1
|
Tamaoki Y, Kroon SL, Williams BM, Riley JR, Engineer CT. Early neural dysfunction reflected in degraded auditory cortex responses in pre-regression heterozygous Mecp2 rats. Neurobiol Dis 2025; 210:106926. [PMID: 40262725 DOI: 10.1016/j.nbd.2025.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025] Open
Abstract
Rett syndrome, a genetic disorder caused by mutations in the X-linked Mecp2 gene, is characterized by typical early development followed by rapid developmental regression between 6 and 18 months of age. Affected individuals exhibit seizures, cognitive impairments, motor deficits, and difficulties in speech-language processing. Post-regression rodent models of Rett syndrome have been observed to follow similar regression, presenting sensory processing difficulties during auditory discrimination tasks, as well as degraded auditory cortical responses. However, little is known about the auditory processing prior to the onset of regression symptoms. This study documents primary auditory cortex responses to sounds in pre-regression heterozygous Mecp2 rats compared to age-matched wild-type controls. Pre-regression Mecp2 rats exhibited weaker and delayed cortical responses to speech sounds, alterations in the temporal processing of rapidly presented sounds, and an overrepresentation of high-frequency tones in conjunction with a reduction in the cortical representation of low-frequency tones. Despite these impairments, pre-regression Mecp2 rats demonstrated intact neural classifier performance for consonant discrimination, which is consistent with the high accuracy these pre-regression Mecp2 rats exhibit for a behavioral consonant discrimination task. These findings reveal that cortical deficits in Mecp2 rats emerge before behavioral regression. Insights derived from this study expand upon the current understanding of the progression of sensory processing deficits in Rett syndrome and other neurodevelopmental disorders and lay the groundwork for the development of therapeutics for this population.
Collapse
Affiliation(s)
- Yuko Tamaoki
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA.
| | - Samantha L Kroon
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Brendan M Williams
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB 11, Richardson, TX 75080, USA; The University of Texas at Dallas, Department of Neuroscience, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
2
|
Poleg T, Hadar N, Heimer G, Dolgin V, Aminov I, Safran A, Agam N, Jean MM, Freund O, Kaur S, Christodoulou J, Ben-Zeev B, Birk OS. Unraveling MECP2 structural variants in previously elusive Rett syndrome cases through IGV interpretation. NPJ Genom Med 2025; 10:23. [PMID: 40082422 PMCID: PMC11906642 DOI: 10.1038/s41525-025-00481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder, with MECP2 mutations accounting for 90-95% of classic and 50-70% of atypical cases. However, many clinically diagnosed RTT patients remain without molecular diagnoses. While point mutations and large rearrangements in MECP2 are well studied, the role of small-intermediate structural variants (SVs) remains mostly elusive. Using standard short-read whole genome sequencing, we identified novel de novo SVs in three out of three previously unresolved RTT cases: a complex SV with two deletions ( ~ 5Kbp and ~60Kbp) and a ~105Kbp inversion; a ~200Kbp translocation; and a ~3Kbp deletion. These findings suggest that such elusive SVs might be a common cause for "MECP2-negative" RTT. Incorporating SV detection into routine genetic testing through bioinformatic analysis of short-read sequencing or manual review using IGV could improve diagnostic rates and expand our understanding of RTT and similar disorders.
Collapse
Affiliation(s)
- Tomer Poleg
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Noam Hadar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gali Heimer
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University School of Medicine, Tel-Aviv, Israel
| | - Vadim Dolgin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ilana Aminov
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amit Safran
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nadav Agam
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Matan M Jean
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ofek Freund
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Simran Kaur
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University School of Medicine, Tel-Aviv, Israel
| | - Ohad S Birk
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel.
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
3
|
Yang D, Wu X, Yao Y, Duan M, Wang X, Li G, Guo A, Wu M, Liu Y, Zheng J, Zhang R, Li T, Luk A, Yao X, Shi L, Xu C, Yang H. An RNA editing strategy rescues gene duplication in a mouse model of MECP2 duplication syndrome and nonhuman primates. Nat Neurosci 2025; 28:72-83. [PMID: 39668251 DOI: 10.1038/s41593-024-01838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2024] [Indexed: 12/14/2024]
Abstract
Duplication of methyl-CpG-binding protein 2 (MECP2) gene causes MECP2 duplication syndrome (MDS). To normalize the duplicated MECP2 in MDS, we developed a high-fidelity Cas13Y (hfCas13Y) system capable of targeting the MECP2 (hfCas13Y-gMECP2) messenger RNA for degradation and reducing protein levels in the brain of humanized MECP2 transgenic mice. Moreover, the intracerebroventricular adeno-associated virus (AAV) delivery of hfCas13Y-gMECP2 in newborn or adult MDS mice restored dysregulated gene expression and improved behavior deficits. Notably, treatment with AAV9-hfCas13Y-gMECP2 extended the median survival of MECP2 transgenic mice from 156.5 to 226 d. Furthermore, studies with monkeys showed a single injection of AAV9-hfCas13Y-gMECP2 was sufficient to drive robust expression of hfCas13Y in widespread brain regions, with MECP2 knockdown efficiency reaching 52.19 ± 0.03% and significantly decreased expression of biomarker gene GDF11. Our results demonstrate that the RNA-targeting hfCas13Y-gMECP2 system is an effective intervention for MDS, providing a potential strategy for treating other dosage-sensitive diseases.
Collapse
Affiliation(s)
- Dong Yang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xiaoqing Wu
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yinan Yao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mengsi Duan
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xing Wang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Aiguo Guo
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Meixian Wu
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yuanhua Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zheng
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Renxia Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Li
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Alvin Luk
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xuan Yao
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Linyu Shi
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Inc., Shanghai, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| |
Collapse
|
4
|
Cillari N, Neri G, Pisanti N, Milazzo P, Borello U. RettDb: the Rett syndrome omics database to navigate the Rett syndrome genomic landscape. Database (Oxford) 2024; 2024:baae109. [PMID: 39414258 PMCID: PMC11482253 DOI: 10.1093/database/baae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder occurring almost exclusively in females and leading to a variety of impairments and disabilities from mild to severe. In >95% cases, RTT is due to mutations in the X-linked gene MECP2, but the molecular mechanisms determining RTT are unknown at present, and the complexity of the system is challenging. To facilitate and provide guidance to the unraveling of those mechanisms, we developed a database resource for the visualization and analysis of the genomic landscape in the context of wild-type or mutated Mecp2 gene in the mouse model. Our resource allows for the exploration of differential dynamics of gene expression and the prediction of new potential MECP2 target genes to decipher the RTT disorder molecular mechanisms. Database URL: https://biomedinfo.di.unipi.it/rett-database/.
