1
|
Hending D. Cryptic species conservation: a review. Biol Rev Camb Philos Soc 2025; 100:258-274. [PMID: 39234845 PMCID: PMC11718601 DOI: 10.1111/brv.13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Cryptic species are groups of two or more taxa that were previously classified as single nominal species. Being almost morphologically indistinguishable, cryptic species have historically been hard to detect. Only through modern morphometric, genetic, and molecular analyses has the hidden biodiversity of cryptic species complexes been revealed. Cryptic diversity is now widely acknowledged, but unlike more recognisable, charismatic species, scientists face additional challenges when studying cryptic taxa and protecting their wild populations. Demographical and ecological data are vital to facilitate and inform successful conservation actions, particularly at the individual species level, yet this information is lacking for many cryptic species due to their recent taxonomic description and lack of research attention. The first part of this article summarises cryptic speciation and diversity, and explores the numerous barriers and considerations that conservation biologists must navigate to detect, study and manage cryptic species populations effectively. The second part of the article seeks to address how we can overcome the challenges associated with efficiently and non-invasively detecting cryptic species in-situ, and filling vital knowledge gaps that are currently inhibiting applied conservation. The final section discusses future directions, and suggests that large-scale, holistic, and collaborative approaches that build upon successful existing applications will be vital for cryptic species conservation. This article also acknowledges that sufficient data to implement effective species-specific conservation will be difficult to attain for many cryptic animals, and protected area networks will be vital for their conservation in the short term.
Collapse
Affiliation(s)
- Daniel Hending
- Department of BiologyUniversity of Oxford11a Mansfield RoadOxfordOX1 3SZUK
| |
Collapse
|
2
|
Pontarp M, Runemark A, Friberg M, Opedal ØH, Persson AS, Wang L, Smith HG. Evolutionary plant-pollinator responses to anthropogenic land-use change: impacts on ecosystem services. Biol Rev Camb Philos Soc 2024; 99:372-389. [PMID: 37866400 DOI: 10.1111/brv.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Agricultural intensification at field and landscape scales, including increased use of agrochemicals and loss of semi-natural habitats, is a major driver of insect declines and other community changes. Efforts to understand and mitigate these effects have traditionally focused on ecological responses. At the same time, adaptations to pesticide use and habitat fragmentation in both insects and flowering plants show the potential for rapid evolution. Yet we lack an understanding of how such evolutionary responses may propagate within and between trophic levels with ensuing consequences for conservation of species and ecological functions in agroecosystems. Here, we review the literature on the consequences of agricultural intensification on plant and animal evolutionary responses and interactions. We present a novel conceptualization of evolutionary change induced by agricultural intensification at field and landscape scales and emphasize direct and indirect effects of rapid evolution on ecosystem services. We exemplify by focusing on economically and ecologically important interactions between plants and pollinators. We showcase available eco-evolutionary theory and plant-pollinator modelling that can improve predictions of how agricultural intensification affects interaction networks, and highlight available genetic and trait-focused methodological approaches. Specifically, we focus on how spatial genetic structure affects the probability of propagated responses, and how the structure of interaction networks modulates effects of evolutionary change in individual species. Thereby, we highlight how combined trait-based eco-evolutionary modelling, functionally explicit quantitative genetics, and genomic analyses may shed light on conditions where evolutionary responses impact important ecosystem services.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Anna Runemark
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Lingzi Wang
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
- School of Mathematical Sciences, University of Southampton, 58 Salisbury Rd, Southampton, SO17 1BJ, UK
| | - Henrik G Smith
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
3
|
Glass JR, Harrington RC, Cowman PF, Faircloth BC, Near TJ. Widespread sympatry in a species-rich clade of marine fishes (Carangoidei). Proc Biol Sci 2023; 290:20230657. [PMID: 37909084 PMCID: PMC10618865 DOI: 10.1098/rspb.2023.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.
