly decreased after the VFD rule changes, compared to the pre-VFD rule change period. The odds of detecting tetracycline-resistant Salmonella (0.66), Escherichia (OR = 0.56), and Campylobacter (OR = 0.33) in ground turkey also significantly decreased. However, the odds of detecting tetracycline-resistant Salmonella (OR = 1.49) in chicken breast and erythromycin-resistant Campylobacter (OR = 4.63) in ground turkey significantly increased. There was no significant change in the odds of detecting tetracycline-resistant Salmonella and Escherichia in ground beef or pork chops. CONCLUSIONS The implementation of VFD rule changes had a beneficial effect by reducing the occurrence of tetracycline-resistant and erythromycin-resistant bacteria in chicken and ground turkey. Ongoing surveillance of antimicrobial resistance and antimicrobial use could complement the implementation of stewardship such as VFD rule in food-producing animals in the U.S.
Collapse
Affiliation(s)
- Shamim Sarkar
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Chika Okafor
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
34
|
Śmialek M, Konieczka T, Konieczka P, Kowalczyk J, Koncicki A, Kozłowski K, Jankowski J. Monitoring of antibiotic use in broiler turkey flocks in the Warmia and Mazury province in 2019-2021. J Vet Res 2023; 67:243-249. [PMID: 38143827 PMCID: PMC10740319 DOI: 10.2478/jvetres-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/18/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The increasing resistance of bacteria to antibiotics has obliged the EU Member States to reduce by 50% the use of antibiotics in animal production by 2030. This study was undertaken with the aim to analyse the use of antibiotics in flocks of broiler turkeys reared in the Warmia and Mazury province in a two-year period. Material and Methods From data from 238 production records of turkey flocks provided by the County Veterinary Inspectorates, the use of antibiotics (mg/kg) was analysed in turkey flocks reared in 2019-2021. The data provided the year of rearing, turkey sex and immunoprophylactic measures. Results A significant decrease in antimicrobial use was reported in the male turkey flocks in 2021 (157 mg/kg body weight) in comparison to 2020 (241 mg) and 2019 (299 mg). In both male and female turkeys, the use of antimicrobials gradually decreased from 2019 to 2021. Significantly lower antibiotic use was reported in turkey flocks using autogenous vaccines. Conclusion The positive trend shown in this study proves the possibility of meeting the EU recommendations for 50% reduction in the use of antibiotics in animal production by 2030. More emphasis should be placed on minimising the risk of infectious diseases requiring antibiotic therapy with welfare, biosecurity, immunomodulation and specific prophylaxis measures.
Collapse
Affiliation(s)
- Marcin Śmialek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
- SLW Biolab Veterinary Laboratory, 14-100Ostróda, Poland
| | - Teresa Konieczka
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Joanna Kowalczyk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury, 10-719Olsztyn, Poland
| |
Collapse
|
35
|
Tufa TB, Regassa F, Amenu K, Stegeman JA, Hogeveen H. Livestock producers' knowledge, attitude, and behavior (KAB) regarding antimicrobial use in Ethiopia. Front Vet Sci 2023; 10:1167847. [PMID: 37275603 PMCID: PMC10235446 DOI: 10.3389/fvets.2023.1167847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Inappropriate antimicrobial use (AMU) in livestock production is an important aspect of the global burden of antimicrobial resistance (AMR). In Ethiopia, a low-income country with a large and increasing livestock population, AMU in food animals is not properly regulated. Hence, farmers are fully free to use antimicrobials to their (perceived) benefit. Therefore, understanding farmers' mindsets is important to improve antimicrobial stewardship in the livestock sector. Methods This cross-sectional study was conducted to assess livestock disease management practices and knowledge, attitude, and behavior (KAB) among livestock producers regarding AMU, residues, and resistance, as well as factors potentially explaining differences in KAB. We determined the KAB of livestock owners of three selected districts of central and western Ethiopia (n = 457), using a pretested questionnaire administered through face-to-face interviews. Logistic regression was used to evaluate the association between potential explanatory variables and the KAB scores of the respondents. Results The results showed that 44% of the farmers used antimicrobials in the past few years, where antibiotics (21%) and trypanocides (11%) were most widely used to manage livestock diseases. Furthermore, most farmers showed poor knowledge about AMU, residues, and AMR (94%) and unfavorable attitudes (<50% correct answers) toward contributing factors for AMR (97%). On the contrary, 80% of the respondents had overall good behavior scores (≥50% correct answers) related to AMU. Multivariate analysis results showed that having good knowledge, keeping ≥2 animal species, and the occurrence of ≥4 livestock diseases on the farm in a year were strong predictors of bad behavior scores (p < 0.05). The findings of the current investigation also revealed that the incidence of livestock diseases on the farm and a higher level of formal education significantly contributed to better knowledge and desirable attitudes but bad AMU behavior. Conclusion A low level of awareness about and undesirable attitudes toward AMU and AMR could potentially affect farmers' behavior toward judicious AMU, thus requiring awareness creation efforts on livestock disease management practices.
