1
|
Atkinson D, Leighton G, Berenbrink M. Controversial Roles of Oxygen in Organismal Responses to Climate Warming. THE BIOLOGICAL BULLETIN 2022; 243:207-219. [PMID: 36548977 DOI: 10.1086/722471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractDespite the global ecological importance of climate change, controversy surrounds how oxygen affects the fate of aquatic ectotherms under warming. Disagreements extend to the nature of oxygen bioavailability and whether oxygen usually limits growth under warming, explaining smaller adult size. These controversies affect two influential hypotheses: gill oxygen limitation and oxygen- and capacity-limited thermal tolerance. Here, we promote deeper integration of physiological and evolutionary mechanisms. We first clarify the nature of oxygen bioavailability in water, developing a new mass-transfer model that can be adapted to compare warming impacts on organisms with different respiratory systems and flow regimes. By distinguishing aerobic energy costs of moving oxygen from environment to tissues from costs of all other functions, we predict a decline in energy-dependent fitness during hypoxia despite approximately constant total metabolic rate before reaching critically low environmental oxygen. A new measure of oxygen bioavailability that keeps costs of generating water convection constant predicts a higher thermal sensitivity of oxygen uptake in an amphipod model than do previous oxygen supply indices. More importantly, by incorporating size- and temperature-dependent costs of generating water flow, we propose that oxygen limitation at different body sizes and temperatures can be modeled mechanistically. We then report little evidence for oxygen limitation of growth and adult size under benign warming. Yet occasional oxygen limitation, we argue, may, along with other selective pressures, help maintain adaptive plastic responses to warming. Finally, we discuss how to overcome flaws in a commonly used growth model that undermine predictions of warming impacts.
Collapse
|
2
|
Pettersen AK, Schuster L, Metcalfe NB. The Evolution of Offspring Size: a Metabolic Scaling Perspective. Integr Comp Biol 2022; 62:icac076. [PMID: 35657724 PMCID: PMC9724151 DOI: 10.1093/icb/icac076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Size at the start of life reflects the initial per offspring parental investment - including both the embryo and the nutrients supplied to it. Initial offspring size can vary substantially both within and among species. Within species, increasing offspring size can enhance growth, reproduction, competitive ability, and reduce susceptibility to predation and starvation later in life, that can ultimately increase fitness. Previous work has suggested that the fitness benefits of larger offspring size may be driven by energy expenditure during development - or how offspring metabolic rate scales with offspring size. Despite the importance of early life energy expenditure in shaping later life fitness trajectories, consideration of among-species scaling of metabolic rate at the time of birth as a potential source of general metabolic scaling patterns has been overlooked by theory. Here we review the patterns and processes of energy expenditure at the start of life when mortality is often greatest. We compile existing data on metabolic rate and offspring size for 191 ectotherm species spanning eight phyla and use phylogenetically-controlled methods to quantify among-species scaling patterns. Across a 109-fold mass range, we find that offspring metabolic rate scales hypometrically with size, with an overall scaling exponent of 0.66. This exponent varies across ontogenetic stage and feeding activity, but is consistently hypometric, including across environmental temperatures. Despite differences in parental investment, life history and habitat, large-offspring species use relatively less energy as a proportion of size, compared with small-offspring species. Greater residual energy can be used to fuel the next stages of life, particularly in low resource environments. Based on available evidence, we conclude that, while large knowledge gaps remain, the evolution of offspring size is likely shaped by context-dependent selection acting on correlated traits, including metabolic rates maintaining hypometric scaling, that operates within broader physical constraints.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G20 0TH, UK
| | - Lukas Schuster
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G20 0TH, UK
| |
Collapse
|
3
|
Walczyńska A, Serra M. Body size variability across habitats in the Brachionus plicatilis cryptic species complex. Sci Rep 2022; 12:6912. [PMID: 35484290 PMCID: PMC9051053 DOI: 10.1038/s41598-022-10638-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
The body size response to temperature is one of the most recognizable but still poorly understood ecological phenomena. Other covarying environmental factors are frequently invoked as either affecting the strength of that response or even driving this pattern. We tested the body size response in five species representing the Brachionus plicatilis cryptic species complex, inhabiting 10 brackish ponds with different environmental characteristics. Principal Component Analysis selected salinity and oxygen concentration as the most important factors, while temperature and pH were less influential in explaining variation of limnological parameters. Path analysis showed a positive interclonal effect of pH on body size. At the interspecific level, the size response was species- and factor-dependent. Under the lack of a natural thermo-oxygenic relationship, the negative response of size to temperature, expected according to 'size-to-temperature response' rules, disappeared, but a positive response of size to oxygen, expected according to predictions selecting oxygen as a factor actually driving these rules, remained. Our results confirm the crucial role of oxygen in determining the size-to-temperature patterns observed in the field.
