1
|
Pruitt HM, Zhu JC, Riley SP, Shi M. The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on Cryptococcus neoformans. J Fungi (Basel) 2025; 11:236. [PMID: 40137272 PMCID: PMC11943451 DOI: 10.3390/jof11030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Biofilms are structurally organized communities of microorganisms that adhere to a variety of surfaces. These communities produce protective matrices consisting of polymeric polysaccharides, proteins, nucleic acids, and/or lipids that promote shared resistance to various environmental threats, including chemical, antibiotic, and immune insults. While algal and bacterial biofilms are more apparent in the scientific zeitgeist, many fungal pathogens also form biofilms. These surprisingly common biofilms are morphologically distinct from the multicellular molds and mushrooms normally associated with fungi and are instead an assemblage of single-celled organisms. As a collection of yeast and filamentous cells cloaked in an extracellular matrix, fungal biofilms are an extreme threat to public health, especially in conjunction with surgical implants. The encapsulated yeast, Cryptococcus neoformans, is an opportunistic pathogen that causes both pulmonary and disseminated infections, particularly in immunocompromised individuals. However, there is an emerging trend of cryptococcosis among otherwise healthy individuals. C. neoformans forms biofilms in diverse environments, including within human hosts. Notably, biofilm association correlates with increased expression of multiple virulence factors and increased resistance to both host defenses and antifungal treatments. Thus, it is crucial to develop novel strategies to combat fungal biofilms. In this review, we discuss the development and treatment of fungal biofilms, with a particular focus on C. neoformans.
Collapse
Affiliation(s)
| | | | - Sean P. Riley
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (H.M.P.); (J.C.Z.)
| | - Meiqing Shi
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (H.M.P.); (J.C.Z.)
| |
Collapse
|
2
|
Diaconu D, Savu M, Ciobanu C, Mangalagiu V, Mangalagiu II. Current strategies in design and synthesis of antifungals hybrid and chimeric diazine derivatives. Bioorg Med Chem 2025; 119:118069. [PMID: 39818112 DOI: 10.1016/j.bmc.2025.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In the last decades fungal infections became a major threat to human health having an unacceptably occurrence, a high rate of mortality and the number of patients at risk for these infections continue to increase every year. An effective, modern and very useful strategy in antifungal therapy is represented by the use of chimeric and hybrid drugs, most of them being with azaheterocycle skeleton. In this review, we present an overview from the last five years of the most representative achievements in the field of chimeric and hybrid diazine derivatives with antifungal properties. Within this work we emphasize the most relevant data concerning the synthesis, design, Structure Activity Relationships (SAR) correlations and antifungal activity of the main classes of diazine: 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine), 1,4-diazine (pyrazine) and their fused derivatives.
Collapse
Affiliation(s)
- Dumitrela Diaconu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, RECENT-AIR Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Marius Savu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania
| | - Catalina Ciobanu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania; Stefan Cel Mare University of Suceava, Faculty of Food Engineering, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania.
| |
Collapse
|
3
|
Catapano G, Morrone G, Hu L, Fragomeni G, Buscaroli A. Endotoxin-Retentive Filters for the Online Preparation of Ultrapure Dialysis Fluid and Non-Pyrogenic Substitution Fluid: A Critical Review and Reference Guide. MEMBRANES 2025; 15:51. [PMID: 39997677 PMCID: PMC11857269 DOI: 10.3390/membranes15020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025]
Abstract
Poor water treatments and concentrates to prepare dialysis fluids favor bacterial growth-producing pyrogens (e.g., endotoxins) that may cross hemodialysis, particularly high-flux, membranes. This puts hemodialysis patients at risk of acute bacteremia, pyrogenic reactions, long-term complications, loss of residual renal function, and poor nutritional status. Consequently, regulatory bodies worldwide recommend using ultrapure dialysis fluid for routine hemodialysis. Requests are also growing for the online production of sterile non-pyrogenic substitution fluid from ultrapure dialysis fluid. This way, large volumes of infusion solution may be safely and economically produced, enabling more end-stage kidney disease patients to benefit from the greater capacity of hemodiafiltration to remove toxins than purely diffusive hemodialysis treatment. Ultrapure dialysis and substitution fluids are often produced upstream from hemodialyzers by online filtration of standard dialysis fluid through cascades of bacteria- and endotoxin-retentive filters (ETRFs). Commercial ETRFs differ for membranes, operation, performance, duration and maintenance protocols, connection to a dialysis machine, disinfection procedures, and replacement schedule. Although suboptimal ETRF choice may increase treatment costs, the difficulty in gathering comparative information on commercial ETRFs complicates their selection. To aid dialysis centers in selecting the most convenient and suitable ETRF for their needs, herein, relevant characteristics of commercial ETRFs are reported and critically reviewed for a quick yet effective comparison.
Collapse
Affiliation(s)
- Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, via P. Bucci, 87030 Rende, Italy;
| | - Giuseppe Morrone
- Department of Mechanical, Energy and Management Engineering, University of Calabria, via P. Bucci, 87030 Rende, Italy;
| | - Lilio Hu
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.H.); (A.B.)
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| | - Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa—Loc. Germaneto, 88100 Catanzaro, Italy;
| | - Andrea Buscaroli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (L.H.); (A.B.)
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
4
|
Lee HG, Jung YH, Cho A, Do YJ, Bok EY, Oem JK, Hur TY. Drug-resistance genes and antifungal susceptibility of Trichophyton verrucosum variants isolated from bovine skin lesions and farm environments. Med Mycol 2025; 63:myae124. [PMID: 39900467 DOI: 10.1093/mmy/myae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Trichophyton verrucosum causes a highly contagious disease in bovines and is occasionally transmitted to humans. Azoles are widely used as antifungal drugs in bovines, and act by targeting the ergosterol biosynthesis pathway. However, cases of treatment failure and recurrence of dermatophyte infections have been associated with mutations at the drug target site. Currently, information on T. verrucosum variants is lacking. This study aimed to classify T. verrucosum variants isolated from animals exhibiting clinical symptoms and cattle environments in the Republic of Korea based on their antifungal susceptibility and the presence or absence of ergosterol biosynthesis (ERG) and subtilisin genes. Of 139 clinical and 39 environmental samples, 86 and 21 were found to be infected, respectively. The positivity rate of calves aged 1-6 months was 73.1%, which was significantly higher than that of calves aged >6 months (55.2%). Twenty-seven T. verrucosum strains were identified as T. album (n = 9), T. ochraceum (n = 6), and T. discoides (n = 12). Antifungal susceptibility testing showed that enilconazole had the lowest geometric mean antifungal activity of 1.08, 1, and 0.94 µg/ml against T. album, T. ochraceum, and T. discoides, respectively. The detection ratios of ERG3 and ERG6 differed significantly among the three variants. In conclusion, our study suggests conducting sample cultures and antifungal susceptibility tests on isolates before administering antifungal drugs. Moreover, the expression profile of ERG appears to have a potential link to drug susceptibility. This information may contribute to the prevention and management of dermatophytosis in cattle.
Collapse
Affiliation(s)
- Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Ara Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Eun-Young Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jae Ku Oem
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
| | - Tai-Young Hur
- Diary Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Zainal Abidin A, Norrrahim MNF, Mohamed Shakrin NNS, Ibrahim B, Abdullah N, Abdul Rashid JI, Mohd Kasim NA, Ahmad Shah NA. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024; 10:e32010. [PMID: 39170404 PMCID: PMC11336351 DOI: 10.1016/j.heliyon.2024.e32010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 08/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing and concerning threat to global public health, necessitating innovative strategies to combat this crisis. Amidine-containing compounds have emerged as promising agents in the battle against AMR. This review gives a summary of recent advances from the past decade in studies of antimicrobial amidine-containing compounds with the aim to feature their structural diversity and the pharmacological relevance of the moiety to antimicrobial activity and their potential use in combating antimicrobial resistance, to the greatest extent possible. Highlighting is put on chemical structure of such compounds in relation to antimicrobial activities such as antibacterial, antifungal, and antiparasitic activities. Researchers commonly modify molecules containing amidine or incorporate amidine into existing antimicrobial agents to enhance their pharmacological attributes and combat antimicrobial resistance. This comprehensive review consolidates the current knowledge on amidine-containing compounds, elucidating their antimicrobial mechanisms and highlighting their promise in addressing the global AMR crisis. By offering a multidisciplinary perspective, we aim to inspire further research and innovation in this critical area of antimicrobial research.
