1
|
Zandi-Sohani N, Keena MA, Gallagher MR, Cullen A. Heat treatments to kill eggs of two invasive forest insects: Lycorma delicatula (Hemiptera: Fulgoridae) and Lymantria dispar (Lepidoptera: Erebidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf042. [PMID: 40037783 DOI: 10.1093/jee/toaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
The spotted lanternfly (Lycorma delicatula) and spongy moth (Lymantria dispar) are notorious invasive forest pests that are spread through human-mediated transport to invade new habitats. In this study, spotted lanternfly and spongy moth eggs were exposed to various temperature-exposure time (35 to 70 °C and 15 to 135 min) treatments in the laboratory. Spotted lanternfly egg masses were collected from various sites in 2022 and 2023, while the spongy moth egg masses were obtained from lab-reared colonies. Heat treatments were applied using an Isotemp microbiological incubator in the spring of 2023 and the spring and fall of 2024. No eggs of either species hatched when exposed to temperatures ≥ 60 °C for durations longer than 15 min. Spotted lanternfly egg hatch declined at temperatures ≥ 45 °C, while reduced hatch of spongy moth eggs was not observed until temperatures reached ≥ 50 °C. The season (spring or fall) in which the eggs were heat treated did not affect the hatch rate of spotted lanternfly eggs; however, spongy moth eggs were more vulnerable in the fall than in the spring. These findings suggest that heat treatment regimes that are already being used to kill insects in wood may effectively kill the eggs of both species on various substrates and that protocols for killing eggs at lower temperatures on more sensitive substrates may be possible by using longer-duration exposures.
Collapse
Affiliation(s)
- Nooshin Zandi-Sohani
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
- USDA Forest Service, Northern Research Station, Hamden, CT, USA
| | - Melody A Keena
- USDA Forest Service, Northern Research Station, Hamden, CT, USA
| | | | - Anthony Cullen
- USDA Animal Plant Health Inspection Service, Linden, NJ, USA
| |
Collapse
|
2
|
Farner JE, Lyberger KP, Couper LI, Cruz-Loya M, Mordecai EA. Nonlinear effects of temperature on mosquito parasite infection across a large geographic climate gradient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631804. [PMID: 39829816 PMCID: PMC11741412 DOI: 10.1101/2025.01.07.631804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Temperature drives ectothermic host - parasite interactions, making them particularly sensitive to climatic variation and change. To isolate the role of temperature, lab-based studies are increasingly used to assess and forecast disease risk under current and future climate conditions. However, in the field, the effects of temperature on parasitism may be mediated by other sources of variation, including local adaptation. To address the key knowledge gaps of how temperature influences host - parasite interactions and whether thermal responses measured in controlled experiments capture infection across temperature gradients in nature, we paired an extensive field survey of parasitism-by the ciliate Lambornella clarki on its tree hole mosquito host, Aedes sierrensis -with laboratory experiments describing parasitism thermal performance curves (TPCs) for six host populations from varying climates. We also investigated the mechanisms underlying the thermal biology of the host - parasite interaction by separately measuring TPCs for infection, host immunity, and parasite growth rates. Along the west coast of North America, across an 1100 km climate gradient spanning 12°C mean rainy season temperature variation, we found that parasitism peaked at intermediately cold temperatures, and was consistent both between field seasons and with the lab experiment results. The experiments produced no evidence of host intraspecific variation in temperature sensitivity to parasitism. Importantly, parasitism peaked at temperatures below the thermal optimum for free-living L. clarki due to the balance of temperature effects on parasite growth and reproduction against the strength of the host melanization immune response. The results suggest that nonlinear responses to temperature drive parasitism in nature, and that simple lab and field studies can accurately capture the thermal biology of multilayered host - parasite interactions. Data and code for this submission are provided on Dryad: http://datadryad.org/stash/share/CfZkk4LsJzljetJJnFZMDMrjuciTXMxrkrc95I2J3tA .
Collapse
|
3
|
Karatayev VA, Munch SB, Rogers TL, Reuman DC. Climate change could amplify weak synchrony in large marine ecosystems. Proc Natl Acad Sci U S A 2025; 122:e2404155121. [PMID: 39793053 PMCID: PMC11725893 DOI: 10.1073/pnas.2404155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/27/2024] [Indexed: 01/12/2025] Open
Abstract
Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species. Overall, spatial heterogeneity in population dynamics was as important as environmental drivers in explaining population variation. This heterogeneity leads to weak synchrony in the California Current Ecosystem, where populations exhibit diverse responses to shared, large-scale environmental change. In contrast, in the Northeast U.S. Shelf Ecosystem, gradients in average environmental conditions among locations, filtered through nonlinear environmental response curves, limit synchrony. Simulations predict that environmental gradients and response diversity will continue to inhibit synchrony even if large-scale environmental extremes become common. However, if environmental gradients weaken, synchrony and periods of large-scale population decline may rise sharply among commercially important species on the Northeast Shelf. Our approach thus allows ecologists to 1) quantify how differences among local communities underpin landscape-scale resilience and 2) identify the kinds of future climatic changes most likely to amplify synchrony and erode species stability.
Collapse
Affiliation(s)
- Vadim A. Karatayev
- Department of Biology, University of Maryland, College Park, MD20742
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS66045
- Center for Ecological Research, University of Kansas, Lawrence, KS66045
| | - Stephan B. Munch
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA95060
- Department of Applied Mathematics, University of California, Santa Cruz, CA95064
| | - Tanya L. Rogers
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA95060
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS66045
- Center for Ecological Research, University of Kansas, Lawrence, KS66045
| |
Collapse
|
4
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Prekas P, Terblanche JS, Hahn DA, Papadopoulos NT. Age and mating status have complex but modest effects on the critical thermal limits of adult Mediterranean fruit flies from geographically divergent populations. J Therm Biol 2024; 126:104013. [PMID: 39586117 DOI: 10.1016/j.jtherbio.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status. Furthermore, the relationships between the above factors and tolerances may differ among geographically distinct populations. Here, the effects of age and mating status on thermal tolerance of three geographically distinct medfly populations along a latitudinal gradient ranging from Greece (Crete & Volos) to Croatia (Dubrovnik) were examined. The upper and lower critical thermal limits (scored as loss of neuromuscular function during controlled cooling or heating) of adult males and females (a) at 1-, 6-, 15-, and 35 days old and of (b) both mated and virgin flies were assessed. Results showed that estimates of lower and upper thermal limits (CTmin and CTmax) were both population- and age-dependent. In most age classes tested, CTmin values were lower for the adults obtained from Crete and higher for those from Dubrovnik. CTmax values were lower for the females from Dubrovnik compared to the females from any other population on day one after emergence but not on days 6, 15 and 35. Differences among populations were observed across different age classes both for cold and heat tolerance but mostly in CTmin estimates. Mating status had a little effect on cold and heat tolerance. Complex patterns of thermal limit variation within and among populations suggest a suite of factors determine population-level mortality from thermal extremes under field conditions in medfly. These results contribute towards understanding the invasion dynamics of medfly and its range expansion to northern, more temperate regions of Europe.
Collapse
Affiliation(s)
- Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Panagiota Koskinioti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Kostas D Zarpas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Paraschos Prekas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
5
|
Hafker P, Thompson LM, Walter JA, Parry D, Grayson KL. Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect. INSECT SCIENCE 2024; 31:1930-1942. [PMID: 38516807 PMCID: PMC11632292 DOI: 10.1111/1744-7917.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.