Collapse
Affiliation(s)
- Nico Cillari
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| | - Giuseppe Neri
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| | - Nadia Pisanti
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
| | - Paolo Milazzo
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
| | - Ugo Borello
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| |
Collapse
|
5
|
Bijlani S, Pang KM, Bugga LV, Rangasamy S, Narayanan V, Chatterjee S. Nuclease-free precise genome editing corrects MECP2 mutations associated with Rett syndrome. Front Genome Ed 2024; 6:1346781. [PMID: 38495533 PMCID: PMC10940404 DOI: 10.3389/fgeed.2024.1346781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Rett syndrome is an acquired progressive neurodevelopmental disorder caused by de novo mutations in the X-linked MECP2 gene which encodes a pleiotropic protein that functions as a global transcriptional regulator and a chromatin modifier. Rett syndrome predominantly affects heterozygous females while affected male hemizygotes rarely survive. Gene therapy of Rett syndrome has proven challenging due to a requirement for stringent regulation of expression with either over- or under-expression being toxic. Ectopic expression of MECP2 in conjunction with regulatory miRNA target sequences has achieved some success, but the durability of this approach remains unknown. Here we evaluated a nuclease-free homologous recombination (HR)-based genome editing strategy to correct mutations in the MECP2 gene. The stem cell-derived AAVHSCs have previously been shown to mediate seamless and precise HR-based genome editing. We tested the ability of HR-based genome editing to correct pathogenic mutations in Exons 3 and 4 of the MECP2 gene and restore the wild type sequence while preserving all native genomic regulatory elements associated with MECP2 expression, thus potentially addressing a significant issue in gene therapy for Rett syndrome. Moreover, since the mutations are edited directly at the level of the genome, the corrections are expected to be durable with progeny cells inheriting the edited gene. The AAVHSC MECP2 editing vector was designed to be fully homologous to the target MECP2 region and to insert a promoterless Venus reporter at the end of Exon 4. Evaluation of AAVHSC editing in a panel of Rett cell lines bearing mutations in Exons 3 and 4 demonstrated successful correction and rescue of expression of the edited MECP2 gene. Sequence analysis of edited Rett cells revealed successful and accurate correction of mutations in both Exons 3 and 4 and permitted mapping of HR crossover events. Successful correction was observed only when the mutations were flanked at both the 5' and 3' ends by crossover events, but not when both crossovers occurred either exclusively upstream or downstream of the mutation. Importantly, we concluded that pathogenic mutations were successfully corrected in every Rett line analyzed, demonstrating the therapeutic potential of HR-based genome editing.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Ka Ming Pang
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lakshmi V. Bugga
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Sampath Rangasamy
- Center for Rare Childhood Disorders (C4RCD), Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders (C4RCD), Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Saswati Chatterjee
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
6
|
Darwish M, Youakim JM, Harlick J, DeKarske D, Stankovic S. A Phase 1, Open-Label Study to Evaluate the Effects of Food and Evening Dosing on the Pharmacokinetics of Oral Trofinetide in Healthy Adult Subjects. Clin Drug Investig 2022; 42:513-524. [PMID: 35622206 PMCID: PMC9188616 DOI: 10.1007/s40261-022-01156-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/03/2022]
Abstract
Background and Objective Trofinetide, a synthetic analog of tripeptide glycine-proline-glutamate, is an investigational agent for the treatment of Rett syndrome, a neurodevelopmental disorder with affected individuals requiring lifelong support. Food can affect the pharmacokinetic profile of a drug, and this phase 1 study assessed the potential effect of food on the pharmacokinetics of trofinetide. The study also evaluated the potential effect of evening dosing on trofinetide bioavailability and characterized the pharmacokinetic profile of trofinetide in urine. Methods A 60 mL oral solution of trofinetide (12 g) was administered in three dosing periods: morning fasted (A; reference), morning fed (B), and evening fasted (C). Healthy adult subjects (18−45 years) were randomized to sequence ABC (n = 19) or BAC (n = 22). Blood and urine samples were collected at scheduled timepoints for trofinetide pharmacokinetic analysis. Bioequivalence was confirmed if 90% confidence intervals for geometric mean ratio between B/A or C/A fell within 80–125% equivalence limits for area under the concentration-time curve (AUC) and maximum concentration (Cmax) in whole blood. Results Bioequivalence criteria were met for all conditions (i.e., morning fed vs. morning fasted and evening fasted vs. morning fasted) except Cmax in the fed versus fasted condition, which was just below the bioequivalence limit (75.49%), suggesting a negligible food effect and lack of diurnal variation on bioavailability. Trofinetide was primarily excreted unchanged in urine. Trofinetide was well tolerated, and there were no significant changes in vital signs or laboratory parameters. Conclusion This study supports dosing of trofinetide without regard to food. Supplementary Information The online version contains supplementary material available at 10.1007/s40261-022-01156-4.
Collapse
Affiliation(s)
- Mona Darwish
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, USA.
| | - James M Youakim
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, USA
| | - Jim Harlick
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, USA
| | - Daryl DeKarske
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, USA
| | - Serge Stankovic
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, USA
| |
Collapse
|
7
|
Suthapot P, Xiao T, Felsenfeld G, Hongeng S, Wongtrakoongate P. The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2. Life Sci 2022; 291:120298. [PMID: 35007564 DOI: 10.1016/j.lfs.2021.120298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022]
Abstract
AIMS Understanding human neurogenesis is critical toward regenerative medicine for neurodegeneration. However, little is known how neural differentiation is regulated by DEAD box-containing RNA helicases, which comprise a diverse class of RNA remodeling enzymes. MATERIALS AND METHODS ChIP-seq was utilized to identify binding sites of DDX5 and DDX17 in both human pluripotent stem cell (hPSC) line NTERA2 and their retinoic acid-induced neural derivatives. RNA-seq was used to elucidate genes differentially expressed upon depletion of DDX5 and DDX17. Neurosphere assay, flow cytometry, and immunofluorescence staining were performed to test the effect of depletion of the two RNA helicases in neural differentiation. KEY FINDINGS We show here that expression of DDX5 and DDX17 is abundant throughout neural differentiation of NTERA2, and is mostly localized within the nucleus. The two RNA helicases occupy chromatin genome-wide at regions associated with neurogenesis-related genes in both hPSCs and their neural derivatives. Further, both DDX5 and DDX17 are mutually required for controlling transcriptional expression of these genes, but are not important for maintenance of stem cell state of hPSCs. In contrast, they facilitate early neural differentiation of hPSCs, generation of neurospheres from the stem cells, and transcriptional expression of key neurogenic transcription factors such as SOX1 and PAX6 during neural differentiation. Importantly, DDX5 and DDX17 are critical for differentiation of hPSCs toward NESTIN- and TUBB3-positive cells, which represent neural progenitors and mature neurons, respectively. SIGNIFICANCE Collectively, our findings suggest the role of DDX5 and DDX17 in transcriptional regulation of genes involved in neurogenesis, and hence in neural differentiation of hPSCs.
Collapse
Affiliation(s)
- Praewa Suthapot
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
8
|
Belaïdouni Y, Diabira D, Zhang J, Graziano JC, Bader F, Montheil A, Menuet C, Wayman GA, Gaiarsa JL. The Chloride Homeostasis of CA3 Hippocampal Neurons Is Not Altered in Fully Symptomatic Mepc2-null Mice. Front Cell Neurosci 2021; 15:724976. [PMID: 34602980 PMCID: PMC8484709 DOI: 10.3389/fncel.2021.724976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. Mouse models of RTT show reduced expression of the cation-chloride cotransporter KCC2 and altered chloride homeostasis at presymptomatic stages. However, whether these alterations persist to late symptomatic stages has not been studied. Here we assess KCC2 and NKCC1 expressions and chloride homeostasis in the hippocampus of early [postnatal (P) day 30-35] and late (P50-60) symptomatic male Mecp2-null (Mecp2 -/y) mice. We found (i) no difference in the relative amount, but an over-phosphorylation, of KCC2 and NKCC1 between wild-type (WT) and Mecp2 -/y hippocampi and (ii) no difference in the inhibitory strength, nor reversal potential, of GABA A -receptor-mediated responses in Mecp2 -/y CA3 pyramidal neurons compared to WT at any stages studied. Altogether, these data indicate the presence of a functional chloride extrusion mechanism in Mecp2 -/y CA3 pyramidal neurons at symptomatic stages.
Collapse
Affiliation(s)
- Yasmine Belaïdouni
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Diabe Diabira
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, United Kingdom
| | - Jean-Charles Graziano
- Aix-Marseille University 105, Institut Paoli Calmettes, U1068, Institut National de la Santé et de la Recherche Médicale U7258, Centre National de Recherche Scientifique, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Francesca Bader
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Aurelie Montheil
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Clément Menuet
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| | - Gary A. Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Jean-Luc Gaiarsa
- Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
9
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 PMCID: PMC8183409 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkNYUSA
| |
Collapse
|
10
|
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol 2021; 36:e2021003-0. [PMID: 33730790 PMCID: PMC8207007 DOI: 10.5620/eaht.2021003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Several millions of people are exposed to cadmium worldwide due to natural and anthropogenic activities that led to their widespread distribution in the environment and have shown potential adverse effects on the kidneys, liver, heart and nervous system. Recently human and animal-based studies have been shown that In utero and early life exposure to cadmium can have serious health issues that are related to the risk of developmental disabilities and other outcomes in adulthood. Since, cadmium crosses the placental barrier and reaches easily to the fetus, even moderate or high-level exposure of this metal during pregnancy could be of serious health consequences which might be reflected either in the children’s early or later stages of life. Mortality from various diseases including cancer, cardiovascular, respiratory, kidney and neurological problems, correlation with In utero or early life exposure to cadmium has been found in epidemiological studies. Animal studies with strong evidence of various diseases mostly support for the human studies, as well as suggested a myriad mechanism by which cadmium can interfere with human health and development. More studies are needed to establish the mechanism of cadmium-induced toxicity with environmentally relevant doses in childhood and later life. In this review, we provide a comprehensive examination of the literature addressing potential long- term health issues with In utero and early life exposure to cadmium, as well as correlating with human and animal exposure studies.