Collapse
Affiliation(s)
- Jessica R. Glass
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Richard C. Harrington
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Peter F. Cowman
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland 4810, Australia
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, Division of Vertebrate Zoology. New Haven, CT 06520, USA
| |
Collapse
|
4
|
Jang YT, Brännström Å, Pontarp M. The interactive effects of environmental gradient and dispersal shape spatial phylogenetic patterns. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1037980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionThe emergence and maintenance of biodiversity include interacting environmental conditions, organismal adaptation to such conditions, and dispersal. To understand and quantify such ecological, evolutionary, and spatial processes, observation and interpretation of phylogenetic relatedness across space (e.g., phylogenetic beta diversity) is arguably a way forward as such patterns contain signals from all the processes listed above. However, it remains challenging to extract information about complex eco-evolutionary and spatial processes from phylogenetic patterns.MethodsWe link environmental gradients and organismal dispersal with phylogenetic beta diversity using a trait-based and eco-evolutionary model of diversification along environmental gradients. The combined effect of the environment and dispersal leads to distinct phylogenetic patterns between subsets of species and across geographical distances.Results and discussionSteep environmental gradients combined with low dispersal lead to asymmetric phylogenies, a high phylogenetic beta diversity, and the phylogenetic diversity between communities increases linearly along the environmental gradient. High dispersal combined with a less steep environmental gradient leads to symmetric phylogenies, low phylogenetic beta diversity, and the phylogenetic diversity between communities along the gradient increases in a sigmoidal form. By disentangling the eco-evolutionary mechanisms that link such interacting environment and dispersal effects and community phylogenetic patterns, our results improve understanding of biodiversity in general and help interpretation of observed phylogenetic beta diversity.
Collapse
|
5
|
Lamarins A, Fririon V, Folio D, Vernier C, Daupagne L, Labonne J, Buoro M, Lefèvre F, Piou C, Oddou‐Muratorio S. Importance of interindividual interactions in eco-evolutionary population dynamics: The rise of demo-genetic agent-based models. Evol Appl 2022; 15:1988-2001. [PMID: 36540635 PMCID: PMC9753837 DOI: 10.1111/eva.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
The study of eco-evolutionary dynamics, that is of the intertwinning between ecological and evolutionary processes when they occur at comparable time scales, is of growing interest in the current context of global change. However, many eco-evolutionary studies overlook the role of interindividual interactions, which are hard to predict and yet central to selective values. Here, we aimed at putting forward models that simulate interindividual interactions in an eco-evolutionary framework: the demo-genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the feedback loop between ecological and evolutionary processes. Being agent-based, DG-ABMs follow populations of interacting individuals with sets of traits that vary among the individuals. We argue that the ability of DG-ABMs to take into account the genetic heterogeneity-that affects individual decisions/traits related to local and instantaneous conditions-differentiates them from analytical models, another type of model largely used by evolutionary biologists to investigate eco-evolutionary feedback loops. Based on the review of studies employing DG-ABMs and explicitly or implicitly accounting for competitive, cooperative or reproductive interactions, we illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, yet pressing, questions in evolutionary ecology across various levels of organization. By jointly modelling the effects of management practices and other eco-evolutionary processes on interindividual interactions and population dynamics, DG-ABMs are also effective prospective and decision support tools to evaluate the short- and long-term evolutionary costs and benefits of management strategies and to assess potential trade-offs. Finally, we provide a list of the recent practical advances of the ABM community that should facilitate the development of DG-ABMs.
