1
|
Guevara-Andino JE, Dávalos LM, Zapata F, Endara MJ, Cotoras DD, Chaves J, Claramunt S, López-Delgado J, Mendoza-Henao AM, Salazar-Valenzuela D, Rivas-Torres G, Yeager J. Neotropics as a Cradle for Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041452. [PMID: 38692837 PMCID: PMC11875094 DOI: 10.1101/cshperspect.a041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neotropical ecosystems are renowned for numerous examples of adaptive radiation in both plants and animals resulting in high levels of biodiversity and endemism. However, we still lack a comprehensive review of the abiotic and biotic factors that contribute to these adaptive radiations. To fill this gap, we delve into the geological history of the region, including the role of tectonic events such as the Andean uplift, the formation of the Isthmus of Panama, and the emergence of the Guiana and Brazilian Shields. We also explore the role of ecological opportunities created by the emergence of new habitats, as well as the role of key innovations, such as novel feeding strategies or reproductive mechanisms. We discuss different examples of adaptive radiation, including classic ones like Darwin's finches and Anolis lizards, and more recent ones like bromeliads and lupines. Finally, we propose new examples of adaptive radiations mediated by ecological interactions in their geological context. By doing so, we provide insights into the complex interplay of factors that contributed to the remarkable diversity of life in the Neotropics and highlight the importance of this region in understanding the origins of biodiversity.
Collapse
Affiliation(s)
- Juan E Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90024, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90024, USA
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Jaime Chaves
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Angela M Mendoza-Henao
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva 12-65 Piso 7, Colombia
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Indoamérica, Quito 170301, Ecuador
| | - Gonzalo Rivas-Torres
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Justin Yeager
- Grupo de Investigación en Biodiversidad, Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
2
|
de Weerd CR, Dung L. How to Live in the Moment: The Methodology and Limitations of Evolutionary Research on Consciousness. Cogn Sci 2025; 49:e70053. [PMID: 40105062 PMCID: PMC11921076 DOI: 10.1111/cogs.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
There is much interest in investigating the evolution question: How did consciousness evolve? In this paper, we evaluate the role that evolutionary considerations can play in justifying (i.e., confirming or falsifying) hypotheses about the origin, nature, and function of consciousness. Specifically, we argue against what we call evolution-first approaches to consciousness, according to which evolutionary considerations provide the primary and foundational lens through which we should assess hypotheses about the nature, function, or distribution of consciousness. Based on the example of Walter Veit's account and additional reasoning, we contend that evolution-first approaches struggle to provide compelling empirical evidence for their key claims about consciousness. In contrast with these approaches, we argue that consciousness science needs to foundationally rely on experimental and observational evidence from humans and other present-day animals. If our arguments succeed, then researchers, when investigating consciousness, are better advised to take as their primary source of evidence consciousness' present, not its past. Having said this, we acknowledge that evolutionary thinking plays an important role in consciousness science. We delineate this role by stressing several ways in which evolutionary considerations can substantially help advance consciousness research, although in a manner that avoids the evolution-first approach. Since our argument only concerns the assessment of hypotheses (the "context of justification"), it leaves it open which role evolutionary considerations play in generating hypotheses (the "context of discovery"). That is, evolutionary considerations may nevertheless play a foundational role in hypothesis generation in consciousness science.
Collapse
Affiliation(s)
- Christian R de Weerd
- Centre for Philosophy and AI Research (PAIR), University of Erlangen-Nürnberg (FAU)
| | - Leonard Dung
- Centre for Philosophy and AI Research (PAIR), University of Erlangen-Nürnberg (FAU)
- Institute of Philosophy II, Ruhr-University Bochum
| |
Collapse
|
3
|
Mozzi G, Crivellaro A, Blasini DE, Vásquez-Cruz M, Hernández-Hernández T, Hultine KR. Divergent structural leaf trait spectra in succulent versus non-succulent plant taxa. ANNALS OF BOTANY 2024; 134:491-500. [PMID: 38833416 PMCID: PMC11341667 DOI: 10.1093/aob/mcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND SCOPE Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow trait correlations similar to those of non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. METHODS We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment, referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. RESULTS Both SWC and WMA at a given SLA were ~10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis (PCA) revealed that succulent taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) or sclerophyllous (P < 0.0001) taxa along the first PCA axis, which explained 63 % of mean trait expression among species. However, aridity only explained 12 % of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. CONCLUSIONS Trait coordination in succulent leaf taxa may not follow patterns similar to those of widely studied non-succulent taxa.
Collapse
Affiliation(s)
- Giacomo Mozzi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro (PD), Italy
| | - Alan Crivellaro
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
- Forest Biometrics Laboratory, Faculty of Forestry, ‘Stefan cel Mare’ University of Suceava, 720229 Suceava, Romania
| | - Davis E Blasini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Tania Hernández-Hernández
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| |
Collapse
|
4
|
Anfodillo T, Olson ME. Stretched sapwood, ultra-widening permeability and ditching da Vinci: revising models of plant form and function. ANNALS OF BOTANY 2024; 134:19-42. [PMID: 38634673 PMCID: PMC11161570 DOI: 10.1093/aob/mcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
Collapse
Affiliation(s)
- Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Thompson RA. A neutral theory of plant carbon allocation. TREE PHYSIOLOGY 2024; 44:tpad151. [PMID: 38102767 DOI: 10.1093/treephys/tpad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
How plants use the carbon they gain from photosynthesis remains a key area of study among plant ecologists. Although numerous theories have been presented throughout the years, the field lacks a clear null model. To fill this gap, I have developed the first null model, or neutral theory, of plant carbon allocation using probability theory, plant biochemistry and graph theory at the level of a leaf. Neutral theories have been used to establish a null hypothesis in molecular evolution and community assembly to describe how much of an ecological phenomenon can be described by chance alone. Here, the aim of a neutral theory of plant carbon allocation is to ask: how is carbon partitioned between sinks if one assumes plants do not prioritize certain sinks over others? Using the biochemical network of plant carbon metabolism, I show that, if allocation was strictly random, carbon is more likely to be allocated to storage, defense, respiration and finally growth. This 'neutral hierarchy' suggests that a sink's biochemical distance from photosynthesis plays an important role in carbon allocation patterns, highlighting the potentially adaptive role of this biochemical network for plant survival in variable environments. A brief simulation underscores that our ability to measure the carbon allocation from photosynthesis to a given sink is unreliable due to simple probabilistic rules. While neutral theory may not explain all patterns of carbon allocation, its utility is in the minimal assumptions and role as a null model against which future data should be tested.