Collapse
Affiliation(s)
- Takele B. Tufa
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Programme, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - J. A. Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk Hogeveen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Business Economics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Al-Zghoul MB, Jaradat ZW, Ababneh MM, Okour MZ, Saleh KMM, Alkofahi A, Alboom MH. Effects of embryonic thermal manipulation on the immune response to post-hatch Escherichia coli challenge in broiler chicken. Vet World 2023; 16:918-928. [PMID: 37576780 PMCID: PMC10420701 DOI: 10.14202/vetworld.2023.918-928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Thermal manipulation (TM), exposure to mild heat shock during embryogenesis, which is a critical developmental period of broiler chickens, improves tissue stability, oxidative stress response, and immune response during heat stress. Thermal manipulation could be more cost-effective than other methods to boost the immune response. This study aimed to evaluate the impact of TM during embryogenesis, concomitant with an Escherichia coli challenge, on body weight (BW), body temperature (Tb), and splenic mRNA expression of cytokines (Interleukin [IL]-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-16, IL-18, and interferon [IFN]-γ) in poultry. Materials and Methods A total of 740 fertile eggs were procured from a certified Ross broiler breeder. The eggs were divided into two incubation groups: the control and TM groups. The eggs in the control group were kept at 37.8°C air temperature and 56% relative humidity (RH) during incubation; eggs of the TM group were incubated under standard conditions, except for embryonic days 10-18, during which they were incubated at 39°C and 65% RH for 18 h daily. On the 7th day of incubation, eggs with dead embryos were excluded. After hatching was complete, each group was further subdivided into saline-treated or E. coli-challenged groups. The E. coli (serotype 078 with the dose of 1.5 × 105 colony-forming unit/mL) challenge was performed when the birds were 20 days old. Body weight and Tb measurements were taken on post-hatch days 20, 21, 23, and 25. Splenic mRNA expression of cytokines (IL-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-16, IL-18, and IFN-γ) was analyzed by real-time quantitative polymerase chain reaction. Results Following the E. coli challenge, the TM-treated group's body performance parameters (BW and Tb) were significantly increased compared with the control group. Body weight was higher in the TM group than in the control group (p < 0.05); Tb was lower in the TM group than in the control group (p < 0.05). The mRNA levels of IL and IFN-γ were more stable and moderately induced in the TM group compared with the control group. Thermal manipulation altered the basal mRNA levels of ILs and IFN-γ and changed their expression dynamics after the E. coli challenge. Conclusion Thermal manipulation during embryogenesis could boost the immune system response to E. coli.
