1
|
Feng C, Tang J, Wu K, Cheng L, Zhao L, Zhu W, Zhang Y, Zhao X, Cai B, He R. The path winds along isolation and analyses of fetal nucleated red blood cells in maternal peripheral blood: Past, present, and future toward non-invasive prenatal diagnosis. Life Sci 2025; 369:123530. [PMID: 40057228 DOI: 10.1016/j.lfs.2025.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Traditional prenatal diagnosis detects fetal disorders through invading uterus to access fetal cells, which may cause maternal complications, fetal injury, or even miscarriage. Safe and convenient non-invasive prenatal testing (NIPT) by analyzing fetal materials (cell-free DNA/RNA, cells, and extracellular vesicles) that circulate in maternal peripheral blood attracts great attention and has been applied in risk evaluation of several fetal disorders. Among those fetal analytes, fetal nucleated red blood cells (fNRBCs) comprise entire fetal genome, possess distinct membrane antigens, and have a lifespan limited in every single gestation. They were once expected to be an ideal biomarker for NIPT and even definitive prenatal diagnosis. However, recent advances of fNRBC-based NIPT are limited and their applications toward clinical practices are still challenging. Herein, we comprehensively overview research on fNRBCs in maternal peripheral blood, trying to dissect current predicament and inspire potential solutions. The source and lineage of fNRBCs, their entrance into maternal peripheral blood, and their physiochemical characteristics are discussed, and various strategies of label-free or immuno-affinitive isolation and subsequential identification of fNRBCs from maternal blood cells are summarized. Although proof-of-concept analyses toward detecting a few fetal disorders are demonstrated, current fNRBC-based NIPT still suffers many challenges when applied to clinical practices. Nevertheless, via thorough investigation and new analytical technologies, it is believed fNRBC-based NIPT will provide a promising platform to supplement the insufficiency of current strategies.
Collapse
Affiliation(s)
- Chun Feng
- Gynaecology Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jing Tang
- Gynaecology Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Ke Wu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lin Cheng
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Zhao
- Gynaecology Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Wentao Zhu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuanzhen Zhang
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xingzhong Zhao
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China; School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Bo Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Rongxiang He
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
Feyaerts D, Diop M, Galaz J, Einhaus JF, Arck PC, Diemert A, Winn VD, Parast M, Gyamfi-Bannerman C, Prins JR, Gomez-Lopez N, Stelzer IA. The single-cell immune profile throughout gestation and its potential value for identifying women at risk for spontaneous preterm birth. Eur J Obstet Gynecol Reprod Biol X 2025; 25:100371. [PMID: 40052005 PMCID: PMC11883378 DOI: 10.1016/j.eurox.2025.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/23/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Precisely timed immune adaptations, observed in the maternal circulation, underpin the notion of an immune clock of human pregnancy that supports its successful progression and completion at delivery. This immune clock is divided into three immunological phases, with the first phase starting at the time of conception and implantation, shifting into the second phase that supports homeostasis and tolerance throughout pregnancy, and culminating in the last phase of labor and parturition. Disruptions of this immune clock are reported in pregnancy complications such as spontaneous preterm birth. However, our understanding of the immune clock preceding spontaneous preterm birth remains scattered. In this review, we describe the chronology of maternal immune cell adaptations during healthy pregnancies and highlight its disruption in spontaneous preterm birth. With a focus on single-cell cytometric, proteomic and transcriptomic approaches, we review recent studies of term and spontaneous preterm pregnancies and discuss the need for future prospective studies aimed at tracking pregnancies longitudinally on a multi-omic scale. Such studies will be critical in determining whether spontaneous preterm pregnancies progress at an accelerated pace or follow a preterm-intrinsic pattern when compared to those delivered at term.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maïgane Diop
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Galaz
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jakob F. Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Petra C. Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Virginia D. Winn
- Department of Obstetrics and Gynecology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mana Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jelmer R. Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nardhy Gomez-Lopez
- Departments of Obstetrics and Gynecology & Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Ina A. Stelzer
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Guibourdenche J, Leguy MC, Pidoux G, Hebert-Schuster M, Laguillier C, Anselem O, Grangé G, Bonnet F, Tsatsaris V. Biochemical Screening for Fetal Trisomy 21: Pathophysiology of Maternal Serum Markers and Involvement of the Placenta. Int J Mol Sci 2023; 24:ijms24087669. [PMID: 37108840 PMCID: PMC10146970 DOI: 10.3390/ijms24087669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is now well established that maternal serum markers are often abnormal in fetal trisomy 21. Their determination is recommended for prenatal screening and pregnancy follow-up. However, mechanisms leading to abnormal maternal serum levels of such markers are still debated. Our objective was to help clinicians and scientists unravel the pathophysiology of these markers via a review of the main studies published in this field, both in vivo and in vitro, focusing on the six most widely used markers (hCG, its free subunit hCGβ, PAPP-A, AFP, uE3, and inhibin A) as well as cell-free feto-placental DNA. Analysis of the literature shows that mechanisms underlying each marker's regulation are multiple and not necessarily directly linked with the supernumerary chromosome 21. The crucial involvement of the placenta is also highlighted, which could be defective in one or several of its functions (turnover and apoptosis, endocrine production, and feto-maternal exchanges and transfer). These defects were neither constant nor specific for trisomy 21, and might be more or less pronounced, reflecting a high variability in placental immaturity and alteration. This explains why maternal serum markers can lack both specificity and sensitivity, and are thus restricted to screening.
Collapse
Affiliation(s)
- Jean Guibourdenche
- Hormonologie CHU Cochin AP-HP, 75014 Paris, France
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
- FHU Préma, 75014 Paris, France
| | | | | | | | - Christelle Laguillier
- Hormonologie CHU Cochin AP-HP, 75014 Paris, France
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
- UMR-S1139, 75014 Paris, France
| | - Olivia Anselem
- FHU Préma, 75014 Paris, France
- Maternité Port Royal CHU Cochin AP-HP, 75014 Paris, France
| | - Gilles Grangé
- FHU Préma, 75014 Paris, France
- Maternité Port Royal CHU Cochin AP-HP, 75014 Paris, France
| | - Fidéline Bonnet
- Hormonologie CHU Cochin AP-HP, 75014 Paris, France
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
| | - Vassilis Tsatsaris
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
- FHU Préma, 75014 Paris, France
- Maternité Port Royal CHU Cochin AP-HP, 75014 Paris, France
| |
Collapse
|
4
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
5
|
Barrett AN, Huang Z, Aung S, Ho SSY, Roslan NS, Mahyuddin AP, Biswas A, Choolani M. Whole-Chromosome Karyotyping of Fetal Nucleated Red Blood Cells Using the Ion Proton Sequencing Platform. Genes (Basel) 2022; 13:genes13122257. [PMID: 36553524 PMCID: PMC9778445 DOI: 10.3390/genes13122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The current gold standard for the definitive diagnosis of fetal aneuploidy uses either chorionic villus sampling (CVS) or amniocentesis, both of which are which are invasive procedures carrying a procedure-related risk of miscarriage of up to 0.1-0.2%. Non-invasive prenatal diagnosis using fetal nucleated red blood cells (FNRBCs) isolated from maternal peripheral venous blood would remove this risk of miscarriage since these cells can be isolated from the mother's blood. We aimed to detect whole-chromosome aneuploidies from single nucleated fetal red blood cells using whole-genome amplification followed by massively parallel sequencing performed on a semiconductor sequencing platform. Twenty-six single cells were picked from the placental villi of twelve patients thought to have a normal fetal genotype and who were undergoing elective first-trimester surgical termination of pregnancy. Following karyotyping, it was subsequently found that two of these cases were also abnormal (one trisomy 15 and one mosaic genotype). One single cell from chorionic villus samples for two patients carrying a fetus with trisomy 21 and two single cells from women carrying fetuses with T18 were also picked. Pooled libraries were sequenced on the Ion Proton and data were analysed using Ion Reporter software. We correctly classified fetal genotype in all 24 normal cells, as well as the 2 T21 cells, the 2 T18 cells, and the two T15 cells. The two cells picked from the fetus with a mosaic result by CVS were classified as unaffected, suggesting that this was a case of confined placental mosaicism. Fetal sex was correctly assigned in all cases. We demonstrated that semiconductor sequencing using commercially available software for data analysis can be achieved for the non-invasive prenatal diagnosis of whole-chromosome aneuploidy with 100% accuracy.