Collapse
Affiliation(s)
- R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
de Santis MD. On the nature of evolutionary explanations: a critical appraisal of Walter Bock's approach with a new revised proposal. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:3. [PMID: 38190055 PMCID: PMC10774170 DOI: 10.1007/s40656-023-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Walter Bock was committed to developing a framework for evolutionary biology. Bock repeatedly discussed how evolutionary explanations should be considered within the realm of Hempel's deductive-nomological model of scientific explanations. Explanation in evolution would then consist of functional and evolutionary explanations, and within the latter, an explanation can be of nomological-deductive and historical narrative explanations. Thus, a complete evolutionary explanation should include, first, a deductive functional analysis, and then proceed through nomological and historical evolutionary explanations. However, I will argue that his views on the deductive proprieties of functional analysis and the deductive-nomological parts of evolution fail because of the nature of evolution, which contains a historical element that the logic of deduction and Hempel's converting law model do not compass. Conversely, Bock's historical approach gives a critical consideration of the historical narrative element of evolutionary explanation, which is fundamental to the methodology of the historical nature of evolutionary theory. Herein, I will expand and discuss a modern view of evolutionary explanations of traits that includes the currentacknowledgement of the differences between experimental and the historical sciences, including the token and type event dichotomy, that mutually illuminate each other in order to give us a well confirmed and coherent hypothesis for evolutionary explanations. Within this framework, I will argue that the duality of evolutionary explanations is related to two components of character evolution: origin, with its evolutionary pathways along with the history, and maintenance, the function (mainly a current function) for the character being selected.
Collapse
Affiliation(s)
- Marcelo Domingos de Santis
- Departamento de Entomologia, Museu Nacional, UFRJ, Rio de Janeiro, RJ, Brazil.
- Museum Koenig Bonn, Leibniz-Institut zur Analyse des Bioaffiliationersitatswandels, Adenauerallee 127, 53113, Bonn, Germany.
| |
Collapse
|
7
|
Segovia-Rivas A, Olson ME. Temperature and Turgor "Limitation" and Environmental "Control" in Xylem Biology and Dendrochronology. Integr Comp Biol 2023; 63:1364-1375. [PMID: 37550219 DOI: 10.1093/icb/icad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Trees and other woody plants are immensely ecologically important, making it essential to understand the causes of relationships between tree structure and function. To help these efforts, we highlight persistent traditions in plant biology of appealing to environmental factors "limiting" or "controlling" woody plant features. Examples include the idea that inevitable drops in cell turgor with plant height limit cell expansion and thus leaf size and tree height; that low temperatures prohibit lignification of cells and thus the growth of woody plants at high elevation; and notions from dendrochronology and related fields that climate factors such as rainfall and temperature "control" growth ring features. We show that notions of "control," "limitation," and the like imply that selection would favor a given trait value, but that these would-be favored values are developmentally impossible to produce. Such "limitation" scenarios predict trait frequency distributions that are very narrow and are abruptly curtailed at the upper limit of developmental possibility (the right-hand side of the distribution). Such distributions have, to our knowledge, never been observed, so we see little empirical support for "limitation" hypotheses. We suggest that, as a more productive starting point, plant biologists should examine adaptation hypotheses, in which developmental possibility is wide (congruent with the wide ranges of trait variation that really are observed), but only some of the possible variants are favored. We suggest that (1) the traditional the proximate/ultimate causation distinction, (2) purging scenarios of teleology/anthropomorphism, and (3) stating hypotheses in terms of developmental potential and natural selection are three simple ways of making "limitation" hypotheses clearer with regard to biological process and thus empirically testable.
Collapse
Affiliation(s)
- Alí Segovia-Rivas
- Instituto de Biología, , Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Mark E Olson
- Instituto de Biología, , Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Petrone-Mendoza E, Vergara-Silva F, Olson ME. Plant morpho evo-devo. TRENDS IN PLANT SCIENCE 2023; 28:1257-1276. [PMID: 37423784 DOI: 10.1016/j.tplants.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Evo-devo is often thought of as being the study of which genes underlie which phenotypes. However, evo-devo is much more than this, especially in plant science. In leaf scars along stems, cell changes across wood growth rings, or flowers along inflorescences, plants trace a record of their own development. Plant morpho evo-devo provides data that genes could never furnish on themes such as heterochrony, the evolution of temporal phenotypes, modularity, and phenotype-first evolution. As plant science surges into increasingly -omic realms, it is essential to keep plant morpho evo-devo in full view as an honored member of the evo-devo canon, ensuring that plant scientists can, wherever they are, generate fundamental insights at the appropriate level of biological organization.
Collapse
Affiliation(s)
- Emilio Petrone-Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510, México; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, México
| | - Francisco Vergara-Silva
- Laboratorio de Teoría Evolutiva e Historia de la Ciencia, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510, México.
| |
Collapse
|
9
|
Ávila-Lovera E, Winter K, Goldsmith GR. Evidence for phylogenetic signal and correlated evolution in plant-water relation traits. THE NEW PHYTOLOGIST 2023; 237:392-407. [PMID: 36271615 DOI: 10.1111/nph.18565] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary relationships are likely to play a significant role in shaping plant physiological and structural traits observed in contemporary taxa. We review research on phylogenetic signal and correlated evolution in plant-water relation traits, which play important roles in allowing plants to acquire, use, and conserve water. We found more evidence for a phylogenetic signal in structural traits (e.g. stomatal length and stomatal density) than in physiological traits (e.g. stomatal conductance and water potential at turgor loss). Although water potential at turgor loss is the most-studied plant-water relation trait in an evolutionary context, it is the only trait consistently found to not have a phylogenetic signal. Correlated evolution was common among traits related to water movement efficiency and hydraulic safety in both leaves and stems. We conclude that evidence for phylogenetic signal varies depending on: the methodology used for its determination, that is, model-based approaches to determine phylogenetic signal such as Blomberg's K or Pagel's λ vs statistical approaches such as ANOVAs with taxonomic classification as a factor; on the number of taxa studied (size of the phylogeny); and the setting in which plants grow (field vs common garden). More explicitly and consistently considering the role of evolutionary relationships in shaping plant ecophysiology could improve our understanding of how traits compare among species, how traits are coordinated with one another, and how traits vary with the environment.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Panama
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| |
Collapse
|
10
|
Olson ME. Linking xylem structure and function: the comparative method in from the cold. THE NEW PHYTOLOGIST 2022; 235:815-820. [PMID: 35770485 PMCID: PMC9328200 DOI: 10.1111/nph.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article is a Commentary on Savage et al. (2022), 235: 953–964.