Collapse
Affiliation(s)
- Aleksandra Walczyńska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Manuel Serra
- Institute Cavanilles for Biodiversity and Evolutionary Biology, University of Valencia, A.O. 2085, 46071, Valencia, Spain
| |
Collapse
|
4
|
Woods HA, Moran AL. Reconsidering the Oxygen-Temperature Hypothesis of Polar Gigantism: Successes, Failures, and Nuance. Integr Comp Biol 2021; 60:1438-1453. [PMID: 32573680 DOI: 10.1093/icb/icaa088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
"Polar gigantism" describes a biogeographic pattern in which many ectotherms in polar seas are larger than their warmer-water relatives. Although many mechanisms have been proposed, one idea-the oxygen-temperature hypothesis-has received significant attention because it emerges from basic biophysical principles and is appealingly straightforward and testable. Low temperatures depress metabolic demand for oxygen more than supply of oxygen from the environment to the organism. This creates a greater ratio of oxygen supply to demand, releasing polar organisms from oxygen-based constraints on body size. Here we review evidence for and against the oxygen-temperature hypothesis. Some data suggest that larger-bodied taxa live closer to an oxygen limit, or that rising temperatures can challenge oxygen delivery systems; other data provide no evidence for interactions between body size, temperature, and oxygen sufficiency. We propose that these findings can be partially reconciled by recognizing that the oxygen-temperature hypothesis focuses primarily on passive movement of oxygen, implicitly ignoring other important processes including ventilation of respiratory surfaces or internal transport of oxygen by distribution systems. Thus, the hypothesis may apply most meaningfully to organisms with poorly developed physiological systems (eggs, embryos, egg masses, juveniles, or adults without mechanisms for ventilating internal or external surfaces). Finally, most tests of the oxygen-temperature hypothesis have involved short-term experiments. Many organisms can mount effective responses to physiological challenges over short time periods; however, the energetic cost of doing so may have impacts that appear only in the longer term. We therefore advocate a renewed focus on long-term studies of oxygen-temperature interactions.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Fujita J, Drumm DT, Iguchi A, Tominaga O, Kai Y, Yamashita Y. Small vs. large eggs: comparative population connectivity and demographic history along a depth gradient in deep-sea crangonid Argis shrimps. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The crangonid shrimps Argis hozawai, A. lar and A. toyamaensis, co-distributed in the Sea of Japan, exhibit intriguing differences in geographical and bathymetric distributions and in reproductive biology. Argis hozawai (150–250 m depth) and A. lar (200–300 m) are broadly distributed in the north-western Pacific Ocean and spawn relatively large numbers of small eggs, whereas A. toyamaensis (250–2000 m) is distributed in the Sea of Japan and spawns a small number of large eggs. We examined the relationship between egg size and dispersal patterns in the deep sea by comparing genetic population structures using mitochondrial DNA sequence variation. We found little or no genetic divergence within the Sea of Japan for A. hozawai and A. lar, whereas there was a slight but significantly higher genetic differentiation in A. toyamaensis. This suggests that A. toyamaensis has lower dispersal ability than A. hozawai and A. lar, and therefore might maximize larval survival through larger size at hatching, with either direct or abbreviated larval development, to adapt to the deep-sea environment in the Sea of Japan. We also detected the effects of drastic environmental changes during the Pleistocene glacial periods on their demographic processes in the Sea of Japan.