Collapse
Affiliation(s)
- Lalit Chandravanshi
- Department of Forensic Science, College and Traffic Management- Institute of Road and Traffic Education, Faridabad - Haryana - 121010, India
| | - Kunal Shiv
- Division of Forensic Science, School of Basic & Applied Sciences, Galgotias University Greater Noida - 201306, India
| | - Sudhir Kumar
- Forensic Science laboratory, Modinagar, Ghaziabad - 201204, India
| |
Collapse
|
11
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
12
|
Adams I, Yang T, Longo FM, Katz DM. Restoration of motor learning in a mouse model of Rett syndrome following long-term treatment with a novel small-molecule activator of TrkB. Dis Model Mech 2020; 13:13/11/dmm044685. [PMID: 33361117 PMCID: PMC7710018 DOI: 10.1242/dmm.044685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced expression of brain-derived neurotrophic factor (BDNF) and impaired activation of the BDNF receptor, tropomyosin receptor kinase B (TrkB; also known as Ntrk2), are thought to contribute significantly to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Previous studies from this and other laboratories have shown that enhancing BDNF expression and/or TrkB activation in Mecp2-deficient mouse models of RTT can ameliorate or reverse abnormal neurological phenotypes that mimic human RTT symptoms. The present study reports on the preclinical efficacy of a novel, small-molecule, non-peptide TrkB partial agonist, PTX-BD4-3, in heterozygous female Mecp2 mutant mice, a well-established RTT model that recapitulates the genetic mosaicism of the human disease. PTX-BD4-3 exhibited specificity for TrkB in cell-based assays of neurotrophin receptor activation and neuronal cell survival and in in vitro receptor binding assays. PTX-BD4-3 also activated TrkB following systemic administration to wild-type and Mecp2 mutant mice and was rapidly cleared from the brain and plasma with a half-life of ∼2 h. Chronic intermittent treatment of Mecp2 mutants with a low dose of PTX-BD4-3 (5 mg/kg, intraperitoneally, once every 3 days for 8 weeks) reversed deficits in two core RTT symptom domains – respiration and motor control – and symptom rescue was maintained for at least 24 h after the last dose. Together, these data indicate that significant clinically relevant benefit can be achieved in a mouse model of RTT with a chronic intermittent, low-dose treatment paradigm targeting the neurotrophin receptor TrkB. Editor's choice: Long-term intermittent treatment with a newly developed partial agonist of the TrkB neurotrophin receptor reverses deficits in motor learning and respiration in a mouse model of Rett syndrome.
Collapse
Affiliation(s)
- Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| |
Collapse
|
13
|
Yu P, Li J, Deng SP, Zhang F, Grozdanov PN, Chin EWM, Martin SD, Vergnes L, Islam MS, Sun D, LaSalle JM, McGee SL, Goh E, MacDonald CC, Jin P. Integrated analysis of a compendium of RNA-Seq datasets for splicing factors. Sci Data 2020; 7:178. [PMID: 32546682 PMCID: PMC7297722 DOI: 10.1038/s41597-020-0514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023] Open
Abstract
A vast amount of public RNA-sequencing datasets have been generated and used widely to study transcriptome mechanisms. These data offer precious opportunity for advancing biological research in transcriptome studies such as alternative splicing. We report the first large-scale integrated analysis of RNA-Seq data of splicing factors for systematically identifying key factors in diseases and biological processes. We analyzed 1,321 RNA-Seq libraries of various mouse tissues and cell lines, comprising more than 6.6 TB sequences from 75 independent studies that experimentally manipulated 56 splicing factors. Using these data, RNA splicing signatures and gene expression signatures were computed, and signature comparison analysis identified a list of key splicing factors in Rett syndrome and cold-induced thermogenesis. We show that cold-induced RNA-binding proteins rescue the neurite outgrowth defects in Rett syndrome using neuronal morphology analysis, and we also reveal that SRSF1 and PTBP1 are required for energy expenditure in adipocytes using metabolic flux analysis. Our study provides an integrated analysis for identifying key factors in diseases and biological processes and highlights the importance of public data resources for identifying hypotheses for experimental testing.
Collapse
Affiliation(s)
- Peng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
| | - Jin Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Su-Ping Deng
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Petar N Grozdanov
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, NA, Singapore
| | - Sheree D Martin
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - M Saharul Islam
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Sean L McGee
- Metabolic Reprogramming Laboratory, Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Eyleen Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, NA, Singapore
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Zuliani I, Urbinati C, Valenti D, Quattrini MC, Medici V, Cosentino L, Pietraforte D, Di Domenico F, Perluigi M, Vacca RA, De Filippis B. The Anti-Diabetic Drug Metformin Rescues Aberrant Mitochondrial Activity and Restrains Oxidative Stress in a Female Mouse Model of Rett Syndrome. J Clin Med 2020; 9:jcm9061669. [PMID: 32492904 PMCID: PMC7355965 DOI: 10.3390/jcm9061669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | | | - Vanessa Medici
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | | | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
- Correspondence:
| |
Collapse
|
15
|
Varderidou-Minasian S, Hinz L, Hagemans D, Posthuma D, Altelaar M, Heine VM. Quantitative proteomic analysis of Rett iPSC-derived neuronal progenitors. Mol Autism 2020; 11:38. [PMID: 32460858 PMCID: PMC7251722 DOI: 10.1186/s13229-020-00344-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rett syndrome (RTT) is a progressive neurodevelopmental disease that is characterized by abnormalities in cognitive, social, and motor skills. RTT is often caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). The mechanism by which impaired MeCP2 induces the pathological abnormalities in the brain is not understood. Both patients and mouse models have shown abnormalities at molecular and cellular level before typical RTT-associated symptoms appear. This implies that underlying mechanisms are already affected during neurodevelopmental stages. Methods To understand the molecular mechanisms involved in disease onset, we used an RTT patient induced pluripotent stem cell (iPSC)-based model with isogenic controls and performed time-series of proteomic analysis using in-depth high-resolution quantitative mass spectrometry during early stages of neuronal development. Results We provide mass spectrometry-based quantitative proteomic data, depth of about 7000 proteins, at neuronal progenitor developmental stages of RTT patient cells and isogenic controls. Our data gives evidence of proteomic alteration at early neurodevelopmental stages, suggesting alterations long before the phase that symptoms of RTT syndrome become apparent. Significant changes are associated with the GO enrichment analysis in biological processes cell-cell adhesion, actin cytoskeleton organization, neuronal stem cell population maintenance, and pituitary gland development, next to protein changes previously associated with RTT, i.e., dendrite morphology and synaptic deficits. Differential expression increased from early to late neural stem cell phases, although proteins involved in immunity, metabolic processes, and calcium signaling were affected throughout all stages analyzed. Limitations The limitation of our study is the number of RTT patients analyzed. As the aim of our study was to investigate a large number of proteins, only one patient was considered, of which 3 different RTT iPSC clones and 3 isogenic control iPSC clones were included. Even though this approach allowed the study of mutation-induced alterations due to the usage of isogenic controls, results should be validated on different RTT patients to suggest common disease mechanisms. Conclusions During early neuronal differentiation, there are consistent and time-point specific proteomic alterations in RTT patient cells carrying exons 3–4 deletion in MECP2. We found changes in proteins involved in pathway associated with RTT phenotypes, including dendrite morphology and synaptogenesis. Our results provide a valuable resource of proteins and pathways for follow-up studies, investigating common mechanisms involved during early disease stages of RTT syndrome.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dominique Hagemans
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Vivi M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Starr JM. Ageing and epigenetics: linking neurodevelopmental and neurodegenerative disorders. Dev Med Child Neurol 2019; 61:1134-1138. [PMID: 30883719 DOI: 10.1111/dmcn.14210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Epigenetics has classically been recognized as crucial to neurodevelopment and neurodevelopmental disorders. More recently its role in ageing processes, including neurodegenerative disorders has emerged, although far more research is required in this area, particularly in humans. Epigenetic processes that regulate gene expression comprise strata of DNA modification (e.g. methylation), histone modification (e.g. histone acetylation), and mRNA translation (e.g. by microRNAs). These strata are progressively more fluid whereby changes in DNA methylation may persist for many years whilst expression of microRNAs fluctuates over short periods. There is considerable 'cross-talk' between these epigenetic strata. Epigenetic mechanisms are open to parental imprinting and thus they are candidates for linking diseases, not just over the life course, but also intergenerationally. There is a genetic overlap between intellectual disability and cognitive ageing. Epigenetic pathways may strengthen the links between neurodevelopmental disorders and neurodegenerative diseases. WHAT THIS PAPER ADDS: DNA methylation has relevance to both neurological development and neurodegeneration. Links between epigenetics, genotype and phenotype are emerging.