Collapse
Affiliation(s)
- Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | | | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norli Abdullah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Azilah Mohd Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Rakasevic D, Marinkovic J, Rakonjac B, Arce M, Joksimovic E, Markovic J, Kulic M, Hadzi-Mihailovic M, Markovic A. Evaluation of photodynamic therapy efficacy vs. conventional antifungal therapy in patients with poor-fitting dentures suffering from denture stomatitis. A prospective clinical study. Photodiagnosis Photodyn Ther 2024; 45:103913. [PMID: 38049045 DOI: 10.1016/j.pdpdt.2023.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The long-term use of antifungal therapy in denture stomatitis (DS) treatment could be accompanied by antifungal-resistant strain onset, leading to compromised therapeutic procedure and disease reappearance. Photodynamic therapy (PDT) has shown the ability to eradicate oral infections and resistance strains. This prospective clinical study aimed to assess the PDT's effectiveness compared to the conventional treatment on clinical and microbiological parameters in patients with DS without denture wear during the treatment and follow-ups. METHODS Forty-two patients diagnosed with DS were randomly assigned to one-session single PDT application (test group) or conventional antifungal therapy (control group). Clinical and microbiological parameters were assessed and analyzed before and at 3rd, 15th, and 30th day following the treatments. Microbiological samples were analyzed by a Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The data was statistically analyzed. RESULTS Prior to the treatment, Candida species, including C. albicans (100%), C. glabrata (33%), C. tropicalis (31%), C. krusei (31%) were isolated in all patients. Both treatment procedures demonstrated a statistically significant reduction in C. albicans at all follow-up time intervals (p < 0.05). However, PDT displayed a statistically significant reduction in C. krusei compared to the conventional treatment at all follow-up periods (p < 0.05). Clinical parameters improved considerably in the test group compared to the control group at the 3rd and 15th day of follow-up. CONCLUSION One-session single PDT application demonstrated significant improvement in both clinical and microbiological outcomes in a short-term period, resulting in complete Candida spp. eradication compared to conventional antifungal therapy.
Collapse
Affiliation(s)
- Dragana Rakasevic
- Implant and Research Centre, School of Dental Medicine, University of Belgrade, Serbia; Department of Periodontology, Faculty of Dentistry, University of Santiago de Compostela, Spain
| | - Jelena Marinkovic
- Institute for Nuclear Science, Vinca, University of Belgrade, Serbia
| | - Bojan Rakonjac
- Institute for Microbiology, Medical Military Academy, Belgrade, Serbia
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Chile
| | - Ena Joksimovic
- Department of Prosthodontic, School of Dental Medicine, University of Belgrade, Serbia
| | - Jovana Markovic
- Implant and Research Centre, School of Dental Medicine, University of Belgrade, Serbia
| | - Milan Kulic
- University Hospital Center "Dr. Dragisa Misovic-Dedinje", Belgrade, Serbia
| | - Milos Hadzi-Mihailovic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Serbia
| | - Aleksa Markovic
- Implant and Research Centre, School of Dental Medicine, University of Belgrade, Serbia
| |
Collapse
|
7
|
Conn BN, Lieberman JA, Chatman P, Cotton K, Essandoh MA, Ebqa’ai M, Nelson TL, Wozniak KL. Antifungal activity of eumelanin-inspired indoylenepheyleneethynylene against Cryptococcus neoformans. Front Microbiol 2024; 14:1339303. [PMID: 38293553 PMCID: PMC10826398 DOI: 10.3389/fmicb.2023.1339303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningitis in >152,000 immunocompromised individuals annually, leading to 112,000 yearly deaths. The four classes of existing antifungal agents target plasma membrane sterols (ergosterol), nucleic acid synthesis, and cell wall synthesis. Existing drugs are not highly effective against Cryptococcus, and antifungal drug resistance is an increasing problem. A novel antimicrobial compound, a eumelanin-inspired indoylenepheyleneethynylene, EIPE-1, was synthesized and has antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MSRA), but not towards Gram-negative organisms. Based on EIPE-1's antibacterial activity, we hypothesized that EIPE-1 could have antifungal activity. For these studies, we tested EIPE-1 against C. neoformans strain H99 and 6 additional cryptococcal clinical isolates. We examined antifungal activity, cytotoxicity, effects on fungal gene expression, and mechanism of action of EIPE-1. Results showed that EIPE-1 has fungicidal effects on seven cryptococcal strains with MICs ranging from 1.56 to 3.125 μg/mL depending on the strain, and it is non-toxic to mammalian cells. We conducted scanning and transmission electron microscopy on the exposed cells to examine structural changes to the organism following EIPE-1 treatment. Cells exposed displayed structural changes to their cell wall and membranes, with internal contents leaking out of the cells. To understand the effect of EIPE-1 on fungal gene expression, RNA sequencing was conducted. Results showed that EIPE-1 affects several processes involved stress response, ergosterol biosynthesis, capsule biosynthesis, and cell wall attachment and remodeling. Therefore, our studies demonstrate that EIPE-1 has antifungal activity against C. neoformans, which affects both cellular structure and gene expression of multiple fungal pathways involved in cell membrane stability and viability.
Collapse
Affiliation(s)
- Brittney N. Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Priscilla Chatman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Martha A. Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Mohammad Ebqa’ai
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
8
|
Yenişehirli G, Alıcı A, Yenişehirli A. Antifungal drug susceptibility profiles and molecular mechanisms of azole resistance in Candida blood stream isolates. Indian J Med Microbiol 2023; 45:100389. [PMID: 37573042 DOI: 10.1016/j.ijmmb.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/27/2023] [Accepted: 05/17/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE The purpose of this study was to determine the activity of fluconazole, voriconazole, posaconazole, amphotericin B, micafungin and caspofungin against Candida blood stream isolates and to investigate the molecular mechanisms of azole resistance in fluconazole resistant isolates. METHODS The in vitro susceptibilities of Candida isolates to fluconazole, voriconazole, posaconazole, amphotericin B, micafungin and caspofungin were tested by E-test ERG11, CDR1, CDR2 and MDR1 genes expression of fluconazole resistant, fluconazole (S-DD) and fluconazole intermediate resistant isolates were investigated by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS C. albicans (41%) was the most frequently isolated fungal species from blood stream infections followed by C. parapsilosis (22%). All C. albicans isolates except one and all C. tropicalis isolates were found to be susceptible to fluconazole. Overall, 21% of C. glabrata isolates were resistant to fluconazole. None of the Candida isolates were found to be resistant to caspofungin except 2 C. glabrata isolates. Overexpression of ERG11 and CDR1 genes were detected in all fluconazole S-DD and fluconazole resistant C. glabrata isolates, while CDR2 overexpression was observed in 91% fluconazole S-DD and 67 of % fluconazole resistant C.glabrata isolates. The overexpression of MDR1, ERG11 and CDR1 genes were found 100%, 80% and 80%, respectively, in fluconazole resistant C. parapsilosis isolates. CONCLUSION Most of the Candida isolates were susceptible to posaconazole and caspofungin. Our data also highlighted that overexpression of efflux pump genes major cause of azole resistance.
Collapse
Affiliation(s)
- Gülgün Yenişehirli
- Tokat Gaziosmanpaşa University, Faculty of Medicine, Department of Medical Microbiology, 60100, Tokat, Turkey.
| | - Ayşe Alıcı
- Tatvan State Hospital, Medical Microbiology Laboratory, Bitlis, Turkey.
| | - Aydan Yenişehirli
- Tokat Gaziosmanpaşa University, Faculty of Medicine, Department of Medical Pharmacology 60100, Tokat, Turkey.
| |
Collapse
|
9
|
Al-Ghamdi ARS, Khanam HK, Qamar Z, Abdul NS, Reddy N, Vempalli S, Noushad M, Alqahtani WMS. Therapeutic efficacy of adjunctive photodynamic therapy in the treatment of denture stomatitis. Photodiagnosis Photodyn Ther 2023; 42:103326. [PMID: 36773753 DOI: 10.1016/j.pdpdt.2023.103326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND The present report assessed the efficacy of curcumin-mediated photodynamic therapy (CUR-mediated PDT) as an adjunct to antifungal gel treatment by evaluating the salivary interleukin-6 (IL-6) and matrix metalloproteinases-8 (MMP-8) levels together with Candida species counts in denture stomatitis (DS) patients. METHODS In total, 50 DS subjects were randomly categorized into 2 groups: Group-1: subjects who received the antifungal gel treatment and Group-2: participants who received CUR-mediated PDT. The Sabourad Dextrose Agar and CHROMAgar were utilized for evaluating Candida species counts, while the Enzyme-Linked Immunosorbent Assay was employed to estimate the salivary levels of IL-6 and MMP-8. All clinical evaluations were performed at the baseline, 1 month, and 2 months. RESULTS In total, group-2 subjects showed a significant decrease in Candida albicans (C. albicans) counts on both follow-ups (i.e., 1-month and 2-month) than group-1 participants. C. krusei count also reduced in group-2 subejcts than group-1 participants at the 2nd follow-up as compared to the baseline, nevertheless, a slight increase in C. krusei count was noticed in group-2 subjects at the 2nd follow-up than the 1st follow-up. The salivary IL-6 and MMP-8 levels in both groups reduced significantly at both follow-ups than the baseline. According to the stepwise logistic regression analysis, no statistically significant correlation was observed between Candida species count and other parameters such as age and gender of the patient, duration of DS, and frequency of treatment(s). CONCLUSION CUR-mediated PDT is an efficaciousness therapeutic modality for alleviating Candida species counts on the surface of denture and the palatal mucosa, as well as improving the salivary IL-6 and MMP-8 levels in DS patients.