Collapse
Affiliation(s)
- Angela N. Barrett
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Zhouwei Huang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Sarah Aung
- iGene Laboratory Pte Ltd., 1 Science Park Road #04-10, The Capricorn, Singapore 117528, Singapore
| | - Sherry S. Y. Ho
- iGene Laboratory Pte Ltd., 1 Science Park Road #04-10, The Capricorn, Singapore 117528, Singapore
| | - Nur Syazana Roslan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Aniza P. Mahyuddin
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Department of Obstetrics & Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Department of Obstetrics & Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
6
|
Hee JY, Huang S, Leong KP, Chun L, Zhang YO, Gongye R, Tang K. Pregnancy loss and the risk of rheumatoid arthritis in Chinese women: findings from the China Kadoorie biobank. BMC Public Health 2022; 22:1768. [PMID: 36115952 PMCID: PMC9482729 DOI: 10.1186/s12889-022-14163-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractConsidering the female preponderance of rheumatoid arthritis (RA), and disease onset typically after the reproductive years, pregnancy and childbirth may play a role in the aetiology of the disease. Adverse outcomes of pregnancy have been found to precede the diagnosis of autoimmune diseases, including RA, but the evidence is scant and inconsistent. Therefore, we investigate whether pregnancy loss is associated with the risk of RA in Chinese women. Data from the China Kadoorie Biobank, conducted by the University of Oxford and the Chinese Centre for Disease Control and Prevention, of 299,629 Chinese women who had been pregnant were used. Multivariable logistic regression and stratified analyses were employed to analyse the association between types of pregnancy loss with the risk of RA. Pregnancy loss was significantly associated with increased risk of RA (OR 1.12, 95% CI 1.06–1.18), specifically, spontaneous (OR 1.11, 95% CI 1.03–1.20) and induced abortions (OR 1.11, 95% CI 1.06–1.17). There was no significant association between stillbirth and the risk of RA (OR 1.07, 95% CI 0.97–1.18). The risk of developing RA increases with the number of pregnancy losses: one loss confers an OR of 1.09 (95% CI 1.03–1.16), two an OR of 1.13 (95% CI 1.05–1.20), three or more an OR of 1.19 (95% CI 1.10–1.28) and OR of 1.06 (95% CI 1.03–1.08) for each additional. Spontaneous and induced abortions are associated with an increased risk of RA in Chinese women.
Collapse
|
7
|
Sabbatinelli G, Fantasia D, Palka C, Morizio E, Alfonsi M, Calabrese G. Isolation and Enrichment of Circulating Fetal Cells for NIPD: An Overview. Diagnostics (Basel) 2021; 11:diagnostics11122239. [PMID: 34943476 PMCID: PMC8700692 DOI: 10.3390/diagnostics11122239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal diagnosis plays a crucial role in clinical genetics. Non-invasive prenatal diagnosis using fetal cells circulating in maternal peripheral blood has become the goal of prenatal diagnosis, to obtain complete fetal genetic information and avoid risks to mother and fetus. The development of high-efficiency separation technologies is necessary to obtain the scarce fetal cells from the maternal circulation. Over the years, multiple approaches have been applied, including choice of the ideal cell targets, different cell recovering technologies, and refined cell isolation yield procedures. In order to provide a useful tool and to give insights about limitations and advantages of the technologies available today, we review the genetic research on the creation and validation of non-invasive prenatal diagnostic testing protocols based on the rare and labile circulating fetal cells during pregnancy.
Collapse
Affiliation(s)
- Giulia Sabbatinelli
- Dipartimento di Neuroscienze, Imaging & Scienze Cliniche, Scuola Superiore G. D’Annunzio, University of Chieti, 66100 Chieti, Italy;
| | - Donatella Fantasia
- UOSD Genetica Oncoematologica, Dipartimento di Oncologico-Ematologico, Ospedale Spirito Santo, ASL Pescara, 65124 Pescara, Italy;
| | - Chiara Palka
- UOC Genetica Medica, Ospedale S.S. Annunziata, ASL2 Chieti, 66100 Chieti, Italy; (C.P.); (M.A.)
| | - Elisena Morizio
- Genetica Medica, Dipartimento di Tecnologie Avanzate in Medicina e Odontoiatria, School of Medicine, University of Chieti, 66100 Chieti, Italy;
| | - Melissa Alfonsi
- UOC Genetica Medica, Ospedale S.S. Annunziata, ASL2 Chieti, 66100 Chieti, Italy; (C.P.); (M.A.)
| | - Giuseppe Calabrese
- UOSD Genetica Oncoematologica, Dipartimento di Oncologico-Ematologico, Ospedale Spirito Santo, ASL Pescara, 65124 Pescara, Italy;
- Genetica Medica, Dipartimento di Tecnologie Avanzate in Medicina e Odontoiatria, School of Medicine, University of Chieti, 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|
8
|
Murrieta-Coxca JM, Aengenheister L, Schmidt A, Markert UR, Buerki-Thurnherr T, Morales-Prieto DM. Addressing microchimerism in pregnancy by ex vivo human placenta perfusion. Placenta 2021; 117:78-86. [PMID: 34773744 DOI: 10.1016/j.placenta.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
The physical connection of mother and offspring during pregnancy allows the bi-directional exchange of a small number of cells through the placenta. These cells, which can persist long-term in the recipient individual are genetically foreign to it and therefore fulfill the principle of microchimerism. Over the last years, pioneer research on microchimeric cells revealed their role in immune adaptation during pregnancy and priming of tolerogenic responses in the progeny. However, the mechanisms involved in cell transfer across the placenta barrier remain poorly investigated. In this review, we summarize the evidence of fetomaternal microchimerism, propose a mechanism for cell trafficking through the placenta and discuss the different models and techniques available for its analysis. Likewise, we aim to generate interest in the use of ex vivo placenta perfusion to investigate microchimerism in physiological and pathological settings.
Collapse
Affiliation(s)
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | |
Collapse
|
9
|
Vossaert L, Chakchouk I, Zemet R, Van den Veyver IB. Overview and recent developments in cell-based noninvasive prenatal testing. Prenat Diagn 2021; 41:1202-1214. [PMID: 33974713 DOI: 10.1002/pd.5957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Investigators have long been interested in the natural phenomenon of fetal and placental cell trafficking into the maternal circulation. The scarcity of these circulating cells makes their detection and isolation technically challenging. However, as a DNA source of fetal origin not mixed with maternal DNA, they have the potential of considerable benefit over circulating cell-free DNA-based noninvasive prenatal genetic testing (NIPT). Endocervical trophoblasts, which are less rare but more challenging to recover are also being investigated as an approach for cell-based NIPT. We review published studies from around the world describing both forms of cell-based NIPT and highlight the different approaches' advantages and drawbacks. We also offer guidance for developing a sound cell-based NIPT protocol.