Collapse
Affiliation(s)
- Mark E. Olson
- Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoTercer Circuito sn de Ciudad UniversitariaCiudad de México04510Mexico
| |
Collapse
|
11
|
Affiliation(s)
- Stephen T. Trumbo
- Department of Ecology and Evolutionary Biology University of Connecticut Waterbury Connecticut USA
| |
Collapse
|
12
|
Sinnott‐Armstrong MA, Deanna R, Pretz C, Liu S, Harris JC, Dunbar‐Wallis A, Smith SD, Wheeler LC. How to approach the study of syndromes in macroevolution and ecology. Ecol Evol 2022; 12:e8583. [PMID: 35342598 PMCID: PMC8928880 DOI: 10.1002/ece3.8583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022] Open
Abstract
Syndromes, wherein multiple traits evolve convergently in response to a shared selective driver, form a central concept in ecology and evolution. Recent work has questioned the existence of some classic syndromes, such as pollination and seed dispersal syndromes. Here, we discuss some of the major issues that have afflicted research into syndromes in macroevolution and ecology. First, correlated evolution of traits and hypothesized selective drivers is often relied on as the only evidence for adaptation of those traits to those hypothesized drivers, without supporting evidence. Second, the selective driver is often inferred from a combination of traits without explicit testing. Third, researchers often measure traits that are easy for humans to observe rather than measuring traits that are suited to testing the hypothesis of adaptation. Finally, species are often chosen for study because of their striking phenotypes, which leads to the illusion of syndromes and divergence. We argue that these issues can be avoided by combining studies of trait variation across entire clades or communities with explicit tests of adaptive hypotheses and that taking this approach will lead to a better understanding of syndrome-like evolution and its drivers.
Collapse
Affiliation(s)
- Miranda A. Sinnott‐Armstrong
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Rocio Deanna
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
- Instituto Multidisciplinario de Biología VegetalIMBIV (CONICET‐UNC)CórdobaArgentina
- Departamento de Ciencias FarmacéuticasFacultad de Ciencias Químicas (FCQ, UNC)CórdobaArgentina
| | - Chelsea Pretz
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Sukuan Liu
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Jesse C. Harris
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Amy Dunbar‐Wallis
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Lucas C. Wheeler
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| |
Collapse
|
13
|
Olson ME. A poplar option: the 'within-individual approach' for elucidating xylem structure-function relationships. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7648-7652. [PMID: 34865114 DOI: 10.1093/jxb/erab443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on:
Baer AB, Fickle JC, Medina J, Robles C, Pratt RB, Jacobsen AL. 2021. Xylem biomechanics, water storage, and density within roots and shoots of an angiosperm tree species. Journal of Experimental Botany 72, 7984–7997.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México,Tercer Circuito de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
14
|
Zhao L, Santos JC, Wang J, Ran J, Tang Y, Cui J. Noise constrains the evolution of call frequency contours in flowing water frogs: a comparative analysis in two clades. Front Zool 2021; 18:37. [PMID: 34348772 PMCID: PMC8336270 DOI: 10.1186/s12983-021-00423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background The acoustic adaptation hypothesis (AAH) states that signals should evolve towards an optimal transmission of the intended information from senders to intended receivers given the environmental constraints of the medium that they traverse. To date, most AAH studies have focused on the effect of stratified vegetation on signal propagation. These studies, based on the AAH, predict that acoustic signals should experience less attenuation and degradation where habitats are less acoustically complex. Here, we explored this effect by including an environmental noise dimension to test some AAH predictions in two clades of widespread amphibians (Bufonidae and Ranidae) that actively use acoustic signals for communication. By using data from 106 species in these clades, we focused on the characterization of the differences in dominant frequency (DF) and frequency contour (i.e., frequency modulation [FM] and harmonic performances) of mating calls and compared them between species that inhabit flowing-water or still-water environments. Results After including temperature, body size, habitat type and phylogenetic relationships, we found that DF differences among species were explained mostly by body size and habitat structure. We also showed that species living in lentic habitats tend to have advertisement calls characterized by well-defined FM and harmonics. Likewise, our results suggest that flowing-water habitats can constrain the evolutionary trajectories of the frequency-contour traits of advertisement calls in these anurans. Conclusions Our results may support AAH predictions in frogs that vocalize in noisy habitats because flowing-water environments often produce persistent ambient noise. For instance, these anurans tend to generate vocalizations with less well-defined FM and harmonic traits. These findings may help us understand how noise in the environment can influence natural selection as it shapes acoustic signals in affected species. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00423-y.
Collapse
Affiliation(s)
- Longhui Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.,Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jichao Wang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Jianghong Ran
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yezhong Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Trumbo ST, Sikes DS. Resource concealment and the evolution of parental care in burying beetles. J Zool (1987) 2021. [DOI: 10.1111/jzo.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. T. Trumbo
- Department of Ecology and Evolutionary Biology University of Connecticut Waterbury CT USA
| | - D. S. Sikes
- Department of Biology and Wildlife University of Alaska Museum University of Alaska Fairbanks Fairbanks AK USA
| |
Collapse
|
16
|
Goto T, Osada N. Geographic variation in shoot structure in association with fruit size in an evergreen woody species. AOB PLANTS 2021; 13:plab023. [PMID: 34194689 PMCID: PMC8237846 DOI: 10.1093/aobpla/plab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The generality of scaling relationships between multiple shoot traits, known as Corner's rules, has been considered to reflect the biomechanical limits to trees and tree organs among the species of different leaf sizes. Variation in fruit size within species would also be expected to affect shoot structure by changing the mechanical and hydraulic stresses caused by the mass and water requirement of fruits. We investigated the differences in shoot structure and their relationship with fruit size in Camellia japonica from 12 sites in a wide geographic range in Japan. This species is known to produce larger fruits with thicker pericarps in more southern populations because warmer climates induce more intensive arms race between the fruit size and the rostrum length of its obligate seed predator. We found that, in association with the change in fruit size, the diameter and mass of 1-year-old stems were negatively associated with latitude, but the total mass and area of 1-year-old leaves did not change with latitude. Consequently, the length of 1-year-old stems and the total mass and area of 1-year-old leaves at a given stem diameter were positively associated with latitude in the allometric relationships. In contrast, the allometric relationships between stem diameter and total mass of the 1-year-old shoot complex (the leaves, stems and fruits that were supported by a 1-year-old stem) did not differ across the trees of different latitudes. Thus, natural selection on fruit size is considered to influence the other traits of Corner's rules in C. japonica, but all of the traits of Corner's rules do not necessarily change in a similar manner across latitudinal gradients.
Collapse
Affiliation(s)
- Takuma Goto
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Noriyuki Osada
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan
| |
Collapse
|
17
|
Cox CL, Logan ML. Using Integrative Biology to Infer Adaptation from Comparisons of Two (or a Few) Species. Physiol Biochem Zool 2021; 94:162-170. [PMID: 33821779 DOI: 10.1086/714018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPhylogenetic comparative methods represent a major advance in integrative and comparative biology and have allowed researchers to rigorously test for adaptation in a macroevolutionary framework. However, phylogenetic comparative methods require trait data for many species, which is impractical for certain taxonomic groups and trait types. We propose that the philosophical principle of severity can be implemented in an integrative framework to generate strong inference of adaptation in studies that compare only a few populations or species. This approach requires (1) ensuring that the study system contains species that are relatively closely related; (2) formulating a specific, clear, overarching hypothesis that can be subjected to integrative testing across levels of biological organization (e.g., ecology, behavior, morphology, physiology, and genetics); (3) collecting data that avoid statistical underdetermination and thus allow severe tests of hypotheses; and (4) systematically refining and refuting alternative hypotheses. Although difficult to collect for more than a few species, detailed, integrative data can be used to differentiate among several potential agents of selection. In this way, integrative studies of small numbers of closely related species can complement and even improve on broadscale phylogenetic comparative studies by revealing the specific drivers of adaptation.