Collapse
Affiliation(s)
- John M Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Forsberg SL, Ilieva M, Maria Michel T. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Transl Psychiatry 2018; 8:14. [PMID: 29317608 PMCID: PMC5802583 DOI: 10.1038/s41398-017-0062-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autism spectrum disorders (ASD) affect 1 in 68 children in the US according to the Centers for Disease Control and Prevention (CDC). It is characterized by impairments in social interactions and communication, restrictive and repetitive patterns of behaviors, and interests. Owing to disease complexity, only a limited number of treatment options are available mainly for children that alleviate but do not cure the debilitating symptoms. Studies confirm a genetic link, but environmental factors, such as medications, toxins, and maternal infection during pregnancy, as well as birth complications also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms.
Collapse
Affiliation(s)
- Sheena Louise Forsberg
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mirolyuba Ilieva
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Tanja Maria Michel
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Psychiatry, Psychiatry in the region of Southern Denmark, Odense, Denmark
- Odense Center for Applied Neuroscience BRIDGE, University of Southern Denmark, Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
18
|
Abstract
This article highlights the emerging therapeutic potential of specific epigenetic modulators as promising antiepileptogenic or disease-modifying agents for curing epilepsy. Currently, there is an unmet need for antiepileptogenic agents that truly prevent the development of epilepsy in people at risk. There is strong evidence that epigenetic signaling, which exerts high fidelity regulation of gene expression, plays a crucial role in the pathophysiology of epileptogenesis and chronic epilepsy. These modifications are not hard-wired into the genome and are constantly reprogrammed by environmental influences. The potential epigenetic mechanisms, including histone modifications, DNA methylation, microRNA-based transcriptional control, and bromodomain reading activity, can drastically alter the neuronal gene expression profile by exerting their summative effects in a coordinated fashion. Such an epigenetic intervention appears more rational strategy for preventing epilepsy because it targets the primary pathway that initially triggers the numerous downstream cellular and molecular events mediating epileptogenesis. Among currently approved epigenetic drugs, the majority are anticancer drugs with well-established profiles in clinical trials and practice. Evidence from preclinical studies supports the premise that these drugs may be applied to a wide range of brain disorders. Targeting histone deacetylation by inhibiting histone deacetylase enzymes appears to be one promising epigenetic therapy since certain inhibitors have been shown to prevent epileptogenesis in animal models. However, developing neuronal specific epigenetic modulators requires rational, pathophysiology-based optimization to efficiently intercept the upstream pathways in epileptogenesis. Overall, epigenetic agents have been well positioned as new frontier tools towards the national goal of curing epilepsy.
Collapse
Affiliation(s)
- Iyan Younus
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
19
|
Willbanks A, Leary M, Greenshields M, Tyminski C, Heerboth S, Lapinska K, Haskins K, Sarkar S. The Evolution of Epigenetics: From Prokaryotes to Humans and Its Biological Consequences. GENETICS & EPIGENETICS 2016; 8:25-36. [PMID: 27512339 PMCID: PMC4973776 DOI: 10.4137/geg.s31863] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
The evolution process includes genetic alterations that started with prokaryotes and now continues in humans. A distinct difference between prokaryotic chromosomes and eukaryotic chromosomes involves histones. As evolution progressed, genetic alterations accumulated and a mechanism for gene selection developed. It was as if nature was experimenting to optimally utilize the gene pool without changing individual gene sequences. This mechanism is called epigenetics, as it is above the genome. Curiously, the mechanism of epigenetic regulation in prokaryotes is strikingly different from that in eukaryotes, mainly higher eukaryotes, like mammals. In fact, epigenetics plays a significant role in the conserved process of embryogenesis and human development. Malfunction of epigenetic regulation results in many types of undesirable effects, including cardiovascular disease, metabolic disorders, autoimmune diseases, and cancer. This review provides a comparative analysis and new insights into these aspects.
Collapse
Affiliation(s)
- Amber Willbanks
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Molly Greenshields
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Camila Tyminski
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Heerboth
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kathryn Haskins
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.; Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Cronk JC, Derecki NC, Litvak V, Kipnis J. Unexpected cellular players in Rett syndrome pathology. Neurobiol Dis 2016; 92:64-71. [PMID: 25982834 PMCID: PMC4644494 DOI: 10.1016/j.nbd.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome is a devastating neurodevelopmental disorder, primarily caused by mutations of methyl CpG-binding protein 2 (MeCP2). Although the genetic cause of disease was identified over a decade ago, a significant gap still remains in both our clinical and scientific understanding of its pathogenesis. Neurons are known to be primary players in pathology, with their dysfunction being the key in Rett syndrome. While studies in mice have demonstrated a clear causative - and potential therapeutic - role for neurons in Rett syndrome, recent work has suggested that other tissues also contribute significantly to progression of the disease. Indeed, Rett syndrome is known to present with several common peripheral pathologies, such as osteopenia, scoliosis, gastrointestinal problems including nutritional defects, and general growth deficit. Mouse models assessing the potential role of non-neuronal cell types have confirmed both roles in disease and potential therapeutic targets. A new picture is emerging in which neurons both initiate and drive pathology, while dysfunction of other cell types and peripheral tissues exacerbate disease, possibly amplifying further neurologic problems, and ultimately result in a positive feedback loop of progressively worsening symptoms. Here, we review what is known about neuronal and non-neuronal cell types, and discuss how this new, integrative understanding of the disease may allow for additional clinical and scientific pathways for treating and understanding Rett syndrome.
