1
|
Iranzadeh A, Alisoltani A, Kiran AM, Breiman RF, Chaguza C, Peno C, Cornick JE, Everett DB, Mulder N. Comparative pangenomics of Streptococcus pneumoniae from Malawi: uncovering genetic variability and pathogenicity. Microb Genom 2025; 11. [PMID: 40232949 DOI: 10.1099/mgen.0.001370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Streptococcus pneumoniae is a significant cause of bacterial infections, including pneumonia, meningitis and septicemia, primarily affecting children, the elderly and immunocompromised individuals. This study aimed to elucidate the serotype and lineage distribution and molecular mechanisms underlying pneumococcal invasiveness through a comprehensive pangenomic analysis of 1416 isolates from Malawi. Our analysis comprised 810 isolates from asymptomatic carriers and 606 isolates from patients with bacteraemia or meningitis. We identified 58 serotypes, with serotypes 1, 5 and 12F exhibiting significantly higher prevalence among patients. These serotypes likely exhibit reduced nasopharyngeal colonization and demonstrate rapid dissemination to sterile sites. Notably, these serotypes form a distinct lineage with distinct genomic characteristics, including the absence of V-type ATP synthase. The pangenome analysis revealed two highly conserved surface protein complexes, F-type ATP synthase and SecA1-SecY, which deserve further investigation as potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anmol M Kiran
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre, Malawi
- Centre for Inflammation Research, Queens Research Institute, University of Edinburgh, Edinburgh, UK
| | - Robert F Breiman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Chikondi Peno
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre, Malawi
- Centre for Inflammation Research, Queens Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jennifer E Cornick
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust, Queen Elizabeth Central Hospital, College of Medicine, Blantyre, Malawi
| | - Dean B Everett
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
- Infection Research Unit, Khalifa University, Abu Dhabi, UAE
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Western Cape, South Africa
| |
Collapse
|
2
|
Rajput P, Nahar KS, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:1197. [PMID: 39766587 PMCID: PMC11672434 DOI: 10.3390/antibiotics13121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.
Collapse
Affiliation(s)
- Pratiksing Rajput
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Kazi S. Nahar
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK;
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
3
|
Khan T, Mondal SI, Mahmud A, Karim D, Draper LA, Hill C, Azad AK, Akter A. Identification of cell wall binding domains and repeats in Streptococcus pneumoniae phage endolysins: A molecular and diversity analysis. Biochem Biophys Rep 2024; 40:101844. [PMID: 39483175 PMCID: PMC11525621 DOI: 10.1016/j.bbrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a multidrug-resistant pathogen associated with pneumonia, otitis media, meningitis and other severe complications that are currently a global threat to human health. The World Health Organization listed Pneumococcus as the fourth of twelve globally prioritized pathogens. Identifying alternatives to antibiotic therapies is urgently needed to combat Pneumococcus. Bacteriophage-derived endolysins can be used as alternative therapeutics due to their bacterial cell wall hydrolyzing capability. In this study, S. pneumoniae phage genomes were screened to create a database of endolysins for molecular modelling and diversity analysis of these lytic proteins. A total of 89 lytic proteins were curated from 81 phage genomes and categorized into eight groups corresponding to their different enzymatically active (EAD) domains and cell wall binding (CBDs) domains. We then constructed three-dimensional structures that provided insights into these endolysins. Group I, II, III, V, and VI endolysins showed conserved catalytic and ion-binding residues similar to existing endolysins available in the Protein Data Bank. While performing structural and sequence analysis with template lysin, an additional cell wall binding repeat was observed in Group II lysin, which was not previously known. Molecular docking performed with choline confirmed the existence of this additional repeat. Group III endolysins showed 99.16 % similarity to LysME-EF1, a lysin derived from Enterococcus faecalis. Furthermore, the comparative computational analysis revealed the existence of CBDs in Group III lysin. This study provides the first insight into the molecular and diversity analysis of S. pneumoniae phage endolysins that could be valuable for developing novel lysin-based therapeutics.
Collapse
Affiliation(s)
- Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Daniyal Karim
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Lorraine A. Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
4
|
Summer K, Liu L, Guo Q, Barkla B, Benkendorff K. Semi-purified Antimicrobial Proteins from Oyster Hemolymph Inhibit Pneumococcal Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:862-875. [PMID: 38430292 PMCID: PMC11480171 DOI: 10.1007/s10126-024-10297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Pneumococcal infections caused by Streptococcus pneumoniae are a leading cause of morbidity and mortality globally, particularly among children. The ability of S. pneumoniae to form enduring biofilms makes treatment inherently difficult, and options are further limited by emerging antibiotic resistance. The discovery of new antibiotics, particularly those with antibiofilm activity, is therefore increasingly important. Antimicrobial proteins and peptides (AMPs) from marine invertebrates are recognised as promising pharmacological leads. This study determined the in vitro antibacterial activity of hemolymph and unique protein fractions from an Australian oyster (Saccostrea glomerata) against multi-drug-resistant S. pneumoniae. We developed a successful method for hemolymph extraction and separation into 16 fractions by preparative HPLC. The strongest activity was observed in fraction 7: at 42 µg/mL protein, this fraction was bactericidal to S. pneumoniae and inhibited biofilm formation. Proteomic analysis showed that fraction 7 contained relatively high abundance of carbonic anhydrase, cofilin, cystatin B-like, and gelsolin-like proteins, while surrounding fractions, which showed lower or no antibacterial activity, contained these proteins in lower abundance or not at all. This work supports traditional medicinal uses of oysters and contributes to further research and development of novel hemolymph/AMP-based treatments for pneumococcal infections.
Collapse
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Bronwyn Barkla
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
5
|
Jain SS, Singh VK, Kante RK, Jana SK, Patil RH. Current trends in development and manufacturing of higher-valent pneumococcal polysaccharide conjugate vaccine and its challenges. Biologicals 2024; 87:101784. [PMID: 39053122 DOI: 10.1016/j.biologicals.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) have been developed to protect against pneumococcal diseases caused by the more than 100 serotypes of the bacterium Streptococcus pneumoniae. PCVs primarily prevent pneumococcal infections such as sepsis, bacteraemia, meningitis, otitis media, pneumonia, septicaemia, and sinusitis among infants, adults, elderly, and immunocompromised individuals. The current available PCVs only cover a limited number of serotypes, and there is an immense need for developing higher-valent PCVs that can protect against non-vaccine serotypes to overcome challenges like serotype replacement and antibiotic resistance. The main challenges for developing higher valent PCVs are the complexity of the manufacturing process comprising polysaccharide fermentation, purification, modification or sizing of multiple polysaccharides and conjugation between polysaccharides and carrier proteins, the stability of the conjugates, and the immunogenicity of the vaccine. Different manufacturing processes have been explored to produce higher valent PCVs using different serotypes of S. pneumoniae and conjugation with different carrier proteins. The global coverage of higher valent PCVs are still low, mainly due to the high cost and limited supply of the vaccine. This review focuses on the existing and emerging manufacturing processes and challenges associated with higher-valent pneumococcal PCV development.
Collapse
Affiliation(s)
- Shital S Jain
- Savitribai Phule Pune University, Department of Biotechnology, Pune, Maharashtra, 411007, India; Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Vikas K Singh
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Rajesh Kumar Kante
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Swapan Kumar Jana
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Rajendra H Patil
- Savitribai Phule Pune University, Department of Biotechnology, Pune, Maharashtra, 411007, India.
| |
Collapse
|
6
|
Zahari NIN, Engku Abd Rahman ENS, Irekeola AA, Ahmed N, Rabaan AA, Alotaibi J, Alqahtani SA, Halawi MY, Alamri IA, Almogbel MS, Alfaraj AH, Ibrahim FA, Almaghaslah M, Alissa M, Yean CY. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1927. [PMID: 38003976 PMCID: PMC10672801 DOI: 10.3390/medicina59111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a bacterial species often associated with the occurrence of community-acquired pneumonia (CAP). CAP refers to a specific kind of pneumonia that occurs in individuals who acquire the infection outside of a healthcare setting. It represents the leading cause of both death and morbidity on a global scale. Moreover, the declaration of S. pneumoniae as one of the 12 leading pathogens was made by the World Health Organization (WHO) in 2017. Antibiotics like β-lactams, macrolides, and fluoroquinolones are the primary classes of antimicrobial medicines used for the treatment of S. pneumoniae infections. Nevertheless, the efficacy of these antibiotics is diminishing as a result of the establishment of resistance in S. pneumoniae against these antimicrobial agents. In 2019, the WHO declared that antibiotic resistance was among the top 10 hazards to worldwide health. It is believed that penicillin-binding protein genetic alteration causes β-lactam antibiotic resistance. Ribosomal target site alterations and active efflux pumps cause macrolide resistance. Numerous factors, including the accumulation of mutations, enhanced efflux mechanisms, and plasmid gene acquisition, cause fluoroquinolone resistance. Furthermore, despite the advancements in pneumococcal vaccinations and artificial intelligence (AI), it is not feasible for individuals to rely on them indefinitely. The ongoing development of AI for combating antimicrobial resistance necessitates more research and development efforts. A few strategies can be performed to curb this resistance issue, including providing educational initiatives and guidelines, conducting surveillance, and establishing new antibiotics targeting another part of the bacteria. Hence, understanding the resistance mechanism of S. pneumoniae may aid researchers in developing a more efficacious antibiotic in future endeavors.