Collapse
Affiliation(s)
- Junta Fujita
- Kyoto Prefectural Higashi-Maizuru High School, 766, Sengenji, Maizuru, Kyoto, Japan
| | | | - Akira Iguchi
- Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Osamu Tominaga
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Yoshiaki Kai
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto, Japan
| | - Yoh Yamashita
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto, Japan
| |
Collapse
|
6
|
Telemeco RS, Gangloff EJ. Introduction to the special issue-Beyond CT MAX and CT MIN : Advances in studying the thermal limits of reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:5-12. [PMID: 33544981 DOI: 10.1002/jez.2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/27/2023]
Abstract
Two themes emerging from the special issue "Beyond CTMAX and CTMIN : Advances in Studying the Thermal Limits of Reptiles and Amphibians" are: (1) the need to identify mechanisms that determine the shape of thermal performance curves and (2) how these curves can be best used predictively.
Collapse
Affiliation(s)
- Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, California, USA
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
7
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
8
|
Cornejo-Páramo P, Lira-Noriega A, Ramírez-Suástegui C, Méndez-de-la-Cruz FR, Székely T, Urrutia AO, Cortez D. Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation. BMC Evol Biol 2020; 20:103. [PMID: 32807071 PMCID: PMC7433102 DOI: 10.1186/s12862-020-01671-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Vertebrates exhibit diverse sex determination systems and reptiles stand out by having highly variable sex determinations that include temperature-dependent and genotypic sex determination (TSD and GSD, respectively). Theory predicts that populations living in either highly variable or cold climatic conditions should evolve genotypic sex determination to buffer the populations from extreme sex ratios, yet these fundamental predictions have not been tested across a wide range of taxa. Results Here, we use phylogenetic analyses of 213 reptile species representing 38 families (TSD = 101 species, GSD = 112 species) and climatic data to compare breeding environments between reptiles with GSD versus TSD. We show that GSD and TSD are confronted with the same level of climatic fluctuation during breeding seasons. However, TSD reptiles are significantly associated with warmer climates. We found a strong selection on the breeding season length that minimises exposure to cold and fluctuating climate. Phylogenetic path analyses comparing competing evolutionary hypotheses support that transitions in sex determination systems influenced the ambient temperature at which the species reproduces and nests. In turn, this interaction affects other variables such as the duration of the breeding season and life-history traits. Conclusions Taken together, our results challenge long-standing hypotheses about the association between sex determination and climate variability. We also show that ambient temperature is important during breeding seasons and it helps explain the effects of sex determination systems on the geographic distribution of extant reptile species.
Collapse
Affiliation(s)
- Paola Cornejo-Páramo
- Center for Genomics Sciences, UNAM, CP62210, Cuernavaca, Mexico.,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrés Lira-Noriega
- CONACYT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
| | - Ciro Ramírez-Suástegui
- Center for Genomics Sciences, UNAM, CP62210, Cuernavaca, Mexico.,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. .,Institute of Ecology, UNAM, 04510, Mexico City, Mexico.
| | - Diego Cortez
- Center for Genomics Sciences, UNAM, CP62210, Cuernavaca, Mexico.