Collapse
Affiliation(s)
- James C Cronk
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Noel C Derecki
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Vladimir Litvak
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
21
|
Ausió J. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clin Epigenetics 2016; 8:58. [PMID: 27213019 PMCID: PMC4875624 DOI: 10.1186/s13148-016-0214-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6 Canada
| |
Collapse
|
22
|
Stagi S, Cavalli L, Congiu L, Scusa MF, Ferlini A, Bigoni S, Benincasa A, Rossi B, Pini G. Thyroid function in Rett syndrome. Horm Res Paediatr 2015; 83:118-25. [PMID: 25614013 DOI: 10.1159/000370066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Thyroid function in Rett syndrome (RTT) has rarely been studied with unanimous results. However, this aspect is of great concern regarding the effect thyroid hormones (TH) have on proper mammalian brain development. OBJECTIVE To evaluate the prevalence of abnormalities of thyroid function in a cohort of children with RTT. PATIENTS AND METHODS Forty-five consecutive Caucasian girls (mean age: 8.6 ± 5.3 years, range: 2.0-26.1) meeting the clinical criteria for RTT were recruited. In all of the subjects, we evaluated the serum concentrations of free-T3 (FT3), free-T4 (FT4), thyroid-stimulating hormone (TSH), thyroperoxidase autoantibodies, thyroglobulin autoantibodies (TgA), and TSH receptor (TSHr) autoantibodies. The results were compared with a group of 146 age-matched healthy Caucasian children and adolescent girls (median age: 9.5 years, range: 1.8-14.6) from the same geographical area. RESULTS Mean FT3 and TSH levels were not significantly different between the RTT patients and controls. Nevertheless, FT4 levels were significantly higher in RTT patients than in controls (p < 0.005). In particular, 17.7% showed FT4 levels higher than the upper reference limit (vs. 0.7% of controls, p < 0.0001), whereas 12 patients (26.7%) showed higher FT3 levels than the upper reference limit, significantly differing in respect to controls (2.0%, p < 0.0001). Finally, 5 patients (11.1%) showed higher levels of TSH, statistically differing from the control subjects (2.0%, p < 0.0001). However, evaluating the patients on the basis of different RTT genotype subgroups, patients with CDKL5 deletions showed significantly higher FT4 values than patients with MeCP2 deletions (p < 0.05). On the other hand, patients with other types of MeCP2 mutations also showed FT4 levels significantly higher than patients with MeCP2 deletions (p < 0.05). In fact, out of 8 patients with FT4 levels higher than the upper references limit, 3 of them presented with CDKL5 deletions (3 patients, 37.5%), 4 (50%) had MeCP2 mutations, and 1 (12.5%) belonged to the subgroup of MeCP2 deletions. However, when analyzing FT3 levels of the 12 patients showing higher FT3 levels than the upper references limit, 6 (50%) belonged to the subgroup with MeCP2 mutations, 4 (33.3%) to the subgroup with MeCP2 deletions, and 2 (16.7%) to the subgroups with CDKL5 deletions. Furthermore, no patient with RTT was positive for antithyroglobulin autoantibodies, antithyroid peroxidase, or anti-TSHr, with no statistical differences in respect to the controls. L-thyroxine treatment was not necessary for any patient. CONCLUSIONS Abnormalities of thyroid function are not rare in RTT. The possible relationship between these disorders and the RTT phenotype should be confirmed and studied. Children with RTT should be screened for potential thyroid dysfunction.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakai N, Otsuka S, Myung J, Takumi T. Autism spectrum disorder model mice: Focus on copy number variation and epigenetics. SCIENCE CHINA-LIFE SCIENCES 2015; 58:976-84. [DOI: 10.1007/s11427-015-4891-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Zhao N, Ma D, Leong WY, Han J, VanDongen A, Chen T, Goh ELK. The methyl-CpG-binding domain (MBD) is crucial for MeCP2's dysfunction-induced defects in adult newborn neurons. Front Cell Neurosci 2015; 9:158. [PMID: 25964742 PMCID: PMC4408855 DOI: 10.3389/fncel.2015.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the human X-linked gene MECP2 are responsible for most Rett syndrome (RTT) cases, predominantly within its methyl-CpG-binding domain (MBD). To examine the role of MBD in the pathogenesis of RTT, we generated two MeCP2 mutant constructs, one with a deletion of MBD (MeCP2-ΔMBD), another mimicking a mutation of threonine 158 within the MBD (MeCP2-T158M) found in RTT patients. MeCP2 knockdown resulted in a decrease in total dendrite length, branching, synapse number, as well as altered spontaneous Ca(2+) oscillations in vitro, which could be reversed by expression of full length human MeCP2 (hMeCP2-FL). However, the expression of hMeCP2-ΔMBD in MeCP2-silenced neurons did not rescue the changes in neuronal morphology and spontaneous Ca(2+) oscillations, while expression of hMeCP2-T158M in these neurons could only rescue the decrease in dendrite length and branch number. In vivo over expression of hMeCP2-FL but not hMeCP2-ΔMBD in adult newborn neurons of the dentate gyrus also rescued the cell autonomous effect caused by MeCP2 deficiency in dendrites length and branching. Our results demonstrate that an intact and functional MBD is crucial for MeCP2 functions in cultured hippocampal neurons and adult newborn neurons.
Collapse
Affiliation(s)
- Na Zhao
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Key Laboratory of Health Ministry for Forensic Science, Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine Xi'an, Shaanxi, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Wan Ying Leong
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Ju Han
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Antonius VanDongen
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Teng Chen
- Key Laboratory of Health Ministry for Forensic Science, Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine Xi'an, Shaanxi, China
| | - Eyleen L K Goh
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore ; KK Research Center, KK Women's and Children's Hospital Singapore, Singapore
| |
Collapse
|
25
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
26
|
Rousseaud A, Delépine C, Nectoux J, Billuart P, Bienvenu T. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model. J Mol Neurosci 2015; 56:758-767. [PMID: 25634725 DOI: 10.1007/s12031-014-0487-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/25/2014] [Indexed: 01/16/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.
Collapse
Affiliation(s)
- Audrey Rousseaud
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
| | - Chloé Delépine
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
| | - Juliette Nectoux
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
- Laboratoire de Biochimie et Génétique Moléculaire, Assistance Publique - Hôpitaux de Paris, GHU Cochin-Broca-Hôtel Dieu, Paris, France
| | - Pierre Billuart
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France
| | - Thierry Bienvenu
- Institut Cochin, INSERM U1016, Génétique, Physiopathologie et Approches Pharmacologiques des Maladies Neurodéveloppementales, Université Paris Descartes, Paris, France.
- Laboratoire de Biochimie et Génétique Moléculaire, Assistance Publique - Hôpitaux de Paris, GHU Cochin-Broca-Hôtel Dieu, Paris, France.
| |
Collapse
|
27
|
Wegener E, Brendel C, Fischer A, Hülsmann S, Gärtner J, Huppke P. Characterization of the MeCP2R168X knockin mouse model for Rett syndrome. PLoS One 2014; 9:e115444. [PMID: 25541993 PMCID: PMC4277341 DOI: 10.1371/journal.pone.0115444] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Rett syndrome, one of the most common causes of mental retardation in females, is caused by mutations in the X chromosomal gene MECP2. Mice deficient for MeCP2 recapitulate some of the symptoms seen in patients with Rett syndrome. It has been shown that reactivation of silent MECP2 alleles can reverse some of the symptoms in these mice. We have generated a knockin mouse model for translational research that carries the most common nonsense mutation in Rett syndrome, R168X. In this article we describe the phenotype of this mouse model. In male MeCP2(R168X) mice life span was reduced to 12-14 weeks and bodyweight was significantly lower than in wild type littermates. First symptoms including tremor, hind limb clasping and inactivity occurred at age 27 days. At age 6 weeks nest building, rotarod, open-field and elevated plus maze experiments showed impaired motor performance, reduced activity and decreased anxiety-like behavior. Plethysmography at the same time showed apneas and irregular breathing with reduced frequency. Female MeCP2R168X mice showed no significant abnormalities except decreased performance on the rotarod at age 9 months. In conclusion we show that the male MeCP2(R168X) mice have a phenotype similar to that seen in MECP2 knockout mouse models and are therefore well suited for translational research. The female mice, however, have a much milder and less constant phenotype making such research with this mouse model more challenging.
Collapse
Affiliation(s)
- Eike Wegener
- University Medical Center Göttingen, Department of Child and Adolescent Health – Division of Neuropediatrics, Göttingen, Germany
| | - Cornelia Brendel
- University Medical Center Göttingen, Department of Child and Adolescent Health – Division of Neuropediatrics, Göttingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- University Medical Center Göttingen, Department for Psychiatry and Psychotherapy, Göttingen, Germany
| | - Swen Hülsmann
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Jutta Gärtner
- University Medical Center Göttingen, Department of Child and Adolescent Health – Division of Neuropediatrics, Göttingen, Germany
| | - Peter Huppke
- University Medical Center Göttingen, Department of Child and Adolescent Health – Division of Neuropediatrics, Göttingen, Germany
- * E-mail:
| |
Collapse
|
28
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
29
|
Song C, Feodorova Y, Guy J, Peichl L, Jost KL, Kimura H, Cardoso MC, Bird A, Leonhardt H, Joffe B, Solovei I. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 2014; 7:17. [PMID: 25170345 PMCID: PMC4148084 DOI: 10.1186/1756-8935-7-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. Results Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2-/y) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2-/y and Mecp2wt mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2-/y mice. Conclusions MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.