Collapse
Affiliation(s)
- Petra Hafker
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of EntomologyCornell UniversityIthacaNYUSA
| | - Lily M. Thompson
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSCUSA
| | - Jonathan A. Walter
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Dylan Parry
- Department of Environmental Biology, State University of New YorkCollege of Environmental Science and ForestrySyracuseNYUSA
| | | |
Collapse
|
6
|
Pallarés S, Carbonell JA, Picazo F, Bilton DT, Millán A, Abellán P. Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae). INSECT SCIENCE 2024. [PMID: 39586796 DOI: 10.1111/1744-7917.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Species distributed across wide elevational gradients are likely to experience local thermal adaptation and exhibit high thermal plasticity, as these gradients are characterised by steep environmental changes over short geographic distances (i.e., strong selection differentials). The prevalence of adaptive intraspecific variation in thermal tolerance with elevation remains unclear, however, particularly in freshwater taxa. We explored variation in upper and lower thermal limits and acclimation capacity among Iberian populations of adults of the widespread water beetle Agabus bipustulatus (Dytiscidae) across a 2000 m elevational gradient, from lowland to alpine areas. Since mean and extreme temperatures decline with elevation, we predicted that populations at higher elevations will show lower heat tolerance and higher cold tolerance than lowland ones. We also explored whether acclimation capacity is positively related with climatic variability across elevations. We found significant variation in thermal limits between populations of A. bipustulatus, but no evidence of local adaptation to different thermal conditions across the altitudinal gradient, as relationships between thermal limits and elevation or climatic variables were largely nonsignificant. Furthermore, plasticities of both upper and lower thermal limits were consistently low in all populations. These results suggest thermal niche conservatism in this species, likely due to gene flow counteracting the effects of divergent selection, or adaptations in other traits that buffer exposure to climate extremes. The limited adaptive potential and plasticity of thermal tolerance observed in A. bipustulatus suggest that even generalist species, distributed across wide environmental gradients, may have limited resilience to global warming.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - José Antonio Carbonell
- Department of Zoology, University of Seville, Seville, Spain
- Department of Zoology, University of Córdoba, Córdoba, Spain
| | - Félix Picazo
- Department of Ecology, Research Unit Modeling Nature and Water Institute, University of Granada, Granada, Spain
| | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Pedro Abellán
- Department of Zoology, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Blanchard TS, Earhart ML, Shatsky AK, Schulte PM. Intraspecific variation in thermal performance curves for early development in Fundulus heteroclitus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:827-844. [PMID: 38769744 DOI: 10.1002/jez.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Thermal performance curves (TPCs) provide a framework for understanding the effects of temperature on ectotherm performance and fitness. TPCs are often used to test hypotheses regarding local adaptation to temperature or to develop predictions for how organisms will respond to climate warming. However, for aquatic organisms such as fishes, most TPCs have been estimated for adult life stages, and little is known about the shape of TPCs or the potential for thermal adaptation at sensitive embryonic life stages. To examine how latitudinal gradients shape TPCs at early life stages in fishes, we used two populations of Fundulus heteroclitus that have been shown to exhibit latitudinal variation along the thermal cline as adults. We exposed embryos from both northern and southern populations and their reciprocal crosses to eight different temperatures (15°C, 18°C, 21°C, 24°C, 27°C, 30°C, 33°C, and 36°C) until hatch and examined the effects of developmental temperature on embryonic and larval traits (shape of TPCs, heart rate, and body size). We found that the pure southern embryos had a right-shifted TPC (higher thermal optimum (Topt) for developmental rate, survival, and embryonic growth rate) whereas pure northern embryos had a vertically shifted TPC (higher maximum performance (Pmax) for developmental rate). Differences across larval traits and cross-type were also found, such that northern crosses hatched faster and hatched at a smaller size compared to the pure southern population. Overall, these observed differences in embryonic and larval traits are consistent with patterns of both local adaptation and countergradient variation.
Collapse
Affiliation(s)
- Tessa S Blanchard
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel K Shatsky
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Duan Y, Chen Q, Bilal M, Wu Y, Gong Z, Wu R, Miao J. Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress. INSECTS 2024; 15:554. [PMID: 39057286 PMCID: PMC11276649 DOI: 10.3390/insects15070554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The loreyi leafworm Mythimna loreyi (Lepidoptera: Noctuidae) is a serious pest of agriculture that causes particular damage to Gramineae crops in Asia, Europe, Australia, Africa, and the Middle East. Low temperature is one of the important environmental factors that limits the survival, distribution, colonization, and abundance of M. loreyi. However, the metabolic synthesis pathways of cold-tolerant substances in M. loreyi and the key genes involved in the regulation under cold stress remain largely unknown. In this study, we sequenced the transcriptomes of three developmental stages (larvae, pupae, and adults) of M. loreyi to discover the molecular mechanisms of their responses to cold stress. In total, sequencing generated 120.64 GB of clean data from 18 samples, of which 19,459 genes and 1740 differentially expressed genes (DEGs) were identified. The enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many DEGs were mainly enriched in pathways associated with energy metabolism and hormone metabolism. Among these, genes encoding multiple metabolic enzymes, cuticle proteins (CPs), and heat shock proteins (HSPs) were differentially expressed. These results indicate that there are significant differences among the three developmental stages of M. loreyi exposed to cold stress and provide a basis for further studying the molecular mechanisms of cold tolerance in insects.
Collapse
Affiliation(s)
- Yun Duan
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Qi Chen
- Luohe Academy of Agricultural Sciences, Luohe 462000, China;
| | - Muhammad Bilal
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuqing Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Zhongjun Gong
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Jin Miao
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| |
Collapse
|
9
|
Ge X, Newman JA, Griswold CK. Geographic variation in evolutionary rescue under climate change in a crop pest-predator system. Evol Appl 2024; 17:e13750. [PMID: 39040812 PMCID: PMC11261214 DOI: 10.1111/eva.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Species distribution models (SDMs) are often built upon the "niche conservatism" assumption, such that they ignore the possibility of "evolutionary rescue" and may underestimate species' future range limits under climate change. We select aphids and ladybirds as model species and develop an eco-evolutionary model to explore evolutionary rescue in a predator-prey system under climate change. We model the adaptive change of species' thermal performances, accounting for biotic interactions. Our study suggests that, without considering evolutionary adaptation, the warming climate will result in a reduction in aphid populations and the extinction of ladybirds in large parts of the United States. However, when incorporating evolutionary adaptation into the model, aphids can adapt to climate change, whereas ladybirds demonstrate geographic variation in their evolutionary rescue potential. Specifically, ladybirds in southern regions are more likely to be rescued than those in the north. In certain northern regions, ladybirds do not avoid extinction due to severe warming trends and seasonality of the climate. While higher warming trends do prompt stronger evolutionary changes in phenotype, they also lead to reduced aphid population abundance such that ecology constrains ladybird population growth. Higher seasonality induces an ecological effect by limiting the length of reproductive season, thereby reducing the capacity for evolutionary rescue. Together, these findings reveal the complex interplay between ecological and evolutionary dynamics in the context of evolutionary adaptation to climate change.
Collapse
Affiliation(s)
- Xuezhen Ge
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | | | | |
Collapse
|
10
|
Toxopeus J, Dowle EJ, Andaloori L, Ragland GJ. Variation in Thermal Sensitivity of Diapause Development among Individuals and over Time Predicts Life History Timing in a Univoltine Insect. Am Nat 2024; 203:E200-E217. [PMID: 38781522 DOI: 10.1086/729515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractPhysiological time is important for understanding the development and seasonal timing of ectothermic animals but has largely been applied to developmental processes that occur during spring and summer, such as morphogenesis. There is a substantial knowledge gap in the relationship between temperature and development during winter, a season that is increasingly impacted by climate change. Most temperate insects overwinter in diapause, a developmental process with little obvious morphological change. We used principles from the physiological time literature to measure and model the thermal sensitivity of diapause development rate in the apple maggot fly Rhagoletis pomonella, a univoltine fly whose diapause duration varies substantially within and among populations. We show that diapause duration can be predicted by modeling a relationship between temperature and development rate that is shifted toward lower temperatures compared with typical models of morphogenic, nondiapause development. However, incorporating interindividual variation and ontogenetic variation in the temperature-to-development rate relationship was critical for accurately predicting fly emergence, as diapause development proceeded more quickly at high temperatures later in diapause. We conclude that the conceptual framework may be flexibly applied to other insects and discuss possible mechanisms of diapause timers and implications for phenology with warming winters.
Collapse
|
11
|
Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos DG, Cator LJ. Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming. Nat Ecol Evol 2024; 8:500-510. [PMID: 38273123 DOI: 10.1038/s41559-023-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.
Collapse
Affiliation(s)
- Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK.
| | - Paul J Huxley
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
| | - Thomas R C Smallwood
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Miles L Nesbit
- Department of Life Sciences, Imperial College London, Ascot, UK
- The Pirbright Institute, Woking, UK
| | - Alex H H Chan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
12
|
Papadogiorgou GD, Papadopoulos AG, Moraiti CA, Verykouki E, Papadopoulos NT. Latitudinal variation in survival and immature development of Ceratitis capitata populations reared in two key overwintering hosts. Sci Rep 2024; 14:467. [PMID: 38172200 PMCID: PMC10764328 DOI: 10.1038/s41598-023-50587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Ceratitis capitata, a major agricultural pest, is currently expanding its geographic distribution to northern, temperate areas of Europe. Its seasonal biology and invasion success depend on temperature, humidity and host availability. In coastal warmer Mediterranean regions and cooler temperature areas, bitter oranges and apples serve as overwintering hosts during the larval stage. We assessed the overwintering capacity of C. capitata populations obtained from different areas of the northern hemisphere by studying the survival and development rates of immature stages in both fruits under laboratory conditions. Eggs from each population were artificially inserted in the flesh of the two hosts and kept at 15, 20, or 25 °C until pupation and adult emergence. Climatic analysis of the area of the population origin showed combined effects of latitude, host and macroclimatic variables on immature survival and development rates. Egg to adult survival rates and developmental duration were longer in apples than in bitter oranges. For populations originated from southern-warmer areas, egg to adult developmental duration was prolonged and adult emergence reduced at 15 °C compared to those populations obtained from northern regions. Our findings reveal varying plastic responses of medfly populations to different overwintering hosts and temperatures highlighting the differential overwintering potential as larvae within fruits. This study contributes towards better understanding the medfly invasion dynamics in temperate areas of Northern Europe and other parts of the globe with similar climates.