Collapse
Affiliation(s)
- Amaïa Lamarins
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut AgroUniv Pau & Pays Adour/E2S UPPARennesFrance
| | - Victor Fririon
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Dorinda Folio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Camille Vernier
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Léa Daupagne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Jacques Labonne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Mathieu Buoro
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - François Lefèvre
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Cyril Piou
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Sylvie Oddou‐Muratorio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
6
|
Ranjan R, Klausmeier CA. How the resource supply distribution structures competitive communities. J Theor Biol 2022; 538:111054. [DOI: 10.1016/j.jtbi.2022.111054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
|
7
|
Pontarp M. Ecological opportunity and adaptive radiations reveal eco-evolutionary perspectives on community structure in competitive communities. Sci Rep 2021; 11:19560. [PMID: 34599238 PMCID: PMC8486866 DOI: 10.1038/s41598-021-98842-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
It is well known that ecological and evolutionary processes act in concert while shaping biological communities. Diversification can, for example, arise through ecological opportunity and adaptive radiations and competition play an essential role in such diversification. Eco-evolutionary components of competition are thus important for our understanding of community assembly. Such understanding in turn facilitates interpretation of trait- and phylogenetic community patterns in the light of the processes that shape them. Here, I investigate the link between competition, diversification, and trait- and phylogenetic- community patterns using a trait-based model of adaptive radiations. I evaluate the paradigm that competition is an ecological process that drives large trait- and phylogenetic community distances through limiting similarity. Contrary to the common view, I identify low or in some cases counterintuitive relationships between competition and mean phylogenetic distances due to diversification late in evolutionary time and peripheral parts of niche space when competition is weak. Community patterns as a function of competition also change as diversification progresses as the relationship between competition and trait similarity among species can flip from positive to negative with time. The results thus provide novel perspectives on community assembly and emphasize the importance of acknowledging eco-evolutionary processes when interpreting community data.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University Biology Building, Sölvegatan 35, 223 62, Lund, Sweden.
| |
Collapse
|
8
|
Hackel J, Sanmartín I. Modelling the tempo and mode of lineage dispersal. Trends Ecol Evol 2021; 36:1102-1112. [PMID: 34462154 DOI: 10.1016/j.tree.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Lineage dispersal is a basic macroevolutionary process shaping the distribution of biodiversity. Probabilistic approaches in biogeography, epidemiology, and macroecology often model dispersal as a background process to explain extant or infer past distributions. We propose framing questions around the mode, timing, rate, and direction of lineage dispersal itself, from a lineage- or geography-centric perspective. We review available methods for modelling lineage dispersal. Likelihood- and simulation-based approaches to modelling dispersal have made progress in accounting for the variation of lineage dispersal over space, time, and branches of a phylogeny and its interaction with diversification. Methodological improvements, guided by a focus on model adequacy, will lead to more realistic models that can answer fundamental questions about the tempo and mode of lineage dispersal.
Collapse
Affiliation(s)
- Jan Hackel
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, UK.
| | | |
Collapse
|
9
|
Pannetier T, Martinez C, Bunnefeld L, Etienne RS. Branching patterns in phylogenies cannot distinguish diversity-dependent diversification from time-dependent diversification. Evolution 2020; 75:25-38. [PMID: 33205832 PMCID: PMC7898657 DOI: 10.1111/evo.14124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 01/08/2023]
Abstract
One of the primary goals of macroevolutionary biology has been to explain general trends in long‐term diversity patterns, including whether such patterns correspond to an upscaling of processes occurring at lower scales. Reconstructed phylogenies often show decelerated lineage accumulation over time. This pattern has often been interpreted as the result of diversity‐dependent (DD) diversification, where the accumulation of species causes diversification to decrease through niche filling. However, other processes can also produce such a slowdown, including time dependence without diversity dependence. To test whether phylogenetic branching patterns can be used to distinguish these two mechanisms, we formulated a time‐dependent, but diversity‐independent model that matches the expected diversity through time of a DD model. We simulated phylogenies under each model and studied how well likelihood methods could recover the true diversification mode. Standard model selection criteria always recovered diversity dependence, even when it was not present. We correct for this bias by using a bootstrap method and find that neither model is decisively supported. This implies that the branching pattern of reconstructed trees contains insufficient information to detect the presence or absence of diversity dependence. We advocate that tests encompassing additional data, for example, traits or range distributions, are needed to evaluate how diversity drives macroevolutionary trends.