Collapse
Affiliation(s)
- Congdi Song
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany
| | - Katharina Laurence Jost
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871 Suita, Osaka, Japan
| | - Maria Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Boris Joffe
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
31
|
Abstract
The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2). MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Author to whom correspondence should be addressed; ; Tel.: +204-272-3108; Fax: +204-789-3900
| |
Collapse
|
32
|
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder with autistic features caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2), a transcriptional regulatory protein. RTT has attracted widespread attention not only because of the urgent need for treatments, but also because it has become a window into basic mechanisms underlying epigenetic regulation of neuronal genes, including BDNF. In addition, work in mouse models of the disease has demonstrated the possibility of symptom reversal upon restoration of normal gene function. This latter finding has resulted in a paradigm shift in RTT research and, indeed, in the field of neurodevelopmental disorders as a whole, and spurred the search for potential therapies for RTT and related syndromes. In this context, the discovery that expression of BDNF is dysregulated in RTT and mouse models of the disease has taken on particular importance. This chapter reviews the still evolving story of how MeCP2 might regulate expression of BDNF, the functional consequences of BDNF deficits in Mecp2 mutant mice, and progress in developing BDNF-targeted therapies for the treatment of RTT.
Collapse
Affiliation(s)
- D M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA,
| |
Collapse
|
33
|
Abstract
Stress response is considered to have adaptive value for organisms faced with stressful condition. Chronic stress however adversely affects the physiology and may lead to neuropsychiatric disorders. Repeated stressful events in animal models have been shown to cause long-lasting changes in neural circuitries at molecular, cellular, and physiological level, leading to disorders of mood as well as cognition. Molecular studies in recent years have implicated diverse epigenetic mechanisms, including histone modifications, DNA methylation, and noncoding RNAs, that underlie dysregulation of genes in the affected neural circuitries in chronic stress-induced pathophysiology. A review of the myriad epigenetic regulatory mechanisms associated with neural and behavioral responses in animal models of stress-induced neuropsychiatric disorders is presented here. The review also deals with clinical evidence of the epigenetic dysregulation of genes in psychiatric disorders where chronic stress appears to underlie the etiopathology.
Collapse
|
34
|
Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR. Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry 2014; 4:e349. [PMID: 24448211 PMCID: PMC3905233 DOI: 10.1038/tp.2013.123] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by symptoms related to altered social interactions/communication and restricted and repetitive behaviors. In addition to genetic risk, epigenetic mechanisms (which include DNA methylation/demethylation) are thought to be important in the etiopathogenesis of ASD. We studied epigenetic mechanisms underlying the transcriptional regulation of candidate genes in cerebella of ASD patients, including the binding of MeCP2 (methyl CpG binding protein-2) to the glutamic acid decarboxylase 67 (GAD1), glutamic acid decarboxylase 65 (GAD2), and Reelin (RELN) promoters and gene bodies. Moreover, we performed methyl DNA immunoprecipitation (MeDIP) and hydroxymethyl DNA immunoprecipitation (hMeDIP) to measure total 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in the same regions of these genes. The enrichment of 5-hmC and decrease in 5-mC at the GAD1 or RELN promoters detected by 5-hmC and 5-mC antibodies was confirmed by Tet-assisted bisulfite (TAB) pyrosequencing. The results showed a marked and significant increase in MeCP2 binding to the promoter regions of GAD1 and RELN, but not to the corresponding gene body regions in cerebellar cortex of ASD patients. Moreover, we detected a significant increase in TET1 expression and an enrichment in the level of 5-hmC, but not 5-mC, at the promoters of GAD1 and RELN in ASD when compared with CON. Moreover, there was increased TET1 binding to these promoter regions. These data are consistent with the hypothesis that an increase of 5-hmC (relative to 5-mC) at specific gene domains enhances the binding of MeCP2 to 5-hmC and reduces expression of the corresponding target genes in ASD cerebella.
Collapse
Affiliation(s)
- A Zhubi
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Chen
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - E Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - E H Cook
- Institute for Juvenile Research, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - A Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - D R Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601W Taylor, Chicago, IL 60612-4310, USA. E-mail:
| |
Collapse
|
35
|
Jin XT, Cui N, Zhong W, Jin X, Wu Z, Jiang C. Pre- and postsynaptic modulations of hypoglossal motoneurons by α-adrenoceptor activation in wild-type and Mecp2(-/Y) mice. Am J Physiol Cell Physiol 2013; 305:C1080-90. [PMID: 23986203 DOI: 10.1152/ajpcell.00109.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoglossal motoneurons (HNs) control tongue movement and play a role in maintenance of upper airway patency. Defects in these neurons may contribute to the development of sleep apnea and other cranial motor disorders including Rett syndrome (RTT). HNs are modulated by norepinephrine (NE) through α-adrenoceptors. Although postsynaptic mechanisms are known to play a role in this effect, how NE modulates the synaptic transmissions of HNs remains poorly understood. More importantly, the NE system is defective in RTT, while how the defect affects HNs is unknown. Believing that information of NE modulation of HNs may help the understanding of RTT and the design of new therapeutical interventions to motor defects in the disease, we performed these studies in which glycinergic inhibitory postsynaptic currents and intrinsic membrane properties were examined in wild-type and Mecp2(-/Y) mice, a mouse of model of RTT. We found that activation of α1-adrenoceptor facilitated glycinergic synaptic transmission and excited HNs. These effects were mediated by both pre- and postsynaptic mechanisms. The latter effect involved an inhibition of barium-sensitive G protein-dependent K(+) currents. The pre- and postsynaptic modulations of the HNs by α1-adrenoceptors were not only retained in Mecp2-null mice but also markedly enhanced, which appears to be a compensatory mechanism for the deficiencies in NE and GABAergic synaptic transmission. The existence of the endogenous compensatory mechanism is an encouraging finding, as it may allow therapeutical modalities to alleviate motoneuronal defects in RTT.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
36
|
Wang B, Du Y. Cadmium and its neurotoxic effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:898034. [PMID: 23997854 PMCID: PMC3753751 DOI: 10.1155/2013/898034] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a heavy metal that has received considerable concern environmentally and occupationally. Cd has a long biological half-life mainly due to its low rate of excretion from the body. Thus, prolonged exposure to Cd will cause toxic effect due to its accumulation over time in a variety of tissues, including kidneys, liver, central nervous system (CNS), and peripheral neuronal systems. Cd can be uptaken from the nasal mucosa or olfactory pathways into the peripheral and central neurons; for the latter, Cd can increase the blood brain barrier (BBB) permeability. However, mechanisms underlying Cd neurotoxicity remain not completely understood. Effect of Cd neurotransmitter, oxidative damage, interaction with other metals such as cobalt and zinc, estrogen-like, effect and epigenetic modification may all be the underlying mechanisms. Here, we review the in vitro and in vivo evidence of neurotoxic effects of Cd. The available finding indicates the neurotoxic effects of Cd that was associated with both biochemical changes of the cell and functional changes of central nervous system, suggesting that neurotoxic effects may play a role in the systemic toxic effects of the exposure to Cd, particularly the long-term exposure.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities (Inner Mongolia Forestry General Hospital), Yakeshi 022150, Inner Mongolia, China
| | - Yanli Du
- Department of Neurosurgery, The Second Clinical Medical School of Inner Mongolia University for the Nationalities (Inner Mongolia Forestry General Hospital), Yakeshi 022150, Inner Mongolia, China
| |
Collapse
|
37
|
Adwan L, Zawia NH. Epigenetics: a novel therapeutic approach for the treatment of Alzheimer's disease. Pharmacol Ther 2013; 139:41-50. [PMID: 23562602 PMCID: PMC3693222 DOI: 10.1016/j.pharmthera.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the deposition of two forms of aggregates within the brain, the amyloid β plaques and tau neurofibrillary tangles. Currently, no disease-modifying agent is approved for the treatment of AD. Approved pharmacotherapies target the peripheral symptoms but they do not prevent or slow down the progression of the disease. Although several disease-modifying immunotherapeutic agents are in clinical development, many have failed due to the lack of efficacy or serious adverse events. Epigenetic changes including DNA methylation and histone modifications are involved in learning and memory and have been recently highlighted for holding promise as potential targets for AD therapeutics. Dynamic and latent epigenetic alterations are incorporated in AD pathological pathways and present valuable reversible targets for AD and other neurological disorders. The approval of epigenetic drugs for cancer treatment has opened the door for the development of epigenetic drugs for other disorders including neurodegenerative diseases. In particular, methyl donors and histone deacetylase inhibitors are being investigated for possible therapeutic effects to rescue memory and cognitive decline found in such disorders. This review explores the area of epigenetics for potential AD interventions and presents the most recent findings in this field.