Collapse
Affiliation(s)
- Nurul Izzaty Najwa Zahari
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | | | - Mohammed Y. Halawi
- Cytogenetics Department, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Ibrahim Ateeq Alamri
- Blood Bank Department, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| |
Collapse
|
7
|
Giráldez-Pérez RM, Grueso EM, Carbonero A, Álvarez Márquez J, Gordillo M, Kuliszewska E, Prado-Gotor R. Synergistic Antibacterial Effects of Amoxicillin and Gold Nanoparticles: A Therapeutic Option to Combat Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1275. [PMID: 37627696 PMCID: PMC10451730 DOI: 10.3390/antibiotics12081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Elia M. Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| | - Alfonso Carbonero
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | - Juan Álvarez Márquez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Mirian Gordillo
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
8
|
Gu K, Ding L, Wang Z, Sun Y, Sun X, Yang W, Sun H, Tian Y, Wang Z, Sun L. Wogonin attenuates the pathogenicity of Streptococcus pneumoniae by double-target inhibition of Pneumolysin and Sortase A. J Cell Mol Med 2023; 27:563-575. [PMID: 36747468 PMCID: PMC9930429 DOI: 10.1111/jcmm.17684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major causative agent of respiratory disease in patients and can cause respiratory distress and other symptoms in severe cases. Pneumolysin (PLY) is a pore-forming toxin that induces host tissue injury and inflammatory responses. Sortase A (SrtA), a catalytic enzyme that anchors surface-associated virulence factors, is critical for S. pneumoniae virulence. Here, we found that the active ingredient of the Chinese herb Scutellaria baicalensis, wogonin, simultaneously inhibited the haemolytic activity of PLY and SrtA activity. Consequently, wogonin decreased PLY-mediated cell damage and reduced SrtA-mediated biofilm formation by S. pneumoniae. Furthermore, our data indicated that wogonin did not affect PLY expression but directly altered its oligomerization, leading to reduced activity. Furthermore, the analysis of a mouse pneumonia model further revealed that wogonin reduced mortality in mice infected with S. pneumoniae laboratory strain D39 and S. pneumoniae clinical isolate E1, reduced the number of colony-forming units in infected mice and decreased the W/D ratio and levels of the inflammatory factors TNF-α, IL-6 and IL-1β in the lungs of infected mice. Thus, wogonin reduces S. pneumoniae pathogenicity by inhibiting the dual targets PLY and SrtA, providing a treatment option for S. pneumoniae infection.
Collapse
Affiliation(s)
- Kuan Gu
- Changchun University of Chinese MedicineChangchunChina
| | - Lizhong Ding
- Affiliated Hospital to Changchun University of Chinese MedicineJilinChina
| | | | - Yingying Sun
- Affiliated Hospital to Changchun University of Chinese MedicineJilinChina
| | - Xiaozhou Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Wenbo Yang
- Changchun University of Chinese MedicineChangchunChina
| | - Haihang Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Ye Tian
- Changchun University of Chinese MedicineChangchunChina
| | - Zeyu Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Liping Sun
- Changchun University of Chinese MedicineChangchunChina,Affiliated Hospital to Changchun University of Chinese MedicineJilinChina
| |
Collapse
|
9
|
Cabellos C, Guillem L, Pelegrin I, Tubau F, Ardanuy C, Gudiol F, Ariza J, Viladrich PF. Penicillin- and Cephalosporin-Resistant Pneumococcal Meningitis: Treatment in the Real World and in Guidelines. Antimicrob Agents Chemother 2022; 66:e0082022. [PMID: 36326246 PMCID: PMC9764967 DOI: 10.1128/aac.00820-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
To report on the therapy used for penicillin- and cephalosporin-resistant pneumococcal meningitis, we conducted an observational cohort study of patients admitted to our hospital with pneumococcal meningitis between 1977 and 2018. According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations, we defined pneumococci as susceptible and resistant to penicillin with MIC values of ≤0.06 mg/L and > 0.06 mg/L, respectively; the corresponding values for cefotaxime (CTX) were ≤0.5 mg/L and >0.5 mg/L. We treated 363 episodes of pneumococcal meningitis during the study period. Of these, 24 had no viable strain, leaving 339 episodes with a known MIC for inclusion. Penicillin-susceptible strains accounted for 246 episodes (73%), penicillin-resistant strains for 93 (27%), CTX susceptible for 58, and CTX resistant for 35. Nine patients failed or relapsed and 69 died (20%), of whom 22% were among susceptible cases and 17% were among resistant cases. During the dexamethasone period, mortality was equal (12%) in both susceptible and resistant cases. High-dose CTX (300 mg/Kg/day) helped to treat failed or relapsed cases and protected against failure when used as empirical therapy (P = 0.02), even in CTX-resistant cases. High-dose CTX is a good empirical therapy option for pneumococcal meningitis in the presence of a high prevalence of penicillin and cephalosporin resistance, effectively treating pneumococcal strains with MICs up to 2 mg/L for either penicillin or CTX.
Collapse
Affiliation(s)
- Carmen Cabellos
- Infectious Diseases Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Departament de Ciències Clíniques, University of Barcelona, Barcelona, Spain
| | - Lluïsa Guillem
- Infectious Diseases Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Departament de Ciències Clíniques, University of Barcelona, Barcelona, Spain
| | - Ivan Pelegrin
- Infectious Diseases Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Departament de Ciències Clíniques, University of Barcelona, Barcelona, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - F. Gudiol
- Infectious Diseases Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Departament de Ciències Clíniques, University of Barcelona, Barcelona, Spain
| | - J. Ariza
- Infectious Diseases Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Departament de Ciències Clíniques, University of Barcelona, Barcelona, Spain
| | - Pedro F. Viladrich
- Infectious Diseases Department, Hospital Universitari Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Departament de Ciències Clíniques, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
QSAR, Docking, and Molecular Dynamics Simulation Studies of Sigmacidins as Antimicrobials against Streptococci. Int J Mol Sci 2022; 23:ijms23084085. [PMID: 35456906 PMCID: PMC9025105 DOI: 10.3390/ijms23084085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococci are a family of bacterial species significantly affecting human health. In addition, environmental Streptococci represent one of the major causes of diverse livestock diseases. Due to antimicrobial resistance, there is an urgent need for novel antimicrobial agent discovery against Streptococci. We discovered a class of benzoic acid derivatives named sigmacidins inhibiting the bacterial RNA polymerase-σ factor interaction and demonstrating excellent antimicrobial activity against Streptococci. In this work, a combinational computer approach was applied to gain insight into the structural basis and mechanism of action of sigmacidins as antimicrobials against Streptococcus pneumoniae. Both two- and three-dimensional quantitative structure-active relationships (2D and 3D QSAR) of sigmacidins displayed good predictive ability. Moreover, molecular docking and molecular dynamics simulation studies disclosed possible contacts between the inhibitors and the protein. The results obtained in this study provided understanding and new directions to the further optimizations of sigmacidins as novel antimicrobials.
Collapse
|
11
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Hale JDF, Jain R, Wescombe PA, Burton JP, Simon RR, Tagg JR. Safety assessment of Streptococcus salivarius M18 a probiotic for oral health. Benef Microbes 2022; 13:47-60. [PMID: 35098909 DOI: 10.3920/bm2021.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of probiotics targeting non-intestinal body sites continues to generate interest amongst researchers, biotech companies and consumers alike. A key consideration for any bacterial strain to be developed into a probiotic is a robust assessment of its safety profile. Streptococcus salivarius strain M18 was originally isolated from a healthy adult and evaluated for its probiotic capabilities targeted to dental and oral health applications. This publication presents the safety characterisation of strain M18. Application of a diverse range of techniques showed that strain M18 can be specifically distinguished from other S. salivarius using a variety of molecular and phenotypic methodologies and that it lacks any relevant antibiotic resistance or virulence determinants. Direct comparison of the strain M18 safety profile with that of the prototype S. salivarius probiotic, S. salivarius strain K12, supports the proposition that strain M18 is indeed safe for probiotic application in humans.
Collapse
Affiliation(s)
- J D F Hale
- Blis Technologies Ltd, 81 Glasgow Street, South Dunedin, Dunedin 9012, New Zealand
| | - R Jain
- Blis Technologies Ltd, 81 Glasgow Street, South Dunedin, Dunedin 9012, New Zealand
| | - P A Wescombe
- Yili Innovation Center Oceania, Lincoln University, Christchurch, New Zealand
| | - J P Burton
- Lawson Health Research Institute, 268 Grosvenor St, London, ON, Canada
| | - R R Simon
- Intertek Health Sciences Inc, Mississauga, ON, Canada
| | - J R Tagg
- Blis Technologies Ltd, 81 Glasgow Street, South Dunedin, Dunedin 9012, New Zealand
| |
Collapse
|
13
|
Sasagawa K, Domon H, Sakagami R, Hirayama S, Maekawa T, Isono T, Hiyoshi T, Tamura H, Takizawa F, Fukushima Y, Tabeta K, Terao Y. Matcha Green Tea Exhibits Bactericidal Activity against Streptococcus pneumoniae and Inhibits Functional Pneumolysin. Antibiotics (Basel) 2021; 10:antibiotics10121550. [PMID: 34943762 PMCID: PMC8698834 DOI: 10.3390/antibiotics10121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Rina Sakagami
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yoichi Fukushima
- Nestlé Japan Ltd., Wellness Communications, Tokyo 140-0002, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-2838
| |
Collapse
|
14
|
Capsule Independent Antimicrobial Activity Induced by Nanochitosan against Streptococcus pneumoniae. Polymers (Basel) 2021; 13:polym13172924. [PMID: 34502964 PMCID: PMC8434149 DOI: 10.3390/polym13172924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Streptococcus pneumoniae remains a major cause of community-acquired pneumonia, meningitis, and other diseases, contributing significantly to high morbidity and mortality worldwide. Although it responds to antibiotics, their use is becoming limited due to the rise in antibiotic resistance, which necessitates the development of new therapeutics. Nanotechnology is used to counteract antimicrobial resistance. In this regard, polymeric nanoparticles (NPs) made of natural, biodegradable, biocompatible, and cationic polymers such as Chitosan (CNPs) exhibit wide-spectrum antimicrobial activity. Therefore, this study aimed to prepare CNPs, characterize their physiochemical characteristics: particle size (PZ), polydispersity index (PDI), and zeta potential (ZP), and investigate their antimicrobial activity against Streptococcus pneumoniae TIGR4 (virulent serotype 4) and its capsular mutant (∆cps). Methods: CNPs were prepared at 1, 2.5, and 5 mg/mL concentrations using the ion gelation method. Then, PZ, PDI, and ZP were characterized using a Zetasizer. Transmission electron microscopy (TEM) was used to visualize the CNP’s morphology. Broth and agar dilution methods were used to assess their antimicrobial activity. Cytotoxicity of prepared NPs on A549 cells and their effect on pneumococcal hemolysis were also investigated. Results: Spherical CNPs were produced with PZ ranging from 133.3 nm ± 0.57 to 423 nm ± 12.93 PDI < 0.35, and ZP from 19 ± 0.115 to 27 ± 0.819. The prepared CNPs exhibited antibacterial activity against TIGR4 and its capsule mutant with a minimum inhibitory concentration (MIC90) of 0.5 to 2.5 mg/mL in a non-acidic environment. The hemolysis assay results revealed that CNPs reduced bacterial hemolysis in a concentration-dependent manner. Their mammalian cytotoxicity results indicated that CNPs formed from low concentrations of Chitosan (Cs) were cytocompatible. Conclusion: Nanochitosan particles showed anti-pneumococcal activity regardless of the presence of capsules. They resulted in a concentration-dependent reduction in bacterial hemolysis and were cytocompatible at a lower concentration of Cs. These findings highlight the potential of CNPs in the treatment of pneumococcal diseases.
