1
|
Simpson DT. Using isolation-by-distance to jointly estimate effective population density and dispersal distance: a practical evaluation using bumble bees. Oecologia 2025; 207:93. [PMID: 40439804 PMCID: PMC12122646 DOI: 10.1007/s00442-025-05721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Effective population density and intergenerational dispersal distance are key aspects of population biology, but obtaining empirical estimates of these parameters can be difficult. This is especially true for my study taxa, wild bees. In this paper, I apply and evaluate an existing but underutilized method to estimate effective density and dispersal distance of bumble bees (Bombus, Apidae). Specifically, using 10 datasets of bumble bees in North America, I use the relationship between genetic isolation-by-distance and Wright's neighborhood size to define a density-dispersal isocline-that is, a curve describing pairs of density and dispersal values consistent with observed rates of isolation-by-distance. These parameters are inversely related; as one increases the other decreases. I then use outside estimates of bumble bee dispersal distances to make more specific estimates of effective colony density. Compared to some prior estimates of census density (100s to 1000s colonies/km2), my estimated effective colony densities were very low (1-41 effective colonies/km2). I also hypothesize, however, that these estimates are affected by the spatial extent of sampling, due to scale-dependent patterns in the distribution of individuals. To test this hypothesis, I subsampled each dataset to simulate varying study extent, and repeated my analysis. Within populations, effective densities tended to decrease when measured across larger spatial extents. Altogether, I demonstrate a useful and under-appreciated tool for studying population biology, especially of small, mobile animals like bees, but also show that researchers must interpret their results carefully within the context of their study design.
Collapse
Affiliation(s)
- Dylan T Simpson
- Grad Program in Ecology, Rutgers University, New Brunswick, NJ, USA.
- Negaunee Institute for Plant Science, Conservation, and Action, Chicago Botanic Garden, Glencoe, IL, US.
- Plant Biology and Conservation, Northwestern University, Evanston, IL, US.
| |
Collapse
|
2
|
Pegan TM, Kimmitt AA, Benz BW, Weeks BC, Aubry Y, Burg TM, Hudon J, Jones AW, Kirchman JJ, Ruegg KC, Winger BM. Long-distance seasonal migration to the tropics promotes genetic diversity but not gene flow in boreal birds. Nat Ecol Evol 2025:10.1038/s41559-025-02699-3. [PMID: 40394201 DOI: 10.1038/s41559-025-02699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 05/22/2025]
Abstract
Differences in life history can cause co-distributed species to evolve contrasting population genetic patterns, even as they occupy the same landscape. In high-latitude animals, evolutionary processes may be especially influenced by long-distance seasonal migration, a widespread adaptation to seasonality. Although migratory movements are intuitively linked to dispersal and therefore promotion of gene flow, their evolutionary genetic consequences remain poorly understood. Using ~1,700 genomes from 35 co-distributed boreal-breeding bird species that differ in non-breeding latitude and thus migration distance, we find that most long-distance migrants unexpectedly exhibit spatial genetic structure, despite their strong movement propensity. This result suggests evolutionary effects of philopatry-the tendency of many migrants to return to the same breeding site year after year, resulting in restricted dispersal. We further demonstrate that migration distance and genetic diversity are strongly positively correlated in our study species. This striking relationship suggests that the adaptive seasonal shifts in biogeography inherent to long-distance migration may enhance population stability, preserving genetic diversity in long-distance migrants relative to shorter-distance migrants that winter in harsher conditions at higher latitudes. Our results suggest that the major impact of long-distance seasonal migration on population genetic evolution occurs through promotion of demographic stability, rather than facilitation of dispersal.
Collapse
Affiliation(s)
- T M Pegan
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - A A Kimmitt
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - B W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - B C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Y Aubry
- Environment and Climate Change Canada, Québec City, Québec, Canada
| | - T M Burg
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - J Hudon
- Royal Alberta Museum, Edmonton, Alberta, Canada
| | - A W Jones
- Cleveland Museum of Natural History, Cleveland, OH, USA
- Spring Island Trust, Okatie, SC, USA
| | | | - K C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - B M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Farajpour M, Ebrahimi M, Sadat-Hosseini M, Mirinejad S, Ramezanpour MR, Sanjari S. Phosphorus acquisition capacity and size trait evolution in Achillea wilhelmsii reflect adaptation to environmental gradients. Sci Rep 2025; 15:11799. [PMID: 40189626 PMCID: PMC11973200 DOI: 10.1038/s41598-025-96564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
Understanding how plant traits evolve in response to environmental gradients is critical for elucidating mechanisms of local adaptation. This study investigated trait variation in Achillea wilhelmsii accessions from eight climatically diverse Iranian locations after cultivation under uniform conditions. Key traits-plant size, biomass, and phosphorus content-reflect adaptive divergence along an integrated environmental gradient (PCA1) derived from temperature, precipitation, and altitude. Warmer/drier, lower-altitude conditions corresponded with reduced phosphorus uptake and smaller plant size, while cooler/wetter, higher-altitude conditions favored increased phosphorus absorption and larger plant size. Principal component analyses revealed that 62.85% of observed trait variation arises from evolutionary responses via genetic divergence, driven by natural selection across environmental gradients. Populations from colder, high-altitude sites (positive PCA1 scores) evolved enhanced phosphorus uptake, likely due to selection on pre-existing genetic variation for cold tolerance, facilitating larger plant sizes. These patterns highlight how adaptation, as an inherent capacity of plants to respond to selection pressures, shapes trait divergence under environmental heterogeneity. Future studies should dissect the genetic architecture linking phosphorus metabolism, environmental gradients, and plant size evolution.