Collapse
|
18
|
Why is Tree Drought Mortality so Hard to Predict? Trends Ecol Evol 2021; 36:520-532. [PMID: 33674131 DOI: 10.1016/j.tree.2021.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023]
Abstract
Widespread tree mortality following droughts has emerged as an environmentally and economically devastating 'ecological surprise'. It is well established that tree physiology is important in understanding drought-driven mortality; however, the accuracy of predictions based on physiology alone has been limited. We propose that complicating factors at two levels stymie predictions of drought-driven mortality: (i) organismal-level physiological and site factors that obscure understanding of drought exposure and vulnerability and (ii) community-level ecological interactions, particularly with biotic agents whose effects on tree mortality may reverse expectations based on stress physiology. We conclude with a path forward that emphasizes the need for an integrative approach to stress physiology and biotic agent dynamics when assessing forest risk to drought-driven morality in a changing climate.
Collapse
|
19
|
Olson ME, Anfodillo T, Gleason SM, McCulloh KA. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. THE NEW PHYTOLOGIST 2021; 229:1877-1893. [PMID: 32984967 DOI: 10.1111/nph.16961] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In the stems of terrestrial vascular plants studied to date, the diameter of xylem water-conducting conduits D widens predictably with distance from the stem tip L approximating D ∝ Lb , with b ≈ 0.2. Because conduit diameter is central for conductance, it is essential to understand the cause of this remarkably pervasive pattern. We give reason to suspect that tip-to-base conduit widening is an adaptation, favored by natural selection because widening helps minimize the increase in hydraulic resistance that would otherwise occur as an individual stem grows longer and conductive path length increases. Evidence consistent with adaptation includes optimality models that predict the 0.2 exponent. The fact that this prediction can be made with a simple model of a single capillary, omitting much biological detail, itself makes numerous important predictions, e.g. that pit resistance must scale isometrically with conduit resistance. The idea that tip-to-base conduit widening has a nonadaptive cause, with temperature, drought, or turgor limiting the conduit diameters that plants are able to produce, is less consistent with the data than an adaptive explanation. We identify empirical priorities for testing the cause of tip-to-base conduit widening and underscore the need to study plant hydraulic systems leaf to root as integrated wholes.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD), 35020, Italy
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
20
|
Olson ME. The comparative method is not macroevolution: across-species evidence for within-species process. Syst Biol 2021; 70:1272-1281. [PMID: 33410880 DOI: 10.1093/sysbio/syaa086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022] Open
Abstract
It is common for studies that employ the comparative method for the study of adaptation, i.e. documentation of potentially adaptive across-species patterns of trait-environment or trait-trait correlation, to be designated as "macroevolutionary." Authors are justified in using "macroevolution" in this way by appeal to definitions such as "evolution above the species level." I argue that regarding the comparative method as "macroevolutionary" is harmful because it hides in serious ways the true causal content of hypotheses tested with the comparative method. The comparative method is a means of testing hypotheses of adaptation and their alternatives. Adaptation is a population level phenomenon, involving heritable interindividual variation that is associated with fitness differences. For example, given heritable intrapopulational variation, more streamlined individuals in populations of fast-moving aquatic animals have higher locomotory efficiency and thus better survivorship and more resources directed to reproduction than less streamlined ones. Direct evidence consistent with this population-level scenario includes the observation that many unrelated species of fast-moving aquatic animals have similar streamlined shapes, an example of the comparative method. Crucial to note in this example is that although the data are observed across species, the comparative method for studying adaptation tests hypotheses regarding standard population-level natural selection with no content that can be construed as "macro." Even less "macro," individual-level developmental dynamics can limit or bias the range of variants available for selection. Calling any of these studies "macroevolutionary" implies that some additional process is at work, shrouding the need to test adaptation hypotheses and study the range of variants that can be produced in development.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
21
|
Doherty JF. When fiction becomes fact: exaggerating host manipulation by parasites. Proc Biol Sci 2020; 287:20201081. [PMID: 33049168 DOI: 10.1098/rspb.2020.1081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In an era where some find fake news around every corner, the use of sensationalism has inevitably found its way into the scientific literature. This is especially the case for host manipulation by parasites, a phenomenon in which a parasite causes remarkable change in the appearance or behaviour of its host. This concept, which has deservedly garnered popular interest throughout the world in recent years, is nearly 50 years old. In the past two decades, the use of scientific metaphors, including anthropomorphisms and science fiction, to describe host manipulation has become more and more prevalent. It is possible that the repeated use of such catchy, yet misleading words in both the popular media and the scientific literature could unintentionally hamper our understanding of the complexity and extent of host manipulation, ultimately shaping its narrative in part or in full. In this commentary, the impacts of exaggerating host manipulation are brought to light by examining trends in the use of embellishing words. By looking at key examples of exaggerated claims from widely reported host-parasite systems found in the recent scientific literature, it would appear that some of the fiction surrounding host manipulation has since become fact.