Collapse
|
15
|
Davidovich NV, Galieva AS, Davydova NG, Malygina OG, Kukalevskaya NN, Simonova GV, Bazhukova TA. Spectrum and resistance determinants of oral streptococci clinical isolates. Klin Lab Diagn 2021; 65:632-637. [PMID: 33245653 DOI: 10.18821/0869-2084-2020-65-10-632-637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The profiles of oral streptococci sensitivity to antibacterial drugs may reflect information about the presence of macroorganism resistance determinants. The aim of the work was to isolate the spectrum of oral streptococci from the microbiota of the oral cavity of patients and to determine their sensitivity to a wide range of antibiotics. A total of 342 microbial streptococcal isolates were isolated from saliva samples and a periodontal pocket and tested for antibiotic sensitivity. Species identification of streptococci was carried out using biochemical API test systems. Evaluation of antibiotic resistance was performed using E-tests. Real-time PCR was used to identify the presence of tetracycline and macrolide resistance genes. The study identified six types of oral streptococci: S. oralis, S. salivarius, S. mitis, S. sanguinis, S. anginosus and S. mutans. All streptococci were sensitive to linezolid and meropenem. The proportion of penicillin-resistant streptococci in the subgroup S. oralis / mitis / mutans was 47,8% versus 23,5% in the subgroup S. salivarius / sanguinis / anginosus (p = 0.020). Significant levels of resistance were revealed to macrolides (erythromycin) - 47,9%, tetracyclines (tetracycline) - 44,4% and quinolones (ofloxacin) - 41%. Multiple drug resistance (MDR) was detected in 31,9% of oral streptococcal isolates, a combination of erythromycin, tetracycline and ofloxacin resistance was prevalent in 79 isolates (23,1%). The most common genotypes of macrolides and tetracycline resistant oral streptococci (in 127 streptococcal isolates with combined resistance) were ermB-mefE + and tetM + tetQ-, respectively. Thus, S. oralis / mitis / mutans group streptococci predominated in the structure of antibiotic-resistant oral streptococci, including MDR. So, being in one of the most densely populated biotopes of a macroorganism, oral streptococci can mediate the transfer of resistance determinants to more pathogenic and clinically significant microorganisms, which requires careful monitoring of their level of susceptibility to antimicrobial agents.
Collapse
Affiliation(s)
| | - A S Galieva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - N G Davydova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - O G Malygina
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - N N Kukalevskaya
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - G V Simonova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T A Bazhukova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| |
Collapse
|
16
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Mounaud S, Lo SW, Zar HJ, Nierman WC, Nicol MP, Moodley C. Characterization of Pneumococcal Colonization Dynamics and Antimicrobial Resistance Using Shotgun Metagenomic Sequencing in Intensively Sampled South African Infants. Front Public Health 2020; 8:543898. [PMID: 33072693 PMCID: PMC7536305 DOI: 10.3389/fpubh.2020.543898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background: There remains a significant proportion of deaths due to pneumococcal pneumonia in infants from low- and middle-income countries despite the marginal global declines recorded in the past decade. Monitoring changes in pneumococcal carriage is key to understanding vaccination-induced shifts in the ecology of carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset of 23 infants to explore strain-level pneumococcal colonization patterns and associated antimicrobial-resistance determinants. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads. Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. In silico pneumococcal capsular and multilocus sequence typing were performed. Results: Of the 196 samples sequenced, 174 had corresponding positive cultures for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic sequencing detected a single pneumococcal serotype in 85% (129/152), and co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal serotypes were identified, with 15B/15C and 16F being the most common non-PCV13 serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six different sequence types (STs), including four novel STs were identified in silico. Mutations in the folA and folP genes, associated with cotrimoxazole resistance, were detected in 89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates. Conclusions: Metagenomic sequencing of NP samples is a valuable culture-independent technique for a detailed evaluation of the pneumococcal component and resistome of the NP microbiome. This method allowed for the detection of novel STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this cohort. Forty-eight resistance genes, as well as mutations associated with resistance were detected, but the correlation with phenotypic non-susceptibility was lower than expected.
Collapse
Affiliation(s)
- Rendani I Manenzhe
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Felix S Dube
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | | | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Stephanie W Lo
- Parasites and Microbes Program, The Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African - Medical Research Council Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | - Mark P Nicol
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Infection and Immunity, University of Western Australia, Perth, WA, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
17
|
Isono T, Domon H, Nagai K, Maekawa T, Tamura H, Hiyoshi T, Yanagihara K, Kunitomo E, Takenaka S, Noiri Y, Terao Y. Treatment of severe pneumonia by hinokitiol in a murine antimicrobial-resistant pneumococcal pneumonia model. PLoS One 2020; 15:e0240329. [PMID: 33057343 PMCID: PMC7561173 DOI: 10.1371/journal.pone.0240329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae is often isolated from patients with community-acquired pneumonia. Antibiotics are the primary line of treatment for pneumococcal pneumonia; however, rising antimicrobial resistance is becoming more prevalent. Hinokitiol, which is isolated from trees in the cypress family, has been demonstrated to exert antibacterial activity against S. pneumoniae in vitro regardless of antimicrobial resistance. In this study, the efficacy of hinokitiol was investigated in a mouse pneumonia model. Male 8-week-old BALB/c mice were intratracheally infected with S. pneumoniae strains D39 (antimicrobial susceptible) and NU4471 (macrolide resistant). After 1 h, hinokitiol was injected via the tracheal route. Hinokitiol significantly decreased the number of S. pneumoniae in the bronchoalveolar lavage fluid (BALF) and the concentration of pneumococcal DNA in the serum, regardless of whether bacteria were resistant or susceptible to macrolides. In addition, hinokitiol decreased the infiltration of neutrophils in the lungs, as well as the concentration of inflammatory cytokines in the BALF and serum. Repeated hinokitiol injection at 18 h intervals showed downward trend in the number of S. pneumoniae in the BALF and the concentration of S. pneumoniae DNA in the serum with the number of hinokitiol administrations. These findings suggest that hinokitiol reduced bacterial load and suppressed excessive host immune response in the pneumonia mouse model. Accordingly, hinokitiol warrants further exploration as a potential candidate for the treatment of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Eiji Kunitomo
- Central Research and Development Laboratory, Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
18
|
Boisson B. The genetic basis of pneumococcal and staphylococcal infections: inborn errors of human TLR and IL-1R immunity. Hum Genet 2020; 139:981-991. [PMID: 31980906 PMCID: PMC7275878 DOI: 10.1007/s00439-020-02111-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/04/2020] [Indexed: 01/08/2023]
Abstract
Many bacteria can cause pyogenic lesions in humans. Most of these bacteria are harmless in most individuals, but they, nevertheless, cause significant morbidity and mortality worldwide. The inherited and acquired immunodeficiencies underlying these pyogenic infections differ between bacteria. This short review focuses on two emblematic pyogenic bacteria: pneumococcus (Streptococcus pneumoniae) and Staphylococcus, both of which are Gram-positive encapsulated bacteria. We will discuss the contribution of human genetic studies to the identification of germline mutations of the TLR and IL-1R pathways.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France.
- Imagine Institute, Paris Descartes University, Paris, EU, France.
| |
Collapse
|
19
|
Hjálmarsdóttir MÁ, Haraldsson G, Quirk SJ, Haraldsson Á, Erlendsdóttir H, Kristinsson KG. Reduction of antimicrobial resistant pneumococci seven years after introduction of pneumococcal vaccine in Iceland. PLoS One 2020; 15:e0230332. [PMID: 32182260 PMCID: PMC7077842 DOI: 10.1371/journal.pone.0230332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/26/2020] [Indexed: 11/18/2022] Open
Abstract
Background Penicillin non-susceptible (PNSP) and multi-resistant pneumococci have been prevalent in Iceland since early nineties, mainly causing problems in treatment of acute otitis media. The 10-valent protein conjugated pneumococcal vaccine (PHiD-CV) was introduced into the childhood vaccination program in 2011. The aim of the study was to investigate the changes in antimicrobial susceptibility and serotype distribution of penicillin non-susceptible pneumococci (PNSP) in Iceland 2011–2017. Methods and findings All pneumococcal isolates identified at the Landspítali University Hospital in 2011–2017, excluding isolates from the nasopharynx and throat were studied. Susceptibility testing was done according to the EUCAST guidelines using disk diffusion with chloramphenicol, erythromycin, clindamycin, tetracycline, trimethoprim/sulfamethoxazole and oxacillin for PNSP screening. Penicillin and ceftriaxone minimum inhibitory concentrations (MIC) were measured for oxacillin resistant isolates using the E-test. Serotyping was done using latex agglutination and/or multiplex PCR. The total number of pneumococcal isolates that met the study criteria was 1,706, of which 516 (30.2%) were PNSP, and declining with time. PNSP isolates of PHiD-CV vaccine serotypes (VT) were 362/516 (70.2%) declining with time, 132/143 (92.3%) in 2011 and 17/54 (31.5%) in 2017. PNSP were most commonly of serotype 19F, 317/516 isolates declining with time, 124/143 in 2011 and 15/54 in 2017. Their number decreased in all age groups, but mainly in the youngest children. PNSP isolates of non PHiD-CV vaccine serotypes (NVT) were 154/516, increasing with time, 11/14, in 2011 and 37/54 in 2017. The most common emerging NVTs in 2011 and 2017 were 6C, 1/143 and 10/54 respectively. Conclusions PNSP of VTs have virtually disappeared from children with pneumococcal diseases after the initiation of pneumococcal vaccination in Iceland and a clear herd effect was observed. This was mainly driven by a decrease of PNSP isolates belonging to a serotype 19F multi-resistant lineage. However, emerging multi-resistant NVT isolates are of concern.