Collapse
Affiliation(s)
- Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran.
| | - Mohsen Ebrahimi
- Department of Agronomy and Plant Breeding, College of Abourihan, University of Tehran, Tehran, Iran.
| | - Mohammad Sadat-Hosseini
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Shahab Mirinejad
- Forests and Rangelands Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Mahmoud-Reza Ramezanpour
- Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
| | - Sepideh Sanjari
- Department of Agronomy and Plant Breeding, College of Abourihan, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Delaive S, Sylvestre F, Xuereb A, Lecomte L, Boyle B, Otis C, Bernatchez L, Derome N. Population Genetic Structure of Three-Spined Sticklebacks in the St. Lawrence: A Gradient of Change. Ecol Evol 2025; 15:e71153. [PMID: 40270791 PMCID: PMC12015749 DOI: 10.1002/ece3.71153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Understanding how environmental gradients shape population genetic structure is critical for elucidating evolutionary dynamics in heterogeneous landscapes. The St. Lawrence Estuary, spanning fluvial, middle, and marine zones, presents a steep salinity gradient that serves as an ideal setting to study such a question. Three-spined sticklebacks (Gasterosteus aculeatus) thrive across these zones, offering an ideal model system to investigate the interplay of gene flow and natural selection in shaping population structure. Using whole-genome resequencing of sticklebacks from 12 sites, this study aimed to resolve fine-scale population structure and investigate how genetic diversity and differentiation are influenced by selection and gene flow. By integrating single nucleotide polymorphisms (SNPs) and structural variants (SVs), we assessed differentiation patterns, examined clinal variation, and evaluated the relative roles of gene flow and selection in shaping population dynamics. Our findings reveal clear genetic differentiation between fluvial and saltwater populations, with Baie-Saint-Paul forming a potential third group. Salinity emerged as a key driver of genetic structure, with clinal variation in allele frequencies suggesting ongoing adaptation along the gradient. Demographic modeling indicated a history of secondary contact with recent and weak gene flow. Structural variants, particularly indels, complemented SNP-based analyses, underscoring their importance in detecting fine-scale population structure. These results highlight the complex interplay of evolutionary forces shaping biodiversity in transitional environments, providing a basis for exploring local adaptation in connected populations and contributing to broader efforts in conservation genomics.
Collapse
Affiliation(s)
- Sann Delaive
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Florent Sylvestre
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Laurie Lecomte
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Brian Boyle
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébecQuebecCanada
| | - Christian Otis
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébecQuebecCanada
| | | | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| |
Collapse
|
5
|
Rumberger C, Armstrong M, Kim M, Ponce R, Melendez J, DeBiasse M, Caplins S, Bay R. Selection Over Small and Large Spatial Scales in the Face of High Gene Flow. Mol Ecol 2025; 34:e17700. [PMID: 39968778 PMCID: PMC11874683 DOI: 10.1111/mec.17700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Local adaptation represents the balance of selection and gene flow. Increasingly, studies find that adaptation can occur on spatial scales much smaller than the scale of dispersal, resulting in balanced polymorphisms within populations. However, microgeographic adaptation might be facilitated or hindered by large-scale environmental heterogeneity, such as across latitude. Marine systems present a special case, as many marine species have high dispersal capacity so that dispersal 'neighbourhoods' may encompass environmental heterogeneity over both small and large spatial scales. Here, we leverage fine-scale sampling across the California range of the Pacific purple sea urchin (Strongylocentrotus purpuratus), a species with previous evidence of both local adaptation and extremely high gene flow. We find that despite the complete absence of neutral population structure, satellite-based sea surface temperature and tidal zone are associated with subtle genetic differences among populations, suggesting that balanced polymorphisms can lead to adaptation across both large (latitudinal) and small (subtidal vs. intertidal) scales. In fact, some of the same genetic variants differentiate populations at both spatial scales, potentially because both environmental parameters are related to temperature. Further, we find that genes that are expressed at a single tissue or life history stage are more divergent than expected across both latitudinal and tidal zone comparisons, suggesting that these genes have specific functions that might generate phenotypic variation important for local adaptation. Together, these results suggest that even in species with little population structure, genetic variation can be sorted across varying spatial scales, potentially resulting in local adaptation across complex environmental mosaics.
Collapse
Affiliation(s)
| | | | - Martin Kim
- University of CaliforniaDavisCaliforniaUSA
| | | | | | | | | | | |
Collapse
|
6
|
Carley LN, Geber MA, Morris WF, Eckhart VM, Moeller DA. Local Adaptation Is Highest in Populations With Stable Long-Term Growth. Ecol Lett 2025; 28:e70071. [PMID: 39964071 PMCID: PMC11834371 DOI: 10.1111/ele.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 02/21/2025]
Abstract
Theory suggests that the drivers of demographic variation and local adaptation are shared and may feedback on one other. Despite some evidence for these links in controlled settings, the relationship between local adaptation and demography remains largely unexplored in natural conditions. Using 10 years of demographic data and two reciprocal transplant experiments, we tested predictions about the relationship between the magnitude of local adaptation and demographic variation (population growth rates and their elasticities to vital rates) across 10 populations of a well-studied annual plant. In both years, we found a strong unimodal relationship between mean home-away local adaptation and stochastic population growth rates. Other predicted links were either weakly or not supported by our data. Our results suggest that declining and rapidly growing populations exhibit reduced local adaptation, potentially due to maladaptation and relaxed selection, respectively.