Collapse
Affiliation(s)
- Abdul Rahman Saeed Al-Ghamdi
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Hm Khuthija Khanam
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
| | - Zeeshan Qamar
- Department of O&MFS and Diagnostic Sciences, Faculty of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Nishath Sayed Abdul
- Department of OMFS and Diagnostic Sciences (Oral Pathology), Faculty of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Naveen Reddy
- Department of Prosthodontics, Faculty of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Swetha Vempalli
- Department of Oral and Maxillofacial Sciences, Faculty of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Noushad
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia; Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Waleed M S Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Evaluation of poly(N-isopropylacrylamide)/tetraphenylethylene/amphotericin B-based visualized antimicrobial nanofiber wound dressing for whole skin wound healing in rats. Heliyon 2022; 8:e12063. [PMID: 36561676 PMCID: PMC9764202 DOI: 10.1016/j.heliyon.2022.e12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this work is to develop a novel nanofiber wound dressing with multiple functional properties that combines suitable mechanical properties, slow and controlled drug release, antifungal activity, and visual drug monitoring to accelerate wound healing while reducing systemic circulation of the drug, achieving reduced dose and side effects, and achieving patient satisfaction and compliance. In this paper, visualized nanofiber films were prepared using electrostatic spinning technology. This nanofiber wound dressing has soft tissue-like mechanical and antifungal properties and is biocompatible. In particular, the poly(N-isopropylacrylamide) (PNIPAAm)/tetraphenylethylene (TPE)/amphotericin B (AMB) nanofiber films showed good performance in terms of antifungal activity and cytocompatibility compared with medical gauze, and significantly accelerated the wound healing process in a mouse total wound defect model with PCL+PVP+TPE+AMB+PNIPAAm. The wound healing rate of nanofibrous membrane group was 100% at 14 days. In addition, histological analysis, collagen deposition and immunohistochemistry showed, for example, fewer inflammatory cells, more fibroblasts around the damaged area, increased wound epithelial atrophy, reduced granulation tissue, connective tissue reconstruction, epithelial tissue formation, and abundant small angiogenesis in the dermis near the epidermis; a higher level of collagen deposition fraction of 49.97%; and a simultaneous reduction in HIF-1α production and upregulated the expression of CD31. In conclusion, this antifungal nanofiber film showed promising applications throughout the skin wound healing process.
Collapse
|
11
|
Design, Synthesis, in vitro and in silico Characterization of Plastoquinone Analogs Containing Piperidine Moiety as Antimicrobial Agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Bettauer V, Costa ACBP, Omran RP, Massahi S, Kirbizakis E, Simpson S, Dumeaux V, Law C, Whiteway M, Hallett MT. A Deep Learning Approach to Capture the Essence of Candida albicans Morphologies. Microbiol Spectr 2022; 10:e0147222. [PMID: 35972285 PMCID: PMC9604015 DOI: 10.1128/spectrum.01472-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022] Open
Abstract
We present deep learning-based approaches for exploring the complex array of morphologies exhibited by the opportunistic human pathogen Candida albicans. Our system, entitled Candescence, automatically detects C. albicans cells from differential image contrast microscopy and labels each detected cell with one of nine morphologies. This ranges from yeast white and opaque forms to hyphal and pseudohyphal filamentous morphologies. The software is based upon a fully convolutional one-stage (FCOS) object detector, a deep learning technique that uses an extensive set of images that we manually annotated with the location and morphology of each cell. We developed a novel cumulative curriculum-based learning strategy that stratifies our images by difficulty from simple yeast forms to complex filamentous architectures. Candescence achieves very good performance (~85% recall; 81% precision) on this difficult learning set, where some images contain hundreds of cells with substantial intermixing between the predicted classes. To capture the essence of each C. albicans morphology and how they intermix, we used a second technique from deep learning entitled generative adversarial networks. The resultant models allow us to identify and explore technical variables, developmental trajectories, and morphological switches. Importantly, the model allows us to quantitatively capture morphological plasticity observed with genetically modified strains or strains grown in different media and environments. We envision Candescence as a community meeting point for quantitative explorations of C. albicans morphology. IMPORTANCE The fungus Candida albicans can "shape shift" between 12 morphologies in response to environmental variables. The cytoprotective capacity provided by this polymorphism makes C. albicans a formidable pathogen to treat clinically. Microscopy images of C. albicans colonies can contain hundreds of cells in different morphological states. Manual annotation of images can be difficult, especially as a result of densely packed and filamentous colonies and of technical artifacts from the microscopy itself. Manual annotation is inherently subjective, depending on the experience and opinion of annotators. Here, we built a deep learning approach entitled Candescence to parse images in an automated, quantitative, and objective fashion: each cell in an image is located and labeled with its morphology. Candescence effectively replaces simple rules based on visual phenotypes (size, shape, and shading) with neural circuitry capable of capturing subtle but salient features in images that may be too complex for human annotators.
Collapse
Affiliation(s)
- Van Bettauer
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
| | | | | | - Samira Massahi
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Shawn Simpson
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Michael T. Hallett
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Bhargav A, Fatima F, Chaurasia P, Seth S, Ramachandran S. Computer-Aided Tools and Resources for Fungal Pathogens: An Application of Reverse Vaccinology for Mucormycosis. Monoclon Antib Immunodiagn Immunother 2022; 41:243-254. [PMID: 35939284 DOI: 10.1089/mab.2021.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increasing fungal infections in immunocompromised hosts are a growing concern for global public health. Along with treatments, preventive measures are required. The emergence of reverse vaccinology has opened avenues for using genomic and proteomic data from pathogens in the design of vaccines. In this work, we present a comprehensive collection of various computational tools and databases with potential to aid in vaccine development. The ongoing pandemic has directed attention toward the increasing number of mucormycosis infections in COVID-19 patients. As a case study, we developed a computational pipeline for assisting vaccine development for mucormycosis. We obtained 6 proteins from 29,447 sequences from UniProtKB as potential vaccine candidates against mucormycosis, fulfilling multiple criteria. These criteria included potential characteristics, namely adhesin properties, surface or extracellular localization, antigenicity, no similarity to any human proteins, nonallergenicity, stability in vitro, and expression in fungal cells. These six proteins were predicted to have B cell and T cell epitopes, proinflammatory inducing peptides, and orthologs in several mucormycosis-causing species. These data could aid in vaccine development against mucormycosis for at-risk individuals.
Collapse
Affiliation(s)
- Anasuya Bhargav
- Informatics and Big Data, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Firdaus Fatima
- Informatics and Big Data, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pratibha Chaurasia
- Informatics and Big Data, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Surabhi Seth
- Informatics and Big Data, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srinivasan Ramachandran
- Informatics and Big Data, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Senthilganesh J, Deepak L, Durai R, Hari B Narayanan V, Veerappan A, Paramasivam N. Evaluation of lectin nanoscaffold based in-situ gel against vulvovaginal candidiasis causing Candida biofilms using a novel ex-vivo model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022; 27:molecules27144594. [PMID: 35889466 PMCID: PMC9320184 DOI: 10.3390/molecules27144594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Propolis has gained wide popularity over the last decades in several parts of the world. In parallel, the literature about propolis composition and biological properties increased markedly. A great number of papers have demonstrated that propolis from different parts of the world is composed mainly of phenolic substances, frequently flavonoids, derived from plant resins. Propolis has a relevant role in increasing the social immunity of bee hives. Experimental evidence indicates that propolis and its components have activity against bacteria, fungi, and viruses. Mechanisms of action on bacteria, fungi, and viruses are known for several propolis components. Experiments have shown that propolis may act synergistically with antibiotics, antifungals, and antivirus drugs, permitting the administration of lower doses of drugs and higher antimicrobial effects. The current trend of growing resistance of microbial pathogens to the available drugs has encouraged the introduction of propolis in therapy against infectious diseases. Because propolis composition is widely variable, standardized propolis extracts have been produced. Successful clinical trials have included propolis extracts as medicine in dentistry and as an adjuvant in the treatment of patients against COVID-19. Present world health conditions encourage initiatives toward the spread of the niche of propolis, not only as traditional and alternative medicine but also as a relevant protagonist in anti-infectious therapy. Production of propolis and other apiary products is environmentally friendly and may contribute to alleviating the current crisis of the decline of bee populations. Propolis production has had social-economic relevance in Brazil, providing benefits to underprivileged people.