Collapse
Affiliation(s)
- Liesbeth Vossaert
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Roni Zemet
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.,Pavillion for Women, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Riley RS, Kashyap MV, Billingsley MM, White B, Alameh MG, Bose SK, Zoltick PW, Li H, Zhang R, Cheng AY, Weissman D, Peranteau WH, Mitchell MJ. Ionizable lipid nanoparticles for in utero mRNA delivery. SCIENCE ADVANCES 2021; 7:eaba1028. [PMID: 33523869 PMCID: PMC7806221 DOI: 10.1126/sciadv.aba1028] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/20/2020] [Indexed: 05/04/2023]
Abstract
Clinical advances enable the prenatal diagnosis of genetic diseases that are candidates for gene and enzyme therapies such as messenger RNA (mRNA)-mediated protein replacement. Prenatal mRNA therapies can treat disease before the onset of irreversible pathology with high therapeutic efficacy and safety due to the small fetal size, immature immune system, and abundance of progenitor cells. However, the development of nonviral platforms for prenatal delivery is nascent. We developed a library of ionizable lipid nanoparticles (LNPs) for in utero mRNA delivery to mouse fetuses. We screened LNPs for luciferase mRNA delivery and identified formulations that accumulate within fetal livers, lungs, and intestines with higher efficiency and safety compared to benchmark delivery systems, DLin-MC3-DMA and jetPEI. We demonstrate that LNPs can deliver mRNAs to induce hepatic production of therapeutic secreted proteins. These LNPs may provide a platform for in utero mRNA delivery for protein replacement and gene editing.
Collapse
Affiliation(s)
- Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meghana V Kashyap
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Brandon White
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Sourav K Bose
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Philip W Zoltick
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hiaying Li
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Y Cheng
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Bianchi DW, Khosrotehrani K, Way SS, MacKenzie TC, Bajema I, O'Donoghue K. Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism. Clin Chem 2020; 67:351-362. [PMID: 33417673 PMCID: PMC10072000 DOI: 10.1093/clinchem/hvaa304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Originally studied as a mechanism to understand eclampsia-related deaths during pregnancy, fetal cells in maternal blood have more recently garnered attention as a noninvasive source of fetal material for prenatal testing. In the 21st century, however, intact fetal cells have been largely supplanted by circulating cell-free placental DNA for aneuploidy screening. Instead, interest has pivoted to the ways in which fetal cells influence maternal biology. In parallel, an increasing appreciation of the consequences of maternal cells in the developing fetus has occurred. CONTENT In this review, we highlight the potential clinical applications and functional consequences of the bidirectional trafficking of intact cells between a pregnant woman and her fetus. Fetal cells play a potential role in the pathogenesis of maternal disease and tissue repair. Maternal cells play an essential role in educating the fetal immune system and as a factor in transplant acceptance. Naturally occurring maternal microchimerism is also being explored as a source of hematopoietic stem cells for transplant in fetal hematopoietic disorders. SUMMARY Future investigations in humans need to include complete pregnancy histories to understand maternal health and transplant success or failure. Animal models are useful to understand the mechanisms underlying fetal wound healing and/or repair associated with maternal injury and inflammation. The lifelong consequences of the exchange of cells between a mother and her child are profound and have many applications in development, health, and disease. This intricate exchange of genetically foreign cells creates a permanent connection that contributes to the survival of both individuals.
Collapse
Affiliation(s)
- Diana W Bianchi
- National Human Genome Research Institute and Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, The University of Queensland, UQ Diamantina Institute, Brisbane, Queensland, Australia
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine and the Department of Surgery, University of California, San Francisco, CA, USA
| | - Ingeborg Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Keelin O'Donoghue
- Irish Centre for Maternal and Child Health (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Gur O, Chang CL, Jain R, Zhong Y, Savran CA. High-purity isolation of rare single cells from blood using a tiered microchip system. PLoS One 2020; 15:e0229949. [PMID: 32182245 PMCID: PMC7077832 DOI: 10.1371/journal.pone.0229949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
We present a two-tiered microchip system to capture and retrieve rare cells from blood samples with high purity. The first module of the system is a high throughput microfluidic interface that is used to immunomagnetically isolate targeted rare cells from whole blood, and discard > 99.999% of the unwanted leukocytes. The second module is a microwell array that furthers the purification by magnetically guiding each cell into a separate well concurrently, and allows individual retrieval of each cell. We demonstrate the design of the system as well as its characterization by experiments using model cell lines that represent circulating fetal trophoblasts. Our results show that single cells can be retrieved with efficiencies and purities as high as 100% within 145 mins.
Collapse
Affiliation(s)
- Onur Gur
- School of Electrical Engineering, Purdue University, West Lafayette, IN, United States of America
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States of America
| | - Chun-Li Chang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States of America
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Rohil Jain
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States of America
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Yuan Zhong
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States of America
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Cagri A. Savran
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States of America
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
13
|
Non-invasive prenatal screening: A 20-year experience in Italy. Eur J Obstet Gynecol Reprod Biol X 2019; 3:100050. [PMID: 31403132 PMCID: PMC6687402 DOI: 10.1016/j.eurox.2019.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023] Open
Abstract
Over the past two decades, there has been a rapid evolution in prenatal screening for fetal chromosome abnormalities. Initially, testing was focused on the identification of affected pregnancies in either the first, or, the second trimester (e.g. the Combined test or the triple test). This was replaced by sequential modalities (e.g. contingent screening) that have enhanced detection while reducing the need for invasive testing. More recently, the introduction of technologies based on cell-free DNA (cfDNA) in maternal plasma and enrichment of fetal cells in maternal circulation have further refined the concept of sequential screening. In this review, we document our experience with serum and ultrasound-based contingent screening where we were able to achieve a detection rate of 96.8%, a false-positive rate of 2.8% and an odds of being affected given a positive result of 1:11. We also describe our initial experience with a novel sequential protocol that includes the analysis of fetal cells in maternal blood. Methods for enrichment for fetal cells cfDNA and cfDNA technologies offer the possibility of greater sensitivity and specificity as well as expansion in the scope of genetic disorders detectable. As costs decline, these technologies will become increasingly used as primary screening tools. In the meantime, sequential use offers a practical approach to maximizing the benefits of prenatal testing.
Collapse
|
14
|
Wei X, Cai B, Chen K, Cheng L, Zhu Y, Wang Z, Sun Y, Liu W, Guo SS, Zhang Y, Zhao XZ. Enhanced isolation and release of fetal nucleated red blood cells using multifunctional nanoparticle-based microfluidic device for non-invasive prenatal diagnostics. SENSORS AND ACTUATORS B: CHEMICAL 2019; 281:131-138. [DOI: 10.1016/j.snb.2018.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Gravelle R. In search of: Suggesting a course of action for the scientific community to research potential impacts of heritable gene editing on the maternal carrier. Semin Perinatol 2018; 42:522-524. [PMID: 30482592 DOI: 10.1053/j.semperi.2018.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prospective parents with a high risk of transmission of a disease-causing mutation may want to have an unaffected genetically related child. With advances in scientific technologies, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), they may be able to do so through heritable gene editing of the human germline at the pre-implantation stage. CRISPR technology in the reproduction and fertility context could potentially correct mutations in the germline, allow for the production of embryos that are free from a mutation and terminate the transmission of a disease-causing mutation from parent to child. As reproductive technologies evolve, a gap in the available literature exists that fails to address the potential impacts of edited fetal DNA on the maternal carrier. Both critical technical issues related to employing CRISPR, and germline editing based technologies in human reproduction and long-term impacts need to be studied and clarified to ensure positive application and outcomes for both offspring and mother.
Collapse
Affiliation(s)
- Robyn Gravelle
- c/o Halton Region 1151 Bronte Road, Oakville, ON L6M3L1, Canada.
| |
Collapse
|
16
|
Zhang S, Han S, Zhang M, Wang Y. Non-invasive prenatal paternity testing using cell-free fetal DNA from maternal plasma: DNA isolation and genetic marker studies. Leg Med (Tokyo) 2018; 32:98-103. [PMID: 29626747 DOI: 10.1016/j.legalmed.2018.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 03/01/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022]
Abstract
Invasive prenatal paternity tests can result in miscarriage and congenital malformations; therefore, a non-invasive method of testing is preferable. However, little progress could be made in this field until the introduction of cell-free fetal DNA (cffDNA) in 2009. In this review, two aspects regarding the history and development of non-invasive prenatal paternity testing (NIPAT) are summarized: (1) extraction and enrichment of cffDNA and (2) genetic marker-based studies. Although column-based kits are used widely for NIPAT, some researchers have suggested that an automated method, such as magnetic extraction, generally has a higher cffDNA yield than that of manual column-based extraction; therefore, its popularity might increase in the near future. In addition, size- and methylation-based enrichment methods are expected to perform better than formaldehyde-based methods. On the other hand, single nucleotide polymorphism-based techniques have contributed to NIPAT, whereas the application of short tandem repeat testing has so far been restricted to pregnant women bearing male fetuses only. Additional methods and techniques are expected to be innovated to facilitate the forensic practice of NIPAT.