Collapse
|
22
|
Olson ME. From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology. AMERICAN JOURNAL OF BOTANY 2020; 107:1328-1341. [PMID: 33078405 DOI: 10.1002/ajb2.1552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
All students of xylem structure-function relations need to be familiar with the work of Sherwin Carlquist. He studies xylem through the lens of the comparative method, which uses the appearance of similar anatomical features under similar conditions of natural selection to infer function. "Function" in biology implies adaptation; maximally supported adaptation inferences require experimental and comparative xylem scientists to work with one another. Engaging with comparative inferences of xylem function will, more likely sooner rather than later, bring one to the work of Sherwin Carlquist. To mark his 90th birthday, I highlight just a few examples of his extraordinarily perceptive and general comparative insights. One is "Carlquist's Law", the pervasive tendency for vessels to be solitary when background cells are conductive. I cover his pioneering of "ecological" wood anatomy, viewing xylem variation as reflecting the effects of selection across climate and habit variation. Another is the embolism vulnerability-conduit diameter relationship, one of the most widely invoked structure-function relationships in xylem biology. I discuss the inferential richness within the notion of Carlquistian paedomorphosis, including detailed functional inferences regarding ray cell orientation. My final example comes from his very recent work offering the first satisfactory hypothesis accounting for the geographical and histological distribution of scalariform perforation plates as an adaptation, including "Carlquist's Ratchet", why scalariform plates are adaptive but do not re-evolve once lost. This extraordinarily rich production over six decades is filled with comparative inferences that should keep students of xylem function busy testing for decades to come.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico, DF, 04510, México
| |
Collapse
|
23
|
Silverj A, Rota-Stabelli O. On the correct interpretation of similarity index in codon usage studies: Comparison with four other metrics and implications for Zika and West Nile virus. Virus Res 2020; 286:198097. [DOI: 10.1016/j.virusres.2020.198097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
24
|
Olson M, Rosell JA, Martínez‐Pérez C, León‐Gómez C, Fajardo A, Isnard S, Cervantes‐Alcayde MA, Echeverría A, Figueroa‐Abundiz VA, Segovia‐Rivas A, Trueba S, Vázquez‐Segovia K. Xylem vessel‐diameter–shoot‐length scaling: ecological significance of porosity types and other traits. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mark Olson
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Julieta A. Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad Instituto de Ecología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Cecilia Martínez‐Pérez
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Calixto León‐Gómez
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP) Camino Baguales s/n Coyhaique 5951601 Chile
| | - Sandrine Isnard
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Centre de Coopération Internationale en Recherche Agronomique pour le Développement Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique Université de Montpellier Montpellier 34398 France
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Herbier de Nouvelle‐Caledonia Nouméa 98848 New Caledonia
| | - María Angélica Cervantes‐Alcayde
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Alberto Echeverría
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Alí Segovia‐Rivas
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Santiago Trueba
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Centre de Coopération Internationale en Recherche Agronomique pour le Développement Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique Université de Montpellier Montpellier 34398 France
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Herbier de Nouvelle‐Caledonia Nouméa 98848 New Caledonia
- School of Forestry & Environmental Studies Yale University New Haven Connecticut 06511 USA
| | - Karen Vázquez‐Segovia
- Laboratorio Nacional de Ciencias de la Sostenibilidad Instituto de Ecología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| |
Collapse
|
25
|
Fajardo A, Martínez-Pérez C, Cervantes-Alcayde MA, Olson ME. Stem length, not climate, controls vessel diameter in two trees species across a sharp precipitation gradient. THE NEW PHYTOLOGIST 2020; 225:2347-2355. [PMID: 31657018 DOI: 10.1111/nph.16287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/23/2019] [Indexed: 05/29/2023]
Abstract
Variation in xylem conduit diameter traditionally has been explained by climate, whereas other evidence suggests that tree height is the main driver of conduit diameter. The effect of climate versus stem length on vessel diameter was tested in two tree species (Embothrium coccineum, Nothofagus antarctica) that both span an exceptionally wide precipitation gradient (2300-500 mm). To see whether, when taking stem length into account, plants in wetter areas had wider vessels, not only the scaling of vessel diameter at the stem base across individuals of different heights, but also the tip-to-base scaling along individuals of similar heights across sites were examined. Within each species, plants of similar heights had similar mean vessel diameters and similar tip-to-base widening of vessel diameter, regardless of climate, with the slopes and intercepts of the vessel diameter-stem length relationship remaining invariant within species across climates. This study focusing on within-species variation--thus, avoiding noise associated with the great morphological variation across species--showed unequivocally that plant size, not climate, is the main driver of variation in vessel diameter. Therefore, to the extent that climate selects for differing vessel diameters, it will inevitably also affect plant height.
Collapse
Affiliation(s)
- Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP) Camino Baguales s/n, Coyhaique, 5951601, Chile
| | - Cecilia Martínez-Pérez
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, México
| | - María Angélica Cervantes-Alcayde
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, México
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, México
| |
Collapse
|
26
|
Olson ME. Plant Evolutionary Ecology in the Age of the Extended Evolutionary Synthesis. Integr Comp Biol 2020; 59:493-502. [PMID: 31106813 DOI: 10.1093/icb/icz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant ecology is increasingly turning to evolutionary questions, just as evolutionary biology pushes out of the strictures of the Modern Synthesis into what some regard as an "Extended Evolutionary Synthesis." As plant ecology becomes increasingly evolutionary, it is essential to ask how aspects of the Extended Synthesis might impinge on plant ecological theory and practice. I examine the contribution of plant evolutionary ecology to niche construction theory, as well as the potential for developmental systems theory and genes-as-followers adaptive evolution, all important post-Modern Synthesis themes, in providing novel perspectives for plant evolutionary ecology. I also examine ways that overcoming dichotomies such as "genetic vs. plastic" and "constraint vs. adaptation" provide fertile opportunities for plant evolutionary ecologists. Along the same lines, outgrowing vague concepts such as "stress" and replacing them with more precise terminology in all cases provides vastly increased causal clarity. As a result, the synthetic path that plant ecologists are blazing, becoming more evolutionary every year, bodes extremely well for the field, with vast potential for expansion into important scientific territory.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de CU s/n, Ciudad de México 04510, Mexico
| |
Collapse
|
27
|
Rosell JA. Bark in Woody Plants: Understanding the Diversity of a Multifunctional Structure. Integr Comp Biol 2020; 59:535-547. [PMID: 31120526 DOI: 10.1093/icb/icz057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most biological structures carry out multiple functions. Focusing on only one function to make adaptive inferences overlooks that manifold selection pressures and tradeoffs shape the characteristics of a multifunctional structure. Focusing on single functions can only lead to a partial picture of the causes underlying diversity and the evolutionary origin of the structure in question. I illustrate this discussion using bark as a study case. Bark comprises all the tissues surrounding the xylem in woody plants. Broadly, bark includes an inner and mostly living region and an outer, dead one. Of all plant structures, bark has the most complex anatomical structure and ontogenetic origin involving two (and often three) different meristems. Traditionally, the wide diversity in bark traits, mainly bark thickness, has been interpreted as the result of the selective pressures imposed by fire regime. However, recent research has shown that explanations based on fire regime cannot account for salient patterns of bark variation globally including the very strong inner bark thickness-stem diameter scaling, which is likely due to metabolic needs, and the very high intracommunity variation in total, inner, and outer bark thickness, and in inner:outer proportions. Moreover, explanations based on fire disregard that in addition to fire protection, bark carries out several other crucial functions for plants including translocation of photosynthates; storage of starch, soluble sugars, water, and other compounds; protection from herbivores, pathogens, and high temperatures; wound closure, as well as mechanical support, photosynthesis, and likely being involved in xylem embolism repair. All these functions are crucial for plant performance and are involved in synergistic (e.g., storage of water and insulation) and trade-off relationships (e.g., protection from fire vs photosynthetic activity). Focusing on only one of these functions, protection from fire has provided an incomplete picture of the selective forces shaping bark diversity and has severely hindered our incipient understanding of the functional ecology of this crucial region of woody stems. Applying a multifunctional perspective to the study of bark will allow us to address why we observe such high intracommunity variation in bark traits, why some bark trait combinations are ontogenetically impossible or penalized by selection, how bark is coordinated functionally with other plant parts, and as a result, to understand how bark contributes to the vast diversity of plant ecological strategies across the globe.