Collapse
Affiliation(s)
- Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Waheed Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Mustafa M. Ababneh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Ziad Okour
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Ayesha Alkofahi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Hussien Alboom
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
37
|
Ndlovu L, Butaye P, Maliehe TS, Magwedere K, Mankonkwana BB, Basson AK, Ngema SS, Madoroba E. Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa. Pathogens 2023; 12:pathogens12050641. [PMID: 37242311 DOI: 10.3390/pathogens12050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
As poultry organ meat is widely consumed, especially in low- and middle-income countries, there is reason to investigate it as a source of Salmonella infections in humans. Consequently, the aim of this study was to determine the prevalence, serotypes, virulence factors and antimicrobial resistance of Salmonella isolated from chicken offal from retail outlets in KwaZulu-Natal, South Africa. Samples (n = 446) were cultured for the detection of Salmonella using ISO 6579-1:2017. Presumptive Salmonella were confirmed using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. Salmonella isolates were serotyped using the Kauffmann-White-Le Minor scheme and antimicrobial susceptibility was determined by the Kirby-Bauer disk diffusion technique. A conventional PCR was used for the detection of Salmonella invA, agfA, lpfA and sivH virulence genes. Of the 446 offal samples, 13 tested positive for Salmonella (2.91%; CI = 1.6-5). The serovars included S. Enteritidis (n = 3/13), S. Mbandaka (n = 1/13), S. Infantis (n = 3/13), S. Heidelberg (n = 5/13) and S. Typhimurium (n = 1/13). Antimicrobial resistance against amoxicillin, kanamycin, chloramphenicol and oxytetracycline was found only in S. Typhimurium and S. Mbandaka. All 13 Salmonella isolates harboured invA, agfA, lpfA and sivH virulence genes. The results show low Salmonella prevalence from chicken offal. However, most serovars are known zoonotic pathogens, and multi-drug resistance was observed in some isolates. Consequently, chicken offal products need to be treated with caution to avoid zoonotic Salmonella infections.
Collapse
Affiliation(s)
- Lindokuhle Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tsolanku S Maliehe
- Department of Water and Sanitation, University of Limpopo, Polokwane 0727, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa
| | - Bongi B Mankonkwana
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Siyanda S Ngema
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
38
|
Pimenta J, Pinto AR, Saavedra MJ, Cotovio M. Equine Gram-Negative Oral Microbiota: An Antimicrobial Resistances Watcher? Antibiotics (Basel) 2023; 12:antibiotics12040792. [PMID: 37107153 PMCID: PMC10135200 DOI: 10.3390/antibiotics12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Horses are considered as reservoirs of multidrug resistant bacteria that can be spread through the environment and possibly to humans. The aim of this study was to characterize the oral Gram-negative microbiota of healthy horses and evaluate their antimicrobial susceptibility profile in a One Health approach. For this purpose, samples were collected from the gingival margin of healthy horses, free of antimicrobial therapy, cultured in selective mediums, identified, and tested for antimicrobial susceptibility. Fifty-five Gram-negative isolates were identified, with 89.5% being zoonotic and 62% affecting humans, which were also found commonly in the environment. Forty-eight isolates (96%) were MDR. The phenotypic resistance presented as higher to macrolides (81.8%), β-lactams (55.4%), and quinolones (50%), and lower to sulfonamides (27.3%), tetracyclines, and amphenicols (both with 30.9%). In total, 51.5% of the isolates presented resistance to carbapenems. In addition to being the first report on the commensal oral microbiota of horses and respective susceptibility profile, this study highlights the horse as a valuable sentinel that can control the evolution and transmission of multidrug-resistant bacteria between the "One Health triad" since it is in contact with humans, other animals, and the environment, in different geographic locations.