Collapse
Affiliation(s)
- Lauren N. Carley
- Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| | - Monica A. Geber
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | | | | | - David A. Moeller
- Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|
7
|
Pallarés S, Carbonell JA, Picazo F, Bilton DT, Millán A, Abellán P. Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae). INSECT SCIENCE 2024. [PMID: 39586796 DOI: 10.1111/1744-7917.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Species distributed across wide elevational gradients are likely to experience local thermal adaptation and exhibit high thermal plasticity, as these gradients are characterised by steep environmental changes over short geographic distances (i.e., strong selection differentials). The prevalence of adaptive intraspecific variation in thermal tolerance with elevation remains unclear, however, particularly in freshwater taxa. We explored variation in upper and lower thermal limits and acclimation capacity among Iberian populations of adults of the widespread water beetle Agabus bipustulatus (Dytiscidae) across a 2000 m elevational gradient, from lowland to alpine areas. Since mean and extreme temperatures decline with elevation, we predicted that populations at higher elevations will show lower heat tolerance and higher cold tolerance than lowland ones. We also explored whether acclimation capacity is positively related with climatic variability across elevations. We found significant variation in thermal limits between populations of A. bipustulatus, but no evidence of local adaptation to different thermal conditions across the altitudinal gradient, as relationships between thermal limits and elevation or climatic variables were largely nonsignificant. Furthermore, plasticities of both upper and lower thermal limits were consistently low in all populations. These results suggest thermal niche conservatism in this species, likely due to gene flow counteracting the effects of divergent selection, or adaptations in other traits that buffer exposure to climate extremes. The limited adaptive potential and plasticity of thermal tolerance observed in A. bipustulatus suggest that even generalist species, distributed across wide environmental gradients, may have limited resilience to global warming.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - José Antonio Carbonell
- Department of Zoology, University of Seville, Seville, Spain
- Department of Zoology, University of Córdoba, Córdoba, Spain
| | - Félix Picazo
- Department of Ecology, Research Unit Modeling Nature and Water Institute, University of Granada, Granada, Spain
| | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Pedro Abellán
- Department of Zoology, University of Seville, Seville, Spain
| |
Collapse
|
8
|
Ravikanthachari N, Steward RA, Boggs CL. Patterns of genetic variation and local adaptation of a native herbivore to a lethal invasive plant. Mol Ecol 2024; 33:e17326. [PMID: 38515231 DOI: 10.1111/mec.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.
Collapse
Affiliation(s)
- Nitin Ravikanthachari
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Rachel A Steward
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Carol L Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Benning JW, Clark EI, Hufbauer RA, Weiss-Lehman C. Environmental gradients mediate dispersal evolution during biological invasions. Ecol Lett 2024; 27:e14472. [PMID: 39011649 DOI: 10.1111/ele.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.
Collapse
Affiliation(s)
- John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eliza I Clark
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
10
|
Zeng ZA, Wolkovich EM. Weak evidence of provenance effects in spring phenology across Europe and North America. THE NEW PHYTOLOGIST 2024. [PMID: 38494441 DOI: 10.1111/nph.19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Forecasting the biological impacts of climate change requires understanding how species respond to warmer temperatures through interannual flexible variation vs through adaptation to local conditions. Yet, we often lack this information entirely or find conflicting evidence across studies, which is the case for spring phenology. We synthesized common garden studies across Europe and North America that reported spring event dates for a mix of angiosperm and gymnosperm tree species in the northern hemisphere, capturing data from 384 North American and 101 European provenances (i.e. populations) with observations from 1962 to 2019, alongside autumn event data when provided. Across continents, we found no evidence of provenance effects in spring phenology, but strong clines with latitude and mean annual temperature in autumn. These effects, however, appeared to diverge by continent and species type (gymnosperm vs angiosperm), with particularly pronounced clines in North America in autumn events. Our results suggest flexible, likely plastic responses, in spring phenology with warming, and potential limits - at least in the short term - due to provenance effects for autumn phenology. They also highlight that, after over 250 yr of common garden studies on tree phenology, we still lack a holistic predictive model of clines across species and phenological events.
Collapse
Affiliation(s)
- Ziyun Alina Zeng
- Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Elizabeth M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
11
|
Ortiz-Rodríguez DO, Guisan A, Van Strien MJ. Sensitivity of habitat network models to changes in maximum dispersal distance. PLoS One 2023; 18:e0293966. [PMID: 37930975 PMCID: PMC10627463 DOI: 10.1371/journal.pone.0293966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Predicting the presence or absence (occurrence-state) of species in a certain area is highly important for conservation. Occurrence-state can be assessed by network models that take suitable habitat patches as nodes, connected by potential dispersal of species. To determine connections, a connectivity threshold is set at the species' maximum dispersal distance. However, this requires field observations prone to underestimation, so for most animal species there are no trustable maximum dispersal distance estimations. This limits the development of accurate network models to predict species occurrence-state. In this study, we performed a sensitivity analysis of the performance of network models to different settings of maximum dispersal distance. Our approach, applied on six amphibian species in Switzerland, used habitat suitability modelling to define habitat patches, which were linked within a dispersal distance threshold to form habitat networks. We used network topological measures, patch suitability, and patch size to explain species occurrence-state in habitat patches through boosted regression trees. These modelling steps were repeated on each species for different maximum dispersal distances, including a species-specific value from literature. We evaluated mainly the predictive performance and predictor importance among the network models. We found that predictive performance had a positive relation with the distance threshold, and that almost none of the species-specific values from literature yielded the best performance across tested thresholds. With increasing dispersal distance, the importance of the habitat-quality-related variable decreased, whereas that of the topology-related predictors increased. We conclude that the sensitivity of these models to the dispersal distance parameter stems from the very different topologies formed with different movement assumptions. Most reported maximum dispersal distances are underestimated, presumably due to leptokurtic dispersal distribution. Our results imply that caution should be taken when selecting a dispersal distance threshold, considering higher values than those derived from field reports, to account for long-distance dispersers.