Collapse
Affiliation(s)
- Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad de México 04510, Mexico
| |
Collapse
|
28
|
Renner SS, Zohner CM. The occurrence of red and yellow autumn leaves explained by regional differences in insolation and temperature. THE NEW PHYTOLOGIST 2019; 224:1464-1471. [PMID: 31070794 DOI: 10.1111/nph.15900] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Red or yellow autumn leaves have long fascinated biologists, but their geographical concentration in trees in Eastern North America (ENA) has defied evolutionary explanations. In this review, anthocyanins and xanthophylls are discussed in relation to their occurrence in different regions of the Northern Hemisphere, phylogenetic distribution and photoprotective function during the breakdown of chlorophylls. Pigments in senescing leaves that intercept incident light and dissipate the absorbed energy extend the time available for nutrient resorption. Experiments with Arabidopsis have revealed greatest anthocyanin photoprotective function at low temperatures and high light intensities, and high-resolution solar irradiation maps reveal that ENA and Asia receive higher irradiation than does Europe. In addition, ENA experiences higher temperature fluctuations in autumn, resulting in cold snaps during leaf senescence. Under common garden conditions, chlorophyll degradation occurs earlier in ENA species than in their European and East Asian relatives. In combination, strong solar irradiation, temperature fluctuations and, on average, 3-wk shorter vegetation periods of ENA species favour investment in pigments to extend the time for nutrient resorption before abscission, explaining the higher frequency of coloured species in ENA compared to Europe. We end by outlining research that could test this new explanation of bright New England autumns.
Collapse
Affiliation(s)
- Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, Munich, 80638, Germany
| | - Constantin M Zohner
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
29
|
Muir CD. Is Amphistomy an Adaptation to High Light? Optimality Models of Stomatal Traits along Light Gradients. Integr Comp Biol 2019. [PMID: 31141118 DOI: 10.1101/601377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Stomata regulate the supply of CO2 for photosynthesis and the rate of water loss out of the leaf. The presence of stomata on both leaf surfaces, termed amphistomy, increases photosynthetic rate, is common in plants from high light habitats, and rare otherwise. In this study I use optimality models based on leaf energy budget and photosynthetic models to ask why amphistomy is common in high light habitats. I developed an R package leafoptimizer to solve for stomatal traits that optimally balance carbon gain with water loss in a given environment. The model predicts that amphistomy is common in high light because its marginal effect on carbon gain is greater than in the shade, but only if the costs of amphistomy are also lower under high light than in the shade. More generally, covariation between costs and benefits may explain why stomatal and other traits form discrete phenotypic clusters.
Collapse
|
30
|
Reynolds S. Cooking up the perfect insect: Aristotle's transformational idea about the complete metamorphosis of insects. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190074. [PMID: 31438815 DOI: 10.1098/rstb.2019.0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aristotle made important contributions to the study of developmental biology, including the complete metamorphosis of insects. One concept in particular, that of the perfect or complete state, underlies Aristotle's ideas about metamorphosis, the necessity of fertilization for embryonic development, and whether morphogenesis involves an autonomous process of self-assembly. Importantly, the philosopher erroneously views metamorphosis as a necessary developmental response to lack of previous fertilization of the female parent, a view that is intimately connected with his readiness to accept the idea of the spontaneous generation of life. Aristotle's work underpins that of the major seventeenth century students of metamorphosis, Harvey, Redi, Malpighi and Swammerdam, all of whom make frequent reference to Aristotle in their writings. Although both Aristotle and Harvey are often credited with inspiring the later prolonged debate between proponents of epigenesis and preformation, neither actually held firm views on the subject. Aristotle's idea of the perfect stage also underlies his proposal that the eggs of holometabolous insects hatch 'before their time', an idea that is the direct precursor of the much later proposals by Lubbock and Berlese that the larval stages of holometabolous insects are due to the 'premature hatching' from the egg of an imperfect embryonic stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Stuart Reynolds
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
31
|
Olson ME, Pittermann J. Cheap and attractive: water relations and floral adaptation. THE NEW PHYTOLOGIST 2019; 223:8-10. [PMID: 31032932 DOI: 10.1111/nph.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Mark E Olson
- Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Tercer Circuito sin de CU, Mexico City, DF, 04510, Mexico
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| |
Collapse
|
32
|
Feilich KL, López-Fernández H. When Does Form Reflect Function? Acknowledging and Supporting Ecomorphological Assumptions. Integr Comp Biol 2019; 59:358-370. [DOI: 10.1093/icb/icz070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Ecomorphology is the study of relationships between organismal morphology and ecology. As such, it is the only way to determine if morphometric data can be used as an informative proxy for ecological variables of interest. To achieve this goal, ecomorphology often depends on, or directly tests, assumptions about the nature of the relationships among morphology, performance, and ecology. We discuss three approaches to the study of ecomorphology: morphometry-driven, function-driven, and ecology-driven and study design choices inherent to each approach. We also identify 10 assumptions that underlie ecomorphological research: 4 of these are central to all ecomorphological studies and the remaining 6 are variably applicable to some of the specific approaches described above. We discuss how these assumptions may impact ecomorphological studies and affect the interpretation of their findings. We also point out some limitations of ecomorphological studies, and highlight some ways by which we can strengthen, validate, or eliminate systematic assumptions.
Collapse
Affiliation(s)
- Kara L Feilich
- Museum of Paleontology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, USA
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Muir CD. Is Amphistomy an Adaptation to High Light? Optimality Models of Stomatal Traits along Light Gradients. Integr Comp Biol 2019; 59:571-584. [DOI: 10.1093/icb/icz085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractStomata regulate the supply of CO2 for photosynthesis and the rate of water loss out of the leaf. The presence of stomata on both leaf surfaces, termed amphistomy, increases photosynthetic rate, is common in plants from high light habitats, and rare otherwise. In this study I use optimality models based on leaf energy budget and photosynthetic models to ask why amphistomy is common in high light habitats. I developed an R package leafoptimizer to solve for stomatal traits that optimally balance carbon gain with water loss in a given environment. The model predicts that amphistomy is common in high light because its marginal effect on carbon gain is greater than in the shade, but only if the costs of amphistomy are also lower under high light than in the shade. More generally, covariation between costs and benefits may explain why stomatal and other traits form discrete phenotypic clusters.