Collapse
Affiliation(s)
- Lina Adwan
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
38
|
Kasprzyk L, Defossez PA, Miotto B. [Epigenetic regulation in neuronal differentiation and brain function]. Biol Aujourdhui 2013; 207:1-17. [PMID: 23694721 DOI: 10.1051/jbio/2013001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Indexed: 11/15/2022]
Abstract
DNA methylation compacts chromatin structure and represses gene transcription. It is important for numerous cellular processes, including embryonic development, X-chromosome inactivation, suppression of transposable elements, and cellular differentiation. In addition, environmental cues, including drugs, pollutants, trauma or early-life social environment, alter DNA methylation patterns in different organs. For instance, studies have unravelled a complex and dynamic interplay between environment, DNA methylation and neuron function during development and in the adult. This crosstalk is hypothesized as an essential molecular event underlying the effects of long-term memory, drug addiction, and several psychotic and behavioural disorders. In this review, we give a summary of this exciting field of research and highlight the molecular functions of DNA methylation and of proteins interacting with methylated DNA.
Collapse
Affiliation(s)
- Laetitia Kasprzyk
- Unité d'Épigénétique et Destin Cellulaire, CNRS UMR7216, Université Paris Diderot 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
39
|
Alcohol modulates expression of DNA methyltranferases and methyl CpG-/CpG domain-binding proteins in murine embryonic fibroblasts. Reprod Toxicol 2013; 37:40-8. [PMID: 23395981 DOI: 10.1016/j.reprotox.2013.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/23/2012] [Accepted: 01/23/2013] [Indexed: 12/14/2022]
Abstract
Fetal alcohol syndrome (FAS), presenting with a constellation of neuro-/psychological, craniofacial and cardiac abnormalities, occurs frequently in offspring of women who consume alcohol during pregnancy, with a prevalence of 1-3 per 1000 livebirths. The present study was designed to test the hypothesis that alcohol alters global DNA methylation, and modulates expression of the DNA methyltransferases (DNMTs) and various methyl CpG-binding proteins. Murine embryonic fibroblasts (MEFs), utilized as an in vitro embryonic model system, demonstrated ∼5% reduction in global DNA methylation following exposure to 200mM ethanol. In addition, ethanol induced degradation of DNA methyltransferases (DNMT-1, DNMT-3a, and DNMT-3b), as well as the methyl CpG-binding proteins (MeCP-2, MBD-2 and MBD-3), in MEF cells by the proteasomal pathway. Such degradation could be completely rescued by pretreatment of MEF cells with the proteasomal inhibitor, MG-132. These data support a potential epigenetic molecular mechanism underlying the pathogenesis of FAS during mammalian development.
Collapse
|
40
|
|
41
|
Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC, Cory-Slechta DA, Costa D, Diaz-Sanchez D, Dorman DC, Gold DR, Gray K, Jeng HA, Kaufman JD, Kleinman MT, Kirshner A, Lawler C, Miller DS, Nadadur SS, Ritz B, Semmens EO, Tonelli LH, Veronesi B, Wright RO, Wright RJ. The outdoor air pollution and brain health workshop. Neurotoxicology 2012; 33:972-84. [PMID: 22981845 PMCID: PMC3726250 DOI: 10.1016/j.neuro.2012.08.014] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/15/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel.
Collapse
Affiliation(s)
- Michelle L Block
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Multiplex ligation-dependent Probe Amplification (MLPA) has become available for the detection of a large deletion on the MECP2 gene allowing genetic confirmation of previously unconfirmed cases of clinical Rett syndrome. This study describes the phenotype of those with a large deletion and compares with those with other pathogenic MECP2 mutations. Individuals were ascertained from the Australian Rett Syndrome and InterRett databases with data sourced from family and clinician questionnaires, and two case studies were constructed from the longitudinal Australian data. Regression and survival analysis were used to compare severity and age of onset of symptoms in those with and without a large deletion. Data were available for 974 individuals including 51 with a large deletion and ages ranged from 1 year 4 months to 49 years (median 9 years). Those with a large deletion were more severely affected than those with other mutation types. Specifically, individuals with large deletions were less likely to have learned to walk (OR 0.42, 95% CI: 0.22-0.79, P=0.007) and to be currently walking (OR 0.53, 95% CI: 0.26-1.10, P=0.089), and were at higher odds of being in the most severe category of gross motor function (OR 1.84, 95% CI: 0.98-3.48, P=0.057) and epilepsy (OR 2.72, 95% CI: 1.38-5.37, P=0.004). They also developed epilepsy, scoliosis, hand stereotypies and abnormal breathing patterns at an earlier age. We have described the disorder profile associated with a large deletion from the largest sample to date and have found that the phenotype is severe with motor skills particularly affected.
Collapse
|
43
|
Vázquez-Roque RA, Ramos B, Tecuatl C, Juárez I, Adame A, de la Cruz F, Zamudio S, Mena R, Rockenstein E, Masliah E, Flores G. Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia. J Neurosci Res 2012; 90:288-306. [PMID: 21932359 PMCID: PMC3370993 DOI: 10.1002/jnr.22753] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/16/2011] [Accepted: 06/29/2011] [Indexed: 01/19/2023]
Abstract
Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms.
Collapse
Affiliation(s)
- Rubén Antonio Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Brenda Ramos
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México
| | - Carolina Tecuatl
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México
| | - Ismael Juárez
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Sergio Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Raúl Mena
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, México D.F., México
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
44
|
Singleton MK, Gonzales ML, Leung KN, Yasui DH, Schroeder DI, Dunaway K, LaSalle JM. MeCP2 is required for global heterochromatic and nucleolar changes during activity-dependent neuronal maturation. Neurobiol Dis 2011; 43:190-200. [PMID: 21420494 PMCID: PMC3096744 DOI: 10.1016/j.nbd.2011.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/24/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022] Open
Abstract
Mutations in MECP2, encoding methyl CpG binding protein 2, cause the neurodevelopmental disorder Rett syndrome. MeCP2 is an abundant nuclear protein that binds to chromatin and modulates transcription in response to neuronal activity. Prior studies of MeCP2 function have focused on specific gene targets of MeCP2, but a more global role for MeCP2 in neuronal nuclear maturation has remained unexplored. MeCP2 levels increase during postnatal brain development, coinciding with dynamic changes in neuronal chromatin architecture, particularly detectable as changes in size, number, and location of nucleoli and perinucleolar heterochromatic chromocenters. To determine a potential role for MeCP2 in neuronal chromatin maturational changes, we measured nucleoli and chromocenters in developing wild-type and Mecp2-deficient mouse cortical sections, as well as mouse primary cortical neurons and a human neuronal cell line following induced maturation. Mecp2-deficient mouse neurons exhibited significant differences in nucleolar and chromocenter number and size, as more abundant, smaller nucleoli in brain and primary neurons compared to wild-type, consistent with delayed neuronal nuclear maturation in the absence of MeCP2. Primary neurons increased chromocenter size following depolarization in wild-type, but not Mecp2-deficient cultures. Wild-type MECP2e1 over-expression in human SH-SY5Y cells was sufficient to induce significantly larger nucleoli, but not a T158M mutation of the methyl-binding domain. These results suggest that, in addition to the established role of MeCP2 in transcriptional regulation of specific target genes, the global chromatin-binding function of MeCP2 is essential for activity-dependent global chromatin dynamics during postnatal neuronal maturation.