Collapse
Affiliation(s)
- Damian O. Ortiz-Rodríguez
- Planning of Landscape and Urban Systems (PLUS), Institute for Spatial and Landscape Planning, ETH Zürich, Zürich, Switzerland
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Maarten J. Van Strien
- Planning of Landscape and Urban Systems (PLUS), Institute for Spatial and Landscape Planning, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Dittmar EL, Schemske DW. Temporal Variation in Selection Influences Microgeographic Local Adaptation. Am Nat 2023; 202:471-485. [PMID: 37792918 DOI: 10.1086/725865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractEcological heterogeneity can lead to local adaptation when populations exhibit fitness trade-offs among habitats. However, the degree to which local adaptation is affected by the spatial and temporal scale of environmental variation is poorly understood. A multiyear reciprocal transplant experiment was performed with populations of the annual plant Leptosiphon parviflorus living on adjacent serpentine and nonserpentine soil. Local adaptation over this small geographic scale was observed, but there were differences in the temporal variability of selection across habitats. On serpentine soil, the local population had a consistently large survival advantage, presumably as a result of the temporal stability in selection imposed by soil cation content. In contrast, a fecundity advantage was observed for the sandstone population on its native soil type but only in the two study years with the highest rainfall. A manipulative greenhouse experiment demonstrated that the fitness advantage of the sandstone population in its native soil type depends critically on water availability. The temporal variability in local adaptation driven by variation in precipitation suggests that continued drought conditions have the potential to erode local adaptation in these populations. These results show how different selective factors can influence spatial and temporal patterns of variation in fitness trade-offs.
Collapse
|
13
|
Polo-Cavia N, Arribas R, Caballero-Díaz C, Baltanás Á, Gomez-Mestre I. Widespread learned predator recognition to an alien predator across populations in an amphibian species. Sci Rep 2023; 13:14599. [PMID: 37669978 PMCID: PMC10480198 DOI: 10.1038/s41598-023-41624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Alien predators are a major cause of decline and extinction of species worldwide, since native organisms are rarely equipped with specific antipredatory strategies to cope with them. However, phenotypic plasticity and learned predator recognition may help prey populations to survive novel predators. Here we examine geographical variation in the learning ability of larval spadefoot toads (Pelobates cultripes) to recognize invasive predatory crayfish (Procambarus clarkii). We compare the learning-mediated behavioural responses of tadpoles from six populations across two regions in Spain (central and southern), with different histories of exposure to the presence of the invasive species. Two of the populations showed innate recognition of chemical cues from the invasive crayfish, whereas three of them learned to recognize such cues as a threat after conditioning with conspecific alarm cues. Learning abilities did not differ among southern populations, but they did among central populations. We assessed patterns of genetic variation within and among these two regions through microsatellite markers and found low genetic divergence among the southern populations but greater differentiation among the central ones. We hypothesize that similar responses to the invasive crayfish in southern populations may have arisen from a combination of extended historical exposure to this introduced predator (~ 50 y) and higher levels of gene flow, as they inhabit a highly interconnected pond network. In contrast, populations from central Spain show lower connectivity, have been exposed to the invasive crayfish for a shorter period of time, and are more divergent in their plastic responses.
Collapse
Affiliation(s)
- Nuria Polo-Cavia
- Department of Biology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Rosa Arribas
- Department of Biology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Monitoring Team on Natural Processes ICTS-RBD, Doñana Biological Station, CSIC, E-41092, Seville, Spain
| | - Carlos Caballero-Díaz
- Department of Biology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ángel Baltanás
- Department of Ecology, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Doñana Biological Station, CSIC, E-41092, Seville, Spain
| |
Collapse
|
14
|
Freedman AH, Harrigan RJ, Zhen Y, Hamilton AM, Smith TB. Evidence for ecotone speciation across an African rainforest-savanna gradient. Mol Ecol 2023; 32:2287-2300. [PMID: 36718952 DOI: 10.1111/mec.16867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Accelerating climate change and habitat loss make it imperative that plans to conserve biodiversity consider species' ability to adapt to changing environments. However, in biomes where biodiversity is highest, the evolutionary mechanisms responsible for generating adaptative variation and, ultimately, new species are frequently poorly understood. African rainforests represent one such biome, as decadal debates continue concerning the mechanisms generating African rainforest biodiversity. These debates hinge on the relative importance of geographic isolation versus divergent natural selection across environmental gradients. Hindering progress is a lack of robust tests of these competing hypotheses. Because African rainforests are severely at-risk due to climate change and other anthropogenic activities, addressing this long-standing debate is critical for making informed conservation decisions. We use demographic inference and allele frequency-environment relationships to investigate mechanisms of diversification in an African rainforest skink, Trachylepis affinis, a species inhabiting the gradient between rainforest and rainforest-savanna mosaic (ecotone). We provide compelling evidence of ecotone speciation, in which gene flow has all but ceased between rainforest and ecotone populations, at a level consistent with infrequent hybridization between sister species. Parallel patterns of genomic, morphological, and physiological divergence across this environmental gradient and pronounced allele frequency-environment correlation indicate speciation is mostly probably driven by ecological divergence, supporting a central role for divergent natural selection. Our results provide strong evidence for the importance of ecological gradients in African rainforest speciation and inform conservation strategies that preserve the processes that produce and maintain biodiversity.