Collapse
Affiliation(s)
- Martha Á. Hjálmarsdóttir
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavík, Iceland
- BioMedical Centre of the University of Iceland, Reykjavik, Iceland
- * E-mail:
| | - Gunnsteinn Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavík, Iceland
- BioMedical Centre of the University of Iceland, Reykjavik, Iceland
| | - Sigríður Júlía Quirk
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavík, Iceland
- BioMedical Centre of the University of Iceland, Reykjavik, Iceland
| | - Ásgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Children´s Hospital Iceland, Landspitali University Hospital, Reykjavík, Iceland
| | - Helga Erlendsdóttir
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavík, Iceland
| | - Karl G. Kristinsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavík, Iceland
- BioMedical Centre of the University of Iceland, Reykjavik, Iceland
| |
Collapse
|
20
|
Meropenem versus Cefotaxime and Ampicillin as Empirical Antibiotic Treatment in Adult Bacterial Meningitis: a Quality Registry Study, 2008 to 2016. Antimicrob Agents Chemother 2019; 63:AAC.00883-19. [PMID: 31501148 DOI: 10.1128/aac.00883-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
Cefotaxime, alone or with ampicillin, is frequently used in empirical treatment of acute bacterial meningitis (ABM). Meropenem is a less extensively investigated alternative. The aim of the study was to investigate the effects of empirical treatment with meropenem compared to cefotaxime plus ampicillin on outcome in ABM. The study was based on data from the Swedish quality register for ABM collected between January 2008 and December 2016. Propensity score matching was performed to adjust for baseline differences between the groups. Mortality within 30 days was the primary outcome. The treatment regimens of interest were administered to 623 patients; 328 were given cefotaxime plus ampicillin whereas 295 received meropenem. Using propensity score matching, the 30-day mortality rates were 3.2% in the cefotaxime plus ampicillin group and 3.6% in the meropenem group. For matched cases, the odds ratio (OR) for 30-day mortality for meropenem versus cefotaxime plus ampicillin was 1.15 (confidence interval [CI], 0.41 to 3.22; P = 0.79). The OR for 90-day mortality was 1.47 (CI, 0.62 to 3.52; P = 0.38) and for unfavorable outcome was 1.10 (CI, 0.75 to 1.63; P = 0.62). The findings of our study indicate that meropenem is an effective empirical treatment option for adults with community-acquired ABM. However, to spare carbapenems, guidelines should continue to recommend third-generation cephalosporins as an empirical treatment for the majority of patients with ABM.
Collapse
|
21
|
Azarsa M, Ohadian Moghadam S, Rahbar M, Baseri Z, Pourmand MR. Molecular serotyping and genotyping of penicillin non-susceptible pneumococci: the introduction of new sequence types, Tehran, Iran. New Microbes New Infect 2019; 32:100597. [PMID: 31641513 PMCID: PMC6796605 DOI: 10.1016/j.nmni.2019.100597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 12/04/2022] Open
Abstract
The emergence of penicillin non-susceptible Streptococcus pneumoniae (PNSP) isolates can pose significant challenges to today's health-care system. Resistant clonal isolates are disseminated in different regions and countries, and this study was focused on the description of the epidemiological spread of these strains. Clinical samples were collected from individuals admitted to hospitals affiliated to the Tehran University of Medical Sciences, Iran. To investigate the molecular characteristics of PNSP isolates, they were subjected to molecular typing using multi-locus sequence typing (MLST). Serotype distributions of S. pneumoniae isolates were also evaluated by multiplex PCR assay. The most prevalent serotypes in the PNSP isolates were 23F, 19F, 14, 3 and 9V. Two isolates were considered as a non-vaccine serotype. The MLST analysis showed that PNSP isolates belonged to five different clonal complexes (CC180, CC217, CC81, CC63 and CC320) and 42% (5/12) of the sequence types were novel (12936, 12937, 12938, 12939 and 12940). This study indicates the high level of heterogeneity that is present among PNSP isolates. Unexpected high genetic diversity in small populations indicates consecutive diversification of resistant strains.
Collapse
Affiliation(s)
- M Azarsa
- Department of Microbiology, Khoy University of Medical Sciences, Khoy, Iran
| | - S Ohadian Moghadam
- Uro-Oncology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rahbar
- Department of Microbiology, Reference Health Laboratories Research Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Z Baseri
- Central Laboratory of Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - M R Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Alavi M, Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti Infect Ther 2019; 17:419-428. [PMID: 31046483 DOI: 10.1080/14787210.2019.1614914] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: In recent years, multidrug resistance (MDR) in bacteria has drastically increased and has posed a great threat to the human health. This problem has generated an urgent need to search alternatives for the treatment of MDR bacteria. It has been proved that metal nanoparticles (MNPs) and metal nanocomposites (MNCs) possess remarkable antimicrobial potential, and hence can be used in alternative therapy. Areas covered: This review is aimed to discuss recent reports on antibacterial activities of MNPs and MNCs against MDR bacteria. Expert opinion: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Streptococcus pneumoniae, and Staphylococcus epidermidis are important pathogenic bacteria which have shown MDR against a wide range of conventional antibiotics. In this context, effects of MNPs and MNCs on these pathogens have demonstrated considerable efficacy. Several mechanisms concerning activity of MNPs and MNCs against pathogenic bacteria which are mainly dependent on type of their precursors and treated bacterium have been investigated. In addition, many studies have been made on antibacterial activities of these nanomaterials with similar and different results.
Collapse
Affiliation(s)
- Mehran Alavi
- a Department of Nanobiotechnology , Razi University , Kermanshah , Iran
| | - Mahendra Rai
- b Basic Science Research Professor (UGC), Department of Biotechnology , SGB Amravati University , Amravati , India
| |
Collapse
|
23
|
Abstract
The adherence of microorganisms to denture base materials and the consequent formation of biofilms on these surfaces are contributing factors to biofilm-related oral and systemic diseases. Aspiration pneumonia is a potentially life-threatening respiratory infection associated with the entry of foreign materials into the bronchi. Vanillin-incorporated polymethyl methacrylate (PMMA) resin has been developed for the use in dentistry and demonstrated to have antimicrobial activity. Objective: To evaluate antimicrobial property of vanillin-incorporated PMMA denture base resin on biofilm formation of respiratory pathogens. Materials and methods: The heat polymerized PMMA denture base resin samples (Siam Cement Group, Thailand) were prepared according to the percentage of vanillin incorporation (0%, 0.1% and 0.5% vanillin). Another group of commercial resin samples without vanillin (Triplex®, Ivoclar Vivadent, USA) was prepared in the same manner. All samples were coated with sterile unstimulated saliva collected from three healthy adult volunteers at 37 °C for 60 min. The respiratory pathogenic bacteria used in this study were Staphylococcus aureus ATCC 5638, Streptococcus pneumoniae ATCC 49619, and Pseudomonas aeruginosa ATCC 27853. They were prepared to a concentration of approximately 107 colony forming unit (CFU)/mL. The bacterial biofilm formation was done in 96-well plate and incubated at 37°C for 24-48 h. The amount of biofilm was quantified by Cell Counting Kit WST-8 (Dojindo Molecular Technologies, USA) at 420 nm. All tests were performed in triplicate on three separate occasions. One-way ANOVA and Turkey’s test were used for the statistical analysis. Results: The vanillin-incorporated resin groups (0.1% and 0.5% vanillin) had a significant reduction of S. aureus and P. aeruginosa biofilm mass compared with resins without vanillin (0% vanillin and commercial resin groups). No significant difference was observed in the S. pneumonia biofilm formation. Up to 80% and 33% reductions of biofilm mass were demonstrated on P. aeruginosa and S. aureus, respectively. Conclusion: The incorporation of vanillin to denture base PMMA resin could significantly inhibit biofilm formation of respiratory pathogens. Using this PMMA resin, denture base materials with antimicrobial property can be applied to reduce a risk of respiratory infection in denture wearing patients.
Collapse
|
24
|
Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-Level Macrolide Resistance Due to the Mega Element [ mef(E)/ mel] in Streptococcus pneumoniae. Front Microbiol 2019; 10:868. [PMID: 31105666 PMCID: PMC6491947 DOI: 10.3389/fmicb.2019.00868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/06/2023] Open
Abstract
Transferable genetic elements conferring macrolide resistance in Streptococcus pneumoniae can encode the efflux pump and ribosomal protection protein, mef(E)/mel, in an operon of the macrolide efflux genetic assembly (Mega) element- or induce ribosomal methylation through a methyltransferase encoded by erm(B). During the past 30 years, strains that contain Mega or erm(B) or both elements on Tn2010 and other Tn916-like composite mobile genetic elements have emerged and expanded globally. In this study, we identify and define pneumococcal isolates with unusually high-level macrolide resistance (MICs > 16 μg/ml) due to the presence of the Mega element [mef(E)/mel] alone. High-level resistance due to mef(E)/mel was associated with at least two specific genomic insertions of the Mega element, designated Mega-2.IVa and Mega-2.IVc. Genome analyses revealed that these strains do not possess erm(B) or known ribosomal mutations. Deletion of mef(E)/mel in these isolates eliminated macrolide resistance. We also found that Mef(E) and Mel of Tn2010-containing pneumococci were functional but the high-level of macrolide resistance was due to Erm(B). Using in vitro competition experiments in the presence of macrolides, high-level macrolide-resistant S. pneumoniae conferred by either Mega-2.IVa or erm(B), had a growth fitness advantage over the lower-level, mef(E)/mel-mediated macrolide-resistant S. pneumoniae phenotypes. These data indicate the ability of S. pneumoniae to generate high-level macrolide resistance by macrolide efflux/ribosomal protection [Mef(E)/Mel] and that high-level resistance regardless of mechanism provides a fitness advantage in the presence of macrolides.
Collapse
Affiliation(s)
- Max R Schroeder
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - Sarah Lohsen
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott T Chancey
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - David S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
25
|
Current Perspectives on Treatment of Gram-Positive Infections in India: What Is the Way Forward? Interdiscip Perspect Infect Dis 2019; 2019:7601847. [PMID: 31080476 PMCID: PMC6475552 DOI: 10.1155/2019/7601847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
The emerging antimicrobial resistance leading to gram-positive infections (GPIs) is one of the major public health threats worldwide. GPIs caused by multidrug resistant bacteria can result in increased morbidity and mortality rates along with escalated treatment cost and hospitalisation stay. In India, GPIs, particularly methicillin-resistant Staphylococcus aureus (MRSA) prevalence among invasive S. aureus isolates, have been reported to increase exponentially from 29% in 2009 to 47% in 2014. Apart from MRSA, rising prevalence of vancomycin-resistant enterococci (VRE), which ranges from 1 to 9% in India, has raised concerns. Moreover, the overall mortality rate among patients with multidrug resistant GPIs in India is reported to be 10.8% and in ICU settings, the mortality rate is as high as 16%. Another challenge is the spectrum of adverse effects related to the safety and tolerability profile of the currently available drugs used against GPIs which further makes the management and treatment of these multidrug resistant organisms a complex task. Judicious prescription of antimicrobial agents, implementation of antibiotic stewardship programmes, and antibiotic policies in hospitals are essential to reduce the problem of drug-resistant infections in India. The most important step is development of newer antimicrobial agents with novel mechanisms of action and favourable pharmacokinetic profile. This review provides a synopsis about the current burden, treatment options, and the challenges faced by the clinicians in the management of GPIs such as MRSA, Quinolone-resistant Staphylococcus, VRE, and drug-resistant pneumococcus in India.