Collapse
Affiliation(s)
- José Pimenta
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Rita Pinto
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences and Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences and Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- Department of Veterinary Sciences, Antimicrobials, Biocides & Biofilms Unit (A2BUnit), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
39
|
Sodagari HR, Varga C. Evaluating Antimicrobial Resistance Trends in Commensal Escherichia coli Isolated from Cecal Samples of Swine at Slaughter in the United States, 2013-2019. Microorganisms 2023; 11:microorganisms11041033. [PMID: 37110456 PMCID: PMC10142105 DOI: 10.3390/microorganisms11041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in commensal and pathogenic enteric bacteria of swine is a public health threat. This study evaluated publicly available AMR surveillance data collected by the National Antimicrobial Resistance Monitoring System (NARMS) by assessing AMR patterns and temporal trends in commensal E. coli isolated from cecal samples of swine at slaughter across the United States. We applied the Mann-Kendall test (MKT) and a linear regression trend line to detect significant trends in the proportion of resistant isolates to individual antimicrobials over the study period. A Poisson regression model assessed differences among years in the number of antimicrobials to which an E. coli isolate was resistant. Among the 3237 E. coli isolates, a very high prevalence of resistance for tetracycline (67.62%), and high resistance for streptomycin (24.13%), and ampicillin (21.10%) were identified. The MKT and the linear trend line showed a significantly increasing temporal trend for amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, and trimethoprim-sulfamethoxazole. Compared to 2013 the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in the years 2017, 2018, and 2019. The increasing temporal trend of resistance to important antimicrobials for human medicine (e.g., third-generation cephalosporins) and the increase in multidrug resistance in the later years of the study are concerning and should be followed up by studies to identify sources and risk factors for the selection of AMR.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
40
|
Zecconi A, Zaghen F, Meroni G, Sora V, Martino PA, Laterza G, Zanini L. Early Milk Total and Differential Cell Counts as a Diagnostic Tool to Improve Antimicrobial Therapy Protocols. Animals (Basel) 2023; 13:ani13071143. [PMID: 37048399 PMCID: PMC10093194 DOI: 10.3390/ani13071143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Mastitis is a major cause of antimicrobial treatments either during lactation or at drying off. From a One Health perspective, there should be a balance between the risk of IMI that may impair cow health and welfare and the reduction of antimicrobial usage to decrease antimicrobial resistance, as may happen when applying selective dry-cow therapy. This reduction may be achieved by an early and accurate diagnosis followed by prudent and rationale therapeutical protocols. This study aims to assess the accuracy of PLCC (neutrophils + lymphocyte count/mL) in identifying cows at risk of having IMI due to major pathogens (S.aureus, Str.agalactiae, Str.uberis, and Str.dysgalactiae), and to simulate the impact of this early diagnosis on the potential number of treatments using a decision-tree model. The results of this study showed that PLCC had an overall accuracy of 77.6%. The results of the decision-tree model based on data from the 12 participating herds, with an overall prevalence of major pathogens of 1.5%, showed a potential decrease in the number of treatments of about 30% (from 3.4% to 2.5%) when PLCC in early lactation (days 5-16) was used to identify cows at risk for major pathogens compared with using SCC at the first milk test (days 17-43). The study confirmed that it is possible to improve animal health and reduce the risk of antimicrobial use through early IMI detection based on PLCC and applying a rationale and prudent antimicrobial protocol.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milano, Via Pascal 36, 20133 Milan, Italy
| | - Francesca Zaghen
- Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milano, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milano, Via Pascal 36, 20133 Milan, Italy
| | - Valerio Sora
- Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milano, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milano, Via Pascal 36, 20133 Milan, Italy
| | - Giulia Laterza
- Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milano, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Lucio Zanini
- Associazione Regionale Allevatori Lombardia, Via Kennedy 30, 26013 Crema, Italy
| |
Collapse
|
41
|