Collapse
Affiliation(s)
- Adam H Freedman
- Faculty of Arts and Sciences Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan J Harrigan
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Ying Zhen
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Alison M Hamilton
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Thomas B Smith
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
15
|
Lerner D, Martínez MF, Livne-Luzon S, Belmaker J, Peñuelas J, Klein T. A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity. NATURE PLANTS 2023; 9:544-553. [PMID: 36894625 DOI: 10.1038/s41477-023-01369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Understanding the causes of the arrest of species distributions has been a fundamental question in ecology and evolution. These questions are of particular interest for trees owing to their long lifespan and sessile nature. A surge in data availability evokes a macro-ecological analysis to determine the underlying forces limiting distributions. Here we analyse the spatial distribution of >3,600 major tree species to determine geographical areas of range-edge hotspots and find drivers for their arrest. We confirmed biome edges to be strong delineators of distributions. Importantly, we identified a stronger contribution of temperate than tropical biomes to range edges, adding strength to the notion that tropical areas are centres of radiation. We subsequently identified a strong association of range-edge hotspots with steep spatial climatic gradients. We linked spatial and temporal homogeneity and high potential evapotranspiration in the tropics as the strongest predictors of this phenomenon. We propose that the poleward migration of species in light of climate change might be hindered because of steep climatic gradients.
Collapse
Affiliation(s)
- David Lerner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Belmaker
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Josep Peñuelas
- CREAF, Cerdanyola de Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Scherz MD, Schmidt R, Brown JL, Glos J, Lattenkamp EZ, Rakotomalala Z, Rakotoarison A, Rakotonindrina RT, Randriamalala O, Raselimanana AP, Rasolonjatovo SM, Ratsoavina FM, Razafindraibe JH, Glaw F, Vences M. Repeated divergence of amphibians and reptiles across an elevational gradient in northern Madagascar. Ecol Evol 2023; 13:e9914. [PMID: 36937068 PMCID: PMC10019947 DOI: 10.1002/ece3.9914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
How environmental factors shape patterns of biotic diversity in tropical ecosystems is an active field of research, but studies examining the possibility of ecological speciation in terrestrial tropical ecosystems are scarce. We use the isolated rainforest herpetofauna on the Montagne d'Ambre (Amber Mountain) massif in northern Madagascar as a model to explore elevational divergence at the level of populations and communities. Based on intensive sampling and DNA barcoding of amphibians and reptiles along a transect ranging from ca. 470-1470 m above sea level (a.s.l.), we assessed a main peak in species richness at an elevation of ca. 1000 m a.s.l. with 41 species. The proportion of local endemics was highest (about 1/3) at elevations >1100 m a.s.l. Two species of chameleons (Brookesia tuberculata, Calumma linotum) and two species of frogs (Mantidactylus bellyi, M. ambony) studied in depth by newly developed microsatellite markers showed genetic divergence up the slope of the mountain, some quite strong, others very weak, but in each case with genetic breaks between 1100 and 1270 m a.s.l. Genetic clusters were found in transect sections significantly differing in bioclimate and herpetological community composition. A decrease in body size was detected in several species with increasing elevation. The studied rainforest amphibians and reptiles show concordant population genetic differentiation across elevation along with morphological and niche differentiation. Whether this parapatric or microallopatric differentiation will suffice for the completion of speciation is, however, unclear, and available phylogeographic evidence rather suggests that a complex interplay between ecological and allopatric divergence processes is involved in generating the extraordinary species diversity of Madagascar's biota. Our study reveals concordant patterns of diversification among main elevational bands, but suggests that these adaptational processes are only part of the complex of processes leading to species formation, among which geographical isolation is probably also important.
Collapse
Affiliation(s)
- Mark D. Scherz
- Zoologisches InstitutTechnische Universität BraunschweigBraunschweigGermany
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
| | - Robin Schmidt
- Zoologisches InstitutTechnische Universität BraunschweigBraunschweigGermany
| | - Jason L. Brown
- School of Biological SciencesSouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Julian Glos
- Institute of Cell and Systems BiologyUniversität HamburgHamburgGermany
| | - Ella Z. Lattenkamp
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Division of Neurobiology, Department of Biology IILudwig Maximilians University MunichMartinsriedGermany
| | | | - Andolalao Rakotoarison
- Mention Zoologie et Biodiversité AnimaleUniversité d'AntananarivoAntananarivoMadagascar
- School for International TrainingAntananarivoMadagascar
| | | | - Onja Randriamalala
- Mention Zoologie et Biodiversité AnimaleUniversité d'AntananarivoAntananarivoMadagascar
| | - Achille P. Raselimanana
- Mention Zoologie et Biodiversité AnimaleUniversité d'AntananarivoAntananarivoMadagascar
- Association VahatraAntananarivoMadagascar
| | - Safidy M. Rasolonjatovo
- Mention Zoologie et Biodiversité AnimaleUniversité d'AntananarivoAntananarivoMadagascar
- Association VahatraAntananarivoMadagascar
| | | | - Jary H. Razafindraibe
- Mention Zoologie et Biodiversité AnimaleUniversité d'AntananarivoAntananarivoMadagascar
| | - Frank Glaw
- Zoologische Staatssammlung München (ZSM‐SNSB)MunichGermany
| | - Miguel Vences
- Zoologisches InstitutTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
17
|
Jarčuška B, Krištín A, Kaňuch P. Body size traits in the flightless bush-cricket are plastic rather than locally adapted along an elevational gradient. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
18
|
Gutiérrez‐Pesquera LM, Tejedo M, Camacho A, Enriquez‐Urzelai U, Katzenberger M, Choda M, Pintanel P, Nicieza AG. Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis. Ecol Evol 2022; 12:e9349. [PMID: 36225839 PMCID: PMC9534760 DOI: 10.1002/ece3.9349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Critical thermal limits (CTmax and CTmin) decrease with elevation, with greater change in CTmin, and the risk to suffer heat and cold stress increasing at the gradient ends. A central prediction is that populations will adapt to the prevailing climatic conditions. Yet, reliable support for such expectation is scant because of the complexity of integrating phenotypic, molecular divergence and organism exposure. We examined intraspecific variation of CTmax and CTmin, neutral variation for 11 microsatellite loci, and micro- and macro-temperatures in larvae from 11 populations of the Galician common frog (Rana parvipalmata) across an elevational gradient, to assess (1) the existence of local adaptation through a PST-FST comparison, (2) the acclimation scope in both thermal limits, and (3) the vulnerability to suffer acute heat and cold thermal stress, measured at both macro- and microclimatic scales. Our study revealed significant microgeographic variation in CTmax and CTmin, and unexpected elevation gradients in pond temperatures. However, variation in CTmax and CTmin could not be attributed to selection because critical thermal limits were not correlated to elevation or temperatures. Differences in breeding phenology among populations resulted in exposure to higher and more variable temperatures at mid and high elevations. Accordingly, mid- and high-elevation populations had higher CTmax and CTmin plasticities than lowland populations, but not more extreme CTmax and CTmin. Thus, our results support the prediction that plasticity and phenological shifts may hinder local adaptation, promoting thermal niche conservatism. This may simply be a consequence of a coupled variation of reproductive timing with elevation (the "elevation-time axis" for temperature variation). Mid and high mountain populations of R. parvipalmata are more vulnerable to heat and cool impacts than lowland populations during the aquatic phase. All of this contradicts some of the existing predictions on adaptive thermal clines and vulnerability to climate change in elevational gradients.