Collapse
|
34
|
Olson ME. Spandrels and trait delimitation: No such thing as "architectural constraint". Evol Dev 2019; 21:59-71. [PMID: 30618121 DOI: 10.1111/ede.12279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Forty years ago, Gould and Lewontin used the metaphor of a building's "spandrels" to highlight that organismal traits could be the inevitable consequence of organismal construction, with no alternative configurations possible. Because adaptation by natural selection requires variation, regarding a trait incapable of variation as an adaptation could be a serious error. Gould and Lewontin's exhortation spurred biologists' efforts to investigate biases and limitations in development in their studies of adaptation, a major methodological advance. But in terms of the metaphor itself, over the past 40 years there are virtually no examples of "spandrels" in the primary literature. Moreover, multiple serious confusions in the metaphor have been identified and clarified, for example, that the "spandrels" of San Marco are pendentives, and pendentives are perfect examples of adaptation. I look back over the sparse empirical fruits of the "spandrels" metaphor, and ask what the clarifications of the past 40 years mean for biological theory and practice. I conclude that if there is anything to be rescued from the clarified spandrels metaphor, it is not "constraint" at all. Instead, it is the still-unresolved issue of trait delimitation, which is how to parse organisms into subsets that are tractable and biologically appropriate for study.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
35
|
Nowak J, Frérot H, Faure N, Glorieux C, Liné C, Pourrut B, Pauwels M. Can zinc pollution promote adaptive evolution in plants? Insights from a one-generation selection experiment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5561-5572. [PMID: 30215761 PMCID: PMC6255711 DOI: 10.1093/jxb/ery327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Human activities generate environmental stresses that can lead plant populations to become extinct. Population survival would require the evolution of adaptive responses that increase tolerance to these stresses. Thus, in pseudometallophyte species that have colonized anthropogenic metalliferous habitats, the evolution of increased metal tolerance is expected in metallicolous populations. However, the mechanisms by which metal tolerance evolves remain unclear. In this study, parent populations were created from non-metallicolous families of Noccaea caerulescens. They were cultivated for one generation in mesocosms and under various levels of zinc (Zn) contamination to assess whether Zn in soil represents a selective pressure. Individual plant fitness estimates were used to create descendant populations, which were cultivated in controlled conditions with moderate Zn contamination to test for adaptive evolution in functional traits. The number of families showing high fitness estimates in mesocosms was progressively reduced with increasing Zn levels in soil, suggesting increasing selection for metal tolerance. In the next generation, adaptive evolution was suggested for some physiological and ecological traits in descendants of the most exposed populations, together with a significant decrease of Zn hyperaccumulation. Our results confirm experimentally that Zn alone can be a significant evolutionary pressure promoting adaptive divergence among populations.
Collapse
Affiliation(s)
- Julien Nowak
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Hélène Frérot
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Nathalie Faure
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Cédric Glorieux
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Clarisse Liné
- ISA, Laboratoire Sols et Environnement, Lille Cedex, France
| | | | - Maxime Pauwels
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| |
Collapse
|
36
|
Olson ME, Rosell JA, Zamora Muñoz S, Castorena M. Carbon limitation, stem growth rate and the biomechanical cause of Corner's rules. ANNALS OF BOTANY 2018; 122:583-592. [PMID: 29889257 PMCID: PMC6153482 DOI: 10.1093/aob/mcy089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/06/2018] [Indexed: 05/29/2023]
Abstract
Background and aims Corner's rules describe a global spectrum from large-leaved plants with thick, sparingly branched twigs with low-density stem tissues and thick piths to plants with thin, highly branched stems with high-density stem tissues and thin piths. The hypothesis was tested that, if similar crown areas fix similar amounts of carbon regardless of leaf size, then large-leaved species, with their distantly spaced leaves, require higher stem growth rates, lower stem tissue densities and stiffnesses, and therefore thicker twigs. Methods Structural equation models were used to test the compatibility of this hypothesis with a dataset on leaf size, shoot tip spacing, stem growth rate and dimensions, and tissue density and mechanics, sampling 55 species drawn from across the angiosperm phylogeny from a morphologically diverse dry tropical community. Key results Very good fit of structural equation models showed that the causal model is highly congruent with the data. Conclusions Given similar amounts of carbon to allocate to stem growth, larger-leaved species require greater leaf spacing and therefore greater stem extension rates and longer stems, in turn requiring lower-density, more flexible, stem tissues than small-leaved species. A given stem can have high resistance to bending because it is thick (has high second moment of area I) or because its tissues are stiff (high Young's modulus E), the so-called E-I trade-off. Because of the E-I trade-off, large-leaved species have fast stem growth rates, low stem tissue density and tissue stiffness, and thick twigs with wide piths and thick bark. The agreement between hypothesis and data in structural equation analyses strongly suggests that Corner's rules emerge as the result of selection favouring the avoidance of self-shading in the context of broadly similar rates of carbon fixation per unit crown area across species.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, México, Mexico
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, México, Mexico
| | - Salvador Zamora Muñoz
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar s/n de Ciudad Universitaria, México, Mexico
| | - Matiss Castorena
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, México, Mexico
| |
Collapse
|
37
|
Trejo L, Rosell JA, Olson ME. Nearly 200 years of sustained selection have not overcome the leaf area-stem size relationship in the poinsettia. Evol Appl 2018; 11:1401-1411. [PMID: 30151048 PMCID: PMC6099819 DOI: 10.1111/eva.12634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Organismal parts often covary in their proportions, a phenomenon known as allometry. One way of exploring the causes of widespread allometric patterns is with artificial selection, to test whether or not it is possible to move populations into "empty" allometric space not occupied by the wild type. Domesticated organisms have been subject to many generations of selection, making them ideal model systems. We used the domesticated Christmas poinsettia Euphorbia pulcherrima in combination with wild populations to examine the origin of the proportionality between leaf area and stem size, which scales predictably across nearly all plants. In accordance with the stated aims of breeders to produce more compact plants, we predicted that domesticated poinsettias would have greater leaf area for a given stem volume than the tall, lanky wild ancestors. Our data rejected this prediction, showing instead that domesticates have leaf area-stem volume relationships identical to the wild ancestors. Presumably the metabolic dependence between stems and leaves makes the leaf area-stem volume relationship difficult to overcome. The relative fixity of this relationship leads to predictable covariation in other traits: The fuller outlines of domestic poinsettias involve significantly shorter internodes, and given a constant leaf area-stem volume relationship, smaller individual leaf areas. At the same time, domestic poinsettias are subject to selection favoring breakage resistance, which is achieved via thicker stems for a given length rather than stiffer stem tissue resistance to bending. Our results show that domesticated poinsettias differ from wild plants in a suite of traits including leaf size, internode distances, and stem length-diameter relations, but despite over 200 years of selection favoring rounded outlines, there has been no change in the total leaf area-stem volume relationship, helping to predict which changes are likely achievable and which will not be under continued artificial selection and in the wild.