Collapse
Affiliation(s)
- Georgia D Papadogiorgou
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Cleopatra A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Eleni Verykouki
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece.
| |
Collapse
|
13
|
Earls KN, Campbell JB, Rinehart JP, Greenlee KJ. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biol Open 2023; 12:bio060213. [PMID: 38156711 PMCID: PMC10805150 DOI: 10.1242/bio.060213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Spring conditions, especially in temperate regions, may fluctuate abruptly and drastically. Environmental variability can expose organisms to temperatures outside of their optimal thermal ranges. For ectotherms, sudden changes in temperature may cause short- and long-term physiological effects, including changes in respiration, morphology, and reproduction. Exposure to variable temperatures during active development, which is likely to occur for insects developing in spring, can cause detrimental effects. Using the alfalfa leafcutting bee, Megachile rotundata, we aimed to determine if oxygen consumption could be measured using a new system and to test the hypothesis that female and male M. rotundata have a thermal performance curve with a wide optimal range. Oxygen consumption of M. rotundata pupae was measured across a large range of temperatures (6-48°C) using an optical oxygen sensor in a closed respirometry system. Absolute and mass-specific metabolic rates were calculated and compared between bees that were extracted from their brood cells and those remaining in the brood cell to determine whether pupae could be accurately measured inside their brood cells. The metabolic response to temperature was non-linear, which is an assumption of a thermal performance curve; however, the predicted negative slope at higher temperatures was not observed. Despite sexual dimorphism in body mass, sex differences only occurred in mass-specific metabolic rates. Higher metabolic rates in males may be attributed to faster development times, which could explain why there were no differences in absolute metabolic rate measurements. Understanding the physiological and ecological effects of thermal environmental variability on M. rotundata will help to better predict their response to climate change.
Collapse
Affiliation(s)
- Kayla N. Earls
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jacob B. Campbell
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Joseph P. Rinehart
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture/Agricultural Research Station, Fargo, ND 58102,USA
| | - Kendra J. Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
14
|
Xing S, Leahy L, Ashton LA, Kitching RL, Bonebrake TC, Scheffers BR. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. J Anim Ecol 2023; 92:538-551. [PMID: 36622247 DOI: 10.1111/1365-2656.13881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
Climatic gradients such as latitude and elevation are considered primary drivers of global biogeography. Yet, alongside these macro-gradients, the vertical space and structure generated by terrestrial plants form comparable climatic gradients but at a fraction of the distance. These vertical gradients provide a spectrum of ecological space for species to occur and coexist, increasing biodiversity. Furthermore, vertical gradients can serve as pathways for evolutionary adaptation of species traits, leading to a range of ecological specialisations. In this review, we explore the ecological evidence supporting the proposition that the vertical gradient serves as an engine driving the ecology and evolution of species and shaping larger biogeographical patterns in space and time akin to elevation and latitude. Focusing on vertebrate and invertebrate taxa, we synthesised how ecological patterns within the vertical dimension shape species composition, distribution and biotic interactions. We identify three key ecological mechanisms associated with species traits that facilitate persistence within the vertical environment and draw on empirical examples from the literature to explore these processes. Looking forward, we propose that the vertical dimension provides an excellent study template to explore timely ecological and evolutionary questions. We encourage future research to also consider how the vertical dimension will influence the resilience and response of animal taxa to global change.
Collapse
Affiliation(s)
- Shuang Xing
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Lily Leahy
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Louise A Ashton
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Roger L Kitching
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Timothy C Bonebrake
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Grech M, Miserendino M, Almirón W. The role of temperature in shaping Culex acharistus mosquitoes life history traits in its southern limit of distribution (Patagonia-Argentina). Heliyon 2023; 9:e13696. [PMID: 36852039 PMCID: PMC9957761 DOI: 10.1016/j.heliyon.2023.e13696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
There is substantial evidence showing that temperature have a great impact on insects behavior, phenology and life histories. Because of mosquito global importance as disease vectors, in temperate regions where climatic conditions could be only borderline suitable for mosquito development, there is a growing interest in understanding the effect of temperature shifts on vital statistics to more accurately define how such changes could impact distribution and abundance patterns, as well as disease transmission cycles. We determined the role of ambient temperature under fluctuating conditions in shaping Culex acharistus (Diptera: Culicidae) life history traits, and estimated its development threshold and physiological time, in its southern limit of distribution in the Argentine Patagonia region. Four horizontal life tables were conducted under natural fluctuating temperature range in Esquel city (42°S - 71°W; 563 m a.s.l.), during spring-summer (17°C), summer (15.4°C), summer-autumn (12.7°C) and autumn-winter (5.6°C) seasons. Larvae, pupae and adult traits were recorded. The mean duration of the experiments varied between 28 to ≅100 days for spring-summer and autumn-winter seasons. Only during the cold season experiment pupae experienced the most severe temperatures and freeze-thaw cycles, and failed to reach adult stage. We found that larva and pupa development time, adult emergence time and longevity significantly increased with decreasing temperatures, while larval survival was greatest at an intermediate temperature and decreased toward low and high values. Also, protandry was observed and males emerge 2 days before females across seasons. Temperature development threshold and physiological time estimated for larva + pupa were 5.98°C and 211.24°C-days. Our study contributes to a growing body of knowledge by examining the effect of seasonal changes in temperature on mosquito life history traits. Results obtained here can be applied as useful parameters in the development of population dynamic models, improving current mosquito control strategies in cold-temperate regions.
Collapse
Affiliation(s)
- M.G. Grech
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET and Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Sede Esquel, Esquel, Chubut, Argentina
| | - M.L. Miserendino
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET and Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Sede Esquel, Esquel, Chubut, Argentina
| | - W.R. Almirón
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Investigaciones Entomológicas de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba, Argentina
| |
Collapse
|
16
|
Keena MA, Hamilton G, Kreitman D. The potential climatic range of spotted lanternfly may be broader than previously predicted. FRONTIERS IN INSECT SCIENCE 2023; 3:1092189. [PMID: 38469535 PMCID: PMC10926377 DOI: 10.3389/finsc.2023.1092189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/19/2023] [Indexed: 03/13/2024]
Abstract
Spotted lanternfly (Lycorma delicatula White) is an invasive planthopper that was introduced to the United States from Asia and readily spreads via human aided means. Three geographically separated populations in the United States (NJ, PA, and WV) were collected and used to assess the effects of fluctuating thermal regimes that included temperatures above or below the upper (Tmax) and lower (Tmin) developmental thresholds, respectively, on nymphal survival and development, and to determine if there was within- and among-population variation in hatch timing and temperature responses of nymphs. Nymphs exposed to temperatures > Tmax and
Collapse
Affiliation(s)
- Melody A. Keena
- Northern Research Station, United States Department of Agriculture (USDA) Forest Service, Hamden, CT, United States
| | - George Hamilton
- Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Devin Kreitman
- Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
17
|
Lv WX, Cheng P, Lei JJ, Peng H, Zang CH, Lou ZW, Liu HM, Guo XX, Wang HY, Wang HF, Zhang CX, Liu LJ, Gong MQ. Interactions between the gut micro-community and transcriptome of Culex pipiens pallens under low-temperature stress. Parasit Vectors 2023; 16:12. [PMID: 36635706 PMCID: PMC9837946 DOI: 10.1186/s13071-022-05643-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Culex pipiens pallens (Diptera: Culicidae) can survive at low temperature for long periods. Understanding the effects of low-temperature stress on the gut microflora and gene expression levels in Cx. pipiens pallens, as well as their correlation, will contribute to the study of the overwintering mechanism of Cx. pipiens pallens. METHODS The gut bacteria were removed by antibiotic treatment, and the survival of Cx. pipiens pallens under low-temperature stress was observed and compared with the control group. Then, full-length 16S rRNA sequencing and the Illumina HiSeq X Ten sequencing platform were used to evaluate the gut microflora and gene expression levels in Cx. pipiens pallens under low-temperature stress. RESULTS Under the low-temperature stress of 7 °C, the median survival time of Cx. pipiens pallens in the antibiotic treatment group was significantly shortened by approximately 70% compared to that in the control group. The species diversity index (Shannon, Simpson, Ace, Chao1) of Cx. pipiens pallens decreased under low-temperature stress (7 °C). Non-metric multidimensional scaling (NMDS) analysis divided all the gut samples into two groups: control group and treatment group. Pseudomonas was the dominant taxon identified in the control group, followed by Elizabethkingia and Dyadobacter; in the treatment group, Pseudomonas was the dominant taxon, followed by Aeromonas and Comamonas. Of the 2417 differentially expressed genes (DEGs), 1316 were upregulated, and 1101 were downregulated. Functional GO terms were enriched in 23 biological processes, 20 cellular components and 21 molecular functions. KEGG annotation results showed that most of these genes were related to energy metabolism-related pathways. The results of Pearson's correlation analysis showed a significant correlation between the gut microcommunity at the genus level and several DEGs. CONCLUSIONS These results suggest that the mechanism of adaptation of Cx. pipiens pallens to low-temperature stress may be the result of interactions between the gut bacterial community and transcriptome.