Collapse
Affiliation(s)
- Shanshan Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Shuyi Han
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| | - Maoxiu Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Yunshan Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| |
Collapse
|
17
|
Guanciali Franchi P, Palka C, Morizio E, Sabbatinelli G, Alfonsi M, Fantasia D, Sitar G, Benn P, Calabrese G. Sequential combined test, second trimester maternal serum markers, and circulating fetal cells to select women for invasive prenatal diagnosis. PLoS One 2017; 12:e0189235. [PMID: 29216282 PMCID: PMC5720779 DOI: 10.1371/journal.pone.0189235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022] Open
Abstract
From January 1st 2013 to August 31st 2016, 24408 pregnant women received the first trimester Combined test and contingently offered second trimester maternal serum screening to identify those women who would most benefit from invasive prenatal diagnosis (IPD). The screening was based on first trimester cut-offs of ≥1:30 (IPD indicated), 1:31 to 1:899 (second trimester screening indicated) and ≤1:900 (no further action), and a second trimester cut-off of ≥1:250. From January 2014, analysis of fetal cells from peripheral maternal blood was also offered to women with positive screening results. For fetal Down syndrome, the overall detection rate was 96.8% for a false-positive rate of 2.8% resulting in an odds of being affected given a positive result (OAPR) of 1:11, equivalent to a positive predictive value (PPV) of 8.1%. Additional chromosome abnormalities were also identified resulting in an OAPR for any chromosome abnormality of 1:6.6 (PPV 11.9%). For a sub-set of cases with positive contingent test results, FISH analysis of circulating fetal cells in maternal circulation identified 7 abnormal and 39 as normal cases with 100% specificity and 100% sensitivity. We conclude that contingent screening using conventional Combined and second trimester screening tests is effective but can potentially be considerably enhanced through the addition of fetal cell analysis.
Collapse
Affiliation(s)
- Paolo Guanciali Franchi
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
- * E-mail:
| | - Chiara Palka
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
| | - Elisena Morizio
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
| | - Giulia Sabbatinelli
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
| | - Melissa Alfonsi
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
| | | | - Giammaria Sitar
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
| | - Peter Benn
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Giuseppe Calabrese
- Department of Medical, Oral and Biotechnological Science, Chieti-Pescara University, Chieti, Italy
- Department of Hematology, Pescara Hospital, Pescara, Italy
| |
Collapse
|
18
|
Tsui DW, Chiu RW, Lo YD. Epigenetic approaches for the detection of fetal DNA in maternal plasma. CHIMERISM 2017; 1:30-5. [PMID: 21327153 DOI: 10.4161/chim.1.1.12439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 12/18/2022]
Abstract
The presence of fetal DNA in the plasma of pregnant women has opened up new possibilities for noninvasive prenatal diagnosis. Over the past decades, different types of fetal markers have been developed, initially based on discriminative genetic markers such as male-specific signals or paternally-inherited polymorphisms, and gradually evolved to the detection of fetal-specific transcripts or epigenetic signatures. This development has extended the coverage of the application of cell-free fetal DNA to essentially all pregnancies, regardless of the gender of the fetus or its polymorphic status. In this review, we present an overview of the development of noninvasive prenatal diagnosis through epigenetics. We introduce the basis of how fetal DNA could be detected from a large background of maternal DNA in maternal plasma based on fetal-specific DNA methylation patterns. We evaluate the methodologies involved and discuss the factors that affect the robustness of the detection. We review the progress in adopting fetal epigenetic markers for noninvasive prenatal assessment of fetal chromosomal aneuploidies and pregnancy-associated disorders. We conclude with comments on the future directions regarding the search for new fetal epigenetic markers and the clinical implementation of epigenetic approaches for noninvasive prenatal diagnosis.
Collapse
Affiliation(s)
- Dana Wy Tsui
- The Centre for Research into Circulating Fetal Nucleic Acids; Li Ka Shing Institute of Health Sciences; and Department of Chemical Pathology; The Chinese University of Hong Kong; Shatin, Hong Kong SAR China
| | | | | |
Collapse
|
19
|
Calabrese G, Fantasia D, Alfonsi M, Morizio E, Celentano C, Guanciali Franchi P, Sabbatinelli G, Palka C, Benn P, Sitar G. Aneuploidy screening using circulating fetal cells in maternal blood by dual-probe FISH protocol: a prospective feasibility study on a series of 172 pregnant women. Mol Genet Genomic Med 2016; 4:634-640. [PMID: 27896286 PMCID: PMC5118208 DOI: 10.1002/mgg3.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A long sought goal in medical genetics has been the replacement of invasive procedures for the detection of chromosomal aneuploidies by isolating and analyzing fetal cells or free fetal DNA from maternal blood, avoiding risk to the fetus. However, a rapid, simple, consistent, and low-cost procedure suitable for routine clinical practice has not yet been achieved. The purpose of this study was to assess the feasibility of predicting fetal aneuploidy by applying our recently established dual-probe FISH protocol to fetal cells isolated and enriched from maternal blood. METHODS A total of 172 pregnant women underwent prospective testing for fetal aneuploidy by FISH analysis of fetal cells isolated from maternal blood. Results were compared with the karyotype determined through invasive procedures or at birth. RESULTS Seven of the samples exhibited fetal aneuploidy, which was confirmed by invasive prenatal diagnosis procedures. After enrichment for fetal cells, the frequency of trisomic cells was at least double in samples from aneuploid pregnancies (range 0.38-0.90%) compared to samples from normal pregnancies (≤0.18%). One false negative result was also obtained. CONCLUSIONS Noninvasive prenatal aneuploidy screening using fetal cells isolated from maternal blood is feasible and could substantially reduce the need for invasive procedures.
Collapse
Affiliation(s)
| | | | - Melissa Alfonsi
- Genetica Medica Università Chieti-Pescara Chieti Scalo Italy
| | - Elisena Morizio
- Genetica Medica Università Chieti-Pescara Chieti Scalo Italy
| | | | | | | | - Chiara Palka
- Genetica Medica Università Chieti-Pescara Chieti Scalo Italy
| | - Peter Benn
- University of Connecticut Health Center Farmington Connecticut
| | | |
Collapse
|
20
|
Liu L, Li K, Fu X, Chung C, Zhang K. A Forward Look At Noninvasive Prenatal Testing. Trends Mol Med 2016; 22:958-968. [PMID: 27726956 DOI: 10.1016/j.molmed.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 02/05/2023]
Abstract
Genomic abnormalities are a leading cause of birth defects and pregnancy complications, including in utero growth retardation and risk of miscarriage. Traditional invasive methods detecting such genomic abnormalities pose a relative risk to mother and unborn fetus. Non-invasive prenatal testing (NIPT) is a method that determines the genomic status of a fetus in utero by analyzing circulating fetal DNA in maternal plasma or serum. This review comes at a time when more and more physicians and hospitals might be using NIPT; there is great potential in extending this technology to other diagnostic applications. We discuss here the most current advances in diagnostic NIPT, its applications and limitations, as well as the development of future technology and possible clinical applications.