Collapse
|
26
|
Pinto TCA, Neves FPG, Souza ARV, Oliveira LMA, Costa NS, Castro LFS, Mendonça-Souza CRDV, Peralta JM, Teixeira LM. Evolution of Penicillin Non-susceptibility Among Streptococcus pneumoniae Isolates Recovered From Asymptomatic Carriage and Invasive Disease Over 25 years in Brazil, 1990-2014. Front Microbiol 2019; 10:486. [PMID: 30930879 PMCID: PMC6427062 DOI: 10.3389/fmicb.2019.00486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/25/2019] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of community-acquired pneumonia and meningitis, and it is also found as a commensal, colonizing the human upper respiratory tract of a portion of the human population. Its polysaccharide capsule allows the recognition of more than 90 capsular types and represents the target of the currently available pneumococcal conjugate vaccines (PCVs), such as the 10-valent (PCV10) and the 13-valent (PCV13). Penicillin non-susceptible pneumococci (PNSP) have been listed as one of the current major antimicrobial-resistant pathogen threats. In Brazil, the emergence of PNSP was initially detected in the mid 1990s and PCV10 has been part of the National Immunization Program since 2010. Here, we investigated the distribution of capsular types and penicillin susceptibility profiles of 783 pneumococcal strains isolated in Brazil between 1990 and 2014 to assess the evolution of penicillin non-susceptibility among pneumococci associated with asymptomatic carriage and invasive pneumococcal disease (IPD). The most common serotypes among carriage isolates were 19F, 6B, 6C, 23F, and 14. Among IPD isolates, the most frequent types were 14, 3, 6B, 5, 19F, and 4. We detected 21 types exclusively associated with IPD isolates, whereas non-typeable (NT) isolates were only detected in carriage. Nearly half of the isolates belonged to PCV10 serotypes, which remarkably decreased in occurrence (by nearly 50%) after PCV10 introduction (2011–2014), while non-PCV10 serotypes increased. PNSP frequency and levels were much higher among carriage isolates, but PNSP belonging to PCV10 serotypes were more common in IPD. While the occurrence of PNSP has decreased significantly among IPD isolates since 2011, it kept increasing among carriage strains. Such a difference can be attributed to the serotypes that emerged in each clinical source after PCV10 usage. PNSP with multidrug resistance profiles that emerged within carriage isolates comprised mostly serotypes 6C and 35B, as well as NT isolates. In turn, penicillin-susceptible capsular types 3, 20, and 8 have risen among IPD. Overall, our results reinforce the relevance of PNSP surveillance over a long period of time to better understand the dynamics of antimicrobial resistance in response to PCV introduction and may also contribute to improve control measures toward drug-resistant pneumococci.
Collapse
Affiliation(s)
- Tatiana Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Aline Rosa Vianna Souza
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natália Silva Costa
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - José Mauro Peralta
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Nagai K, Domon H, Maekawa T, Hiyoshi T, Tamura H, Yonezawa D, Habuka R, Saitoh A, Terao Y. Immunization with pneumococcal elongation factor Tu enhances serotype-independent protection against Streptococcus pneumoniae infection. Vaccine 2018; 37:160-168. [PMID: 30442480 DOI: 10.1016/j.vaccine.2018.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022]
Abstract
Vaccination is an effective strategy to prevent pneumococcal diseases. Currently, licensed vaccines include the pneumococcal polysaccharide vaccine (PPSV) and the pneumococcal conjugate vaccine (PCV), which target some of the most common of the 94 serotypes of S. pneumoniae based on their capsular composition. However, it has been reported that PPSV is not effective in children aged less than 2 years old and PCV induces serotype replacement, which means that the pneumococcal population has changed following widespread introduction of these vaccines, and the non-vaccine serotypes have increased in being the cause of invasive pneumococcal disease. Therefore, it is important that there is development of novel pneumococcal vaccines to either replace or complement current polysaccharide-based vaccines. Our previous study suggested that S. pneumoniae releases elongation factor Tu (EF-Tu) through autolysis followed by the induction of proinflammatory cytokines in macrophages via toll-like receptor 4, that may contribute to the development of pneumococcal diseases. In this study, we investigated the expression of EF-Tu in various S. pneumoniae strains and whether EF-Tu could be an antigen candidate for serotype-independent vaccine against pneumococcal infection. Western blotting and flow cytometry analysis revealed that EF-Tu is a common factor expressed on the surface of all pneumococcal strains tested, as well as intracellularly. In addition, we demonstrate that immunization with recombinant (r) EF-Tu induced the production of inflammatory cytokines and the IgG1 and IgG2a antibodies in mice, and increased the CD4+ T-cells proportion in splenocytes. We also reveal that anti-EF-Tu serum increased the phagocytic activity of mouse peritoneal macrophages against S. pneumoniae infection, independent of their serotypes. Finally, our results indicate that mice immunized with rEF-Tu were significantly and non-specifically protected against lethal challenges with S. pneumoniae serotypes (2 and 15A). Therefore, pneumococcal EF-Tu could be an antigen candidate for the serotype-independent vaccine against pneumococcal infection.
Collapse
Affiliation(s)
- Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Yonezawa
- Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rie Habuka
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Centre for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
28
|
Diawara I, Nayme K, Katfy K, Barguigua A, Kettani-Halabi M, Belabbes H, Timinouni M, Zerouali K, Elmdaghri N. Analysis of amino acid motif of penicillin-binding proteins 1a, 2b, and 2x in invasive Streptococcus pneumoniae nonsusceptible to penicillin isolated from pediatric patients in Casablanca, Morocco. BMC Res Notes 2018; 11:632. [PMID: 30170603 PMCID: PMC6119257 DOI: 10.1186/s13104-018-3719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the nature of the amino acid motifs found in PBPs of Streptococcus pneumoniae isolates in invasive diseases from pediatric patients at Casablanca, Morocco. Five penicillin-susceptible (PSSP), ten penicillin-intermediate (PISP), and fifteen penicillin-resistant S. pneumoniae (PRSP) were studied by PCR-RFLP and DNA sequencing of the pbp1a, - 2b, and - 2x genes. RESULTS There were no changes in the conserved motifs of PBP1a, PBP2b and PBP2x for PSSP strains. Substitution close to PBP1a conserved motifs were found in all PRSP isolates and six/five PISP. Analysis of PBP2b showed that all but one of the 10 PISP strains and all PRSP had substitutions. Substitution close to PBP2x motifs showed that all but three of the 10 PISP strains and all PRSP had substitutions in tow conserved motifs. A total of 6, 11 and 10 genotypes were found after analysis of pbp1a, pbp2b, and pbp2x, respectively. The penicillin-nonsusceptible S. pneumoniae isolated in Casablanca share most amino acid substitutions of those reported worldwide, but they occurred among pneumococci with low level resistance to b-lactams.
Collapse
Affiliation(s)
- Idrissa Diawara
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco. .,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco. .,Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco.
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Khalid Katfy
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Abouddihaj Barguigua
- Laboratory of Biotechnology and Sustainable Development of Natural Ressources, Polydisciplinary Faculty, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Houria Belabbes
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Khalid Zerouali
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Naima Elmdaghri
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| |
Collapse
|
29
|
Lawrence DW, Kornbluth J. Reduced inflammation and cytokine production in NKLAM deficient mice during Streptococcus pneumoniae infection. PLoS One 2018. [PMID: 29518136 PMCID: PMC5843292 DOI: 10.1371/journal.pone.0194202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and a significant economic burden. Antibiotic-resistant S. pneumoniae has become more prevalent in recent years and many pneumonia cases are caused by S. pneumoniae that is resistant to at least one antibiotic. The ubiquitin ligase natural killer lytic-associated molecule (NKLAM/RNF19b) plays a role in innate immunity and studies using NKLAM-knockout (NKLAM-KO) macrophages have demonstrated that NKLAM positively affects the transcriptional activity of STAT1. Using an inhalation infection model, we found that NKLAM-KO mice had a significantly higher lung bacterial load than WT mice but had less lung inflammation. Coincidently, NKLAM-KO mice had fewer neutrophils and NK cells in their lungs. NKLAM-KO mice also expressed less iNOS in their lungs as well as less MCP-1, MIP1α, TNFα, IL-12, and IFNγ. Both neutrophils and macrophages from NKLAM-KO mice were defective in killing S. pneumoniae as compared to wild type cells (WT). The phosphorylation of STAT1 and STAT3 in NKLAM-KO lungs was lower than in WT lungs at 24 hours post-infection. NKLAM-KO mice were afforded some protection against a lethal dose of S. pneumoniae compared to WT mice. In summary, our novel data demonstrate a role for E3 ubiquitin ligase NKLAM in modulating innate immunity via the positive regulation of inflammatory cytokine expression and bactericidal activity.
Collapse
Affiliation(s)
- Donald W. Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- VA St. Louis Health Care System, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
30
|
Antimicrobial Resistant Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications. Am J Ther 2018; 24:e361-e369. [PMID: 28430673 DOI: 10.1097/mjt.0000000000000551] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of pneumonia, meningitis, sepsis, bacteremia, and otitis media. S. pneumoniae has developed increased resistance to multiple classes of antibiotics. STUDY DESIGN Systematic literature review of prevalence, mechanisms, and clinical implications in S. pneumoniae resistance. AREAS OF UNCERTAINTY Since S. pneumoniae resistance to penicillin was first reported with subsequent development of resistance to other classes of drugs, selection of appropriate antibiotic treatment is challenging. DATA SOURCES We searched PubMed (English language) for citations to antibiotic resistance in S. pneumoniae published before March 1, 2016. RESULTS We present a review of S. pneumoniae resistance to beta-lactams, macrolides, lincosamides, fluoroquinolones, tetracyclines, and trimethoprim-sulfamethoxazole (TMP-SMX). There has been a steady decline in susceptibility of S. pneumoniae to commonly used beta-lactams. Phenotypic expression of penicillin resistance occurs as a result of a genetic structural modification in penicillin-binding proteins. Between 20% and 40% of S. pneumoniae isolates are resistant to macrolides. Macrolide resistance mechanisms include ribosomal target site alteration, alteration in antibiotic transport, and modification of the antibiotic. Approximately 22% of S. pneumoniae isolates are resistant to clindamycin. Similar to macrolide resistance, clindamycin involves a target site alteration. The prevalence of fluoroquinolone resistance is low, although increasing. S. pneumoniae resistance to fluoroquinolones occurs by accumulated mutations within the bacterial genome, increased efflux, or acquisition of plasmid-encoded genes. S. pneumoniae resistance has also increased for the tetracyclines. The primary mechanism is mediated by 2 genes that confer ribosomal protection. The prevalence of TMP-SMX resistance is around 35%. As with fluoroquinolones, resistance to TMP-SMX is secondary to mutations in the bacterial genome. CONCLUSIONS Effective treatment of resistant S. pneumoniae is a growing concern. New classes of drugs, newer formulations of older drugs, combination antibiotic therapy, nonantibiotic modalities, better oversight of antibiotic usage, and enhanced preventive measures hold promise.