Collapse
Affiliation(s)
| | - Miguel Tejedo
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
| | - Agustín Camacho
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
| | | | - Marco Katzenberger
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
- Laboratory of Bioinformatics and Evolutionary Biology, Department of GeneticsUniversidade Federal de PernambucoRecifePrince Edward IslandBrazil
| | - Magdalena Choda
- Department of Organisms and Systems BiologyUniversity of OviedoOviedoSpain
| | - Pol Pintanel
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Alfredo G. Nicieza
- Department of Organisms and Systems BiologyUniversity of OviedoOviedoSpain
- Biodiversity Research Institute (IMIB)University of Oviedo‐Principality of Asturias‐CSICMieresSpain
| |
Collapse
|
19
|
Diamond SE, Martin RA, Bellino G, Crown KN, Prileson EG. Urban evolution of thermal physiology in a range-expanding, mycophagous fruit fly, Drosophila tripunctata. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In Drosophila spp., their often high number of annual generations, large population sizes and large amounts of standing genetic variation should predispose them to undergo contemporary adaptation to climatic warming. However, a number of laboratory experimental evolution studies in this group of organisms suggest strong limits on the rate and magnitude of contemporary thermal adaptation. Here, we explore this discrepancy by examining the potential for rapid evolutionary divergence between wild populations of Drosophila tripunctata Loew, 1862 from rural and urban sites. We performed a multi-generation common garden study and found evidence for the evolution of higher heat tolerance (critical thermal maximum) in flies from urban populations. We also detected evolutionary divergence in cold resistance (chill coma recovery time), with diminished cold resistance in flies from urban populations, although the effect was weaker than the shift in heat tolerance. Our study provides evidence of contemporary urban thermal adaptation, although the magnitude of phenotypic change lagged the magnitude of environmental temperature change across the urbanization gradient, suggesting potential limits on the evolution of urban thermal physiology.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - Grace Bellino
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| | - Eric G Prileson
- Department of Biology, Case Western Reserve University , Cleveland, OH 44106 , USA
| |
Collapse
|
20
|
Goldberg EE, Price T. Effects of plasticity on elevational range size and species richness. Am Nat 2022; 200:316-329. [DOI: 10.1086/720412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Barve S, Cadena CD. Variation in insulative feather structure in songbirds replacing each other along a tropical elevation gradient. Ecol Evol 2022; 12:e8698. [PMID: 35342618 PMCID: PMC8928881 DOI: 10.1002/ece3.8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
High-elevation organisms are expected to evolve physiological adaptations to cope with harsh environmental conditions. Yet, evidence for such adaptive differences, especially compared to closely related lowland taxa occurring along the same elevational gradient, is rare. Revisiting an anecdotal natural history observation by O. Bangs from 1899 and based on new measurements of museum specimens, we confirmed that the high-elevation hermit wood wren (Henicorhina anachoreta) from the Sierra Nevada de Santa Marta, Colombia, has longer, more insulative feathers on the chest and back, than its lower-elevation counterpart the grey-breasted wood wren (H. leucophrys). However, we did not find evidence for the same specializations in subspecies of H. leucophrys that live at high elevations on other elevational gradients in the Colombian Andes, although similar adaptive solutions have arisen in separate mountain systems like the Himalayas. Adaptations in plumage may be associated with the recurrence of elevational species replacements throughout the tropics.
Collapse
Affiliation(s)
- Sahas Barve
- Smithsonian National Museum of Natural HistoryWashingtonDistrict of ColumbiaUSA
| | | |
Collapse
|
22
|
Tamagawa K, Yoshida K, Ohrui S, Takahashi Y. Population transcriptomics reveals the effect of gene flow on the evolution of range limits. Sci Rep 2022; 12:1318. [PMID: 35079049 PMCID: PMC8789792 DOI: 10.1038/s41598-022-05248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most important questions in evolutionary biology is how the spatial distribution of species is limited. Asymmetric gene flow from core populations is suggested to increase the number of poorly adapted immigrants in the populations at the range edge. Genetic load due to migration, i.e., migration load, should prevent adaptation to the local habitat, leading to decreases in distribution range via local extinction or the limiting range expansion. However, few experimental studies have examined the effects of immigration on fitness and natural selection within recipient populations. To investigate the influence of migration load on the evolution of distribution range, we performed field and laboratory observations as well as population transcriptomics for the common river snail, Semisulcospira reiniana. This species meets the conditions that migration from source populations can prevent local adaptation in a sink population because they inhabit the broader range of environments, including middle/upper reaches of a river and estuaries within a single river and they may be more vulnerable to being swept away by water currents due to lowered spontaneous (upward) locomotion activity. We found that river steepness was related to the lower distribution limit of S. reiniana, with a narrower distribution range in the steeper river. Population transcriptomic analysis showed that gene flow was heavily asymmetric from the upstream populations to downstream ones in the steep river, suggesting a greater migration load in the steep river. The number of genes putatively involved in adaptation to the local habitat was lower in the steep river than in the gentle river. Gene expression profiles suggested that individuals achieve better local adaptation in the gentle river. Laboratory experiments suggested that evolutionary differences in salinity tolerance among local populations were only found in the gentle river. Our results consistent with the hypothesis that migration load owing to asymmetric gene flow disturbs local adaptation and restricts the distribution range of river snails.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Aramaki, Sendai, Miyagi, 980-8578, Japan.