Collapse
Affiliation(s)
- Li Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Kang Li
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Sichuan 610041, China; Guangzhou Elite Health Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China
| | - Xin Fu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute for Genomic Medicine and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92328, USA
| | - Christopher Chung
- Institute for Genomic Medicine and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92328, USA
| | - Kang Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute for Genomic Medicine and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92328, USA.
| |
Collapse
|
21
|
Rahat B, Thakur S, Bagga R, Kaur J. Epigenetic regulation of STAT5A and its role as fetal DNA epigenetic marker during placental development and dysfunction. Placenta 2016; 44:46-53. [PMID: 27452437 DOI: 10.1016/j.placenta.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/19/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Development of normal placenta requires regulated apoptosis of trophoblasts. However, uncontrolled apoptosis has been seen in the pregnancy related complications like hydatidiform mole and pre-eclampsia. STAT5A is a transcription factor with well-known anti-apoptotic role. Thus, we sought to study the role of STAT5A and its epigenetic regulation in placental development and pathologies and its use as fetal DNA epigenetic marker. METHODS The present study was conducted on pregnant women who were enrolled in five groups, based on the three trimesters in normal pregnancy and two pregnancy related disorder groups: pre-eclampsia and hydatidiform mole. Placental villi samples and maternal blood were obtained from each pregnant woman and were analyzed for promoter region methylation (via methylation sensitive high resolution melting) and histone trimethylations (via chromatin immunoprecipitation) of STAT5A. RESULTS Our data revealed higher expression of STAT5A in first trimester villi, which decreased with advancing gestation with corresponding increased DNA methylation and H3 trimethylations. Development of choriocarcinoma was associated with DNA methylation associated lower expression of STAT5A. The pattern of promoter methylation of STAT5A in cell free DNA within maternal plasma was observed to be similar to its promoter methylation in placental villi during normal pregnancy, pre-eclampsia and molar complications, which suggested its use as a novel fetal DNA epigenetic marker. DISCUSSION Our results suggest the regulation of STAT5A via epigenetic mechanisms during normal pregnancy and the association of STAT5A epigenetic dysregulation in pregnancy related complications. Further, hypermethylated STAT5A can be utilized as novel fetal DNA epigenetic marker.
Collapse
Affiliation(s)
- Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rashmi Bagga
- Department of Obstetricsand Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
22
|
Kølvraa S, Christensen B, Lykke-Hansen L, Philip J. The Fetal Erythroblast Is Not the Optimal Target for Non-invasive Prenatal Diagnosis: Preliminary Results. J Histochem Cytochem 2016; 53:331-6. [PMID: 15750013 DOI: 10.1369/jhc.4a6396.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fetal cells, present in the blood of pregnant women, are potential targets for non-invasive prenatal diagnosis. The fetal erythroblast has been the favorite target cell type. We investigated four methods of enrichment for fetal erythroblasts, identifying only three fetal erythroblasts in 573 ml of maternal blood. This is much less than the expected two to six fetal cells per ml of maternal blood. Hamada and Krabchi used a cell type-independent marker, i.e., the Y chromosome in maternal blood from male pregnancies after Carnoy fixation, leaving the nuclei for hybridization with X-and Y-chromosome-specific probes. We found with a similar technique 28 fetal cells in 15 ml of maternal blood. The fetal origin of cells was confirmed by hybridizing the nuclei with X- and Y-chromosome-specific probes, using two consecutive hybridizations with the two probes in opposite colors (reverse FISH). Candidate fetal cells were inspected after each hybridization. Only cells that were found to change the color of both probe signals from first to second hybridization were diagnosed as fetal. To reduce the labor-intensive slide screening load, we used semi-automated scanning microscopy to search for candidate cells. We conclude that erythroblasts form only a small fraction of fetal cells present in maternal blood.
Collapse
Affiliation(s)
- Steen Kølvraa
- Inst. of Human Genetics, University of Arhus, Bartholin Building, Universitetsparken, 8000 Arhus C, Denmark.
| | | | | | | |
Collapse
|
23
|
Abstract
Prenatal diagnosis and screening have undergone rapid development in recent years, with advances in molecular technology driving the change. Noninvasive prenatal testing (NIPT) for Down syndrome as a highly sensitive screening test is now available worldwide through the commercial sector with many countries moving toward implementation into their publically funded maternity systems. Noninvasive prenatal diagnosis (NIPD) can now be performed for definitive diagnosis of some recessive and X-linked conditions, rather than just paternally inherited dominant and de novo conditions. NIPD/T offers pregnant couples greater choice during their pregnancy as these safer methods avoid the risk of miscarriage associated with invasive testing. As the cost of sequencing falls and technology develops further, there may well be potential for whole exome and whole genome sequencing of the unborn fetus using cell-free DNA in the maternal plasma. How such assays can or should be implemented into the clinical setting remain an area of significant debate, but it is clear that the progress made to date for safer prenatal testing has been welcomed by expectant couples and their healthcare professionals.
Collapse
|
24
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
25
|
Radoi VE, Bohiltea CL, Bohiltea RE, Albu DN. Cell free fetal DNA testing in maternal blood of Romanian pregnant women. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2015; 13:623-6. [PMID: 26644790 PMCID: PMC4668349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The discovery of circulating fetal DNA in maternal blood led to the discovery of new strategies to perform noninvasive testing for prenatal diagnosis. OBJECTIVE The purpose of the study was to detect fetal aneuploidy at chromosomes 13, 18, 21, X, and Y by analysis of fetal cell-free DNA from maternal blood, without endangering pregnancy. MATERIALS AND METHODS This retrospective study has been performed in Bucharest at Medlife Maternal and Fetal Medicine Department between 2013-2014. In total 201 women were offered noninvasive prenatal test. Maternal plasma samples were collected from women at greater than 9 weeks of gestation after informed consent and genetics counseling. RESULTS From 201 patients; 28 (13.93%) had screening test with high risk for trisomy 21, 116 (57.71%) had advanced maternal age, 1 (0.49%) had second trimester ultrasound markers and the remaining 56 patients (27.86%) performed the test on request. Of those patients, 189 (94.02%) had a "low risk" result (<1/10,000). Of those who had a low risk result, 2 continued on to have amniocentesis with normal results.Five patients (2.48%) received "high risk" results (>99% risk) all for trisomy 21 (T21). T21 was confirmed by amniocentesis in 1 patient and the other 4 patients declined confirmation. The 7 remaining patients (3.48%) had a low fetal fraction of DNA. CONCLUSION It is probably that prenatal diagnosis using fetal DNA in maternal blood would play an increasingly role in the future practice of prenatal testing because of high accuracy.
Collapse
Affiliation(s)
- Viorica E Radoi
- Department of Medical Genetics, UMF Carol Davila, Romania, Bucharest.
| | - Camil L Bohiltea
- Department of Medical Genetics, UMF Carol Davila, Romania, Bucharest.
| | - Roxana E Bohiltea
- Department of Maternal and Fetal Medicine, Medlife Romania, Bucharest.
| | - Dragos N Albu
- Department of Maternal and Fetal Medicine, Medlife Romania, Bucharest.
| |
Collapse
|
26
|
Yasmin L, Takano JI, Sankai T. Effective use of the TSPY gene-specific copy number in determining fetal DNA in the maternal blood of cynomolgus monkeys. Anim Sci J 2015; 87:1034-40. [PMID: 26420680 DOI: 10.1111/asj.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
Since the available concentration of single-copy fetal genes in maternal blood DNA is sometimes lower than detection limits by PCR methods, the development of specific and quantitative PCR detection methods for fetal DNA in maternal blood is anticipated, which may broaden the methods that can be used to monitor pregnancy. We used the TaqMan qPCR amplification for DYS14 multi-copy sequence and the SRY gene in maternal blood plasma (cell-free DNA) and fractional precipitated blood cells (cellular DNA) from individual cynomolgus monkeys at 22 weeks of pregnancy. The availability of cell-free fetal DNA was higher in maternal blood plasma than that of cellular DNA from fractional precipitated blood cells. There was a significantly higher (P < 0.001) mean copy number of fetal male DYS14 from maternal plasma (4.4 × 10(4) copies/mL) than that of detected fetal cellular DNA from fractional blood cell pellets. The sensitivity of the DYS14 PCR assay was found to be higher than that of the SRY assay for the detection of fetal DNA when its presence was at a minimum. The DYS14 assay is an improved method for quantifying male fetal DNA in circulating maternal blood in the primate model.