Collapse
Affiliation(s)
- Wen-Xiang Lv
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Peng Cheng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Jing-Jing Lei
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hui Peng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chuan-Hui Zang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Zi-Wei Lou
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hong-Mei Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Xiu-Xia Guo
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Yang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Fang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chong-Xing Zhang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Li-Juan Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Mao-Qing Gong
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| |
Collapse
|
18
|
Régnier B, Legrand J, Calatayud PA, Rebaudo F. Developmental Differentiations of Major Maize Stemborers Due to Global Warming in Temperate and Tropical Climates. INSECTS 2023; 14:51. [PMID: 36661979 PMCID: PMC9866401 DOI: 10.3390/insects14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
While many insects are in decline due to global warming, the effect of rising temperatures on crop insect pests is uncertain. A capacity to understand future changes in crop pest populations remains critical to ensure food security. Using temperature-dependent mathematical models of the development of four maize stemborers in temperate and tropical regions, we evaluated the potential impacts of different climate change scenarios on development time. While recognizing the limitations of the temperature-dependent development rate approach, we found that global warming could either be beneficial or detrimental to pest development, depending on the optimal temperature for the development of the species and scenarios of climate change. Expected responses range from null development to 1.5 times faster development than expected today. These results suggest that in the medium term, the studied species could benefit from global warming with an accelerated development, while in the long term, their development could either be delayed or accelerated, which may impact their dynamics with implications on maize cultivation.
Collapse
Affiliation(s)
- Baptiste Régnier
- UMR Évolution, Génomes, Comportement et Écologie, IRD, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Judith Legrand
- UMR Génétique Quantitative et Évolution—Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Paul-André Calatayud
- UMR Évolution, Génomes, Comportement et Écologie, IRD, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Rebaudo
- UMR Évolution, Génomes, Comportement et Écologie, IRD, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Thermal tolerance of the rosy apple aphid Dysaphis plantaginea and its parasitoids: Effect of low temperatures on some fitness activities of Aphidius matricariae. J Therm Biol 2022; 110:103377. [DOI: 10.1016/j.jtherbio.2022.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/20/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
|
20
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
21
|
Sinclair BJ, Sørensen JG, Terblanche JS. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:441-450. [PMID: 35346401 DOI: 10.1017/s0007485321000791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insects are mass-reared for release for biocontrol including the sterile insect technique. Insects are usually reared at temperatures that maximize the number of animals produced, are chilled for handling and transport, and released into the field, where temperatures may be considerably different to those experienced previously. Insect thermal biology is phenotypically plastic (i.e. flexible), which means that there may exist opportunities to increase the performance of these programmes by modifying the temperature regimes during rearing, handling, and release. Here we synthesize the literature on thermal plasticity in relation to the opportunities to reduce temperature-related damage and increase the performance of released insects. We summarize how and why temperature affects insect biology, and the types of plasticity shown by insects. We specifically identify aspects of the production chain that might lead to mismatches between the thermal acclimation of the insect and the temperatures it is exposed to, and identify ways to harness physiological plasticity to reduce that potential mismatch. We address some of the practical (especially engineering) challenges to implementing some of the best-supported thermal regimes to maximize performance (e.g. fluctuating thermal regimes), and acknowledge that a focus only on thermal performance may lead to unwanted trade-offs with other traits that contribute to the success of the programme. Together, it appears that thermal physiological plasticity is well-enough understood to allow its implementation in release programmes.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6G 1L3
| | | | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
22
|
Morente‐López J, Kass JM, Lara‐Romero C, Serra‐Diaz JM, Soto‐Correa JC, Anderson RP, Iriondo JM. Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. GLOBAL CHANGE BIOLOGY 2022; 28:4143-4162. [PMID: 35359032 PMCID: PMC9325479 DOI: 10.1111/gcb.16181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 05/10/2023]
Abstract
Environmental variation within a species' range can create contrasting selective pressures, leading to divergent selection and novel adaptations. The conservation value of populations inhabiting environmentally marginal areas remains in debate and is closely related to the adaptive potential in changing environments. Strong selection caused by stressful conditions may generate novel adaptations, conferring these populations distinct evolutionary potential and high conservation value under climate change. On the other hand, environmentally marginal populations may be genetically depauperate, with little potential for new adaptations to emerge. Here, we explored the use of ecological niche models (ENMs) linked with common garden experiments to predict and test for genetically determined phenotypic differentiation related to contrasting environmental conditions. To do so, we built an ENM for the alpine plant Silene ciliata in central Spain and conducted common garden experiments, assessing flowering phenology changes and differences in leaf cell resistance to extreme temperatures. The suitability patterns and response curves of the ENM led to the predictions that: (1) the environmentally marginal populations experiencing less snowpack and higher minimum temperatures would have delayed flowering to avoid risks of late-spring frosts and (2) those with higher minimum temperatures and greater potential evapotranspiration would show enhanced cell resistance to high temperatures to deal with physiological stress related to desiccation and heat. The common garden experiments revealed the expected genetically based phenotypic differentiation in flowering phenology. In contrast, they did not show the expected differentiation for cell resistance, but these latter experiments had high variance and hence lower statistical power. The results highlight ENMs as useful tools to identify contrasting putative selective pressures across species ranges. Linking ENMs with common garden experiments provides a theoretically justified and practical way to study adaptive processes, including insights regarding the conservation value of populations inhabiting environmentally marginal areas under ongoing climate change.
Collapse
Affiliation(s)
- Javier Morente‐López
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
- Island Ecology and Evolution Research GroupInstitute of Natural Products and Agrobiology, Consejo Superior de Investigaciones Científicas (IPNA‐CSIC)San Cristóbal de La Laguna, TenerifeSpain
| | - Jamie M. Kass
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami‐gunOkinawaJapan
| | - Carlos Lara‐Romero
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| | | | - José Carmen Soto‐Correa
- Facultad de Ciencias NaturalesUniversidad Autónoma de Querétaro (FCN‐UAQ)Santa Rosa Jáuregui, QuerétaroMexico
| | - Robert P. Anderson
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Division of Vertebrate Zoology (Mammalogy)American Museum of Natural HistoryNew YorkNew YorkUSA
| | - José M. Iriondo
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| |
Collapse
|
23
|
Mowery MA, Anthony SE, Dorison AN, Mason AC, Andrade MCB. Invasive Widow Spiders Perform Differently At Low Temperatures than Conspecifics from the Native Range. Integr Comp Biol 2022; 62:179-190. [PMID: 35648461 DOI: 10.1093/icb/icac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022] Open
Abstract
Temperature challenges are one of the leading abiotic causes of success or failure of non-native species in a novel environment, and this is particularly true for low temperatures. Establishing and reproducing in a novel thermal environment can alter survival, behaviour, and traits related to fitness. It has been proposed that plasticity or adaptation of thermal tolerance may allow an introduced species to thrive, or that successful invaders may be those with a thermal breadth in their native habitat that encompasses their new environment. Here, we tested these hypotheses using native and invasive populations of Australian redback spiders (Latrodectus hasselti). We measured how exposure to temperatures (exposure to 15°C and 25°C, respectively) common to invasive and native range habitats affected behavioural and life-history traits and tradeoffs that may underlie fitness in an invasive population detected in 1995 in Japan and a native population from Australia. We found that the critical thermal minimum (CTmin) was higher in the invasive population from Japan than in the native population, but critical thermal maximum (CTmax) did not differ between populations. Compared to the invasive population, eggs from the native population had a longer development time and lower hatching success at 15°C. Both populations performed equally well at 25 °C, as measured by egg development time and hatching success. Invasive juveniles that developed at 15 °C were slower to explore a novel environment and less bold when tested at 25 °C vs. 15 °C. In comparison, the native population showed faster average exploration, with no differences in response at the two development or testing temperatures. Overall, L. hasselti from Japan maintained hatching success and development across a wider temperature range than the native population, indicating greater thermal breadth and higher behavioural plasticity. These results support the importance of plasticity in thermal tolerance and behaviour for a successful invasion under novel environmental temperatures.
Collapse
Affiliation(s)
- Monica A Mowery
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Susan E Anthony
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada
| | - Alexandra N Dorison
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Andrew C Mason
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Maydianne C B Andrade
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| |
Collapse
|
24
|
Wang L, Etebari K, Zhao Z, Walter GH, Furlong MJ. Differential temperature responses between Plutella xylostella and its specialist endo-larval parasitoid Diadegma semiclausum-Implications for biological control. INSECT SCIENCE 2022; 29:855-864. [PMID: 34459111 DOI: 10.1111/1744-7917.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Understanding the thermal dynamics of host-parasitoid interactions is crucial to predicting how biological control of pest insects by parasitoids might be affected by geographic location and climate change. We compared performance traits of Plutella xylostella (Lepidoptera: Plutellidae) and its solitary endo-larval parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae), over a wide range of constant rearing temperatures (10-30°C). Parasitoids reared at 30°C experienced reductions in pupation rate, pupal mass, egg load, and adult life span when compared with those reared at lower temperatures. Our analyses of the fate of parasitoids and their hosts and intergenerational population growth at different rearing temperatures show that D. semiclausum and P. xylostella respond differently to temperature, leading to divergent outcomes under different temperature conditions. Some parasitoid larvae could not complete development at 30°C, the temperature at which the host biomass was least and the metabolic demands of the parasitoid could be high, suggesting that parasitoid development might be constrained by lack of host resources at higher temperatures. We discuss the potential mechanisms of parasitoid susceptibility to elevated temperatures, which likely explain the pronounced seasonal dynamics of D. semiclausum in subtropical regions and its failure to establish in lowland tropical regions, where P. xylostella is a serious pest. Similar interactions in other host-parasitoid associations would constrain the efficacy of parasitoids as biological control agents as global temperatures increase.