Collapse
|
16
|
Invasive and Subcutaneous Infections Caused by Filamentous Fungi: Report from a Portuguese Multicentric Surveillance Program. Microorganisms 2022; 10:microorganisms10051010. [PMID: 35630453 PMCID: PMC9145964 DOI: 10.3390/microorganisms10051010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Invasive fungal infections (IFI) have significantly increased over the past years due to advances in medical care for the at-risk immunocompromised population. IFI are often difficult to diagnose and manage, and can be associated with substantial morbidity and mortality. This study aims to contribute to understanding the etiology of invasive and subcutaneous fungal infections, their associated risk factors, and to perceive the outcome of patients who developed invasive disease, raising awareness of these infections at a local level but also in a global context. A laboratory surveillance approach was conducted over a seven-year period and included: (i) cases of invasive and subcutaneous fungal infections caused by filamentous/dimorphic fungi, confirmed by either microscopy or positive culture from sterile samples, (ii) cases diagnosed as probable IFI according to the criteria established by EORTC/MSG when duly substantiated. Fourteen Portuguese laboratories were enrolled. Cases included in this study were classified according to the new consensus definitions of invasive fungal diseases (IFD) published in 2020 as follows: proven IFI (N = 31), subcutaneous fungal infection (N = 23). Those proven deep fungal infections (N = 54) totalized 71.1% of the total cases, whereas 28.9% were classified as probable IFI (N = 22). It was possible to identify the etiological fungal agent in 73 cases (96%). Aspergillus was the most frequent genera detected, but endemic dimorphic fungi represented 14.47% (N = 11) of the total cases. Despite the small number of cases, a high diversity of species were involved in deep fungal infections. This fact has implications for clinical and laboratory diagnosis, and on the therapeutic management of these infections, since different species, even within the same genus, can present diverse patterns of susceptibility to antifungals.
Collapse
|
17
|
Kim HY, Baldelli S, Märtson AG, Stocker S, Alffenaar JW, Cattaneo D, Marriott DJE. Therapeutic Drug Monitoring of the Echinocandin Antifungal Agents: Is There a Role in Clinical Practice? A Position Statement of the Anti-Infective Drugs Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2022; 44:198-214. [PMID: 34654030 DOI: 10.1097/ftd.0000000000000931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Reduced exposure to echinocandins has been reported in specific patient populations, such as critically ill patients; however, fixed dosing strategies are still used. The present review examines the accumulated evidence supporting echinocandin therapeutic drug monitoring (TDM) and summarizes available assays and sampling strategies. METHODS A literature search was conducted using PubMed in December 2020, with search terms such as echinocandins, anidulafungin, caspofungin, micafungin, or rezafungin with pharmacology, pharmacokinetics (PKs), pharmacodynamics (PDs), drug-drug interactions, TDM, resistance, drug susceptibility testing, toxicity, adverse drug reactions, bioanalysis, chromatography, and mass spectrometry. Data on PD/PD (PK/PD) outcome markers, drug resistance, PK variability, drug-drug interactions, assays, and TDM sampling strategies were summarized. RESULTS Echinocandins demonstrate drug exposure-efficacy relationships, and maximum concentration/minimal inhibitory concentration ratio (Cmax/MIC) and area under the concentration-time curve/MIC ratio (AUC/MIC) are proposed PK/PD markers for clinical response. The relationship between drug exposure and toxicity remains poorly clarified. TDM could be valuable in patients at risk of low drug exposure, such as those with critical illness and/or obesity. TDM of echinocandins may also be useful in patients with moderate liver impairment, drug-drug interactions, hypoalbuminemia, and those undergoing extracorporeal membrane oxygenation, as these conditions are associated with altered exposure to caspofungin and/or micafungin. Assays are available to measure anidulafungin, micafungin, and caspofungin concentrations. A limited-sampling strategy for anidulafungin has been reported. CONCLUSIONS Echinocandin TDM should be considered in patients at known risk of suboptimal drug exposure. However, for implementing TDM, clinical validation of PK/PD targets is needed.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Sara Baldelli
- Unit of Clinical Pharmacology, Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Kensington, NSW Australia; and
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Fatebenefratelli Sacco University Hospital, Milan, Italy
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Deborah J E Marriott
- St Vincent's Clinical School, University of New South Wales, Kensington, NSW Australia; and
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
18
|
Firoozi P, Farshidfar N, Fekrazad R. Efficacy of antimicrobial photodynamic therapy compared to nystatin therapy in reducing Candida colony count in patients with Candida-associated denture stomatitis: a systematic review and meta-analysis. Evid Based Dent 2021. [DOI: https:/doi.org/10.1038/s41432-021-0208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/31/2021] [Indexed: 08/30/2023]
|
19
|
Firoozi P, Farshidfar N, Fekrazad R. Efficacy of antimicrobial photodynamic therapy compared to nystatin therapy in reducing Candida colony count in patients with Candida-associated denture stomatitis: a systematic review and meta-analysis. Evid Based Dent 2021:10.1038/s41432-021-0208-9. [PMID: 34862461 DOI: 10.1038/s41432-021-0208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Purpose This meta-analysis assessed the efficacy of antimicrobial photodynamic therapy (aPDT) compared to conventional nystatin therapy (NYT) in reducing Candida colony count in patients with Candida-associated denture stomatitis (CADS) and critically appraised the available literature.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) updated guidelines. A literature search was performed in four electronic databases to identify relevant articles up to 15 August 2021. Randomised controlled trials (RCTs) that assessed the efficacy of aPDT compared to NYT in reducing Candida colony count in patients with CADS were investigated. The weighted mean difference (MD) and 95% confidence interval were calculated. The I2 statistic was used to determine heterogeneity at the level of α = 0.10. The Cochrane risk of bias (RoB 2) tool was used to assess the risk of bias. Certainty of the evidence was determined using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) ranking system.Results Only three eligible RCTs with 141 participants were included in this systematic review and meta-analysis. Based on the pooled results, NYT compared to aPDT generally performed better in reducing Candida colony count (Log10 CFU/mL) in patients' palate and patients' denture. The included studies had a moderate risk of bias and the certainty of the evidence was low.Conclusion Although still inconclusive, based on the current evidence, aPDT may be effective in reducing Candida colony count and treating CADS. Nonetheless, it does not appear to be more effective than conventional NYT in this regard. According to the limited number of included studies, more well-designed RCTs with larger sample sizes and standardised methodology should be conducted to validate this conclusion.
Collapse
Affiliation(s)
- Parsa Firoozi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran; Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fekrazad
- Professor of Radiation Sciences Research Centre, Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
20
|
Organic light emitting diode for in vitro antimicrobial photodynamic therapy of Candida strains. Photodiagnosis Photodyn Ther 2021; 36:102567. [PMID: 34614427 DOI: 10.1016/j.pdpdt.2021.102567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
Organic light emitting diodes (OLEDs) are very attractive light sources because they are large area emitters, and can in principle be deposited on flexible substrates. These features make them suitable for ambulatory photodynamic therapy (PDT). A few reports of in vitro or in vivo OLED based PDT studies for cancer or microbial inhibition are published but to our best knowledge, none against yeasts. Yeast infections are a significant health risk, especially in low income countries with limited medical facilities. In this work, OLED-based antimicrobial PDT (aPDT), using methylene blue (MB) as photosensitizer (PS), is studied to inactivate opportunistic yeast of four Candida strains of two species: Candida albicans and Candida tropicalis. Before aPDT experiments, fluconazole-resistance was evaluated for all strains, showing that both strains of C. tropicalis were resistant and both strains of C. albicans were sensitive to it. We found that 3 repetitive irradiations work better than a single dose while keeping the total fluence constant, and that this result applies whether or not the strains are resistant to fluconazole.