Collapse
|
31
|
MacIntyre CR, Bui CM. Pandemics, public health emergencies and antimicrobial resistance - putting the threat in an epidemiologic and risk analysis context. ACTA ACUST UNITED AC 2017; 75:54. [PMID: 28924475 PMCID: PMC5597990 DOI: 10.1186/s13690-017-0223-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/17/2017] [Indexed: 11/10/2022]
Abstract
Public health messaging about antimicrobial resistance (AMR) sometimes conveys the problem as an epidemic. We outline why AMR is a serious endemic problem manifested in hospital and community-acquired infections. AMR is not an epidemic condition, but may complicate epidemics, which are characterised by sudden societal impact due to rapid rise in cases over a short timescale. Influenza, which causes direct viral effects, or secondary bacterial complications is the most likely cause of an epidemic or pandemic where AMR may be a problem. We discuss other possible causes of a pandemic with AMR, and present a risk assessment formula to estimate the impact of AMR during a pandemic. Finally, we flag the potential impact of genetic engineering of pathogens on global risk and how this could radically change the epidemiology of AMR as we know it. Understanding the epidemiology of AMR is key to successfully addressing the problem. AMR is an endemic condition but can play a role in epidemics or pandemics, and we present a risk analysis method for assessing the impact of AMR in a pandemic.
Collapse
Affiliation(s)
- C Raina MacIntyre
- University of New South Wales, Sydney, NSW Australia.,Arizona State University, Phoenix, AZ USA
| | - Chau Minh Bui
- University of New South Wales, Sydney, NSW Australia
| |
Collapse
|
32
|
Diawara I, Barguigua A, Katfy K, Nayme K, Belabbes H, Timinouni M, Zerouali K, Elmdaghri N. Molecular characterization of penicillin non-susceptible Streptococcus pneumoniae isolated before and after pneumococcal conjugate vaccine implementation in Casablanca, Morocco. Ann Clin Microbiol Antimicrob 2017; 16:23. [PMID: 28376809 PMCID: PMC5381081 DOI: 10.1186/s12941-017-0200-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide, especially among children and the elderly. The ability to effectively treat pneumococcal infection has been compromised due to the acquisition of antibiotic resistance, particularly to β-lactam drugs. This study aimed to describe the prevalence and molecular evolution of penicillin non-susceptible S. pneumoniae (PNSP) isolated from invasive diseases before and after pneumococcal conjugate vaccine implementation in Casablanca, Morocco. Methods Isolates were obtained from the Microbiology Laboratory of Ibn Rochd University Hospital Centre of Casablanca. Serogrouping was done by Pneumotest Kit and serotyping by the Quellung capsular swelling. Antibiotic susceptibility pattern was determined by disk diffusion and E-test methods. The PNSP were analyzed by pulsed-field gel electrophoresis (PFGE) and by genotyping of pbp1a, pbp2b, and pbp2x genes. Results A total of 361 S. pneumoniae isolates were collected from 2007 to 2014. Of these isolates, 58.7% were obtained before vaccination (2007–2010) and 41.3% after vaccination (2011–2014). Of the 361 isolates, 80 were PNSP (22.2%). Generally, the proportion of PNSP between pre- and post-vaccination periods were 31 and 13% (p = 0.009), respectively. The proportion of PNSP isolated from pediatric and adult (age > 14 years) patients decreased from 34.5 to 22.9% (p = 0.1) and from 17.7 to 10.2% (p = 0.1) before and after vaccine implementation, respectively. The leading serotypes of PNSP were 14 (33 vs. 57%) and 19A (18 vs. 14%) before and after vaccination among children. For adults, serotypes 19A (53%) and 23F (24%) were the dominant serotypes in the pre-vaccination period, while serotype 14 (22%) was the most prevalent after vaccination. There were 21 pbp genotypes in the pre-vaccination period vs. 12 for post-vaccination period. PFGE clustering showed six clusters of PNSP grouped into three clusters specific to pre-vaccination period (clusters I, II and III), two clusters specific to post-period (clusters V and VI) and a cluster (IV) that contained clones belonging to the two periods of vaccination. Conclusion Our observations demonstrate a high degree of genetic diversity among PNSP. Genetic clustering among PNSP strains showed that they spread mainly by a restricted number of PNSP clones with vaccine serotypes. PFGE clustering combined with pbp genotyping revealed that vaccination can change the population structure of PNSP.
Collapse
Affiliation(s)
- Idrissa Diawara
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco. .,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco.
| | - Abouddihaj Barguigua
- Laboratoire Polyvalent en Recherche et Développement, département de Biologie-Géologie, Faculté polydisciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Khalid Katfy
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Kaotar Nayme
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Belabbes
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Khalid Zerouali
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Naima Elmdaghri
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| |
Collapse
|
33
|
DnaJ (hsp40) of Streptococcus pneumoniae is involved in bacterial virulence and elicits a strong natural immune reaction via PI3K/JNK. Mol Immunol 2017; 83:137-146. [PMID: 28152394 DOI: 10.1016/j.molimm.2017.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/11/2017] [Accepted: 01/22/2017] [Indexed: 12/27/2022]
Abstract
As a heat shock protein, DnaJ plays an important role in the pathogenesis of pneumococcal infection. However, how the virulence factor-DnaJ elicits host natural immunity still remains unclear. In this study, we investigated the effects of dnaJ deficiency in Streptococcus pneumoniae (S. pneumoniae) on bacterial virulence, and further explored the related molecular mechanisms in vivo and in vitro. By generating dnaJ deficient mutant (ΔdnaJ), the virulence and colonization were detected in murine pneumonia and sepsis models in vivo. Compared with wild-type parent strain, the abilities of rapid colonization and induction of inflammatory responses of ΔdnaJ in mouse lungs were significantly impaired. Simultaneously, recombinant DnaJ purified from E. coli expression system (rDnaJ) induced macrophage strain RAW264.7 to secrete IL-6 by activation of PI3K and JNK signal pathways, which were confirmed by the specific signaling inhibitors. In conclusion, DnaJ, a novel virulence protein, was essential for the virulence and colonization of S. pneumoniae and induced pro-inflammatory cytokine production in macrophages through PI3K/JNK.
Collapse
|
34
|
Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis. Sci Rep 2016; 6:38013. [PMID: 27892542 PMCID: PMC5125098 DOI: 10.1038/srep38013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury.
Collapse
|
35
|
Piastra M, Tempera A, Luca E, Buffone E, Cafforio C, Briganti V, Genovese O, Marano M, Rigante D. Kidney injury owing to Streptococcus pneumoniae infection in critically ill infants and children: report of four cases. Paediatr Int Child Health 2016; 36:282-287. [PMID: 26365297 DOI: 10.1179/2046905515y.0000000055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Streptococcus pneumoniae sepsis has high morbidity, particularly if complicated by renal injury. Four patients with S. pneumonia invasive infections complicated by renal disorders are presented. The first case was an 18-month-old girl with pneumococcal empyema complicated by haemolytic uraemic (HUS) syndrome. She made a full recovery after mechanical ventilation, inotropic support and haemodiafiltration. The second was a 4-year-old boy who presented with acute post-infectious glomerulonephritis associated with bilateral pneumococcal pneumonia. He too made a complete recovery. The third was a newborn girl with pneumococcal meningitis complicated by acute respiratory distress syndrome and acute renal failure. The fourth patient was an 8-month-old boy with pneumococcal pneumonia and meningitis complicated by HUS and with fulminant thrombotic thrombocytopenic purpura. Despite full support including mechanical ventilation and haemodiafiltration, he died 4 days after admission. On follow-up, all three survivors recovered completely from their pulmonary symptoms and had normal renal function and cardio-circulatory status in the mid-term.
Collapse
Affiliation(s)
- M Piastra
- a PICU, Emergency Department and Institute of Anaesthesia/Intensive CareM , Catholic University Medical School UCSC , Rome ; Neonatal ICU
| | - A Tempera
- b S. Camillo-Forlanini Hospital Rome ; Department of Paediatrics , Catholic University Medical School , Rome
| | - E Luca
- a PICU, Emergency Department and Institute of Anaesthesia/Intensive CareM , Catholic University Medical School UCSC , Rome ; Neonatal ICU
| | - E Buffone
- b S. Camillo-Forlanini Hospital Rome ; Department of Paediatrics , Catholic University Medical School , Rome
| | - C Cafforio
- b S. Camillo-Forlanini Hospital Rome ; Department of Paediatrics , Catholic University Medical School , Rome
| | - V Briganti
- b S. Camillo-Forlanini Hospital Rome ; Department of Paediatrics , Catholic University Medical School , Rome
| | - O Genovese
- a PICU, Emergency Department and Institute of Anaesthesia/Intensive CareM , Catholic University Medical School UCSC , Rome ; Neonatal ICU
| | - M Marano
- d Infectious Diseases Unit and ICU Bambino Gesù Paediatric Hospital , Rome , Italy
| | - D Rigante
- c Department of Paediatric Sciences , Catholic University Medical School , Rome
| |
Collapse
|
36
|
Heesters BA, Carroll MC. The Role of Dendritic Cells in S. pneumoniae Transport to Follicular Dendritic Cells. Cell Rep 2016; 16:3130-3137. [PMID: 27653679 PMCID: PMC5790206 DOI: 10.1016/j.celrep.2016.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Affinity-mature B cells require cognate antigen, retained by follicular dendritic cells (FDCs), for clonal selection within germinal centers. Studies on how FDCs in lymphoid tissues acquire antigen have relied primarily on model protein antigens. To examine delivery of intact bacteria to FDCs, we used inactivated Streptococcus pneumonia (SP). We found that both medullary macrophages and a subset of SIGN-R1-positive dendritic cells (DCs) in the lymph node capture SP from the draining afferent lymphatics. The presence of DCs is required for initial complement activation, opsonization of the bacteria, and efficient transport of SP to FDCs. Moreover, we observed a major role for transport of bacteria to FDCs by naive B cells via a CD21-dependent pathway. We propose a mechanism by which efficient transport of SP to FDCs is dependent on DCs for initial binding and activation of complement and either direct transport to FDCs or transfer to naive B cells.