Collapse
Affiliation(s)
- Leyun Wang
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Zihua Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
25
|
Fowler‐Finn KD, Johnson T. Harvesters (Arachnida: Opiliones) mate more at cooler temperatures, but the effect of temperature on mating varies across years. Ethology 2022. [DOI: 10.1111/eth.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Todd Johnson
- Department of Biology Saint Louis University Saint Louis Missouri USA
| |
Collapse
|
26
|
Castillo-Pérez EU, Suárez-Tovar CM, González-Tokman D, Schondube JE, Córdoba-Aguilar A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J Therm Biol 2022; 103:103164. [PMID: 35027186 DOI: 10.1016/j.jtherbio.2021.103164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Disturbance (e.g. loss of plant cover) increases ambient temperature which can be lethal for ectotherm insects especially in hot places. We compared the thorax temperatures of 26 odonate species as a function of body size, habitat quality ("conserved" and cooler vs "perturbed" and warmer) and suborder (Anisoptera vs Zygoptera), as well as critical thermal maximum (CTmax) and as a function of habitat quality in Argia pulla (Zygoptera) and Orthemis ferruginea (Anisoptera). We expected thorax temperatures to differ between suborders based on their differences in body size and habitat quality status, and that populations in perturbed sites would have higher critical thermal maxima compared to those in conserved sites. This study was done in a tropical region with high ambient temperatures. Anisopterans had a higher body temperature than zygopterans, with no difference between habitats. Thoracic and air temperature were positively related, yet body temperatures were higher than the ambient temperature. A. pulla had higher CTmax in the perturbed sites, while O. ferruginea showed the opposite trend. Microenvironmental changes increase the ambient temperature, perhaps filtering insect species. The apparent resilience of odonates to disturbance should be examined more closely (using more species), especially in small species like the zygopterans which appear to be more strongly affected by ambient temperature.
Collapse
Affiliation(s)
- E Ulises Castillo-Pérez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, México City, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México City, Mexico
| | - Catalina M Suárez-Tovar
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, México City, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México City, Mexico
| | - Daniel González-Tokman
- CONACyT, Red de Ecoetología, Instituto de Ecología A.C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Jorge E Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México City, Mexico.
| |
Collapse
|
27
|
Klepsatel P, Gáliková M. Developmental temperature affects thermal dependence of locomotor activity in Drosophila. J Therm Biol 2022; 103:103153. [PMID: 35027204 DOI: 10.1016/j.jtherbio.2021.103153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022]
Abstract
In their natural environments, animals have to cope with fluctuations in numerous abiotic and biotic factors, and phenotypic plasticity can facilitate survival under such variable conditions. However, organisms may differ substantially in the ability to adjust their phenotypes in response to external factors. Here, we investigated how developmental temperature affects the thermal performance curve for locomotor activity in adult fruit flies (Drosophila melanogaster). We examined the thermal dependence of spontaneous activity in individuals originating from two natural populations (from tropical (India) and temperate climate zone (Slovakia)) that developed at three different temperatures (19 °C, 25 °C, and 29 °C). Firstly, we found that developmental temperature has a significant impact on overall activity - flies that developed at high temperature (29 °C) were, on average, less active than individuals that developed at lower temperatures. Secondly, developmental acclimation had a population-specific effect on the thermal optimum for activity. Whereas the optimal temperature was not affected by thermal conditions experienced during development in flies from India, developmental temperature shifted thermal optimum in flies from Slovakia. Thirdly, high developmental temperature broadened performance breadth in flies from the Indian population but narrowed it in individuals from the Slovak population. Finally, we did not detect a consistent effect of acclimation temperature on circadian rhythms of spontaneous activity. Altogether, our results demonstrate that developmental temperature can alter different parameters (maximum performance, thermal optimum, performance breadth) of the thermal performance curve for spontaneous activity. Since adult fruit flies are highly vagile, this sensitivity of locomotion to developmental conditions may be an important factor affecting fitness in changing environments.
Collapse
Affiliation(s)
- Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia.
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
28
|
Duell ME, Gray MT, Roe AD, MacQuarrie CJ, Sinclair BJ. Plasticity drives extreme cold tolerance of emerald ash borer ( Agrilus planipennis) during a polar vortex. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100031. [PMID: 36003259 PMCID: PMC9387492 DOI: 10.1016/j.cris.2022.100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 05/17/2023]
Abstract
Invasive species must often survive combinations of environmental conditions that differ considerably from their native range; however, for a given species it is unclear whether improved tolerance is the result of phenotypic plasticity or genetic adaptation (or both). Agrilus planipennis (Coleoptera: Buprestidae; the emerald ash borer) is an invasive pest of Fraxinus trees in North America and Europe. Previous studies in SW Ontario, Canada, showed that A. planipennis is freeze avoidant, preventing internal ice formation by accumulating Molar concentrations of glycerol in its hemolymph and depressing its supercooling point (SCP, the temperature at which it freezes). The cold tolerance of these SW Ontario animals was used to predict potential distribution, revealing that some Canadian cities should be too cold to allow populations to persist. However, a small population of A. planipennis has persisted in Winnipeg, Manitoba, Canada, through several severe 'polar vortex' events. In 2018/19, we collected A. planipennis larvae and prepupae from Winnipeg, MB and Southern Ontario, and found that individuals from Winnipeg were extremely cold tolerant - with SCPs as low as -52°C in prepupae (compared to -32°C in SW Ontario), and observed survival of unfrozen individuals exposed to -50°C for one hour. This cold tolerance was accompanied by higher hemolymph osmolality and glycerol concentration than in the SW Ontario individuals. To distinguish between phenotypic plasticity and local adaptation, in 2020/21 we overwintered Winnipeg-sourced individuals either outdoors in SW Ontario or in a simulated Winnipeg winter. Simulated Winnipeg winter individuals had cold tolerance similar to those overwintered in Winnipeg, while SW Ontario overwintered individuals had cold tolerance similar to those collected previously in the region. The simulated winter individuals had higher hemolymph glycerol concentrations than SW Ontario overwintered animals, at least in part due to greater dehydration. Thus, A. planipennis are cold-tolerant enough to survive some of the harshest winters where their host trees can grow, and most likely attain this cold tolerance via phenotypic plasticity. These findings raise the importance of delineating sensitivity of conclusions to unexpected phenotypic plasticity when predicting potential distributions of new invasives or responses to climate change.
Collapse
Affiliation(s)
- Meghan E. Duell
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Meghan T. Gray
- Great Lakes Forestry Centre, Canadian Forest Service, Natrual Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Canadian Forest Service, Natrual Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Chris J.K. MacQuarrie
- Great Lakes Forestry Centre, Canadian Forest Service, Natrual Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Correspondence: Brent Sinclair, Department of Biology, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
29
|
Braschler B, Chown SL, Duffy GA. Sub-critical limits are viable alternatives to critical thermal limits. J Therm Biol 2021; 101:103106. [PMID: 34879920 DOI: 10.1016/j.jtherbio.2021.103106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
Thermal traits are frequently used to explain variation in species distributions, abundance, and sensitivity to climate change. Due to their utility and ease of measurement, critical thermal limits in particular have proliferated across the ecophysiological literature. Critical limit assays can, however, have deleterious or even lethal effects on individuals and there is growing recognition that intermediate metrics of performance can provide a further, nuanced understanding of how species interact with their environments. Meanwhile, the scarcity of data describing sub-critical or voluntary limits, which have been proposed as alternatives to critical limits and can be collected under less extreme conditions, reduces their value in comparative analyses and broad-scale syntheses. To overcome these limitations and determine if sub-critical limits are viable proxies for upper and lower critical thermal limits we measured and compared the critical and sub-critical thermal limits of 2023 ants representing 51 species. Sub-critical limits in isolation were a satisfactory linear predictor for both individual and species critical limits and when species identity was also considered there were substantial gains in variance explained. These gains indicate that a species-specific conversion factor can further improve estimates of critical traits using sub-critical proxies. Sub-critical limits can, therefore, be integrated into broader syntheses of critical limits and confidently used to calculate common ecological metrics, such as warming tolerance, so long as uncertainty in estimates is explicitly acknowledged. Although lower thermal traits exhibited more variation than their upper counterparts, the stronger phylogenetic signal of lower thermal traits indicates that appropriate conversions for lower thermal traits can be inferred from congenerics or other closely related taxa.