Collapse
Affiliation(s)
- Laura Trejo
- Laboratorio Regional de Biodiversidad y Cultivo de Tejidos VegetalesInstituto de Biología, Universidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Julieta A. Rosell
- Laboratorio Nacional de Ciencias de la SostenibilidadInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Mark E. Olson
- Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
38
|
|
39
|
Fehér Z, Mason K, Szekeres M, Haring E, Bamberger S, Páll‐Gergely B, Sólymos P. Range-constrained co-occurrence simulation reveals little niche partitioning among rock-dwelling Montenegrina land snails (Gastropoda: Clausiliidae). JOURNAL OF BIOGEOGRAPHY 2018; 45:1444-1457. [PMID: 29973747 PMCID: PMC6027963 DOI: 10.1111/jbi.13220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
AIM Taxon co-occurrence analysis is commonly used in ecology, but it has not been applied to range-wide distribution data of partly allopatric taxa because existing methods cannot differentiate between distribution-related effects and taxon interactions. Our first aim was to develop a taxon co-occurrence analysis method that is also capable of taking into account the effect of species ranges and can handle faunistic records from museum databases or biodiversity inventories. Our second aim was to test the independence of taxon co-occurrences of rock-dwelling gastropods at different taxonomic levels, with a special focus on the Clausiliidae subfamily Alopiinae, and in particular the genus Montenegrina. LOCATION Balkan Peninsula in south-eastern Europe (46N-36N, 13.5E-28E). METHODS We introduced a taxon-specific metric that characterizes the occurrence probability at a given location. This probability was calculated as a distance-weighted mean of the taxon's presence and absence records at all sites. We applied corrections to account for the biases introduced by varying sampling intensity in our dataset. Then we used probabilistic null-models to simulate taxon distributions under the null hypothesis of no taxon interactions and calculated pairwise and cumulated co-occurrences. Independence of taxon occurrences was tested by comparing observed co-occurrences to simulated values. RESULTS We observed significantly fewer co-occurrences among species and intra-generic lineages of Montenegrina than expected under the assumption of no taxon interaction. MAIN CONCLUSIONS Fewer than expected co-occurrences among species and intrageneric clades indicate that species divergence preceded niche partitioning. This suggests a primary role of non-adaptive processes in the speciation of rock-dwelling gastropods. The method can account for the effects of distributional constraints in range-wide datasets, making it suitable for testing ecological, biogeographical, or evolutionary hypotheses where interactions of partly allopatric taxa are in question.
Collapse
Affiliation(s)
- Zoltán Fehér
- Central Research LaboratoriesNatural History Museum ViennaViennaAustria
- 3rd Zoology DepartmentNatural History Museum ViennaViennaAustria
- Department of ZoologyHungarian Natural History MuseumBudapestHungary
| | - Katharina Mason
- Central Research LaboratoriesNatural History Museum ViennaViennaAustria
- 3rd Zoology DepartmentNatural History Museum ViennaViennaAustria
- Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Miklós Szekeres
- Institute of Plant BiologyBiological Research Centre of the Hungarian Academy of SciencesSzegedHungary
| | - Elisabeth Haring
- Central Research LaboratoriesNatural History Museum ViennaViennaAustria
- Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Sonja Bamberger
- Central Research LaboratoriesNatural History Museum ViennaViennaAustria
| | - Barna Páll‐Gergely
- Plant Protection InstituteCentre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
| | - Péter Sólymos
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
40
|
Goutte S, Dubois A, Howard SD, Márquez R, Rowley JJL, Dehling JM, Grandcolas P, Xiong RC, Legendre F. How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs. J Evol Biol 2017; 31:148-158. [PMID: 29150984 DOI: 10.1111/jeb.13210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/19/2017] [Accepted: 11/03/2017] [Indexed: 02/03/2023]
Abstract
Long-distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine-scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs' calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue.
Collapse
Affiliation(s)
- S Goutte
- Muséum national d'Histoire naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, Paris Cedex 05, France
| | - A Dubois
- Muséum national d'Histoire naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, Paris Cedex 05, France
| | - S D Howard
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - R Márquez
- Fonoteca Zoológica, Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - J J L Rowley
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia.,Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - J M Dehling
- Institut für Integrierte Naturwissenschaften, Abteilung Biologie, Universität Koblenz-Landau, Koblenz, Germany
| | - P Grandcolas
- Muséum national d'Histoire naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, Paris Cedex 05, France
| | - R C Xiong
- College of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - F Legendre
- Muséum national d'Histoire naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, Paris Cedex 05, France
| |
Collapse
|
41
|
Edwards EJ, Chatelet DS, Chen BC, Ong JY, Tagane S, Kanemitsu H, Tagawa K, Teramoto K, Park B, Chung KF, Hu JM, Yahara T, Donoghue MJ. Convergence, Consilience, and the Evolution of Temperate Deciduous Forests. Am Nat 2017; 190:S87-S104. [PMID: 28731827 DOI: 10.1086/692627] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The deciduous habit of northern temperate trees and shrubs provides one of the most obvious examples of convergent evolution, but how did it evolve? Hypotheses based on the fossil record posit that deciduousness evolved first in response to drought or darkness and preadapted certain lineages as cold climates spread. An alternative is that evergreens first established in freezing environments and later evolved the deciduous habit. We monitored phenological patterns of 20 species of Viburnum spanning tropical, lucidophyllous (subtropical montane and warm temperate), and cool temperate Asian forests. In lucidophyllous forests, all viburnums were evergreen plants that exhibited coordinated leaf flushes with the onset of the rainy season but varied greatly in the timing of leaf senescence. In contrast, deciduous species exhibited tight coordination of both flushing and senescence, and we found a perfect correlation between the deciduous habit and prolonged annual freezing. In contrast to previous stepwise hypotheses, a consilience of independent lines of evidence supports a lockstep model in which deciduousness evolved in situ, in parallel, and concurrent with a gradual cooling climate. A pervasive selective force combined with the elevated evolutionary accessibility of a particular response may explain the massive convergence of adaptive strategies that characterizes the world's biomes.
Collapse
|
42
|
Edwards EJ, Chatelet DS, Spriggs EL, Johnson ES, Schlutius C, Donoghue MJ. Correlation, causation, and the evolution of leaf teeth: A reply to Givnish and Kriebel. AMERICAN JOURNAL OF BOTANY 2017; 104:509-515. [PMID: 28428198 DOI: 10.3732/ajb.1700075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 05/25/2023]
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island 02912 USA
| | - David S Chatelet
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island 02912 USA
| | - Elizabeth L Spriggs
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106 USA
| | - Elissa S Johnson
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island 02912 USA
| | - Caroline Schlutius
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106 USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106 USA
| |
Collapse
|
43
|
Diogo R. Etho-Eco-Morphological Mismatches, an Overlooked Phenomenon in Ecology, Evolution and Evo-Devo That Supports ONCE (Organic Nonoptimal Constrained Evolution) and the Key Evolutionary Role of Organismal Behavior. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
44
|
Trumbo ST, Sikes DS, Philbrick PK. Parental care and competition with microbes in carrion beetles: a study of ecological adaptation. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|