Efficacy of Penicillin–Streptomycin Brands against Staphylococcus aureus: Concordance between Veterinary Clinicians’ Perception and the Realities. Antibiotics (Basel) 2023; 12:antibiotics12030570. [PMID: 36978437 PMCID: PMC10044686 DOI: 10.3390/antibiotics12030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Antibiotics must be safe and effective for use in both human and veterinary medicine. However, information about the efficacy of different brands of antibiotics commonly used in veterinary practices is lacking in Ethiopia. In this study, we determined the efficacy of three brands of penicillin–streptomycin (Pen&strep, Penstrep, and Pro&strep) by performing antimicrobial susceptibility testing against Staphylococcus aureus isolated from cow milk from dairy farms in the towns of Sebata and Bishoftu, Central Ethiopia. We also assessed the knowledge, attitudes, and practices (KAP) of veterinarians regarding the quality and use of brand antibiotics and the antibiotic utilization practices of dairy farm personnel using a structured questionnaire. Of 43 S. aureus isolated and tested, 33 (77%), 10 (23%), and 1 (2%) were susceptible to brands A, B, and C, respectively. According to the respondents, all of them reported that penstrep is the most prescribed antibiotic in dairy farms (100%), followed by oxytetracycline (78%) and sulfa drugs (52%). All veterinarians perceived that antibiotics imported from Western countries have a higher efficacy than those from Eastern countries, and they preferred brand A to the other brands, witnessing its better clinical outcome. The majority (87%) and a little more than half (53%) of the respondents perceived the overuse of antibiotics in veterinary clinics and dairy farms, respectively. Our study revealed the better efficacy of brand A against S. aureus compared to the other brands. Interestingly, the veterinarians’ perception of and preference toward the use of brand antibiotics agreed with the findings of our antibacterial susceptibility testing. The prudent use of brand A is critically important for sustaining effective treatment, avoiding the risk of antimicrobial resistance, and helping to address animal welfare issues.
Collapse
|
42
|
Primeau CA, McWhirter JE, Carson C, McEwen SA, Parmley EJ. Exploring medical and veterinary student perceptions and communication preferences related to antimicrobial resistance in Ontario, Canada using qualitative methods. BMC Public Health 2023; 23:483. [PMID: 36915074 PMCID: PMC10012462 DOI: 10.1186/s12889-023-15193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) threatens our ability to treat and prevent infectious diseases worldwide. A significant driver of AMR is antimicrobial use (AMU) in human and veterinary medicine. Therefore, education and awareness of AMR among antimicrobial prescribers is critical. Human and animal health professionals play important roles in the AMR issue, both as contributors to the emergence of AMR, and as potential developers and implementers of effective solutions. Studies have shown that engaging stakeholders prior to developing communication materials can increase relevance, awareness, and dissemination of research findings and communication materials. As future antimicrobial prescribers, medical and veterinary students' perspectives on AMR, as well as their preferences for future communication materials, are important. The first objective of this study was to explore medical and veterinary student perceptions and understanding of factors associated with emergence and spread of AMR. The second objective was to identify key messages, knowledge translation and transfer (KTT) methods, and dissemination strategies for communication of AMR information to these groups. METHODS Beginning in November 2018, focus groups were conducted with medical and veterinary students in Ontario, Canada. A semi-structured format, using standardized open-ended questions and follow-up probing questions was followed. Thematic analysis was used to identify and analyze patterns within the data. RESULTS Analyses showed that students believed AMR to be an important global issue and identified AMU in food-producing animals and human medicine as the main drivers of AMR. Students also highlighted the need to address society's reliance on antimicrobials and the importance of collaboration between different sectors to effectively reduce the emergence and transmission of AMR. When assessing different communication materials, students felt that although infographics provide easily digestible information, other KTT materials such as fact sheets are better at providing more information without overwhelming the target audiences (e.g., professional or general public). CONCLUSION Overall, the study participants felt that AMR is an important issue and emphasized the need to develop different KTT tools for different audiences. This research will help inform the development of future communication materials, and support development of AMR-KTT tools tailored to the needs of different student and professional groups.