Collapse
Affiliation(s)
- Lubna Yasmin
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Jun-Ichiro Takano
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| |
Collapse
|
27
|
Radoi V, Bohiltea C, Bohiltea R, Cirstoiu M. Clinical Utility of Non-Invasive Prenatal Screening from Maternal Blood. MAEDICA 2015; 10:382-385. [PMID: 28465744 PMCID: PMC5394445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Viorica Radoi
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Camil Bohiltea
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Roxana Bohiltea
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Monica Cirstoiu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
28
|
Kotsopoulou I, Tsoplou P, Mavrommatis K, Kroupis C. Non-invasive prenatal testing (NIPT): limitations on the way to become diagnosis. ACTA ACUST UNITED AC 2015. [PMID: 29540035 DOI: 10.1515/dx-2015-0002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the discovery of existing circulating cell-free fetal DNA (ccffDNA) in maternal plasma and the advent of next-generation sequencing (NGS) technology, there is substantial hope that prenatal diagnosis will become a predominately non-invasive process in the future. At the moment, non-invasive prenatal testing (NIPT) is available for high-risk pregnancies with significant better sensitivity and specificity than the other existing non-invasive methods (biochemical and ultrasonographical). Mainly it is performed by NGS methods in a few commercial labs worldwide. However, it is expected that many other labs will offer analogous services in the future in this fast-growing field with a multiplicity of in-house methods (e.g., epigenetic, etc.). Due to various limitations of the available methods and technologies that are explained in detail in this manuscript, NIPT has not become diagnostic yet and women may still need to undergo risky invasive procedures to verify a positive finding or to secure (or even expand) a negative one. Efforts have already started to make the NIPT technologies more accurate (even at the level of a complete fetal genome) and cheaper and thus more affordable, in order to become diagnostic screening tests for all pregnancies in the near future.
Collapse
Affiliation(s)
- Ioanna Kotsopoulou
- 1Department of Clinical Biochemistry, Attikon University General Hospital, University of Athens Medical School, Athens, Greece
| | | | | | - Christos Kroupis
- 1Department of Clinical Biochemistry, Attikon University General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
29
|
Bisulfite Conversion of DNA: Performance Comparison of Different Kits and Methylation Quantitation of Epigenetic Biomarkers that Have the Potential to Be Used in Non-Invasive Prenatal Testing. PLoS One 2015; 10:e0135058. [PMID: 26247357 PMCID: PMC4527772 DOI: 10.1371/journal.pone.0135058] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/16/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. METHODS Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. RESULTS The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. CONCLUSION Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions.
Collapse
|
30
|
Korkmaz DT, Demirhan O, Abat D, Demirberk B, Tunç E, Kuleci S. Microchimeric Cells, Sex Chromosome Aneuploidies and Cancer. Pathol Oncol Res 2015; 21:1157-65. [PMID: 26003190 DOI: 10.1007/s12253-015-9934-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 03/18/2015] [Indexed: 02/04/2023]
Abstract
The phenomenon of feta-maternal microchimerisms inspires numerous questions. Many questions remain to be answered regarding this new avenue of genetics. The X and Y chromosomes have been associated with malignancy in different types of human tumors. We aimed to investigate the numerical aberrations of chromosomes X and Y in lung cancer (LC) and bladder cancer (BC) and review recent evidence for possible roles of microchimeric cells (McCs) in these cancers. We carried out cytogenetic analysis of the tumor and blood sampling in 52 cases of people with BC and LC, and also with 30 healthy people. A total of 48 (92.3 %) of the patients revealed sex chromosome aneuploidies (SCAs). A total SCAs was found in 9.8 % of 2282 cells that were analyzed as one or more cells in each case. The 68 and 95 SCAs were found in the 1952 (8.4 %) cells in peripheral blood, and 41 and 19 SCAs in the 330 (18.2 %) cells in the tumoral tissues respectively. There was a significant difference in the frequencies of SCAs between the patients and the control groups determined by the Fischer's Exact Test (p < 0.0001). The frequencies of SCAs were higher in the tumoral tissues than in the blood (p < 0.0001). There was a significant difference in the frequencies of SCAs between the tumor and blood tissues, and this was higher in the tumor tissue (p < 0.0001). In general, 78.9 % (41) of the 52 patients with LC and BC had X and Y chromosome monosomies. Largely a Y chromosome loss was present in 77.8 % of the men, and the 47, XXY karyotype was found in 33.3 % of them. The second most common SCA was monosomy X, and was found in 71.4 % of the women. McCs were observed in 26.9 % of the 52 patients, and the frequencies of McCs were higher in the blood than in the tissues (p < 0.0001). XY cells were identified in the lung and bladder tissues of the women who had been pregnant with boys, but not in those who had not. There was a significant difference in the frequencies of McCs between the LC and BC patients (p < 0.0005). We speculate that the microchimerism could have a general beneficial role in cancer, in which some sites may not be evident because of an allogeneic maternal immune reaction that hastens cancer development. A further understanding of McCs may help in anticipating its implications in cancer. Our results may suggest that SCAs may be contributing factors in the development of LC and BC, and aneuploidies of X and Y chromosomes play a role in the pathogenesis of cancers.
Collapse
|
31
|
Kadivar A, Hassanpour H, Amiri Dehcheshmeh J. A novel approach to prenatal fetal sex diagnosis by detecting an insertion in the Y-chromosome of ovine Amelogenin gene. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2014.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Mantzaris D, Cram DS. Potential of syncytiotrophoblasts isolated from the cervical mucus for early non-invasive prenatal diagnosis: Evidence of a vanishing twin. Clin Chim Acta 2015; 438:309-15. [DOI: 10.1016/j.cca.2014.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023]
|
33
|
Hua R, Barrett AN, Tan TZ, Huang Z, Mahyuddin AP, Ponnusamy S, Sandhu JS, Ho SSY, Chan JKY, Chong S, Quan S, Choolani M. Detection of aneuploidy from single fetal nucleated red blood cells using whole genome sequencing. Prenat Diagn 2014; 35:637-44. [PMID: 25178640 DOI: 10.1002/pd.4491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of the study was to detect aneuploidy in single fetal nucleated red blood cells (FNRBCs) from placental villi using whole genome amplification (WGA) and next generation sequencing. METHODS Three single FNRBCs per sample were manually picked from villi collected from ten women undergoing elective first-trimester termination of pregnancy, and one or two cells were picked from each of four aneuploid chorionic villus samples. Following WGA and addition of adaptor and index sequences, samples were sequenced on the Illumina MiSeq. Leading and trailing 15 bases were trimmed, and reads were aligned to the human reference genome. Z-scores were calculated to determine deviation of the mean of the test from reference samples, with a score of 3 used as the threshold for classification of a particular chromosome as trisomic. RESULTS We successfully made correct diagnoses from ten single cells isolated from villi from two cases of trisomy 21 (one case from a single cell and one from two cells), two cases of trisomy 18 (two cells each), and a case of trisomy 15 (three cells). CONCLUSION With their faithful representation of fetal genome, diagnosis using single FNRBCs provides a definitive result compared with non-invasive prenatal testing using cell-free fetal DNA, and is a safer alternative to invasive amniocentesis.
Collapse
Affiliation(s)
- Rui Hua
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228.,Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Angela N Barrett
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, S117599
| | - Zhouwei Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228
| | - Aniza Puteri Mahyuddin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228
| | - Sukumar Ponnusamy
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228
| | - Jaspal Singh Sandhu
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228
| | - Sherry S Y Ho
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Hospital, Singapore, S119074
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, S229899
| | - Samuel Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Hospital, National University of Singapore, Singapore, S119074
| | - Song Quan
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, S119228
| |
Collapse
|
34
|
Affiliation(s)
- Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China. Fax +852-2636-5090; e-mail
| |
Collapse
|
35
|
Emad A, Drouin R. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood. Prenat Diagn 2014; 34:878-885. [PMID: 24752776 DOI: 10.1002/pd.4387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/08/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. METHODS Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. RESULTS Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. CONCLUSION Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments.