Collapse
|
21
|
Morelli KA, Kerkaert JD, Cramer RA. Aspergillus fumigatus biofilms: Toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog 2021; 17:e1009794. [PMID: 34437655 PMCID: PMC8389518 DOI: 10.1371/journal.ppat.1009794] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, filamentous fungus found in soils and compost and the causative agent of several pulmonary diseases in humans, birds, and other mammals. A. fumigatus and other filamentous fungi grow as networks of filamentous hyphae that have characteristics of a classic microbial biofilm. These characteristics include production of an extracellular matrix (ECM), surface adhesion, multicellularity, and increased antimicrobial drug resistance. A. fumigatus biofilm growth occurs in vivo at sites of infection, highlighting the importance of defining mechanisms underlying biofilm development and associated emergent properties. We propose that there are 3 distinct phases in the development of A. fumigatus biofilms: biofilm initiation, immature biofilm, and mature biofilm. These stages are defined both temporally and by unique genetic and structural changes over the course of development. Here, we review known mechanisms within each of these stages that contribute to biofilm structure, ECM production, and increased resistance to contemporary antifungal drugs. We highlight gaps in our understanding of biofilm development and function that when addressed are expected to aid in the development of novel antifungal therapies capable of killing filamentous fungal biofilms.
Collapse
Affiliation(s)
- Kaesi A. Morelli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
22
|
Gerlach ES, Altamirano S, Yoder JM, Luggya TS, Akampurira A, Meya DB, Boulware DR, Rhein J, Nielsen K. ATI-2307 Exhibits Equivalent Antifungal Activity in Cryptococcus neoformans Clinical Isolates With High and Low Fluconazole IC 50. Front Cell Infect Microbiol 2021; 11:695240. [PMID: 34249782 PMCID: PMC8262267 DOI: 10.3389/fcimb.2021.695240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
Half maximal inhibitory concentrations (IC50) to the experimental drug ATI-2307 and complete inhibition (IC90) of the common clinically used antifungal drug amphotericin B were determined by microbroth dilution assay for a collection of 69 clinical isolates of Cryptococcus neoformans from Uganda that had high fluconazole IC50 values. The majority of the clinical isolates tested had fluconazole IC50 at or above 8 µg/mL, but were susceptible to both amphotericin B (IC90 ≤1 μg/mL) and ATI-2307 (IC50 ≤0.0312 µg/mL). No correlation between increased fluconazole minimum inhibitory concentration (MIC) and ATI-2307 or amphotericin B MIC was observed, suggesting that the cellular changes impacting fluconazole susceptibility did not impact the effectiveness of ATI-2307. Our results suggest that ATI-2307 is a promising new antifungal drug for use in the context of high fluconazole or other antifungal drug MICs and/or in combination drug therapy regimens.
Collapse
Affiliation(s)
- Elliot S. Gerlach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - J. Marina Yoder
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Tony S. Luggya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Akampurira
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B. Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David R. Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Abstract
The thinking about fungi has evolved from unusual agents considered contaminants and colonizers to actual pathogens. Fungi are ubiquitous in nature and are found throughout in association with food, soil, mammals, and insects. Fungi have become important pathogens in animals and humans causing infections extending from superficial disease to disseminated infection. Because the gastrointestinal tract is continually exposed to fungi, it is frequently colonized and infected by numerous yeast and other fungi. It is also the origin of many disseminated fungal infections. The increased incidence of fungal infections has led to the approval and use of novel antifungals.
Collapse
Affiliation(s)
- Andrew Chao
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Jose A Vazquez
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
24
|
The Repurposing of Acetylsalicylic Acid as a Photosensitiser to Inactivate the Growth of Cryptococcal Cells. Pharmaceuticals (Basel) 2021; 14:ph14050404. [PMID: 33922831 PMCID: PMC8146328 DOI: 10.3390/ph14050404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
Photodynamic treatment (PDT) is often successful when used against aerobic microbes, given their natural susceptibility to oxidative damage. To this end, the current study aimed to explore the photodynamic action of acetylsalicylic acid (ASA; aspirin, which is commonly used to treat non-infectious ailments), when administered to respiring cryptococcal cells. The treatment of cryptococcal cells, i.e., exposure to 0.5 or 1 mM of ASA in the presence of ultraviolet light (UVL) for 10 min, resulted in a significant (p < 0.05) reduction in the growth of tested cells when compared to non-treated (non-Rx) cells, i.e., no ASA and no UVL. The treated cells were also characterised by diseased mitochondria, which is crucial for the survival of respiring cells, as observed by a significant (p < 0.05) loss of mitochondrial membrane potential (ΔΨM) and significant (p < 0.05) accumulation of reactive oxygen species (ROS) when compared to non-Rx cells. Moreover, the photolytic products of acetylsalicylic acid altered the ultrastructural appearance of treated cells as well as limited the expression levels of the capsular-associated gene, CAP64, when compared to non-Rx cells. The results of the study highlight the potential use of ASA as a photosensitiser that is effective for controlling the growth of cryptococcal cells. Potentially, this treatment can also be used as an adjuvant, to complement and support the usage of current anti-microbial agents.
Collapse
|
25
|
Viegas C, Almeida B, Monteiro A, Paciência I, Rufo JC, Carolino E, Quintal-Gomes A, Twarużek M, Kosicki R, Marchand G, Aranha Caetano L, Viegas S. Settled dust assessment in clinical environment: useful for the evaluation of a wider bioburden spectrum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:160-178. [PMID: 31240954 DOI: 10.1080/09603123.2019.1634799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The collection and analysis of settled dust samples from indoor environments has become one of several environmental sampling methods used to assess bioburden indoors. The aim of the study was to characterize the bioburden in vacuumed settled dust from 10 Primary Health Care Centers by culture based and molecular methods. Results for bacterial load ranged from 1 to 12 CFU.g-1 of dust and Gram-negative bacteria ranged between 1 to 344 CFU.g-1 of dust. Fungal load ranged from 0 CFU.g-1 of dust to uncountable. Aspergillus section Fumigati was detected in 4 sampling sites where culture base-methods could not identify this section. Mucorales (Rhizopus sp.) was observed on 1 mg/L voriconazole. Three out of 10 settled dust samples were contaminated by mycotoxins. Settled dust sampling coupled with air sampling in a routine way might provide useful information about bioburden exposure.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa , Lisbon, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
| | - Ana Monteiro
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa , Lisbon, Portugal
| | - Inês Paciência
- Portugal & Centro Hospitalar São João, Faculdade de Medicina da Universidade do Porto , Porto, Portugal
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial , Porto, Portugal
| | - João Cavaleiro Rufo
- Portugal & Centro Hospitalar São João, Faculdade de Medicina da Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto , Porto, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
| | - Anita Quintal-Gomes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Faculty of Medicine, University of Lisbon Institute of Molecular Medicine , Lisbon, Portugal
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology , Bydgoszcz, Poland
| | - Robert Kosicki
- Department of Physiology and Toxicology, Kazimierz Wielki University, Faculty of Natural Sciences, Institute of Experimental Biology , Bydgoszcz, Poland
| | - Geneviéve Marchand
- Institut de recherche Robert-Sauvé en santé et sécurité du travail , Montréal, Canada
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa , Lisbon, Portugal
| |
Collapse
|
26
|
Abstract
Self-splicing proteins, called inteins, are present in many human pathogens, including the emerging fungal threats Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga), the causative agents of cryptococcosis. Inhibition of protein splicing in Cryptococcus sp. interferes with activity of the only intein-containing protein, Prp8, an essential intron splicing factor. Here, we screened a small-molecule library to find addititonal, potent inhibitors of the Cne Prp8 intein using a split-GFP splicing assay. This revealed the compound 6G-318S, with IC50 values in the low micromolar range in the split-GFP assay and in a complementary split-luciferase system. A fluoride derivative of the compound 6G-318S displayed improved cytotoxicity in human lung carcinoma cells, although there was a slight reduction in the inhibition of splicing. 6G-318S and its derivative inhibited splicing of the Cne Prp8 intein in vivo in Escherichia coli and in C. neoformans Moreover, the compounds repressed growth of WT C. neoformans and C. gattii In contrast, the inhibitors were less potent at inhibiting growth of the inteinless Candida albicans Drug resistance was observed when the Prp8 intein was overexpressed in C. neoformans, indicating specificity of this molecule toward the target. No off-target activity was observed, such as inhibition of serine/cysteine proteases. The inhibitors bound covalently to the Prp8 intein and binding was reduced when the active-site residue Cys1 was mutated. 6G-318S showed a synergistic effect with amphotericin B and additive to indifferent effects with a few other clinically used antimycotics. Overall, the identification of these small-molecule intein-splicing inhibitors opens up prospects for a new class of antifungals.