Collapse
Affiliation(s)
- Balthasar A Heesters
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Molecular Epidemiology of Streptococcus pneumoniae Isolates from Children with Recurrent Upper Respiratory Tract Infections. PLoS One 2016; 11:e0158909. [PMID: 27415833 PMCID: PMC4945090 DOI: 10.1371/journal.pone.0158909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/23/2016] [Indexed: 11/23/2022] Open
Abstract
A total of 125 isolates were recovered from adenoids and/or nasopharynx of 170 children aged 2 to 5 from south-east Poland; they had undergone adenoidectomy for recurrent and/or persistent symptoms of upper respiratory tract infections. Pneumococcal isolates were analyzed by phenotyping (serotyping and antimicrobial resistance tests) and genotyping together with the clonality of the pneumococcal isolates based on resistance determinants, transposon distribution and multilocus sequence typing (MLST). Serotypes 19F, 6B and 23F constituted 44.8% of the isolates. Among all of the strains, 44.8% showed decreased susceptibility to penicillin and resistance to co-trimoxazole (52.8%), tetracycline (38.4%), erythromycin (53.6%), clindamycin (52.8%) and chloramphenicol (27.2%) was observed. Tn6002 was found in 34.8% of erythromycin-resistant isolates while composite Tn2010—in 16.7% of erm(B)-carrying isolates that harboured also mef(E) gene. Tn3872-related elements were detected in 27.3% of erythromycin-resistant strains. In the majority of chloramphenicol-resistant catpC194-carrying isolates (79.4%), ICESp23FST81-family elements were detected. The genotyping showed that pneumococcal population was very heterogeneous; 82 sequence types (STs) were identified, and the most frequent contributed to not more than 8% of the isolates. Nearly 44% STs were novel, each of them was recovered only from one child. Four STs belonged to one of the 43 worldwide spread resistant pneumococcal clones currently accepted by Pneumococcal Molecular Epidemiology Network (PMEN), i.e. Spain 9V-3, Spain 23F-1, Norway NT-42 and Poland 6B-20, accounting for 12 (16.7%) of the 75 nonususceptible isolates, and five STs were single-locus variants of PMEN resistant clones (England 14–9, Spain 9V-3, Spain 23F-1, Greece 21–30, Denmark 14–32), accounting 9 (12%) of nonsusceptible isolates. A few MDR clones belonging to 6B and 19F serotypes found among preschool children emphasizes rather the role of clonal dissemination of local strains in the community than international clones spreading in the increase of resistance among pneumococcal strains.
Collapse
|
38
|
Molecular epidemiology of nonencapsulated Streptococcus pneumoniae among Japanese children with acute otitis media. J Infect Chemother 2015; 22:72-7. [PMID: 26705748 DOI: 10.1016/j.jiac.2015.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 11/20/2022]
Abstract
The introduction of pneumococcal conjugate vaccine may change the epidemiology of Streptococcus pneumoniae. The increased prevalence of non-vaccine serotypes as the cause of pneumococcal diseases has already reported in the United States and Europe. However, little attention has been focused on the S. pneumoniae. In this study, nonencapsulated S. pneumoniae were identified in 15 isolates (6.4%) out of 236 pneumococcal strains obtained from the nasopharynges of children with acute otitis media (AOM), in 3 isolates (14.3%) out of 21 strains from acute rhinosinusitis, and in 2 isolates (12.5%) out of 16 nasopharyngeal carriage strains obtained from normal healthy children. Among the 20 nonencapsulated S. pneumoniae isolates, 15 (75.0%) isolates had the pspK gene. Seven sequence types (STs) were identified: ST7502 (5 strains), ST1106 (2 strains), ST7803 (2 strains), ST7786 (1 strain), ST6741 (1 strain), ST7496 (1 strain), and ST8642 (1 strain). Because nonencapsulated S. pneumoniae strains are not targeted by the current available pneumococcal vaccines, these strains will gradually become more common in nasopharyngeal carriage. The increase in colonization and dissemination of these strains would increase the risk of AOM and other systemic pneumococcal diseases against which current vaccines cannot provide protection. Nonencapsulated S. pneumoniae may thus become more prevalent as human pathogen.
Collapse
|
39
|
Dayie NTKD, Arhin RE, Newman MJ, Dalsgaard A, Bisgaard M, Frimodt-Møller N, Slotved HC. Multidrug-Resistant Streptococcus pneumoniae Isolates from Healthy Ghanaian Preschool Children. Microb Drug Resist 2015; 21:636-42. [PMID: 26172078 DOI: 10.1089/mdr.2014.0314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the cause of high mortality among children worldwide. Antimicrobial treatment and vaccination are used to control pneumococcal infections. In Ghana, data on antimicrobial resistance and the prevalence of multidrug-resistant pneumococcal clones are scarce; hence, the aim of this study was to determine the antibiogram of S. pneumoniae recovered from Ghanaian children younger than six years of age and to what extent resistances were due to the spread of certain sero- and multilocus sequence typing (MLST) types. The susceptibility of 115 pneumococcal isolates, recovered in a previous study, to six antimicrobials was determined by disk diffusion test. Overall, 90.4% of isolates were intermediate penicillin resistant, 99.1% were trimethoprim resistant, 73.0% were tetracycline resistant, and 33.9% were sulfamethoxazole resistant. Low resistance was recorded for erythromycin (2.6%) and cefotaxime (5.2%). Overall, 72.2% of isolates were resistant to penicillin (I or R) and at least two other antimicrobials. MLST of 20 isolates showing resistance to at least four antimicrobials revealed a high diversity documented by 16 different clones, none of which had previously been associated with multidrug resistance. The resistances found may have emerged due to nonprudent antimicrobial use practices and there is a need to monitor and promote prudent antimicrobial usage in Ghana.
Collapse
Affiliation(s)
- Nicholas T K D Dayie
- 1 Department of Medical Microbiology, University of Ghana Medical School , Accra, Ghana .,2 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Reuben E Arhin
- 1 Department of Medical Microbiology, University of Ghana Medical School , Accra, Ghana
| | - Mercy J Newman
- 1 Department of Medical Microbiology, University of Ghana Medical School , Accra, Ghana
| | - Anders Dalsgaard
- 2 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Magne Bisgaard
- 2 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Niels Frimodt-Møller
- 3 Department of Clinical Microbiology, University Hospital , Rigshospitalet, Copenhagen, Denmark
| | - Hans-Christian Slotved
- 4 Department of Microbiology and Infection Control, Statens Serum Institut , Copenhagen, Denmark
| |
Collapse
|
40
|
Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells. Proc Natl Acad Sci U S A 2015; 112:E3421-30. [PMID: 26080406 DOI: 10.1073/pnas.1424144112] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Collapse
|
41
|
Tiwari K, Raj VS, Upadhyay DJ, Gupta RK. In vitro activity of bioactive extracts from rare actinomycetes against multi-drug resistant Streptococcus pneumoniae. J Appl Microbiol 2015; 118:1306-14. [PMID: 25810118 DOI: 10.1111/jam.12810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/30/2022]
Abstract
AIMS In this study, we investigated the in vitro potential of the bioactive extracts from five putatively novel species of actinomycetes isolated from the Indian hot desert against multi-drug resistant (MDR) Streptococcus pneumoniae. METHODS AND RESULTS The antimicrobial activity of 10 different extracts was evaluated against S. pneumoniae strains with, erm(B) and mef(E) genes as well as fluoroquinolone-resistant (FQ(R) ) strains using the micro-broth dilution method. Of these 10 extracts, four exhibited good to excellent anti-S. pneumoniae activity with minimum inhibitory concentrations (MICs) ranging from 0·125 to 8 μg ml(-1) . The time-kill kinetics study showed that these extracts killed the pathogens in 2-8 h. In vitro cell-free transcription/translation of luciferase gene using S30 bacterial extract and TNT mammalian ribosome indicated that they inhibited bacterial ribosomes at much lower concentrations than those required to inhibit the mammalian ribosomes. CONCLUSIONS This study demonstrates that these are potent concentration-dependent bactericidal metabolites with 16-fold higher in vitro activity than levofloxacin against MDR S. pneumoniae. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolites from actinomycetes can be excellent inhibitors of MDR S. pneumoniae. Considering the in vitro efficacy of these crude extracts against S. pneumoniae MDR spp., once purified these can be used against streptococcal pathogens causing community-acquired pneumonia.
Collapse
Affiliation(s)
- K Tiwari
- School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - V S Raj
- Centre for Drug Design, Discovery & Development (CD4), SRM University, Sonepat, India
| | - D J Upadhyay
- Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Gurgaon, India
| | - R K Gupta
- School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
42
|
Thummeepak R, Leerach N, Kunthalert D, Tangchaisuriya U, Thanwisai A, Sitthisak S. High prevalence of multi-drug resistant Streptococcus pneumoniae among healthy children in Thailand. J Infect Public Health 2014; 8:274-81. [PMID: 25541228 DOI: 10.1016/j.jiph.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance in Streptococcus pneumoniae is an emerging health problem worldwide. The incidence of antimicrobial-resistant S. pneumoniae is increasing, and nasal colonization of S. pneumoniae in children increases the risk of pneumococcal infection. In this study, the prevalence of S. pneumoniae nasal colonization was studied in Thai children from three different districts. S. pneumoniae nasal colonization was found in 38 of 237 subjects (16.0%). The carriage rate indicated higher rates in two rural districts (18.2% and 29.8%) than in the urban district (2.8%). The antibiotic susceptibility pattern was determined using the disk diffusion method. Prevalence of multi-drug resistance S. pneumoniae (MDR-SP) was 31.6%. Resistance to commonly prescribed antibiotics was found for ampicillin (5.3%), azithromycin (26.3%), cefepime (2.6%), chloramphenicol (18.4%), clindamycin (18.4%), erythromycin (21.1%), oxacillin (44.7%), trimethoprim/sulfamethoxazole (78.9%) and tetracycline (15.8%). All isolates were sensitive to ceftriaxone. The pulsed-field gel electrophoresis pattern was used to compare genetic diversity of the S. pneumoniae isolates. PFGE demonstrated the variation in genotypes of S. pneumoniae from different areas. High prevalence of multi-drug resistance S. pneumoniae nasal colonization in healthy Thai children was indicated. Effective strategies for appropriate use of antibiotics are therefore needed in the community.