Collapse
Affiliation(s)
- Brigitte Braschler
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland; DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | - Grant A Duffy
- School of Biological Sciences, Monash University, Victoria, 3800, Australia.
| |
Collapse
|
30
|
Khazan ES, Haggard J, Ríos‐Málaver IC, Shirk P, Scheffers BR. Disentangling drivers of thermal physiology: Community‐wide cold shock recovery of butterflies under natural conditions. Biotropica 2021. [DOI: 10.1111/btp.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Emily S. Khazan
- School of Natural Resources and Environment University of Florida Gainesville Florida USA
| | - Jaime Haggard
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | | | - Philip Shirk
- Department of Biology University of Florida Gainesville Florida USA
| | - Brett R. Scheffers
- School of Natural Resources and Environment University of Florida Gainesville Florida USA
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| |
Collapse
|
31
|
Flight and Reproduction Variations of Rice Leaf Roller, Cnaphalocrocis medinalis in Response to Different Rearing Temperatures. INSECTS 2021; 12:insects12121083. [PMID: 34940171 PMCID: PMC8706861 DOI: 10.3390/insects12121083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023]
Abstract
Simple Summary Temperature directly affects the development, adult reproduction, and flight capacity in migratory insects. However, the adaptive strategies applied by some migratory insects to cope with stressful temperatures throughout their life cycles are not well understood. In this study, we evaluated the effects of rearing temperatures in the immature stage (from egg to pupae stage) on the immature development, adult reproduction flight ability, and migratory behavior of Cnaphalocrocis medinalis, one major facultative long-distance migratory pest feeding on rice. Our data suggest that immature C. medinalis that experienced different rearing temperatures had different developmental, reproductive, and migration patterns. Cnaphalocrocis medinalis reared under high temperatures had weaker reproductive capacity and stronger flight potentiality, which might be more likely to trigger the migration. However, those reared at low temperatures in the immature stage had an accelerated reproduction but relative weaker flight ability, which might weaken the migratory motivation of adults. Abstract Understanding how species that follow different life-history strategies respond to stressful temperature can be essential for efficient treatments of agricultural pests. Here, we focused on how the development, reproduction, flight, and reproductive consequences of migration of Cnaphalocrocis medinalis were influenced by exposure to different rearing temperatures in the immature stage. We found that the immature rice leaf roller that were reared at low temperatures (18 and 22 °C) developed more slowly than the normal temperature 26 °C, while those reared at high temperatures (34 °C) grew faster. Female adults from low immature stage rearing temperatures showed stronger reproductive ability than those at 26 and 34 °C, such as the preoviposition period (POP) significantly decreased, while the total lifetime fecundity obviously increased. However, 34 °C did not significantly reduce the reproductive performances of females compared to 26 °C. On the contrary, one relative decreased tendency of flight capacity was found in the lower immature temperature treatments. Furthermore, flight is a costly strategy for reproduction output to compete for limited internal resources. In the lower temperature treatments, after d1-tethered flight treatment, negative reproductive consequences were found that flight significantly decreased the lifetime fecundity and mating frequency of females from low rearing temperatures in the immature stage compared to the controls (no tethered-flight). However, in the 26 and 34 °C treatments, the same flight treatment induced a positive influence on reproduction, which significantly reduced the POP and period of first oviposition (PFO). The results suggest that the experience of relative high temperatures in the immature stage is more likely to trigger the onset of migration, but lower temperatures in the immature stage may induce adults to have a greater resident propensity with stronger reproductive ability.
Collapse
|
32
|
Roberts KT, Rank NE, Dahlhoff EP, Stillman JH, Williams CM. Snow modulates winter energy use and cold exposure across an elevation gradient in a montane ectotherm. GLOBAL CHANGE BIOLOGY 2021; 27:6103-6116. [PMID: 34601792 DOI: 10.1111/gcb.15912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Snow insulates the soil from air temperature, decreasing winter cold stress and altering energy use for organisms that overwinter in the soil. As climate change alters snowpack and air temperatures, it is critical to account for the role of snow in modulating vulnerability to winter climate change. Along elevational gradients in snowy mountains, snow cover increases but air temperature decreases, and it is unknown how these opposing gradients impact performance and fitness of organisms overwintering in the soil. We developed experimentally validated ecophysiological models of cold and energy stress over the past decade for the montane leaf beetle Chrysomela aeneicollis, along five replicated elevational transects in the Sierra Nevada mountains in California. Cold stress peaks at mid-elevations, while high elevations are buffered by persistent snow cover, even in dry years. While protective against cold, snow increases energy stress for overwintering beetles, particularly at low elevations, potentially leading to mortality or energetic tradeoffs. Declining snowpack will predominantly impact mid-elevation populations by increasing cold exposure, while high elevation habitats may provide refugia as drier winters become more common.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | | | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
33
|
Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae. INSECTS 2021; 12:insects12111013. [PMID: 34821813 PMCID: PMC8622974 DOI: 10.3390/insects12111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Augmentative biological control relies on the more or less frequent/abundant releases of biological control agents (BCAs) that have to be adapted to their short-term local environment including (micro-)climatic conditions. Thermal biology of BCAs is thus a key component for their success. The extent to which thermal tolerance indices may be relevant predictors of the field efficiency is however still poorly documented. Within this frame, we investigated the intraspecific variability for the ability to move at low temperatures in the minute wasp, Trichogramma cacoeciae. We collected, molecularly characterized, and compared for their thermal tolerance indices numerous strains originating from three contrasting geographic areas. Our findings evidenced both a geographic differentiation between strains for one of the thermal tolerance indices and a positive correlation between two of them, demonstrating the existence of an intraspecific variability. Abstract Temperature is a main driver of the ecology and evolution of ectotherms. In particular, the ability to move at sub-lethal low temperatures can be described through three thermal tolerance indices—critical thermal minimum (CTmin), chill coma temperature (CCT), and activity recovery (AR). Although these indices have proven relevant for inter-specific comparisons, little is known about their intraspecific variability as well as possible genetic correlations between them. We thus investigated these two topics (intraspecific variability and genetic correlations between thermal tolerance indices) using the minute wasp, Trichogramma cacoeciae. Strains from T. cacoeciae were sampled across three geographic regions in France—two bioclimatic zones along a sharp altitudinal cline in a Mediterranean context (meso-Mediterranean at low elevations and supra-Mediterranean at higher elevations) and a more northwestern area characterized by continental or mountainous climates. Our results evidenced a significant effect of both the longitude and the severity of the cold during winter months on CCT. Results were however counter-intuitive since the strains from the two bioclimatic zones characterized by more severe winters (northwestern area and supra-Mediterranean) exhibited opposite patterns. In addition, a strong positive correlation was observed between CCT and CTmin. Neither strain differentiation nor the covariations between traits seem to be linked with the molecular diversity observed on the part of the mitochondrial marker COI.
Collapse
|
34
|
Duffy GA, Kuyucu AC, Hoskins JL, Hay EM, Chown SL. Adequate sample sizes for improved accuracy of thermal trait estimates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Grant A. Duffy
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Arda C. Kuyucu
- Department of Biology Hacettepe University Ankara Turkey
| | | | - Eleanor M. Hay
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Steven L. Chown
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
35
|
Leahy L, Scheffers BR, Williams SE, Andersen AN. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Ecology 2021; 103:e03549. [PMID: 34618920 DOI: 10.1002/ecy.3549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023]
Abstract
Determining how species thermal limits correlate with climate is important for understanding biogeographic patterns and assessing vulnerability to climate change. Such analyses need to consider thermal gradients at multiple spatial scales. Here we relate thermal traits of rainforest ants to microclimate conditions from ground to canopy (microgeographic scale) along an elevation gradient (mesogeographic scale) and calculate warming tolerance to assess climate change vulnerability in the Australian Wet Tropics Bioregion. We test the thermal adaptation and thermal niche asymmetry hypotheses to explain interspecific patterns of thermal tolerance at these two spatial scales. We tested cold tolerance (CTmin ), heat tolerance (CTmax ), and calculated thermal tolerance range (CTrange ), using ramping assays for 74 colonies of 40 ant species collected from terrestrial and arboreal habitats at lowland and upland elevation sites and recorded microclimatic conditions for one year. Within sites, arboreal ants were exposed to hotter microclimates and on average had a 4.2°C (95% CI: 2.7-5.6°C) higher CTmax and 5.3°C (95% CI: 3.5-7°C) broader CTrange than ground-dwelling ants. This pattern was consistent across the elevation gradient, whether it be the hotter lowlands or the cooler uplands. Across elevation, upland ants could tolerate significantly colder temperatures than lowland ants, whereas the change in CTmax was less pronounced, and CTrange did not change over elevation. Differential exposure to microclimates, due to localized niche preferences, drives divergence in CTmax , while environmental temperatures along the elevation gradient drive divergence in CTmin . Our results suggest that both processes of thermal adaptation and thermal niche asymmetry are at play, depending on the spatial scale of observation, and we discuss potential mechanisms underlying these patterns. Despite the broad thermal tolerance range of arboreal rainforest ants, lowland arboreal ants had the lowest warming tolerance and may be most vulnerable to climate change.