Collapse
Affiliation(s)
- Courtney A Primeau
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada. .,Centre for Food-borne, Environmental and Zoonotic Infectious Disease, Public Health Agency of Canada, N1H 7M7, Guelph, ON, Canada.
| | - Jennifer E McWhirter
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Carolee Carson
- Centre for Food-borne, Environmental and Zoonotic Infectious Disease, Public Health Agency of Canada, N1H 7M7, Guelph, ON, Canada
| | - Scott A McEwen
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - E Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| |
Collapse
|
43
|
Hodak CR, Bescucci DM, Shamash K, Kelly LC, Montina T, Savage PB, Inglis GD. Antimicrobial Growth Promoters Altered the Function but Not the Structure of Enteric Bacterial Communities in Broiler Chicks ± Microbiota Transplantation. Animals (Basel) 2023; 13:ani13060997. [PMID: 36978538 PMCID: PMC10044420 DOI: 10.3390/ani13060997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Non-antibiotic alternatives to antimicrobial growth promoters (AGPs) are required, and understanding the mode of action of AGPs may facilitate the development of effective alternatives. The temporal impact of the conventional antibiotic AGP, virginiamycin, and an AGP alternative, ceragenin (CSA-44), on the structure and function of the broiler chicken cecal microbiota was determined using next-generation sequencing and 1H-nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. To elucidate the impact of enteric bacterial diversity, oral transplantation (±) of cecal digesta into 1-day-old chicks was conducted. Microbiota transplantation resulted in the establishment of a highly diverse cecal microbiota in recipient chicks that did not change between day 10 and day 15 post-hatch. Neither virginiamycin nor CSA-44 influenced feed consumption, weight gain, or feed conversion ratio, and did not affect the structure of the cecal microbiota in chicks possessing a low or high diversity enteric microbiota. However, metabolomic analysis of the cecal contents showed that the metabolome of cecal digesta was affected in birds administered virginiamycin and CSA-44 as a function of bacterial community diversity. As revealed by metabolomics, glycolysis-related metabolites and amino acid synthesis pathways were impacted by virginiamycin and CSA-44. Thus, the administration of AGPs did not influence bacterial community structure but did alter the function of enteric bacterial communities. Hence, alterations to the functioning of the enteric microbiota in chickens may be the mechanism by which AGPs impart beneficial health benefits, and this possibility should be examined in future research.
Collapse
Affiliation(s)
- Colten R. Hodak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Danisa M. Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Karen Shamash
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Laisa C. Kelly
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
44
|
Meuthen D, Reinhold K. On the use of antibiotics in plasticity research: Gastropod shells unveil a tale of caution. J Anim Ecol 2023; 92:1055-1064. [PMID: 36869422 DOI: 10.1111/1365-2656.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Through phenotypic plasticity, individual genotypes can produce multiple phenotypes dependent on the environment. In the modern world, anthropogenic influences such as man-made pharmaceuticals are increasingly prevalent. They might alter observable patterns of plasticity and distort our conclusions regarding the adaptive potential of natural populations. Antibiotics are nowadays nearly ubiquitous in aquatic environments and prophylactic antibiotic use is also becoming more common to optimize animal survival and reproductive output in artificial settings. In the well-studied plasticity model system Physella acuta, prophylactic erythromycin treatment acts against gram-positive bacteria and thereby reduces mortality. Here, we study its consequences for inducible defence formation in the same species. In a 2 × 2 split-clutch design, we reared 635 P. acuta in either the presence or absence of this antibiotic, followed by 28-day exposure to either high or low predation risk as perceived through conspecific alarm cues. Under antibiotic treatment, risk-induced increases in shell thickness, a well-known plastic response in this model system, were larger and consistently detectable. Antibiotic treatment reduced shell thickness in low-risk individuals, suggesting that in controls, undiscovered pathogen infection increased shell thickness under low risk. Family variation in risk-induced plasticity was low, but the large variation in responses to antibiotics among families suggests different pathogen susceptibility between genotypes. Lastly, individuals that developed thicker shells had reduced total mass, which highlights resource trade-offs. Antibiotics thus have the potential to uncover a larger extent of plasticity, but might counterintuitively distort plasticity estimates for natural populations where pathogens are a part of natural ecology.