Collapse
|
27
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
28
|
Yu Y, Albrecht K, Groll J, Beilhack A. Innovative therapies for invasive fungal infections in preclinical and clinical development. Expert Opin Investig Drugs 2020; 29:961-971. [DOI: 10.1080/13543784.2020.1791819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidong Yu
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
- Department of Pediatrics, University Hospital of Würzburg , Würzburg, Germany
| |
Collapse
|
29
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
30
|
Abstract
In the last few decades, pyrazole chemistry has attracted chemists’ and biologists’ attention
mainly due to the discovery of the interesting properties of a great number of pyrazole derivatives.
The resulting proliferation of research literature reflects the enormous biological potential of
pyrazole derivatives as antitumor, anti-inflammatory, anti-HIV and antimicrobial agents. This review
focuses on research concerning the antimicrobial activity of pyrazole derivatives conducted from
2010-2018, and is intended to assist in the development of a new generation of antimicrobial drugs.
Collapse
Affiliation(s)
- Anshul Bansal
- Department of Chemistry, S. A. Jain (PG) College, Ambala City-134003, India
| |
Collapse
|
31
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
32
|
Jo MJ, Jin IS, Park CW, Hwang BY, Chung YB, Kim JS, Shin DH. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery. Arch Pharm Res 2020; 43:100-109. [PMID: 31989478 DOI: 10.1007/s12272-020-01215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Insufficient efficacy of current single drug therapy of cancers have led to the advancement of combination drug-loaded formulations. Specifically, polymeric micelles have been focused on as efficient injectable vehicles for the delivery of several anticancer drugs simultaneously to cancer cells. These nano delivery systems have evolved with advancements in the area of nanotechnology. The current review presents a summary of the past events that have led to the procession of nanomicelles and novel nanotechnologies for combinatorial drug delivery. It also focuses on the advantages, disadvantages, and considerations for the design of nanotechnologies for combinatorial drug delivery systems. The opportunities and challenges of nanotechnologies in drug delivery to overcome current disadvantages are also discussed. Furthermore, we have added findings regarding the trends and perspectives regarding nanotechnologies for combinatorial anticancer drug delivery.
Collapse
Affiliation(s)
- Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Ik Sup Jin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Youn Bok Chung
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea.
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
33
|
Perini L, Mogrovejo DC, Tomazin R, Gostinčar C, Brill FHH, Gunde-Cimerman N. Phenotypes Associated with Pathogenicity: Their Expression in Arctic Fungal Isolates. Microorganisms 2019; 7:microorganisms7120600. [PMID: 31766661 PMCID: PMC6955883 DOI: 10.3390/microorganisms7120600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Around 85% of the environments on Earth are permanently or seasonally colder than 5 °C. Among those, the poles constitute unique biomes, which harbor a broad variety of microbial life, including an abundance of fungi. Many fungi have an outstanding ability to withstand extreme conditions and play vital ecosystem roles of decomposers as well as obligate or facultative symbionts of many other organisms. Due to their dispersal capabilities, microorganisms from cryosphere samples can be distributed around the world. Such dispersal involves both species with undefined pathogenicity and potentially pathogenic strains. Here we describe the isolation of fungal species from pristine Arctic locations in Greenland and Svalbard and the testing of the expression of characteristics usually associated with pathogenic species, such as growth at 37 °C, hemolytic ability, and susceptibility to antifungal agents. A total of 320 fungal isolates were obtained, and 24 of the most abundant and representative species were further analyzed. Species known as emerging pathogens, like Aureobasidium melanogenum, Naganishia albida, and Rhodotorula mucilaginosa, were able to grow at 37 °C, showed beta-hemolytic activity, and were intrinsically resistant to commonly used antifungals such as azoles and echinocandins. Antifungal resistance screening revealed a low susceptibility to voriconazole in N. albida and Penicillium spp. and to fluconazole in Glaciozyma watsonii and Glaciozyma-related taxon.
Collapse
Affiliation(s)
- Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (C.G.); (N.G.-C.)
- Correspondence:
| | - Diana C. Mogrovejo
- MicroArctic Research Group, Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Stiegstück 34, 22339 Hamburg, Germany; (D.C.M.); (F.H.H.B.)
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia;
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (C.G.); (N.G.-C.)
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Florian H. H. Brill
- MicroArctic Research Group, Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Stiegstück 34, 22339 Hamburg, Germany; (D.C.M.); (F.H.H.B.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (C.G.); (N.G.-C.)
| |
Collapse
|
34
|
Sekizuka T, Iguchi S, Umeyama T, Inamine Y, Makimura K, Kuroda M, Miyazaki Y, Kikuchi K. Clade II Candida auris possess genomic structural variations related to an ancestral strain. PLoS One 2019; 14:e0223433. [PMID: 31596885 PMCID: PMC6785063 DOI: 10.1371/journal.pone.0223433] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023] Open
Abstract
Candida auris is an invasive and multidrug-resistant ascomycetous yeast that is under global surveillance. All clinical cases of C. auris infection diagnosed from 1997 to 2019 in Japan were non-invasive and sporadic otitis media cases. In the present study, we performed whole-genome sequencing of seven C. auris strains isolated from patients with otitis media in Japan, all of which belonged to clade II. Comparative genome analysis using the high-quality draft genome sequences JCM 15448T revealed that single nucleotide variations (SNVs), clade-specific accessory genes, and copy number variations (CNVs) were identified in each C. auris clade. A total of 61 genes involved in cell wall and stress response-related functions was absent in clade II, and the pattern of conserved CNVs in each clade was more stable in clade II than in other clades. Our data suggest that the genomic structural diversity is stable in C. auris isolated from each biogeographic location, and Japanese strains isolated from patients with otitis media might belong to an ancestral type of C. auris. One Japanese strain, TWCC 58362, with reduced susceptibility to fluconazole, exhibited no mutation in ergosterol biosynthesis-related genes (ERG). However, TWCC 58362-specific variations, including SNVs, indels, and CNVs were detected, suggesting that gene duplication events in C. auris might contribute to antifungal drug resistance. Taken together, we demonstrated that genomic structural variations in C. auris could correlate to geographical dissemination, epidemiology, lesions in the host, and antifungal resistance.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (TS); (KK)
| | - Shigekazu Iguchi
- Department of Infectious Diseases, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takashi Umeyama
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuba Inamine
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Makimura
- Department of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail: (TS); (KK)
| |
Collapse
|
35
|
Evren AE, Yurttas L, Yılmaz-Cankilic M. Synthesis of novel N-(naphthalen-1-yl)propanamide derivatives and evaluation their antimicrobial activity. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1657428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Asaf E. Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , Eskisehir , Turkey
- Vocational School of Health Services, Bilecik Şeyh Edebali University , Bilecik , Turkey
| | - Leyla Yurttas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , Eskisehir , Turkey
| | - Meral Yılmaz-Cankilic
- Department of Biology, Faculty of Sciences , Eskişehir Technical University, Eskisehir, Turkey
| |
Collapse
|
36
|
Alrabiah M, Alsahhaf A, Alofi RS, Al-Aali KA, Abduljabbar T, Vohra F. Efficacy of photodynamic therapy versus local nystatin in the treatment of denture stomatitis: A randomized clinical study. Photodiagnosis Photodyn Ther 2019; 28:98-101. [PMID: 31454713 DOI: 10.1016/j.pdpdt.2019.08.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 01/03/2023]
Abstract
AIM The aim of the present randomized clinical study was to compare the efficacies of photodynamic inactivation (PDI) to nystatin (NST) in terms of prevalence of Candida species in cases with denture stomatitis (DS). METHODS Thirty-six patients were randomly divided into two groups; 18 in PDI and 18 in NST. Irradiation was carried out by using the GaA1As diode laser with wavelength, mode of transmission, laser output and energy density were standardized at 660 nm, continuous mode, 100 mW power and 28 J/cm2 respectively. The PDI was applied twice a week, with an interval of at least 48 h among the sessions during four weeks. Topical nystatin oral suspension 100,000 IU was used four times daily for 15 days. The existence of Candida spp. was confirmed by employing the microbiological culture technique. Candida colony counts from the palates and dentures surfaces, quantified as colony forming unit (CFU)/mL, measured at baseline, at the end of treatments (day 15), and at follow-up (days 30 and 60) and the prevalence of Candida spp. were identified in the two groups of treatments. RESULTS The overall CFU/mL values were higher in the dentures of the patients of both the groups than those from the palates. During all time periods of the study, the CFU/mL values obtained from both NST and PDI groups showed no significant differences. For dentures and palates, a significant reduction in mean CFU/mL values was observed on day 15 compared with baseline (day 0) in both NST and PDI groups. It can be seen that the effect size of treatments was large for the palates of patients in the NST group (1.79) and moderate for the palates of patients in the PDI group (0.63). On the other hand, the effect size was very large for the dentures for both groups (NST group = 3.01; PDI group = 1.58). C. albicans was the most common species on both dentures and palates of patients throughout the study period followed by C. tropicalis and C. glabrata. CONCLUSION Out of all the Candida spp., C. albicans showed the highest prevalence among all species. In addition, PDI was equally effective as nystatin for the treatment of DS.