| | - Kotone Yoshida
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Shiori Ohrui
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan.
| |
Collapse
|
23
|
Toczydlowski RH, Waller DM. Plastic and quantitative genetic divergence mirror environmental gradients among wild, fragmented populations of Impatiens capensis. AMERICAN JOURNAL OF BOTANY 2022; 109:99-114. [PMID: 34643270 DOI: 10.1002/ajb2.1782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Habitat fragmentation generates molecular genetic divergence among isolated populations, but few studies have assessed phenotypic divergence and fitness in populations where the genetic consequences of habitat fragmentation are known. Phenotypic divergence could reflect plasticity, local adaptation, and/or genetic drift. METHODS We examined patterns and potential drivers of phenotypic divergence among 12 populations of jewelweed (Impatiens capensis) that show strong molecular genetic signals of isolation and drift among fragmented habitats. We measured morphological and reproductive traits in both maternal plants within natural populations and their self-fertilized progeny grown together in a common garden. We also quantified environmental divergence between home sites and the common garden. RESULTS Populations with less molecular genetic variation expressed less maternal phenotypic variation. Progeny in the common garden converged in phenotypes relative to their wild mothers but retained among-population differences in morphology, survival, and reproduction. Among-population phenotypic variance was 3-10× greater in home sites than in the common garden for 6 of 7 morphological traits measured. Patterns of phenotypic divergence paralleled environmental gradients in ways suggestive of adaptation. Progeny resembled their mothers less as the environmental distance between their home site and the common garden increased. CONCLUSIONS Despite strong molecular signatures of isolation and drift, phenotypic differences among these Impatiens populations appear to reflect both adaptive quantitative genetic divergence and plasticity. Quantifying the extent of local adaptation and plasticity and how these covary with molecular and phenotypic variation help us predict when populations may lose their adaptive capacity.
Collapse
Affiliation(s)
- Rachel H Toczydlowski
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Donald M Waller
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
24
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Abstract
Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology.
Collapse
Affiliation(s)
- Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| |
Collapse
|
26
|
Moerman F, Fronhofer EA, Altermatt F, Wagner A. Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist Tetrahymena thermophila. J Anim Ecol 2021; 91:1088-1103. [PMID: 34582573 PMCID: PMC9291582 DOI: 10.1111/1365-2656.13598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
Populations that expand their range can undergo rapid evolutionary adaptation of life‐history traits, dispersal behaviour and adaptation to the local environment. Such adaptation may be aided or hindered by sexual reproduction, depending on the context. However, few empirical and experimental studies have investigated the genetic basis of adaptive evolution during range expansions. Even less attention has been given to the question how sexual reproduction may modulate such adaptive evolution during range expansions. We here studied genomic adaptation during experimental range expansions of the protist Tetrahymena thermophila in landscapes with a uniform environment or a pH gradient. Specifically, we investigated two aspects of genomic adaptation during range expansion. First, we investigated adaptive genetic change in terms of the underlying numbers of allele frequency changes from standing genetic variation and de novo variants. We focused on how sexual reproduction may alter this adaptive genetic change. Second, we identified genes subject to selection caused by the expanding range itself, and directional selection due to the presence or absence of the pH gradient. We focused this analysis on alleles with large frequency changes that occurred in parallel in more than one population to identify the most likely candidate targets of selection. We found that sexual reproduction altered adaptive genetic change both in terms of de novo variants and standing genetic variation. However, sexual reproduction affected allele frequency changes in standing genetic variation only in the absence of long‐distance gene flow. Adaptation to the range expansion affected genes involved in cell divisions and DNA repair, whereas adaptation to the pH gradient additionally affected genes involved in ion balance and oxidoreductase reactions. These genetic changes may result from selection on growth and adaptation to low pH. In the absence of gene flow, sexual reproduction may have aided genetic adaptation. Gene flow may have swamped expanding populations with maladapted alleles, thus reducing the extent of evolutionary adaptation during range expansion. Sexual reproduction also altered the genetic basis of adaptation in our evolving populations via de novo variants, possibly by purging deleterious mutations or by revealing fitness benefits of rare genetic variants.