Collapse
Affiliation(s)
- Malaika K Singleton
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, and MIND Institute, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou FC, Chen Y, Love A. Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. ACTA ACUST UNITED AC 2011; 91:703-15. [PMID: 21630420 DOI: 10.1002/bdra.20820] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Epigenetic changes are believed to be among the earliest key regulators for cell fate and embryonic development. To support this premise, it is important to understand whether or not systemic epigenetic changes coordinate with the progression of development. We have demonstrated that DNA methylation is programmed when neural stem cells differentiate (Zhou et al.,2011). Here, we analyzed the DNA methylation events that occur during early neural tube development. METHODS AND RESULTS Using immunocytochemistry, we demonstrated that the DNA methylation marks - 5-methylcytosine (5-MeC), DNA methylation binding domain 1 (MBD1), and DNA methytransferases 1 (DNMT1) were highly coordinated in temporal and spatial patterns that paralleled the progress of embryonic development. The above ontogenic program of DNA methylation was, however, subjected to environmental modification. Alcohol exposure during fetal development, which is known to cause fetal alcohol spectrum disorder, altered the density and distribution of the DNA methylation marks. The alcohol exposure (88 mM) over 6 or 44 hours at gestation day 8 (GD-8) to GD-10 altered timely DNA methylation and retarded embryonic growth. We further demonstrated that the direct inhibiting of DNA methylation with 5-aza-cytidine (5-AZA) resulted in similar growth retardation. CONCLUSIONS We identified a temporal and spatial cellular DNA methylation program after initial erasure, which parallels embryonic maturation. Alcohol delayed the cellular DNA methylation program and also retarded embryonic growth. Since direct inhibiting of DNA methylation resulted in similar retardation, alcohol thus can affect embryonic development through a epigenetic pathway.
Collapse
Affiliation(s)
- Feng C Zhou
- Department of Anatomy & Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
46
|
The molecular genetics of autism spectrum disorders: genomic mechanisms, neuroimmunopathology, and clinical implications. AUTISM RESEARCH AND TREATMENT 2011; 2011:398636. [PMID: 22937247 PMCID: PMC3420760 DOI: 10.1155/2011/398636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.
Collapse
|
47
|
Abstract
Autism spectrum disorders (ASDs) are pervasive developmental disorders that frequently involve a triad of deficits in social skills, communication and language. For the underlying neurobiology of these symptoms, disturbances in neuronal development and synaptic plasticity have been discussed. The physiological development, regulation and survival of specific neuronal populations shaping neuronal plasticity require the so-called 'neurotrophic factors' (NTFs). These regulate cellular proliferation, migration, differentiation and integrity, which are also affected in ASD. Therefore, NTFs have gained increasing attention in ASD research. This review provides an overview and explores the key role of NTFs in the aetiology of ASD. We have also included evidence derived from neurochemical investigations, gene association studies and animal models. By focussing on the role of NTFs in ASD, we intend to further elucidate the puzzling aetiology of these conditions.
Collapse
Affiliation(s)
- T Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
48
|
Zhou FC, Balaraman Y, Teng M, Liu Y, Singh RP, Nephew KP. Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res 2011; 35:735-46. [PMID: 21223309 PMCID: PMC3076804 DOI: 10.1111/j.1530-0277.2010.01391.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Potential epigenetic mechanisms underlying fetal alcohol syndrome (FAS) include alcohol-induced alterations of methyl metabolism, resulting in aberrant patterns of DNA methylation and gene expression during development. Having previously demonstrated an essential role for epigenetics in neural stem cell (NSC) development and that inhibiting DNA methylation prevents NSC differentiation, here we investigated the effect of alcohol exposure on genome-wide DNA methylation patterns and NSC differentiation. METHODS Neural stem cells in culture were treated with or without a 6-hour 88 mM ("binge-like") alcohol exposure and examined at 48 hours, for migration, growth, and genome-wide DNA methylation. The DNA methylation was examined using DNA-methylation immunoprecipitation followed by microarray analysis. Further validation was performed using Independent Sequenom analysis. RESULTS Neural stem cell differentiated in 24 to 48 hours with migration, neuronal expression, and morphological transformation. Alcohol exposure retarded the migration, neuronal formation, and growth processes of NSC, similar to treatment with the methylation inhibitor 5-aza-cytidine. When NSC departed from the quiescent state, a genome-wide diversification of DNA methylation was observed-that is, many moderately methylated genes altered methylation levels and became hyper- and hypomethylated. Alcohol prevented many genes from such diversification, including genes related to neural development, neuronal receptors, and olfaction, while retarding differentiation. Validation of specific genes by Sequenom analysis demonstrated that alcohol exposure prevented methylation of specific genes associated with neural development [cut-like 2 (cutl2), insulin-like growth factor 1 (Igf1), epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (Efemp1), and SRY-box-containing gene 7 (Sox 7)]; eye development, lens intrinsic membrane protein 2 (Lim 2); the epigenetic mark Smarca2 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2); and developmental disorder [DiGeorge syndrome critical region gene 2 (Dgcr2)]. Specific sites altered by DNA methylation also correlated with transcription factor binding sites known to be critical for regulating neural development. CONCLUSION The data indicate that alcohol prevents normal DNA methylation programming of key neural stem cell genes and retards NSC differentiation. Thus, the role of DNA methylation in FAS warrants further investigation.
Collapse
Affiliation(s)
- Feng C Zhou
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 508, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Perruisseau-Carrier C, Jurga M, Forraz N, McGuckin CP. miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol 2011; 43:215-27. [PMID: 21541853 DOI: 10.1007/s12035-011-8179-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/10/2011] [Indexed: 12/15/2022]
Abstract
Mimicking the natural brain environment during neurogenesis represents the main challenge for efficient in vitro neuronal differentiation of stem cells. The discovery of miRNAs opens new possibilities in terms of modulation of stem cells lineage commitment and differentiation. Many studies demonstrated that in vitro transient overexpression or inhibition of brain-specific miRNAs in stem cells significantly directed differentiation along neuronal cell lineages. Modulating miRNA expression offers new pathways for post-transcriptional gene regulation and stem cell commitment. Neurotrophins and neuropoietins signaling pathways are the main field of investigation for neuronal commitment, differentiation, and maturation. This review will highlight examples of crosstalk between stem-cell-specific and brain-specific signaling pathways and key miRNA candidates for neuronal commitment. Recent progress on understanding miRNAs genetic networks offers promising prospects for their increasing application in the development of new cellular therapies in humans.
Collapse
Affiliation(s)
- Claire Perruisseau-Carrier
- CTI-LYON, Cell Therapy Research Institute, Parc Technologique de Lyon Saint-Priest, Saint-Priest, Lyon, France
| | | | | | | |
Collapse
|
50
|
Smrt RD, Pfeiffer RL, Zhao X. Age-dependent expression of MeCP2 in a heterozygous mosaic mouse model. Hum Mol Genet 2011; 20:1834-43. [PMID: 21330301 DOI: 10.1093/hmg/ddr066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Functional deficiency of the X-linked methyl-CPG binding protein 2 (MeCP2) leads to the neurodevelopmental disorder Rett syndrome (RTT). Due to random X-chromosome inactivation (XCI), most RTT patients are females who are heterozygous for the MECP2 mutation and therefore mosaic in MeCP2 deficiency. Some MECP2 heterozygote females are found to have unbalanced XCI, which may affect the severity of neurological symptoms seen in these patients; however, whether MeCP2 deficiency affects XCI in the postnatal and adult brain is unclear. Here we developed a novel MeCP2 mosaic mouse model in which the X chromosome containing the wild-type Mecp2 expresses a green fluorescent protein (GFP) transgene, while the X chromosome harboring the mutant Mecp2 does not. Due to random XCI, the neurons in the female MeCP2 mosaic mice express either wild-type MeCP2 (GFP+) or mutant MeCP2 (GFP-), and the two can be distinguished by GFP fluorescence. Using this mouse model, we evaluated XCI in female heterozygote mice from 3 to 9 months after birth. We found that MeCP2 deficiency does not affect XCI at 3 months of age, but does alter the proportion of wild-type MeCP2-expressing neurons at later ages, suggesting that MeCP2 impacts XCI patterns in an age-dependent manner. Given the important function of MeCP2 in neuronal development, our data could shed light on how MeCP2 deficiency affects postnatal brain functions and the dynamic changes in the neurological symptoms of RTT.
Collapse
Affiliation(s)
- Richard D Smrt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|