Collapse
Affiliation(s)
- Théo Pannetier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9712 CP, The Netherlands.,Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - César Martinez
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9712 CP, The Netherlands
| | - Lynsey Bunnefeld
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9712 CP, The Netherlands
| |
Collapse
|
10
|
Pontarp M. Ecological opportunity and upward prey-predator radiation cascades. Sci Rep 2020; 10:10484. [PMID: 32591632 PMCID: PMC7320021 DOI: 10.1038/s41598-020-67181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
A general goal in community ecology and evolutionary biology is to understand how diversity has arisen. In our attempts to reach such goals we become increasingly aware of interacting ecological and evolutionary processes shaping biodiversity. Ecological opportunity and adaptive radiations can, for example, drive diversification in competitive communities but little is known about how such processes propagate through trophic levels in adaptive radiation cascades. I use an eco-evolutionary model of trait-based ecological interactions and micro-evolutionary processes to investigate the macro-evolutionary aspects of predator diversification in such cascades. Prey diversification facilitates predator radiation through predator feeding opportunity and disruptive selection. Predator radiation, however, often disconnects from the prey radiation as the diversification progresses. Only when predators have an intermediate niche width, high predatory efficiency, and high evolutionary potential can radiation cascades be maintained over macro-evolutionary time scales. These results provide expectations for predator response to prey divergence and insight into eco-evolutionary feedbacks between trophic levels. Such expectations are crucial for future studies that aim for a better understanding of how diversity is generated and maintained in complex communities.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
| |
Collapse
|
11
|
Kirschel ANG, Nwankwo EC, Seal N, Grether GF. Time spent together and time spent apart affect song, feather colour and range overlap in tinkerbirds. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Most studies on the processes driving evolutionary diversification highlight the importance of genetic drift in geographical isolation and natural selection across ecological gradients. Direct interactions among related species have received much less attention, but they can lead to character displacement, with recent research identifying patterns of displacement attributed to either ecological or reproductive processes. Together, these processes could explain complex, trait-specific patterns of diversification. Few studies, however, have examined the possible effects of these processes together or compared the divergence in multiple traits between interacting species among contact zones. Here, we show how traits of two Pogoniulus tinkerbird species vary among regions across sub-Saharan Africa. However, in addition to variation between regions consistent with divergence in refugial isolation, both song and morphology diverge between the species where they coexist. In West Africa, where the species are more similar in plumage, there is possible competitive or reproductive exclusion. In Central and East Africa, patterns of variation are consistent with agonistic character displacement. Molecular analyses support the hypothesis that differences in the age of interaction among regions can explain why species have evolved phenotypic differences and coexist in some regions but not others. Our findings suggest that competitive interactions between species and the time spent interacting, in addition to the time spent in refugial isolation, play important roles in explaining patterns of species diversification.
Collapse
Affiliation(s)
- Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nadya Seal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Wickman J, Diehl S, Brännström Å. Evolution of resource specialisation in competitive metacommunities. Ecol Lett 2019; 22:1746-1756. [PMID: 31389134 PMCID: PMC6852178 DOI: 10.1111/ele.13338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/20/2019] [Accepted: 06/12/2019] [Indexed: 02/03/2023]
Abstract
Spatial environmental heterogeneity coupled with dispersal can promote ecological persistence of diverse metacommunities. Does this premise hold when metacommunities evolve? Using a two-resource competition model, we studied the evolution of resource-uptake specialisation as a function of resource type (substitutable to essential) and shape of the trade-off between resource uptake affinities (generalist- to specialist-favouring). In spatially homogeneous environments, evolutionarily stable coexistence of consumers is only possible for sufficiently substitutable resources and specialist-favouring trade-offs. Remarkably, these same conditions yield comparatively low diversity in heterogeneous environments, because they promote sympatric evolution of two opposite resource specialists that, together, monopolise the two resources everywhere. Consumer diversity is instead maximised for intermediate trade-offs and clearly substitutable or clearly essential resources, where evolved metacommunities are characterised by contrasting selection regimes. Taken together, our results present new insights into resource-competition-mediated evolutionarily stable diversity in homogeneous and heterogeneous environments, which should be applicable to a wide range of systems.