Collapse
Affiliation(s)
- Ahmed Emad
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
36
|
A commentary on comparison of the performance of Ion Torrent chips in noninvasive prenatal trisomy detection. J Hum Genet 2014; 59:421-2. [PMID: 24990312 DOI: 10.1038/jhg.2014.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Sipos PI, Rens W, Schlecht H, Fan X, Wareing M, Hayward C, Hubel CA, Bourque S, Baker PN, Davidge ST, Sibley CP, Crocker IP. Uterine vasculature remodeling in human pregnancy involves functional macrochimerism by endothelial colony forming cells of fetal origin. Stem Cells 2014; 31:1363-70. [PMID: 23554274 PMCID: PMC3813980 DOI: 10.1002/stem.1385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
The potency of adult-derived circulating progenitor endothelial colony forming cells (ECFCs) is drastically surpassed by their fetal counterparts. Human pregnancy is associated with robust intensification of blood flow and vascular expansion in the uterus, crucial for placental perfusion and fetal supply. Here, we investigate whether fetal ECFCs transmigrate to maternal bloodstream and home to locations of maternal vasculogenesis, primarily the pregnant uterus. In the first instance, endothelial-like cells, originating from mouse fetuses expressing paternal eGFP, were identified within uterine endothelia. Subsequently, LacZ or enhanced green fluorescent protein (eGFP)-labeled human fetal ECFCs, transplanted into immunodeficient (NOD/SCID) fetuses on D15.5 pregnancy, showed similar integration into the mouse uterus by term. Mature endothelial controls (human umbilical vein endothelial cells), similarly introduced, were unequivocally absent. In humans, SRY was detected in 6 of 12 myometrial microvessels obtained from women delivering male babies. The copy number was calculated at 175 [IQR 149-471] fetal cells per millimeter square endothelium, constituting 12.5% of maternal vessel lumina. Cross-sections of similar human vessels, hybridized for Y-chromosome, positively identified endothelial-associated fetal cells. It appears that through ECFC donation, fetuses assist maternal uterine vascular expansion in pregnancy, potentiating placental perfusion and consequently their own fetal supply. In addition to fetal growth, this cellular mechanism holds implications for materno-fetal immune interactions and long-term maternal vascular health.
Collapse
Affiliation(s)
- Peter I Sipos
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kantak C, Chang CP, Wong CC, Mahyuddin A, Choolani M, Rahman A. Lab-on-a-chip technology: impacting non-invasive prenatal diagnostics (NIPD) through miniaturisation. LAB ON A CHIP 2014; 14:841-854. [PMID: 24452749 DOI: 10.1039/c3lc50980j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper aims to provide a concise review of non-invasive prenatal diagnostics (NIPD) to the lab-on-a-chip and microfluidics community. Having a market of over one billion dollars to explore and a plethora of applications, NIPD requires greater attention from microfluidics researchers. In this review, a complete overview of conventional diagnostic procedures including invasive as well as non-invasive (fetal cells and cell-free fetal DNA) types are discussed. Special focus is given to reviewing the recent and past microfluidic approaches to NIPD, as well as various commercial entities in NIPD. This review concludes with future challenges and ethical considerations of the field.
Collapse
Affiliation(s)
- Chaitanya Kantak
- Institute of Microelectronics, Agency for Science Technology and Research, 11 Science Park Road, Singapore Science Park 2, Singapore 117685, Singapore.
| | | | | | | | | | | |
Collapse
|
39
|
Gleicher N. Graft-versus-host disease and immunologic rejection: implications for diagnosis and treatments of pregnancy complications. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.3.1.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Bustamante-Aragones A, Gonzalez-Gonzalez C, de Alba MR, Ainse E, Ramos C. Noninvasive prenatal diagnosis using ccffDNA in maternal blood: state of the art. Expert Rev Mol Diagn 2014; 10:197-205. [DOI: 10.1586/erm.09.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Lo YMD. Non-invasive prenatal diagnosis by massively parallel sequencing of maternal plasma DNA. Open Biol 2013; 2:120086. [PMID: 22773950 PMCID: PMC3390796 DOI: 10.1098/rsob.120086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/14/2012] [Indexed: 12/11/2022] Open
Abstract
The presence of foetal DNA in the plasma of pregnant women has opened up new possibilities for non-invasive prenatal diagnosis. The use of circulating foetal DNA for the non-invasive prenatal detection of foetal chromosomal aneuploidies is challenging as foetal DNA represents a minor fraction of maternal plasma DNA. In 2007, it was shown that single molecule counting methods would allow the detection of the presence of a trisomic foetus, as long as enough molecules were counted. With the advent of massively parallel sequencing, millions or billions of DNA molecules can be readily counted. Using massively parallel sequencing, foetal trisomies 21, 13 and 18 have been detected from maternal plasma. Recently, large-scale clinical studies have validated the robustness of this approach for the prenatal detection of foetal chromosomal aneuploidies. A proof-of-concept study has also shown that a genome-wide genetic and mutational map of a foetus can be constructed from the maternal plasma DNA sequencing data. These developments suggest that the analysis of foetal DNA in maternal plasma would play an increasingly important role in future obstetrics practice. It is thus a priority that the ethical, social and legal issues regarding this technology be systematically studied.
Collapse
Affiliation(s)
- Yuk Ming Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
42
|
Peterson SE, Nelson JL, Gadi VK, Gammill HS. Fetal cellular microchimerism in miscarriage and pregnancy termination. CHIMERISM 2013; 4:136-8. [PMID: 23723084 PMCID: PMC3921195 DOI: 10.4161/chim.24915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fetal cells transfer to the mother during pregnancy and can persist long-term as microchimerism. Acquisition of microchimerism may also occur during pregnancy loss, either miscarriage or pregnancy termination. Because nearly half of all pregnancies end in loss, we recently investigated the magnitude of fetal cell transfer during pregnancy loss and whether obstetric clinical factors impacted cell transfer. Prospective measurement of fetal cellular microchimerism before and after miscarriage and termination of pregnancy demonstrated a significant transfer of fetal cells in these pregnancies, with higher concentrations of fetal microchimerism in pregnancy termination vs. miscarriage and in those that were managed surgically vs. medically. The frequency of pregnancy loss as a proportion of all pregnancies, and the overrepresentation of fetal genetic abnormalities in pregnancy loss suggest that the resultant acquisition of fetal microchimerism could have a unique and substantial impact on women’s health.
Collapse
Affiliation(s)
- Suzanne E Peterson
- Department of Obstetrics and Gynecology; University of Washington; Seattle, WA USA; Swedish Medical Center; Seattle, WA USA
| | - J Lee Nelson
- Division of Rheumatology; University of Washington; Seattle, WA USA; Division of Clinical Research; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | - Vijayakrishna K Gadi
- Division of Clinical Research; Fred Hutchinson Cancer Research Center; Seattle, WA USA; Division of Medical Oncology; University of Washington; Seattle, WA USA
| | - Hilary S Gammill
- Department of Obstetrics and Gynecology; University of Washington; Seattle, WA USA; Division of Clinical Research; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| |
Collapse
|
43
|
Smith M, Visootsak J. Noninvasive screening tools for Down syndrome: a review. Int J Womens Health 2013; 5:125-31. [PMID: 23687453 PMCID: PMC3655554 DOI: 10.2147/ijwh.s31183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 11/23/2022] Open
Abstract
Down syndrome is the leading cause of prenatal chromosome abnormalities, accounting for 53% of all reported chromosome conditions. Testing strategies, guidelines, and screening options have expanded from their conception in the 1970s, and now include such options as anatomical ultrasound, maternal serum screening, and noninvasive prenatal testing. This review summarizes all currently available noninvasive diagnostic techniques for the detection of Down syndrome. By understanding fully each technology and the possible alternatives, the physician will be able to provide their patients with all the information necessary to make an informed decision regarding their medical management.