Collapse
Affiliation(s)
- Denis Meuthen
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Klaus Reinhold
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
45
|
Tu Z, Shui J, Liu J, Tuo H, Zhang H, Lin C, Feng J, Feng Y, Su W, Zhang A. Exploring the abundance and influencing factors of antimicrobial resistance genes in manure plasmidome from swine farms. J Environ Sci (China) 2023; 124:462-471. [PMID: 36182154 DOI: 10.1016/j.jes.2021.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/16/2023]
Abstract
Plasmids play a critical role in the dissemination of antimicrobial resistance genes (ARGs), however, a systematical understanding of ARGs originated from plasmids in swine production is currently lacking. Herein, quantitative polymerase chain reaction was applied to determine the prevalence of ten ARGs and the class1 integron gene intI1 of plasmid source in swine manure from 44 farms in Sichuan, Hubei and Hebei provinces, China. All assayed ARGs were observed in plasmid DNA samples, and the average absolute abundance of aac(6')-Ib-cr, blaNDM, blaCTX-M, optrA, ermB, floR, mcr-1, qnrS, tetM, sul1 and intI1 were 7.09, 2.90, 4.67, 6.62, 7.55, 7.14, 4.08, 4.85, 7.16, 7.11 and 8.07 of 10 log copies/gram, respectively. IntI1 showed a high correlation (r > 0.8, P < 0.01) with the abundance of aac(6')-Ib-cr and sul1 in swine manure. Moreover, the farm scale (i.e., herd population) and geographical location were not found to be critical factors influencing the absolute abundance of ARGs of plasmid DNA in swine farms. However, the concentrations of florfenicol, Cu, Zn, Fe, total phosphorus (TP) and total potassium (TK) demonstrated a significant correlation with the abundance of several ARGs. Particularly, Cu and Zn had high correlations with optrA and blaCTX-M, respectively. Our results demonstrated that antibiotics, heavy metals and environmental nutrients are likely jointly contributing to the long-term persistence of ARGs in swine production. This study provides insights into the abundance and influencing factors of ARGs from swine manure, which is of significance for assessing and reducing the public health risks in livestock production.
Collapse
Affiliation(s)
- Zunfang Tu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Junrui Shui
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongmei Tuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cong Lin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingyi Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuxuan Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wen Su
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
46
|
Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, Devan SS. Molecular detection and antimicrobial resistance profiles of Extended-Spectrum Beta-Lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. PLoS One 2023; 18:e0285743. [PMID: 37205716 DOI: 10.1371/journal.pone.0285743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
Collapse
Affiliation(s)
- Mulu Lemlem
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, Tigray, Ethiopia
| | - Erkihun Aklilu
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
| | - Maizan Mohammed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azian Harun
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Susmita Seenu Devan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baharu, Malaysia
| |
Collapse
|
47
|
Magiri R, Dissanayake C, Okello W. Antimicrobial consumption in food animals in Fiji: Analysis of the 2017 to 2021 import data. FRONTIERS IN ANTIBIOTICS 2022; 1:1055507. [PMID: 39822272 PMCID: PMC11736331 DOI: 10.3389/frabi.2022.1055507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2025]
Abstract
Introduction Globally, the demand for animal protein for human consumption has beenQ7 Q6increasing at a faster rate in the last 5 to 10 decades resulting in increasedantimicrobial consumption in food producing animals. Antimicrobials arefrequently used as part of modern methods of animal production, which mayput more pressure on evolution of antibiotic resistant bacteria. Despite theserious negative effects on animal and human health that could result fromusing antibiotics, there are no assessment of antimicrobials consumed by thelivestock sector in Fiji as well as other Pacific Island Countries. The objective ofthis study was to quantify antimicrobials imported for consumption in foodanimals into Fiji from 2017 to 2021. Methods Data on imported antimicrobials, whichwere finished products, was obtained from Biosecurity Authority Fiji (BAF).Imported antimicrobials were then analyzed by antimicrobial class, andimportance to veterinary and human medicine. Results An average of 92.86 kg peryear (sd = 64.12) of antimicrobials as a net weight was imported into Fiji in the2017-2021 study period. The mean amount of imported active antimicrobialingredients after adjusting for animal biomass was 0.86 mg/kg (sd = 0.59). Fromthe total antimicrobial imports during the years 2017 to 2021, penicillins(69.72%) and tetracycline (15.95%) were the most imported antimicrobialclasses. For animal health 96.48% of the antimicrobial imports wereveterinary critically important antimicrobials. For human healthfluroquinolones, macrolides, aminoglycosides, and penicillins were theimported critically important antimicrobials. Discussion The study concluded that use ofantimicrobials in food producing animals is low but monitoring of antimicrobialconsumption and antimicrobial resistance was critical in Fiji due to overrelianceon critically important antimicrobials.