Collapse
Affiliation(s)
- Jonas Wickman
- Integrated Science Lab, Department of Mathematics and Mathematical StatisticsUmeå UniversitySE‐90187UmeåSweden
| | - Sebastian Diehl
- Integrated Science Lab, Department of Ecology and Environmental ScienceUmeå UniversitySE‐90187UmeåSweden
| | - Åke Brännström
- Integrated Science Lab, Department of Mathematics and Mathematical StatisticsUmeå UniversitySE‐90187UmeåSweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems Analysis (IIASA)Schlossplatz12361LaxenburgAustria
| |
Collapse
|
13
|
Pontarp M, Petchey OL. Ecological opportunity and predator-prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations. Proc Biol Sci 2019. [PMID: 29514970 PMCID: PMC5879621 DOI: 10.1098/rspb.2017.2550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Pontarp M, Brännström Å, Petchey OL. Inferring community assembly processes from macroscopic patterns using dynamic eco‐evolutionary models and Approximate Bayesian Computation (ABC). Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikael Pontarp
- Department of BiologyLund University Lund Sweden
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
- Department of Ecology and Environmental ScienceUmeå University Umeå Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical StatisticsUmeå University Umeå Sweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| |
Collapse
|
15
|
Pontarp M, Bunnefeld L, Cabral JS, Etienne RS, Fritz SA, Gillespie R, Graham CH, Hagen O, Hartig F, Huang S, Jansson R, Maliet O, Münkemüller T, Pellissier L, Rangel TF, Storch D, Wiegand T, Hurlbert AH. The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends Ecol Evol 2018; 34:211-223. [PMID: 30591209 DOI: 10.1016/j.tree.2018.11.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022]
Abstract
The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact that empirical patterns are often consistent with multiple explanations. To address this issue, we synthesize current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to assess the relative importance of different processes for generating the LDG.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Lynsey Bunnefeld
- Biological & Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland
| | - Juliano Sarmento Cabral
- Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), University of Würzburg, Emil-Fischer-Str. 32, 97074 Würzburg, Germany
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700 CC Groningen, The Netherlands
| | - Susanne A Fritz
- Senckenberg Biodiversity and Climate Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, D-60325 Frankfurt, Germany; Institute of Ecology, Evolution and Diversity, Goethe-University, D-60438 Frankfurt, Germany
| | - Rosemary Gillespie
- Environmental Science, 130 Mulford Hall, University of California, Berkeley, CA 94720, USA
| | | | - Oskar Hagen
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland; Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Shan Huang
- Senckenberg Biodiversity Research Centre, Senckenberganlage 25, 60327, Frankfurt am Main, Germany
| | - Roland Jansson
- Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden
| | - Odile Maliet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Tamara Münkemüller
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'ÉcologieAlpine, F-38000 Grenoble, France
| | - Loïc Pellissier
- Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland; Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Thiago F Rangel
- Department of Ecology, Federal University of Goiás, Campus Samambaia, Goiânia GO, 74690-900, Brazil
| | - David Storch
- Center for Theoretical Study, Charles University and Czech Academy of Sciences, Jilská 1, 110 00 Praha 1, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Praha 2, Czech Republic
| | - Thorsten Wiegand
- Department of Ecological Modeling, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Allen H Hurlbert
- Department of Biology and Curriculum in Environment and Ecology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nat Commun 2018; 9:3013. [PMID: 30068945 PMCID: PMC6070539 DOI: 10.1038/s41467-018-05419-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
How ecological interactions, genetic processes, and environmental variability jointly shape the evolution of species diversity remains a challenging problem in biology. We developed an individual-based model of clade diversification to predict macroevolutionary dynamics when resource competition, genetic differentiation, and landscape fluctuations interact. Diversification begins with a phase of geographic adaptive radiation. Extinction rates rise sharply at the onset of the next phase. In this phase of niche self-structuring, speciation and extinction processes, albeit driven by biotic mechanisms (competition and hybridization), have essentially constant rates, determined primarily by the abiotic pace of landscape dynamics. The final phase of diversification begins when intense competition prevents dispersing individuals from establishing new populations. Species’ ranges shrink, causing negative diversity-dependence of speciation rates. These results show how ecological and microevolutionary processes shape macroevolutionary dynamics and rates; they caution against the notion of ecological limits to diversity, and suggest new directions for the phylogenetic analysis of diversification. The history and patterns of species diversity are shaped by a variety of ecological and evolutionary factors. Here, the authors develop a computational model to predict clade diversification dynamics and rates of speciation and extinction under the influences of resource competition, genetic differentiation, and random landscape fluctuation.