Collapse
Affiliation(s)
- Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nontapat Leerach
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
43
|
Skoczyńska A, Kuch A, Sadowy E, Waśko I, Markowska M, Ronkiewicz P, Matynia B, Bojarska A, Wasiak K, Gołębiewska A, van der Linden M, Hryniewicz W. Recent trends in epidemiology of invasive pneumococcal disease in Poland. Eur J Clin Microbiol Infect Dis 2014; 34:779-87. [DOI: 10.1007/s10096-014-2283-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
|
44
|
Najafi Mosleh M, Gharibi M, Alikhani MY, Saidijam M, Kalantarian G. Antimicrobial Susceptibilities and Distribution of Resistance Genes for β-Lactams in Streptococcus pneumoniae Isolated in Hamadan. Jundishapur J Microbiol 2014; 7:e12714. [PMID: 25632328 PMCID: PMC4295318 DOI: 10.5812/jjm.12714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND β-lactams resistant Streptococcus pneumoniae are an emerging problem throughout the world. Several resistance mechanisms have been reported, including expression of drug-destroying enzymes such as β-lactamases, altered drug targets such as conformational changes in PBPs, decreased bacterial permeability, and increased drug efflux. OBJECTIVES The present study aimed to determine the relationship between the results of polymerase chain reaction identification of the Pbp1a, Pbp2b and Pbp2x genes (penicillin-binding proteins) and susceptibilities of β-lactam antibiotics against S. pneumoniae. MATERIALS AND METHODS Fifty five isolates of S. pneumoniae were obtained from clinical samples with antimicrobial tests. The susceptibilities of isolates to benzylpenicillin, imipenem, oxacillin, ceftazidime were determined. The resistance genotype was determined by the polymerase chain reaction with primers designed for the PBP genes. RESULTS The number of S. pneumoniae isolates resistant to benzylpenicillin, imipenem, oxacillin and ceftazidime were 94.5%, 100%, 100%, and 21.8%, respectively. Analysis of mutation in the genes for pbp showed that 85% of isolates had mutations in pbp2x, pbp2b and pbp1a. Susceptibility to benzylpenicillin was decreased once the number of mutated pbp genes in S. pneumonia increased. According to the results of this study, S. pneumoniae isolates showed reduced susceptibility due to accumulation of resistance genes. CONCLUSIONS We suggest that studies should be performed to evaluate changes in Minimum Inhibitory Concentration (MIC) values as well as genetic mutations in order to determine prevalence of S. pneumoniae resistance against antimicrobial agents.
Collapse
Affiliation(s)
- Mohammad Najafi Mosleh
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Marzieh Gharibi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan,IR Iran
| | - Giti Kalantarian
- Department of Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| |
Collapse
|
45
|
Tarahomjoo S. Recent Approaches in Vaccine Development against Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2014; 24:215-27. [DOI: 10.1159/000365052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Couch KA, Geide T. ASHP therapeutic position statement on strategies for identifying and preventing pneumococcal resistance. Am J Health Syst Pharm 2014; 71:417-24. [PMID: 24534597 DOI: 10.2146/ajhp130514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The incidence of MDRSP continues to increase, causing significant morbidity and mortality. Health care providers should seize the opportunity to promote the judicious use of antimicrobials and vaccinate patients with the pneumococcal vaccines as a means to lessen this significant health problem. Pharmacists are poised to play a key role in patient care by assessing for the need and administering vaccines in compliance with the current guidelines. A pharmacist should have a key role on the antimicrobial stewardship team.
Collapse
Affiliation(s)
- Kimberly A Couch
- Kimberly A. Couch, Pharm.D., M.A., FIDSA, FASHP, is President, Infectious Diseases Pharmacy Associates, Stevensville, MD, and Clinical Pharmacist, Complete Rx, Seaford, DE. Teresa Geide, Pharm. D., BCPS, CGP, is Clinical Pharmacy Specialist, Infectious Diseases, Orlando Veterans Affairs Medical Center, Orlando, FL
| | | |
Collapse
|
47
|
A novel ketolide, RBx 14255, with activity against multidrug-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58:4283-9. [PMID: 24550341 DOI: 10.1128/aac.01589-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present here the novel ketolide RBx 14255, a semisynthetic macrolide derivative obtained by the derivatization of clarithromycin, for its in vitro and in vivo activities against sensitive and macrolide-resistant Streptococcus pneumoniae. RBx 14255 showed excellent in vitro activity against macrolide-resistant S. pneumoniae, including an in-house-generated telithromycin-resistant strain (S. pneumoniae 3390 NDDR). RBx 14255 also showed potent protein synthesis inhibition against telithromycin-resistant S. pneumoniae 3390 NDDR. The binding affinity of RBx 14255 toward ribosomes was found to be more than that for other tested drugs. The in vivo efficacy of RBx 14255 was determined in murine pulmonary infection induced by intranasal inoculation of S. pneumoniae ATCC 6303 and systemic infection with S. pneumoniae 3390 NDDR strains. The 50% effective dose (ED50) of RBx 14255 against S. pneumoniae ATCC 6303 in a murine pulmonary infection model was 3.12 mg/kg of body weight. In addition, RBx 14255 resulted in 100% survival of mice with systemic infection caused by macrolide-resistant S. pneumoniae 3390 NDDR at 100 mg/kg four times daily (QID) and at 50 mg/kg QID. RBx 14255 showed favorable pharmacokinetic properties that were comparable to those of telithromycin.
Collapse
|
48
|
Hu QH, Liu RJ, Fang ZP, Zhang J, Ding YY, Tan M, Wang M, Pan W, Zhou HC, Wang ED. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep 2014; 3:2475. [PMID: 23959225 PMCID: PMC3747510 DOI: 10.1038/srep02475] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae causes bacterial pneumonia with high mortality and morbidity. The emergency of multidrug-resistant bacteria threatens the treatment of the disease. Leucyl-tRNA synthetase (LeuRS) plays an essential role in cellular translation and is an attractive drug target for antimicrobial development. Here we report the compound ZCL039, a benzoxaborole-based derivative of AN2690, as a potent anti-pneumococcal agent that inhibits S. pneumoniae LeuRS (SpLeuRS) activity. We show using kinetic, biochemical analyses combined with the crystal structure of ZCL039-AMP in complex with the separated SpLeuRS editing domain, that ZCL039 binds to the LeuRS editing active site which requires the presence of tRNA(Leu), and employs an uncompetitive inhibition mechanism. Further docking models establish that ZCL039 clashes with the eukaryal/archaeal specific insertion I4ae helix within editing domains. These findings demonstrate the potential of benzoxaboroles as effective LeuRS inhibitors for pneumococcus infection therapy, and provide future structure-guided drug design and optimization.
Collapse
Affiliation(s)
- Qing-Hua Hu
- 1] State Key Laboratory of Molecular Biology, Center for RNA research, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Musie E, Moore CC, Martin EN, Scheld WM. Toll-like receptor 4 stimulation before or after Streptococcus pneumoniae induced sepsis improves survival and is dependent on T-cells. PLoS One 2014; 9:e86015. [PMID: 24465843 PMCID: PMC3897608 DOI: 10.1371/journal.pone.0086015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/10/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction Endotoxin tolerance improves outcomes from gram negative sepsis but the underlying mechanism is not known. We determined if endotoxin tolerance before or after pneumococcal sepsis improved survival and the role of lymphocytes in this protection. Methods Mice received lipopolysaccharide (LPS) or vehicle before or after a lethal dose of Streptococcus pneumoniae. Survival, quantitative bacteriology, liver function, and cytokine concentrations were measured. We confirmed the necessity of Toll-like receptor 4 (TLR4) for endotoxin tolerance using C3H/HeN (TLR4 replete) and C3H/HeJ (TLR4 deficient) mice. The role of complement was investigated through A/J mice deficient in C5 complement. CBA/CaHN-Btkxid//J mice with dysfunctional B cells and Rag-1 knockout (KO) mice deficient in T and B cells delineated the role of lymphocytes. Results Endotoxin tolerance improved survival from pneumococcal sepsis in mice with TLR4 that received LPS pretreatment or posttreatment. Survival was associated with reduced bacterial burden and serum cytokine concentrations. Death was associated with abnormal liver function and blood glucose concentrations. Endotoxin tolerance improved survival in A/J and CBA/CaHN-Btkxid//J mice but not Rag-1 KO mice. Conclusions TLR4 stimulation before or after S. pneumoniae infection improved survival and was dependent on T-cells but did not require an intact complement cascade or functional B cells.
Collapse
Affiliation(s)
- Edgar Musie
- University of Venda, Department of Microbiology, Venda, South Africa
| | - Christopher C. Moore
- University of Virginia, Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, United States of America
| | - Edward N. Martin
- University of Virginia, Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, United States of America
| | - W. Michael Scheld
- University of Virginia, Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
50
|
In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 2013; 58:1127-35. [PMID: 24295985 DOI: 10.1128/aac.01242-13] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omadacycline is the first intravenous and oral 9-aminomethylcycline in clinical development for use against multiple infectious diseases including acute bacterial skin and skin structure infections (ABSSSI), community-acquired bacterial pneumonia (CABP), and urinary tract infections (UTI). The comparative in vitro activity of omadacycline was determined against a broad panel of Gram-positive clinical isolates, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Lancefield groups A and B beta-hemolytic streptococci, penicillin-resistant Streptococcus pneumoniae (PRSP), and Haemophilus influenzae (H. influenzae). The omadacycline MIC90s for MRSA, VRE, and beta-hemolytic streptococci were 1.0 μg/ml, 0.25 μg/ml, and 0.5 μg/ml, respectively, and the omadacycline MIC90s for PRSP and H. influenzae were 0.25 μg/ml and 2.0 μg/ml, respectively. Omadacycline was active against organisms demonstrating the two major mechanisms of resistance, ribosomal protection and active tetracycline efflux. In vivo efficacy of omadacycline was demonstrated using an intraperitoneal infection model in mice. A single intravenous dose of omadacycline exhibited efficacy against Streptococcus pneumoniae, Escherichia coli, and Staphylococcus aureus, including tet(M) and tet(K) efflux-containing strains and MRSA strains. The 50% effective doses (ED50s) for Streptococcus pneumoniae obtained ranged from 0.45 mg/kg to 3.39 mg/kg, the ED50s for Staphylococcus aureus obtained ranged from 0.30 mg/kg to 1.74 mg/kg, and the ED50 for Escherichia coli was 2.02 mg/kg. These results demonstrate potent in vivo efficacy including activity against strains containing common resistance determinants. Omadacycline demonstrated in vitro activity against a broad range of Gram-positive and select Gram-negative pathogens, including resistance determinant-containing strains, and this activity translated to potent efficacy in vivo.
Collapse
|