Collapse
Affiliation(s)
- Meagan Smith
- Emory University, Department of Human Genetics, Atlanta, GA, USA
| | | |
Collapse
|
44
|
Haplotype-assisted accurate non-invasive fetal whole genome recovery through maternal plasma sequencing. Genome Med 2013; 5:18. [PMID: 23445748 PMCID: PMC3706925 DOI: 10.1186/gm422] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/23/2013] [Accepted: 02/27/2013] [Indexed: 02/07/2023] Open
Abstract
Background The applications of massively parallel sequencing technology to fetal cell-free DNA (cff-DNA) have brought new insight to non-invasive prenatal diagnosis. However, most previous research based on maternal plasma sequencing has been restricted to fetal aneuploidies. To detect specific parentally inherited mutations, invasive approaches to obtain fetal DNA are the current standard in the clinic because of the experimental complexity and resource consumption of previously reported non-invasive approaches. Methods Here, we present a simple and effective non-invasive method for accurate fetal genome recovery-assisted with parental haplotypes. The parental haplotype were firstly inferred using a combination strategy of trio and unrelated individuals. Assisted with the parental haplotype, we then employed a hidden Markov model to non-invasively recover the fetal genome through maternal plasma sequencing. Results Using a sequence depth of approximately 44X against a an approximate 5.69% cff-DNA concentration, we non-invasively inferred fetal genotype and haplotype under different situations of parental heterozygosity. Our data show that 98.57%, 95.37%, and 98.45% of paternal autosome alleles, maternal autosome alleles, and maternal chromosome X in the fetal haplotypes, respectively, were recovered accurately. Additionally, we obtained efficient coverage or strong linkage of 96.65% of reported Mendelian-disorder genes and 98.90% of complex disease-associated markers. Conclusions Our method provides a useful strategy for non-invasive whole fetal genome recovery.
Collapse
|
45
|
Abstract
The thalassemias are among the most common inherited diseases worldwide, affecting individuals originating from the Mediterranean area, Middle East, Transcaucasia, Central Asia, Indian subcontinent, and Southeast Asia. As the diseases require long-term care, prevention of the homozygous state constitutes a major armament in the management. This article discusses the major prevention programs that are set up in many countries in Europe, Asia, and Australia, often drawing from the experience in Sardinia. These comprehensive programs involve carrier detections, molecular diagnostics, genetic counseling, and prenatal diagnosis. Variability of clinical severity can be attributable to interactions with α-thalassemia and mutations that increase fetal productions. Special methods that are currently quite expensive and not widely applicable are preimplantation and preconception diagnosis. The recent successful studies of fetal DNA in maternal plasma may allow future prenatal diagnosis that is noninvasive for the fetus.
Collapse
Affiliation(s)
- Antonio Cao
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, Via Jenner snc 09121 Cagliari, Sardinia, Italy
| | | |
Collapse
|
46
|
Prenatal diagnosis of 21 trisomy by quantification of methylated fetal DNA in maternal blood: study on 10 pregnancies. REV ROMANA MED LAB 2013. [DOI: 10.2478/rrlm-2013-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
A new method for non-invasive prenatal diagnosis of Down syndrome using MeDIP real time qPCR. Appl Transl Genom 2012; 1:3-8. [PMID: 27896047 PMCID: PMC5121212 DOI: 10.1016/j.atg.2012.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
During the last decade, the area of non-invasive prenatal diagnosis (NIPD) has rapidly evolved. Several methodological approaches have been presented and demonstrated a proof of concept for the NIPD of chromosomal aneuploidies. The two most promising methods are NIPD using next generation sequencing technologies and NIPD using Methylation DNA Immunoprecipitation (MeDIP) with real time qPCR. Both approaches have been validated with blind studies and have > 99% accuracy. NIPD using next generation sequencing is achieved by high throughput shotgun sequencing of DNA from plasma of maternal women followed by ratio comparisons of each chromosome sequence tag density over the median tag density of all autosomes (z-score analysis). The MeDIP real time qPCR method, which is described in this review in more detail, is based on the identification of differentially methylated regions (DMRs) and their use in discriminating normal from abnormal cases. More than 10,000 DMRs were identified for chromosomes 13, 18, 21, X and Y using high resolution oligo-arrays that can be potentially used for the NIPD of aneuploidies for chromosomes 13, 18, 21, X and Y. Both NIPD methods have several advantages and limitations and it is believed that they will soon be implemented in clinical practice. With the continuous advancements of genetic methodologies and technologies, we predict that within the next 10 years we will be able to provide NIPD for all common and rare genetic disorders where the molecular basis is known.
Collapse
|
48
|
Tong YK, Chiu RWK, Chan KCA, Leung TY, Lo YMD. Technical concerns about immunoprecipitation of methylated fetal DNA for noninvasive trisomy 21 diagnosis. Nat Med 2012; 18:1327-8; author reply 1328-9. [PMID: 22961155 DOI: 10.1038/nm.2915] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Choolani M, Mahyuddin AP, Hahn S. The promise of fetal cells in maternal blood. Best Pract Res Clin Obstet Gynaecol 2012; 26:655-667. [PMID: 22795236 DOI: 10.1016/j.bpobgyn.2012.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 05/23/2012] [Accepted: 06/10/2012] [Indexed: 01/23/2023]
Abstract
Delaying childbirth increases the proportion of advanced maternal age pregnancies. This increases the number of pregnancies requiring invasive prenatal testing. Prenatal diagnosis of chromosomal aneuploidies and monogenic disorders requires fetal cells obtained through invasive procedures (i.e. chorionic villus sampling and amniocentesis). These procedures carry a risk of fetal loss, which causes anxiety to at-risk couples. Intact fetal cells entering maternal circulation have raised the possibility of non-invasive prenatal diagnosis. Rarity of fetal cells, however, has made it challenging. Fetal nucleated red blood cells are ideal candidate target cells because they have limited lifespan, contain true representation of fetal genotype, contain specific fetal cell identifiers (embryonic and fetal globins), and allow interrogation with chromosomal fluorescence in-situ hybridisation and possibly with array comparative genomic hybridisation. The utility of fetal nucleated red blood cells in non-invasive prenatal diagnosis has not reached clinical application because of the inconsistencies in enrichment strategies and rarity of cells.
Collapse
Affiliation(s)
- Mahesh Choolani
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| | | | | |
Collapse
|
50
|
Bi W, Breman A, Shaw CA, Stankiewicz P, Gambin T, Lu X, Cheung SW, Jackson LG, Lupski JR, Van den Veyver IB, Beaudet AL. Detection of ≥1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn 2012; 32:10-20. [PMID: 22470934 DOI: 10.1002/pd.2855] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE High resolution detection of genomic copy number abnormalities in a single cell is relevant to preimplantation genetic diagnosis and potentially to noninvasive prenatal diagnosis. Our objective is to develop a reliable array comparative genomic hybridization (CGH) platform to detect genomic imbalances as small as ~1Mb ina single cell. METHODS We empirically optimized the conditions for oligonucleotide-based array CGH using single cells from multiple lymphoblastoid cell lines with known copy number abnormalities. To improve resolution, we designed custom arrays with high density probes covering clinically relevant genomic regions. RESULTS The detection of megabase-sized copy number variations (CNVs) in a single cell was influenced by the number of probes clustered in the interrogated region. Using our custom array, we reproducibly detected multiple chromosome abnormalities including trisomy 21, a 1.2Mb Williams syndrome deletion, and a 1.3Mb CMT1A duplication. Replicate analyses yielded consistent results. CONCLUSION Aneuploidy and genomic imbalances with CNVs as small as 1.2Mb in a single cell are detectable by array CGH using arrays with high-density coverage in the targeted regions. This approach has the potential to be applied for preimplantation genetic diagnosis to detect aneuploidy and common microdeletion/duplication syndromes and for noninvasive prenatal diagnosis if single fetal cells can be isolated.
Collapse
Affiliation(s)
- Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|