Collapse
Affiliation(s)
- Mohammed Alrabiah
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdulaziz Alsahhaf
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Raneem S Alofi
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Khulud Abdulrahman Al-Aali
- Department Of Clinical Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Research Chair for Biological Research in Dental Health, College of Dentistry, Riyadh 11545, Saudi Arabia
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Research Chair for Biological Research in Dental Health, College of Dentistry, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
37
|
Invasive Fungal Infections and Their Epidemiology: Measures in the Clinical Scenario. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0477-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Gumussoy M, Kucuk U. Candidiasis Causing Vocal Fold Leukoplakia: Review of Clinical and Pathological Results of 289 Cases With Vocal Fold Leukoplakia. Ann Otol Rhinol Laryngol 2019; 128:903-910. [DOI: 10.1177/0003489419848792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: In laryngology practice, vocal fold leukoplakia is frequently evaluated by suspension laryngoscopy and biopsy examination upon the patient’s complaints of hoarseness and dysphonia. The purpose of the present study is to investigate and analyze risk factors, diagnosis, treatment, and follow-up results of cases with Candida leukoplakia. Study Design: Retrospective case control study. Setting: Tertiary medical center. Subjects and Methods: Patients with a diagnosis of vocal fold leukoplakia who underwent direct laryngoscopy and biopsy between 2007 and 2017 and diagnosed as candida or noncandida in their histopathology were assigned into 2 groups. Then they were compared in terms of their demographic characteristics, predisposing factors, diagnosis, treatment, and follow-up results. Results: Of the 289 vocal fold leukoplakia cases, 36 were candida, and 253 were noncandida. The mean age of the patients with Candida leukoplakia was 60.86 years. As for the age groups, the largest group (26.1%) was in the seventh decade ( P < .001). The use of inhaled corticosteroids was a significant risk factor ( P < .001). For their medical therapy, the patients were administered fluconazole 200 mg per day for 3 weeks, and the treatment yielded successful results in 91.66% of them. In 5 of the patients, candida leukoplakia and superficial epithelial dysplasia were observed, and no malignant transformation was observed during a mean follow-up of 28 ± 13 months. Conclusion: Candidiasis causing vocal fold leukoplakia is rare, and we report the findings of the largest published case series to date. Eliminating predisposing factors and administrating oral fluconazole 200 mg for 3 weeks are sufficient for medical treatment.
Collapse
Affiliation(s)
- Murat Gumussoy
- Department of Otolaringology Head and Neck Surgery, University of Health Sciences, Izmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ulku Kucuk
- Department of Pathology, University of Health Sciences, Izmir Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
39
|
Fluorescent Capillary Electrophoresis Is Superior to Culture in Detecting Candida Species from Samples of Urinary Catheters and Ureteral Stents with Mono- or Polyfungal Biofilm Growth. J Clin Microbiol 2019; 57:JCM.01861-18. [PMID: 30674577 DOI: 10.1128/jcm.01861-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
Molecular techniques in fungal detection and identification represent an efficient complementary diagnostic tool which is increasingly used to overcome limitations of routinely used culture techniques. The aim of this study was to characterize Candida sp. representation in samples from urine, urinary catheter, and ureteral stent biofilm using ITS2 ribosomal DNA (rDNA) amplification followed by fluorescent capillary electrophoresis (f-ITS2-PCR-CE) and to compare the results with those obtained by culture. A total of 419 samples were analyzed, and 106 (25.2%) were found positive, out of which 17 (16%) were polyfungal. The positivity rate did not differ between samples from catheters and stents (23.6% versus 20.9%) or between catheter and stent corresponding urine samples (40.2% versus 30.2%). Ten different Candida species were detected, with Candida parapsilosis (31.4%), Candida albicans (26.5%), and Candida tropicalis (12.4%) predominating. f-ITS2-PCR-CE was evaluated as substantially less time-consuming and 8.3 times more sensitive than the routinely applied culture technique with 1 µl of urine/sonicated fluid inoculated, detecting 67 (19.9%) versus 8 (2.4%) positive samples out of 337 initially analyzed samples. The culture sensitivity considerably improved to 1.7 times lower than that of f-ITS2-PCR-CE after the inoculation volume was increased to 100 µl in the additional 82 samples. Moreover, the molecular technique, unlike routine cultivation, enabled precise pathogen composition determination in polymicrobial samples. In conclusion, the f-ITS2-PCR-CE method was shown to be a quick and efficient tool for culture-independent detection and identification of fungi in urinary tract-related samples, demonstrating a higher sensitivity than culture.
Collapse
|
40
|
Łukowska-Chojnacka E, Kowalkowska A, Gizińska M, Koronkiewicz M, Staniszewska M. Synthesis of tetrazole derivatives bearing pyrrolidine scaffold and evaluation of their antifungal activity against Candida albicans. Eur J Med Chem 2018; 164:106-120. [PMID: 30594027 DOI: 10.1016/j.ejmech.2018.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
The increase of opportunistic fungal infections raises the need for design and synthesis of new antifungal agents. Taking into account that tetrazole derivatives exhibit antifungal activity, and some of them are in the phase of clinical trials, new tetrazole derivatives bearing pyrrolidine moiety were synthesized in order to present their action mode against C. albicans. The target compounds were obtained by N-alkylation of various 2-arylpyrrolidines with several 1-(3-chloropropyl)-5-aryl-2H-tetrazoles. Regardless of the substituents at tetrazole or pyrrolidine rings reactions took place in 48 h and with satisfactory yields ranging from 53 to 70%. We performed screen of the synthesized compounds to identify these nontoxic inhibiting the C. albicans planktonic and sessile cells, and conducted a series of follow up studies to examine the in vitro and in vivo activity of the most potent antifungals. The leading antifungal inhibitor: 2-{3-[2-(3-Methylphenyl)pyrrolidin-1-yl]propyl}-5-phenyl-2H-tetrazole (3aC) and the randomly selected ones: 5-phenyl-2-[3-(2-phenylpyrrolidin-1-yl)propyl]-2H-tetrazole (3aA), 5-(4-chlorophenyl)-2-{3-[2-(4-fluorophenyl)pyrrolidin-1-yl]propyl}-2H-tetrazole (3cD), and 5-(4-chlorophenyl)-2-{3-[2-(4-chlorophenyl)pyrrolidin-1-yl]propyl}-2H-tetrazole (3cE) showed little to no toxicity against the Vero cell line and Galleria mellonella. 3aC and 3aD, the most active against biofilm in vitro, demonstrated in vivo activity in the invertebrate model of disseminated candidiasis. Flow cytometry analysis showed that necrotic cell death was generated under 3aC due to its interactions with the fungal membrane; this confirmed by the mitochondrial damage (XTT assay) and reduced adhesion to the TR-146 cell line at 46.05 μM. Flow cytometry was used to directly measure the redox state of the treated cells with the fluorescent DCFH probe. Pro-necrotic tetrazole derivatives (3aA, 3aC, 3cD) are unable to induce ROS production in the C. albicans cells. Moreover, CLSM analyses revealed that the tetrazole derivatives (principally 3aC, 3aD, and 3aE) inhibit C. albicans' ability to neutralize macrophages; a more effective phagosomes organisation was observed. 3aC's and 3aD's activity reflected in an attenuation of virulence in disseminated candidiasis in vivo.