| |
Collapse
|
9
|
Ten Brink H, Onstein RE, de Roos AM. Habitat deterioration promotes the evolution of direct development in metamorphosing species. Evolution 2020; 74:1826-1850. [PMID: 32524589 PMCID: PMC7496874 DOI: 10.1111/evo.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022]
Abstract
Although metamorphosis is widespread in the animal kingdom, several species have evolved life‐cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size‐structured consumer‐resource models in conjunction with the adaptive‐dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Fish Ecology & Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Renske E Onstein
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - André M de Roos
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GB, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Rollinson N, Nilsson-Örtman V, Rowe L. Density-dependent offspring interactions do not explain macroevolutionary scaling of adult size and offspring size. Evolution 2019; 73:2162-2174. [PMID: 31487043 DOI: 10.1111/evo.13839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Abstract
Most life forms exhibit a correlated evolution of adult size (AS) and size at independence (SI), giving rise to AS-SI scaling relationships. Theory suggests that scaling arises because relatively large adults have relatively high reproductive output, resulting in strong density-dependent competition in early life, where large size at independence provides a competitive advantage to juveniles. The primary goal of our study is to test this density hypothesis, using large datasets that span the vertebrate tree of life (fishes, amphibians, reptiles, birds, and mammals). Our secondary goal is to motivate new hypotheses for AS-SI scaling by exploring how subtle variation in life-histories among closely related species is associated with variation in scaling. Our phylogenetically informed comparisons do not support the density hypothesis. Instead, exploration of AS-SI scaling among life-history variants suggests that steeper AS-SI scaling slopes are associated with evolutionary increases in size at independence. We suggest that a positive association between size at independence and juvenile growth rate may represent an important mechanism underlying AS-SI scaling, a mechanism that has been underappreciated by theorists. If faster juvenile growth is a consequence of evolutionary increases in size at independence, this may help offset the cost of delayed maturation, leading to steeper AS-SI scaling slopes.
Collapse
Affiliation(s)
- Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.,School of the Environment, University of Toronto, Toronto, Ontario, M5S 3E8, Canada
| | - Viktor Nilsson-Örtman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.,Department of Biology, Lund University, Lund, 223 62, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.,Swedish Collegium for Advanced Study, Uppsala, 752 38, Sweden
| |
Collapse
|
11
|
Nygård M, Kvarnemo C, Ahnesjö I, Braga Goncalves I. Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects. Behav Ecol 2019; 30:1451-1460. [PMID: 31592213 PMCID: PMC6776002 DOI: 10.1093/beheco/arz101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 06/08/2019] [Indexed: 01/27/2023] Open
Abstract
In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. Studying variation in parental care quality within a species and which factors may affect it can, therefore, shed important light on patterns of mate choice and other reproductive decisions observed in nature. Using Syngnathus typhle, a pipefish species with extensive uniparental male care, with embryos developing inside a brood pouch during a lengthy pregnancy, we assessed how egg size (which correlates positively with female size), male size, and water temperature affect brooding traits that relate to male care quality, all measured on day 18, approximately 1/3, of the brooding period. We found that larger males brooded eggs at lower densities, and their embryos were heavier than those of small males independent of initial egg size. However, large males had lower embryo survival relative to small males. We found no effect of egg size or of paternal size on within-pouch oxygen levels, but oxygen levels were significantly higher in the bottom than the middle section of the pouch. Males that brooded at higher temperatures had lower pouch oxygen levels presumably because of higher embryo developmental rates, as more developed embryos consume more oxygen. Together, our results suggest that small and large males follow distinct paternal strategies: large males positively affect embryo size whereas small males favor embryo survival. As females prefer large mates, offspring size at independence may be more important to female fitness than offspring survival during development.
Collapse
Affiliation(s)
- Malin Nygård
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | | |
Collapse
|
12
|
Trochet A, Deluen M, Bertrand R, Calvez O, Martínez-Silvestre A, Verdaguer-Foz I, Mossoll-Torres M, Souchet J, Darnet E, Le Chevalier H, Guillaume O, Aubret F. Body Size Increases with Elevation in Pyrenean Newts (Calotriton asper). HERPETOLOGICA 2019. [DOI: 10.1655/d-18-00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Audrey Trochet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Marine Deluen
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Romain Bertrand
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Olivier Calvez
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | | | - Isabel Verdaguer-Foz
- CRARC (Catalonia Reptile and Amphibian Rescue Center), 08783 Masquefa, Barcelona, Spain
| | | | - Jérémie Souchet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Elodie Darnet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Hugo Le Chevalier
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Olivier Guillaume
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Fabien Aubret
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| |
Collapse
|
13
|
Santilli J, Rollinson N. Toward a general explanation for latitudinal clines in body size among chelonians. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jessica Santilli
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Gangloff EJ, Telemeco RS. High Temperature, Oxygen, and Performance: Insights from Reptiles and Amphibians. Integr Comp Biol 2018; 58:9-24. [DOI: 10.1093/icb/icy005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| |
Collapse
|