Collapse
Affiliation(s)
- Lily Leahy
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611, USA
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Alan N Andersen
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
36
|
Brans KI, Tüzün N, Sentis A, De Meester L, Stoks R. Cryptic eco-evolutionary feedback in the city: Urban evolution of prey dampens the effect of urban evolution of the predator. J Anim Ecol 2021; 91:514-526. [PMID: 34606084 DOI: 10.1111/1365-2656.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
Most research on eco-evolutionary feedbacks focuses on ecological consequences of evolution in a single species. This ignores the fact that evolution in response to a shared environmental factor in multiple species involved in interactions could alter the net cumulative effect of evolution on ecology. We empirically tested whether urbanization-driven evolution in a predator (nymphs of the damselfly Ischnura elegans) and its prey (the water flea Daphnia magna) jointly shape the outcome of predation under simulated heatwaves. Both interactors show genetic trait adaptation to urbanization, particularly to higher temperatures. We cross-exposed common-garden reared damselflies and Daphnia from replicated urban and rural populations, and quantified predation rates and functional response traits. Urban damselfly nymphs showed higher encounter and predation rates than rural damselflies when exposed to rural prey, but this difference disappeared when they preyed on urban Daphnia. This represents a case of a cryptic evo-to-eco feedback, where the evolution of one species dampens the effects of the evolution of another species on their interaction strength. The effects of evolution of each single species were strong: the scenario in which only the predator or prey was adapted to urbanization resulted in a c. 250% increase in encounter rate and a c. 25% increase in predation rate, compared to the rural predator-rural prey combination. Our results provide unique evidence for eco-evolutionary feedbacks in cities, and underscore the importance of a multi-species approach in eco-evolutionary dynamics research.
Collapse
Affiliation(s)
- Kristien I Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
| | - Arnaud Sentis
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium.,Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Blanckenhorn WU, Berger D, Rohner PT, Schäfer MA, Akashi H, Walters RJ. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. J Therm Biol 2021; 100:103069. [PMID: 34503806 DOI: 10.1016/j.jtherbio.2021.103069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hiroshi Akashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Centre for Environmental and Climate Research, Lund University, Sweden
| |
Collapse
|
38
|
Arbabtafti R, Fathipour Y, Ranjbar Aghdam H. Temperature-Dependent Demography of Two Geographically Isolated Populations of Sesamia cretica (Lepidoptera: Noctuidae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:909-918. [PMID: 33860791 DOI: 10.1093/ee/nvab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 06/12/2023]
Abstract
The pink stem borer, Sesamia cretica Lederer is considered as the main insect pest of maize and sugarcane worldwide. Reproductive and life table parameters of two populations of S. cretica were studied at 10 constant temperatures ranging from 12 to 36 (±1)°C, 50 ± 10% RH and a photoperiod of 0:24 (L:D) h for the larval stage and 16:8 (L:D) h for the other stages. At 12°C, no eggs hatched and at 15, 35, and 36°C only the incubation period was completed. The longest (135.81 and 156.49 d) and shortest (49.61 and 52.09 d) female life span were observed at 20 and 32°C for the Varamin and Rey populations, respectively. The highest (181.66 and 180.94 eggs/female) and lowest (13.40 and 32.85 eggs/female) total fecundity of the Varamin and Rey populations were found at 20°C and 34°C, respectively. At the same time, these two populations had the highest intrinsic rate of increase (r) (0.0343 and 0.0349 d-1) at 30 and 27°C, respectively. Similarly, both Varamin and Rey populations had the highest finite rate of increase (λ) at 27°C (1.0349 and 1.0355 d-1, respectively). It was found that the geographical populations of S. cretica were different in terms of the life table parameters at the same temperatures, and this issue can affect the results of forecasting studies. Accordingly, it is suggested that in the major corn-growing areas, a comprehensive study should be performed on different pest populations to address their commonalities and differences for future managing programs.
Collapse
Affiliation(s)
- Roya Arbabtafti
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hossein Ranjbar Aghdam
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
39
|
Srivastava DS, Coristine L, Angert AL, Bontrager M, Amundrud SL, Williams JL, Yeung ACY, Zwaan DR, Thompson PL, Aitken SN, Sunday JM, O'Connor MI, Whitton J, Brown NEM, MacLeod CD, Parfrey LW, Bernhardt JR, Carrillo J, Harley CDG, Martone PT, Freeman BG, Tseng M, Donner SD. Wildcards in climate change biology. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
García-Robledo C, Baer CS. Demographic Attritions, Elevational Refugia, and the Resilience of Insect Populations to Projected Global Warming. Am Nat 2021; 198:113-127. [DOI: 10.1086/714525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, Seminoff JA. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. GLOBAL CHANGE BIOLOGY 2021; 27:3009-3034. [PMID: 33605004 DOI: 10.1111/gcb.15563] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape-scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical-temperate transition zones. In the 21st century, climate change-induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.
Collapse
Affiliation(s)
| | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | | | | | | | | | | | | | - Barry D Keim
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Eric A Reyier
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract, Mail Code: NEM-022, Kennedy Space Center, FL, USA
| | | | | | | | | | | |
Collapse
|
42
|
Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature. Sci Rep 2021; 11:13565. [PMID: 34193927 PMCID: PMC8245531 DOI: 10.1038/s41598-021-92954-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
In the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.
Collapse
|
43
|
Oyen KJ, Jardine LE, Parsons ZM, Herndon JD, Strange JP, Lozier JD, Dillon ME. Body mass and sex, not local climate, drive differences in chill coma recovery times in common garden reared bumble bees. J Comp Physiol B 2021; 191:843-854. [PMID: 34173046 DOI: 10.1007/s00360-021-01385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The time required to recover from cold exposure (chill coma recovery time) may represent an important metric of performance and has been linked to geographic distributions of diverse species. Chill coma recovery time (CCRT) has rarely been measured in bumble bees (genus Bombus) but may provide insights regarding recent changes in their distributions. We measured CCRT of Bombus vosnesenskii workers reared in common garden laboratory conditions from queens collected across altitude and latitude in the Western United States. We also compared CCRTs of male and female bumble bees because males are often overlooked in studies of bumble bee ecology and physiology and may differ in their ability to respond to cold temperatures. We found no relationship between CCRT and local climate at the queen collection sites, but CCRT varied significantly with sex and body mass. Because differences in the ability to recover from cold temperatures have been shown in wild-caught Bombus, we predict that variability in CCRT may be strongly influenced by plasticity.
Collapse
Affiliation(s)
- K Jeannet Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Laura E Jardine
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.,Department of Biology, Oklahoma City University, Oklahoma City, OK, USA
| | - Zachary M Parsons
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA
| | - James D Herndon
- Department of Biology, Utah State University, Logan, UT, USA.,Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA
| | - James P Strange
- Department of Biology, Utah State University, Logan, UT, USA.,Pollinating Insect Biology Management and Systematics Research Unit, USDA-ARS, Logan, UT, USA.,Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 East University Avenue, Dept 3166, Laramie, WY, 82071, USA.
| |
Collapse
|
44
|
Campos RE, Zanotti G, Di Battista CM, Gimenez JO, Fischer S. Differential inhibition of egg hatching in Aedes aegypti populations from localities with different winter conditions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:323-330. [PMID: 33243314 DOI: 10.1017/s0007485320000681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In Argentina, the mosquito Aedes aegypti (L.) (Diptera: Culicidae) is distributed from subtropical to temperate climates. Here, we hypothesized that the expansion of Ae. aegypti into colder regions is favoured by high-phenotypic plasticity and an adaptive inhibition of egg hatching at low temperatures. Thus, we investigated the hatching response of eggs of three populations: one from a subtropical region (Resistencia) and two from temperate regions (Buenos Aires City and San Bernardo) of Argentina. Eggs collected in the field were raised in three experimental colonies. F1 eggs were acclimated for 7 days prior to immersion at 7.6 or 22°C (control eggs). Five immersion temperatures were tested: 7.6, 10.3, 11.8, 14.1 and 16°C (range of mean winter temperatures of the three localities). A second immersion at 22°C was performed 2 weeks later to assess the inhibition to hatch under favourable conditions. After the first immersion, we compared the proportions of hatched eggs and dead larvae among treatment levels, whereas after the second immersion we compared the hatching response among the three populations. The factors that most influenced the egg hatching response were the geographical origin of the populations and the immersion temperature, but not the acclimation temperature. The proportions of hatching and larval mortality at low temperatures were higher for Resistencia than for Buenos Aires and San Bernardo, whereas the hatching response at ambient temperature was lower for San Bernardo than for Buenos Aires and Resistencia. The results support the hypothesis that populations from colder regions show an adaptive inhibition of egg hatching.