Collapse
Affiliation(s)
- Royford Magiri
- Fiji National University, College of Agriculture, Fisheries and Forestry, Nausori, Fiji
| | | | - Walter Okello
- Commonwealth Scientific and Industrial Research Organization, Black Mountain Science and Innovation Park, Acton, ACT, Australia
| |
Collapse
|
48
|
Kovačević Z, Samardžija M, Horvat O, Tomanić D, Radinović M, Bijelić K, Vukomanović AG, Kladar N. Is There a Relationship between Antimicrobial Use and Antibiotic Resistance of the Most Common Mastitis Pathogens in Dairy Cows? Antibiotics (Basel) 2022; 12:antibiotics12010003. [PMID: 36671204 PMCID: PMC9854474 DOI: 10.3390/antibiotics12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobials have had an important impact on animal health and production performance. However, non-prudent antimicrobial use (AMU) in food producing animals is considered to contribute to the emergence of antimicrobial resistance (AMR), with a potential impact on both animal and public health. Considering the global importance of AMR, and the threats and challenges posed by mastitis and mastitis therapy in livestock production, the main objective of this study was to quantify AMU on three dairy farms in Serbia and to examine whether there is an association between AMU and the emergence of antimicrobial resistance of mastitis-associated pathogens. Antimicrobial susceptibility testing was performed by the disk diffusion method using causative agents isolated from the milk samples of 247 dairy cows. AMU data were obtained for a one-year period (May 2021 to May 2022) based on antibiotic prescriptions listed in electronic databases kept by farm veterinarians. To estimate antimicrobial drug exposure at the farm level, the veterinary drug Defined Daily Dose was calculated by multiplying the total amount of antibiotic used on the farms during the study period by the quantity of antibiotic in the administered drug and number of original drug packages used. The results on the association between the use of common antibiotics in mastitis treatment and AMR of isolated mastitis-associated pathogens confirm a pattern that could raise awareness of the importance of this aspect of good veterinary and clinical practice to combat the global threat of AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| | - Marko Samardžija
- Clinic for Reproduction and Obstetrics, Veterinary Faculty, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Olga Horvat
- Department of Farmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| | - Miodrag Radinović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
| | - Katarina Bijelić
- Center for Medical and Pharmaceutical Investigations and Quality Control, Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Annamaria Galfi Vukomanović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia
- Correspondence:
| | - Nebojša Kladar
- Center for Medical and Pharmaceutical Investigations and Quality Control, Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
49
|
Farhat N, Khan AU. Therapeutic approaches to combat the global antibiotic resistance challenge. Future Microbiol 2022; 17:1515-1529. [DOI: 10.2217/fmb-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a major concern for healthcare workers due to the emergence of new variants of resistant markers, especially carbapenemases. Combinational antibiotic therapy is one of the best and easiest approaches to handle the current situation of AMR. Although some antibiotic combinations are already in clinical use, they remain to be studied in detail. This review focuses on therapeutic options for AMR mechanisms of resistance in bacteria that can be overcome by combinational therapy and testing methods for synergy. The integration of diverse approaches may provide information that is imperative in mitigating the threat of AMR.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
50
|
Antibiotic Residues in Poultry Eggs and Its Implications on Public Health: A Review. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|