Collapse
|
17
|
Jezkova T, Wiens JJ. Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes). Mol Ecol 2018; 27:2754-2769. [DOI: 10.1111/mec.14717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Tereza Jezkova
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
- Department of Biology Miami University Oxford Ohio
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
| |
Collapse
|
18
|
Weber MG, Strauss SY. Coexistence in Close Relatives: Beyond Competition and Reproductive Isolation in Sister Taxa. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-112414-054048] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marjorie G. Weber
- Center for Population Biology, University of California, Davis, California 95616; ,
| | - Sharon Y. Strauss
- Center for Population Biology, University of California, Davis, California 95616; ,
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
19
|
Briscoe Runquist R, Grossenbacher D, Porter S, Kay K, Smith J. Pollinator-mediated assemblage processes in California wildflowers. J Evol Biol 2016; 29:1045-58. [PMID: 26864797 DOI: 10.1111/jeb.12845] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Abstract
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator-mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co-occurrence patterns to determine the role of pollinator-mediated processes in structuring plant communities dominated by congeners. We surveyed three species-rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co-flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44-48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co-occurrence. Together, it appears that pollinators influence community assemblage in these three clades.
Collapse
Affiliation(s)
- R Briscoe Runquist
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA.,Department of Plant Biology, University of Minnesota, 250 Biological Sciences, St. Paul, MN, USA
| | - D Grossenbacher
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA.,School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - S Porter
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA.,School of Biological Sciences, Washington State University, Vancouver, Vancouver, WA, USA
| | - K Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - J Smith
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Huang JP, Knowles LL. The Species versus Subspecies Conundrum: Quantitative Delimitation from Integrating Multiple Data Types within a Single Bayesian Approach in Hercules Beetles. Syst Biol 2015; 65:685-99. [PMID: 26681696 DOI: 10.1093/sysbio/syv119] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/10/2015] [Indexed: 11/13/2022] Open
Abstract
With the recent attention and focus on quantitative methods for species delimitation, an overlooked but equally important issue regards what has actually been delimited. This study investigates the apparent arbitrariness of some taxonomic distinctions, and in particular how species and subspecies are assigned. Specifically, we use a recently developed Bayesian model-based approach to show that in the Hercules beetles (genus Dynastes) there is no statistical difference in the probability that putative taxa represent different species, irrespective of whether they were given species or subspecies designations. By considering multiple data types, as opposed to relying exclusively on genetic data alone, we also show that both previously recognized species and subspecies represent a variety of points along the speciation spectrum (i.e., previously recognized species are not systematically further along the continuum than subspecies). For example, based on evolutionary models of divergence, some taxa are statistically distinguishable on more than one axis of differentiation (e.g., along both phenotypic and genetic dimensions), whereas other taxa can only be delimited statistically from a single data type. Because both phenotypic and genetic data are analyzed in a common Bayesian framework, our study provides a framework for investigating whether disagreements in species boundaries among data types reflect (i) actual discordance with the actual history of lineage splitting, or instead (ii) differences among data types in the amount of time required for differentiation to become apparent among the delimited taxa. We discuss what the answers to these questions imply about what characters are used to delimit species, as well as the diverse processes involved in the origin and maintenance of species boundaries. With this in mind, we then reflect more generally on how quantitative methods for species delimitation are used to assign taxonomic status.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Department of Ecology and Evolutionary Biology, 1109 Geddes Avenue, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, 1109 Geddes Avenue, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| |
Collapse
|