Collapse
Affiliation(s)
- Raúl E Campos
- Instituto de Limnología 'Dr Raúl A. Ringuelet', Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62, No. 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Gabriela Zanotti
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4to piso, Laboratorio 54, C1428EHA, Buenos Aires, Argentina
| | - Cristian M Di Battista
- Instituto de Limnología 'Dr Raúl A. Ringuelet', Universidad Nacional de La Plata-CONICET, CCT La Plata, Boulevard 120 y 62, No. 1437, La Plata (B 1900), Buenos Aires, Argentina
| | - Javier O Gimenez
- Instituto de Medicina Regional, Área de Entomología, Universidad Nacional del Nordeste (UNNE), Avda. Las Heras, 727, 3500, Resistencia, Chaco, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4to piso, Laboratorio 54, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
45
|
Butterson S, Roe AD, Marshall KE. Plasticity of cold hardiness in the eastern spruce budworm, Choristoneura fumiferana. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110998. [PMID: 34082110 DOI: 10.1016/j.cbpa.2021.110998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
High latitude insect populations must cope with extreme conditions, particularly low temperatures. Insects use a variety of cold hardiness mechanisms to withstand this temperature stress, and these can drive geographic distributions through overwintering mortality. The degree of cold hardiness can be altered by two evolved responses: phenotypic plasticity and local adaptation. Phenotypic plasticity can occur within or between generations (transgenerational plasticity; TGP), and local adaptation can evolve through directional selection in response to regional climatic differences. We used the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) as a model to explore the role that variable winter temperatures play in inducing two aspects of plasticity in cold hardiness: TGP and local adaptation in phenotypic plasticity. This species is one of the most destructive boreal forest pests in North America, therefore accurately predicting overwintering survival is essential for effective management. While we found no evidence of TGP in cold hardiness, there was a long term fitness cost to larvae that experienced repeated cold exposures. We also found evidence of local adaptation in both seasonal and short-term plasticity of cold hardiness, as our more northerly populations that would experience lower overwintering temperatures had more plastic responses to cold exposure. These findings provide evidence for the importance of phenotypic plasticity and local adaptation when modelling species distributions.
Collapse
Affiliation(s)
- Skye Butterson
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amanda D Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
46
|
Hidalgo-Galiana A, Ribera I, Terblanche JS. Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera). Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110955. [PMID: 33839295 DOI: 10.1016/j.cbpa.2021.110955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding sources of variation in animal thermal limits is critical to forecasting ecological responses to climate change. Here, we estimated upper and lower thermal limits, and their capacity to respond to thermal acclimation, in several species and populations of diving beetles (Dytiscidae) from diverse geographic regions representative of variable climate within South Africa. We also considered ecoregions and latitudinal ranges as potential predictors of thermal limits and the plasticity thereof. For upper thermal limits, species showed significant variation and limited acclimation-related plasticity. Lower thermal limits responded to acclimation in some cases and showed marked variation among species that could be explained by taxonomic affiliation and ecoregion. Limited acclimation ability in the species included in this study suggest plasticity of thermal limits will not be a likely buffer for coping with climate change. From the present results for the Dytiscidae of the region, it appears the group may be particularly susceptible to heat and/or drought and may thus serve as useful indicator species of ecosystem change. Understanding how these climate-related impacts play out at different spatial and temporal scales will have profound implications for conservation management and functional responses, especially important in a region already showing a trend for warming and drying.
Collapse
Affiliation(s)
- Amparo Hidalgo-Galiana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Ignacio Ribera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
47
|
Monsimet J, Colinet H, Devineau O, Lafage D, Pétillon J. Biogeographic position and body size jointly set lower thermal limits of wandering spiders. Ecol Evol 2021; 11:3347-3356. [PMID: 33841788 PMCID: PMC8019051 DOI: 10.1002/ece3.7286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Most species encounter large variations in abiotic conditions along their distribution range. The physiological responses of most terrestrial ectotherms (such as insects and spiders) to clinal gradients of climate, and in particular gradients of temperature, can be the product of both phenotypic plasticity and local adaptation. This study aimed to determine how the biogeographic position of populations and the body size of individuals set the limits of cold (freezing) resistance of Dolomedes fimbriatus. We compared D. fimbriatus to its sister species Dolomedes plantarius under harsher climatic conditions in their distribution range. Using an ad hoc design, we sampled individuals from four populations of Dolomedes fimbriatus originating from contrasting climatic areas (temperate and continental climate) and one population of the sister species D. plantarius from continental climate, and compared their supercooling ability as an indicator of cold resistance. Results for D. fimbriatus indicated that spiders from northern (continental) populations had higher cold resistance than spiders from southern (temperate) populations. Larger spiders had a lower supercooling ability in northern populations. The red-listed and rarest D. plantarius was slightly less cold tolerant than the more common D. fimbriatus, and this might be of importance in a context of climate change that could imply colder overwintering habitats in the north due to reduced snow cover protection. The lowest cold resistance might put D. plantarius at risk of extinction in the future, and this should be considered in conservation plan.
Collapse
Affiliation(s)
- Jérémy Monsimet
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Hervé Colinet
- CNRSECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553University of RennesRennesFrance
| | - Olivier Devineau
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Denis Lafage
- CNRSECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553University of RennesRennesFrance
- Department of Environmental and Life Sciences/BiologyKarlstad UniversityKarlstadSweden
| | - Julien Pétillon
- CNRSECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553University of RennesRennesFrance
| |
Collapse
|
48
|
Barker BS, Coop L, Wepprich T, Grevstad F, Cook G. DDRP: Real-time phenology and climatic suitability modeling of invasive insects. PLoS One 2020; 15:e0244005. [PMID: 33382722 PMCID: PMC7775054 DOI: 10.1371/journal.pone.0244005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022] Open
Abstract
Rapidly detecting and responding to new invasive species and the spread of those that are already established is essential for reducing their potential threat to food production, the economy, and the environment. We describe a new spatial modeling platform that integrates mapping of phenology and climatic suitability in real-time to provide timely and comprehensive guidance for stakeholders needing to know both where and when invasive insect species could potentially invade the conterminous United States. The Degree-Days, Risk, and Phenological event mapping (DDRP) platform serves as an open-source and relatively easy-to-parameterize decision support tool to help detect new invasive threats, schedule monitoring and management actions, optimize biological control, and predict potential impacts on agricultural production. DDRP uses a process-based modeling approach in which degree-days and temperature stress are calculated daily and accumulate over time to model phenology and climatic suitability, respectively. Outputs include predictions of the number of completed generations, life stages present, dates of phenological events, and climatically suitable areas based on two levels of climate stress. Species parameter values can be derived from laboratory and field studies or estimated through an additional modeling step. DDRP is written entirely in R, making it flexible and extensible, and capitalizes on multiple R packages to generate gridded and graphical outputs. We illustrate the DDRP modeling platform and the process of model parameterization using two invasive insect species as example threats to United States agriculture: the light brown apple moth, Epiphyas postvittana, and the small tomato borer, Neoleucinodes elegantalis. We then discuss example applications of DDRP as a decision support tool, review its potential limitations and sources of model error, and outline some ideas for future improvements to the platform.
Collapse
Affiliation(s)
- Brittany S. Barker
- Oregon IPM Center, Oregon State University, Corvallis, OR, United States of America
- Department of Horticulture, Oregon State University, Corvallis, OR, United States of America
- * E-mail:
| | - Leonard Coop
- Oregon IPM Center, Oregon State University, Corvallis, OR, United States of America
- Department of Horticulture, Oregon State University, Corvallis, OR, United States of America
| | - Tyson Wepprich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Fritzi Grevstad
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Gericke Cook
- USDA Animal and Plant Health Inspection Service, Fort Collins, CO, United States of America
| |
Collapse
|
49
|
Harvey JA, Heinen R, Gols R, Thakur MP. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. GLOBAL CHANGE BIOLOGY 2020; 26:6685-6701. [PMID: 33006246 PMCID: PMC7756417 DOI: 10.1111/gcb.15377] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Insects are among the most diverse and widespread animals across the biosphere and are well-known for their contributions to ecosystem functioning and services. Recent increases in the frequency and magnitude of climatic extremes (CE), in particular temperature extremes (TE) owing to anthropogenic climate change, are exposing insect populations and communities to unprecedented stresses. However, a major problem in understanding insect responses to TE is that they are still highly unpredictable both spatially and temporally, which reduces frequency- or direction-dependent selective responses by insects. Moreover, how species interactions and community structure may change in response to stresses imposed by TE is still poorly understood. Here we provide an overview of how terrestrial insects respond to TE by integrating their organismal physiology, multitrophic, and community-level interactions, and building that up to explore scenarios for population explosions and crashes that have ecosystem-level consequences. We argue that TE can push insect herbivores and their natural enemies to and even beyond their adaptive limits, which may differ among species intimately involved in trophic interactions, leading to phenological disruptions and the structural reorganization of food webs. TE may ultimately lead to outbreak-breakdown cycles in insect communities with detrimental consequences for ecosystem functioning and resilience. Lastly, we suggest new research lines that will help achieve a better understanding of insect and community responses to a wide range of CE.
Collapse
Affiliation(s)
- Jeffrey A. Harvey
- Netherlands Institute of EcologyWageningenThe Netherlands
- Department of Ecological Sciences – Animal EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Robin Heinen
- Department of Terrestrial EcologyTechnische Universität MünchenFreisingGermany
| | - Rieta Gols
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Madhav P. Thakur
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
50
|
Becker DM, Silbiger NJ. Nutrient and sediment loading affect multiple facets of functionality in a tropical branching coral. J Exp Biol 2020; 223:jeb225045. [PMID: 32943577 DOI: 10.1242/jeb.225045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g. sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont percent nitrogen content, endosymbiont densities and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content per cell decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8°C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly in relation to the mediation of land-based inputs into coastal coral reef ecosystems.
Collapse
Affiliation(s)
- Danielle M Becker
- Department of Biology, California State University, Northridge, CA 91330, USA
| | - Nyssa J Silbiger
- Department of Biology, California State University, Northridge, CA 91330, USA
| |
Collapse
|