Collapse
Affiliation(s)
- Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw, 00-791, Poland.
| | | | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw, 00-791, Poland.
| |
Collapse
|
41
|
Singla P, Dalal P, Kaur M, Arya G, Nimesh S, Singh R, Salunke DB. Bile Acid Oligomers and Their Combination with Antibiotics To Combat Bacterial Infections. J Med Chem 2018; 61:10265-10275. [DOI: 10.1021/acs.jmedchem.8b01433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Poonam Singla
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Priyanka Dalal
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Mahaldeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Geeta Arya
- Department of Biotechnology, Central University of Rajasthan, Ajmer 305817, India
| | - Surendra Nimesh
- Department of Biotechnology, Central University of Rajasthan, Ajmer 305817, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
42
|
Küng E, Fürnkranz U, Walochnik J. Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 2018; 53:116-127. [PMID: 30612993 DOI: 10.1016/j.ijantimicag.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Trichomonas vaginalis is the causative agent of the most common non-viral sexually transmitted disease worldwide. The infection may be associated with severe complications, including infertility, preterm labour, cancer and an increased risk of human immunodeficiency virus (HIV) transmission. Treatment remains almost exclusively based on 5-nitroimidazoles, but resistance is on the rise. This article provides an overview of clinically evaluated systemic and topical treatment options for human trichomoniasis and summarises the current state of knowledge on various herbal, semisynthetic and synthetic compounds evaluated for their anti-Trichomonas efficacy in vitro.
Collapse
Affiliation(s)
- Erik Küng
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|
43
|
Al-Wabli RI, Govindarajan M, Almutairi MS, Attia MI. Spectral characterization, computed frequencies analysis and electronic structure calculations on (1E)N-hydroxy-3-(1H-imidazol-1-yl)-1-phenylpropan-1-imine: An oxime-bearing precursor to potential antifungal agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Beardsley J, Halliday CL, Chen SCA, Sorrell TC. Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 2018; 13:1175-1191. [PMID: 30113223 PMCID: PMC6190174 DOI: 10.2217/fmb-2018-0059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
The incidence of serious fungal infections is increasing rapidly, and yet the rate of new drugs becoming available to treat them is slow. The limited therapeutic armamentarium is a challenge for clinicians, because the available drugs are often toxic, expensive, difficult to administer, ineffective or a combination of all four. Given this setting, the emergence of resistance is especially concerning, and a review of the topic is timely. Here we discuss antifungal drug resistance in Candida spp. and Aspergillus spp. with reference to the most commonly used first-line antifungal agents - azoles and echinocandins. We review the resistance mechanisms of the leading pathogens, how resistance can be identified in the diagnostic lab and the clinical implications of resistance once detected.
Collapse
Affiliation(s)
- Justin Beardsley
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Catriona L Halliday
- The Center for Infectious Diseases & Microbiology Laboratory Services, ICPMR Pathology West, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Sharon C-A Chen
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
- The Center for Infectious Diseases & Microbiology Laboratory Services, ICPMR Pathology West, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
45
|
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018; 198:385-400. [PMID: 30093014 DOI: 10.1016/j.carbpol.2018.06.086] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Carrageenan is a class of naturally occurring sulphated polysaccharides, which is currently a promising candidate in tissue engineering and regenerative medicine as it resemblances native glycosaminoglycans. From pharmaceutical drug formulations to tissue engineered scaffolds, carrageenan has broad range of applications. Here we provide an overview of developing various forms of carrageenan based hydrogels. We focus on how these fabrication processes has an effect on physiochemical properties of the hydrogel. We outline the application of these hydrogels not only pertaining to sustained drug release but also their application in bone and cartilage tissue engineering as well as in wound healing and antimicrobial formulations. Administration of these hydrogels through various routes for drug delivery applications has been critically reviewed. Finally, we conclude by summarizing the current and future outlook that promotes the seaweed-derived polysaccharide as versatile, promising biomaterial for a variety of bioengineering applications.
Collapse
Affiliation(s)
- Ramanathan Yegappan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vignesh Selvaprithiviraj
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
46
|
ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int J Oral Sci 2018; 10:9. [PMID: 29555898 PMCID: PMC5944255 DOI: 10.1038/s41368-018-0013-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/25/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
The hyphal development of Candida albicans (C. albicans) has been considered as an essential virulent factor for host cell damage. However, the missing link between hyphae and virulence of C. albicans is also been discovered. Here, we identified that the null mutants of ERG3 and ERG11, two key genes in ergosterol biosynthesis pathway, can form typical hyphae but failed to cause the oral mucosal infection in vitro and in vivo for the first time. In particular, the erg3Δ/Δ and erg11Δ/Δ strains co-cultured with epithelial cells significantly reduced the adhesion, damage, and cytokine (interleukin-1α (IL-1α)) production, whereas the invasion was not affected in vitro. Importantly, they were incapable of extensive hyphal invasion, formation of micro-abscesses, and tongue epithelium damage compared to wild type due to the decrease of the colonization and epithelial infection area in a murine oropharyngeal candidiasis model. The fluconazole (FLC), an antifungal targeted at ergosterol biosynthesis, relieved the epithelial infection of C. albicansin vitro and in vivo even under non-growth inhibitory dosage confirming the virulent contribution of ergosterol biosynthesis pathway. The erg3Δ/Δ and erg11Δ/Δ strains were cleared by macrophages similar to wild type, whereas their virulence factors including agglutinin-like sequence 1 (Als1), secreted aspartyl proteinase 6 (Sap6), and hyphal wall protein-1 (Hwp1) were significantly reduced indicated that the non-toxicity might not result from the change on immune tolerance but the defective virulence. The incapacity of erg3Δ/Δ and erg11Δ/Δ in epithelial infection highlights the contribution of ergosterol biosynthesis pathway to C. albicans pathogenesis and fluconazole can not only eliminate the fungal pathogens but also reduced their virulence even at low dosage. The damage from oral infection with the fungus Candida albicans can be contained by targeting two cell membrane-building genes. C. albicans cells transition from a rounded shape into long filamentous structures called hyphae prior to invading and damaging host epithelial cells. Researchers led by Lei Cheng at Sichuan University have now identified a key intermediate step between hyphae formation and virulence. They determined that fungal cells lacking either of two genes that manufacture ergosterol, a component of the C. albicans membrane, still form hyphae and attach to epithelial cells. However, these mutant fungi inflict no cellular damage, and did not cause disease in mice. Furthermore, treatment with low-dose fluconazole, a drug that inhibits ergosterol synthesis, rendered the fungus non-virulent without killing it, indicating that this pathway represents an important ‘missing link’ for fungal pathogenesis.
Collapse
|
47
|
Vipulanandan G, Herrera M, Wiederhold NP, Li X, Mintz J, Wickes BL, Kadosh D. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals. J Dent Res 2017; 97:91-98. [PMID: 28850289 DOI: 10.1177/0022034517729351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.
Collapse
Affiliation(s)
- G Vipulanandan
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - M Herrera
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N P Wiederhold
- 2 Department of Pathology and Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - X Li
- 3 Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Mintz
- 3 Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - B L Wickes
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - D Kadosh
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
48
|
Zha GF, Leng J, Darshini N, Shubhavathi T, Vivek HK, Asiri AM, Marwani HM, Rakesh KP, Mallesha N, Qin HL. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg Med Chem Lett 2017; 27:3148-3155. [PMID: 28539243 DOI: 10.1016/j.bmcl.2017.05.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
Abstract
A series of new benzo[d]thiazole-hydrazones analogues were synthesized and screened for their in vitro antibacterial and antifungal activities. The results revealed that compounds 13, 14, 15, 19, 20, 28 and 30 exhibited superior antibacterial potency compared to the reference drug chloramphenicol and rifampicin. Compounds 5, 9, 10, 11, 12, 28 and 30 were found to be good antifungal activity compared to the standard drug ketoconazole. A preliminary study of the structure-activity relationship (SAR) revealed that the antimicrobial activity depended on the effect of different substituents on the phenyl ring. The electron donating (OH and OCH3) groups presented in the analogues, increase the antibacterial activity (except compound 12), interestingly, while the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 19 and 20). In addition, analogues containing thiophene (28) and indole (30) showed good antimicrobial activities. Whereas, aliphatic analogues (24-26) shown no activities in both bacterial and fungal stains even in high concentrations (100µg/mL). Molecular docking studies were performed for all the synthesized compounds of which compounds 11, 19 and 20 showed the highest glide G-score.
Collapse
Affiliation(s)
- Gao-Feng Zha
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, PR China
| | - Jing Leng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, PR China
| | - N Darshini
- SRI RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, Karnataka, India
| | - T Shubhavathi
- SRI RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, Karnataka, India
| | - H K Vivek
- SRI RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, Karnataka, India
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, PR China.
| | - N Mallesha
- SRI RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, Karnataka, India.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, PR China.
| |
Collapse
|
49
|
Doğan İS, Saraç S, Sari S, Kart D, Eşsiz Gökhan Ş, Vural İ, Dalkara S. New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies. Eur J Med Chem 2017; 130:124-138. [DOI: 10.1016/j.ejmech.2017.02.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/20/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
|
50
|
|