Collapse
Affiliation(s)
- Felix Moerman
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, Lausanne, Switzerland.,ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, NM, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
27
|
Tregenza T, Rodríguez-Muñoz R, Boonekamp JJ, Hopwood PE, Sørensen JG, Bechsgaard J, Settepani V, Hegde V, Waldie C, May E, Peters C, Pennington Z, Leone P, Munk EM, Greenrod STE, Gosling J, Coles H, Gruffydd R, Capria L, Potter L, Bilde T. Evidence for genetic isolation and local adaptation in the field cricket Gryllus campestris. J Evol Biol 2021; 34:1624-1636. [PMID: 34378263 DOI: 10.1111/jeb.13911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Understanding how species can thrive in a range of environments is a central challenge for evolutionary ecology. There is strong evidence for local adaptation along large-scale ecological clines in insects. However, potential adaptation among neighbouring populations differing in their environment has been studied much less. We used RAD sequencing to quantify genetic divergence and clustering of ten populations of the field cricket Gryllus campestris in the Cantabrian Mountains of northern Spain, and an outgroup on the inland plain. Our populations were chosen to represent replicate high and low altitude habitats. We identified genetic clusters that include both high and low altitude populations indicating that the two habitat types do not hold ancestrally distinct lineages. Using common-garden rearing experiments to remove environmental effects, we found evidence for differences between high and low altitude populations in physiological and life-history traits. As predicted by the local adaptation hypothesis, crickets with parents from cooler (high altitude) populations recovered from periods of extreme cooling more rapidly than those with parents from warmer (low altitude) populations. Growth rates also differed between offspring from high and low altitude populations. However, contrary to our prediction that crickets from high altitudes would grow faster, the most striking difference was that at high temperatures, growth was fastest in individuals from low altitudes. Our findings reveal that populations a few tens of kilometres apart have independently evolved adaptations to their environment. This suggests that local adaptation in a range of traits may be commonplace even in mobile invertebrates at scales of a small fraction of species' distributions.
Collapse
Affiliation(s)
- Tom Tregenza
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | | | - Jelle J Boonekamp
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.,Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Paul E Hopwood
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Jesper Givskov Sørensen
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Vinayaka Hegde
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Callum Waldie
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emma May
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Caleb Peters
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Zinnia Pennington
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Paola Leone
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emil M Munk
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Samuel T E Greenrod
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Joe Gosling
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Harry Coles
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Rhodri Gruffydd
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Loris Capria
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Laura Potter
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Trine Bilde
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
28
|
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, Sotka EE. Local Adaptation in Marine Foundation Species at Microgeographic Scales. THE BIOLOGICAL BULLETIN 2021; 241:16-29. [PMID: 34436968 DOI: 10.1086/714821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractNearshore foundation species in coastal and estuarine systems (e.g., salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities (i.e., microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical (i.e., elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
Collapse
|
29
|
Zettlemoyer MA, Peterson ML. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.
Collapse
|
30
|
Bontrager M, Usui T, Lee-Yaw JA, Anstett DN, Branch HA, Hargreaves AL, Muir CD, Angert AL. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 2021; 75:1316-1333. [PMID: 33885152 DOI: 10.1111/evo.14231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/14/2021] [Indexed: 12/27/2022]
Abstract
Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges might be uniquely adapted to marginal environments. In this study, we use a database of transplant studies that quantify performance at broad geographic scales to test how local adaptation, site quality, and population quality change from spatial and climatic range centers toward edges. We find that populations from poleward edges perform relatively poorly, both on average across all sites (15% lower population quality) and when compared to other populations at home (31% relative fitness disadvantage), consistent with these populations harboring high genetic load. Populations from equatorial edges also perform poorly on average (18% lower population quality) but, in contrast, outperform foreign populations (16% relative fitness advantage), suggesting that populations from equatorial edges have strongly adapted to unique environments. Finally, we find that populations from sites that are thermally extreme relative to the species' niche demonstrate strong local adaptation, regardless of their geographic position. Our findings indicate that both nonadaptive processes and adaptive evolution contribute to variation in adaptation across species' ranges.
Collapse
Affiliation(s)
- Megan Bontrager
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada.,Current Address: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Takuji Usui
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Julie A Lee-Yaw
- Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4, Canada
| | - Daniel N Anstett
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Haley A Branch
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | - Christopher D Muir
- School of Life Sciences, University of Hawaii, Honolulu, Hawaii, 96822, United States
| | - Amy L Angert
- Departments of Botany and Zoology and the Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
31
|
Eriksson M, Rafajlović M. The Effect of the Recombination Rate between Adaptive Loci on the Capacity of a Population to Expand Its Range. Am Nat 2021; 197:526-542. [PMID: 33908832 DOI: 10.1086/713669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPrevious theoretical work on range expansions over heterogeneous environments showed that there is a critical environmental gradient where range expansion stops. For populations with freely recombining loci underlying the trait under selection (hereafter, "adaptive loci"), the critical gradient in one-dimensional habitats depends on the fitness cost of dispersal and the strength of selection relative to genetic drift. Here, we extend the previous work in two directions and ask, What is the role of the recombination rate between the adaptive loci during range expansions? And what effect does the ability of selfing as opposed to obligate outcrossing have on range expansions? To answer these questions, we use computer simulations. We demonstrate that while reduced recombination rates between adaptive loci slow down range expansions as a result of poor purging of locally deleterious alleles at the expansion front, they may also allow a species to occupy a greater range. In addition, we find that the allowance of selfing may improve the ability of populations to expand their ranges, for example, because selfing among potentially rare high-fitness individuals facilitates the establishment and maintenance of locally well-adapted genotypes. We conclude that during range expansions there is a trade-off between positive and negative effects of recombination within and between individuals.
Collapse
|
32
|
von Takach B, Ahrens CW, Lindenmayer DB, Banks SC. Scale-dependent signatures of local adaptation in a foundation tree species. Mol Ecol 2021; 30:2248-2261. [PMID: 33740830 DOI: 10.1111/mec.15894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Understanding local adaptation is critical for conservation management under rapidly changing environmental conditions. Local adaptation inferred from genotype-environment associations may show different genomic patterns depending on the spatial scale of sampling, due to differences in the slope of environmental gradients and the level of gene flow. We compared signatures of local adaptation across the genome of mountain ash (Eucalyptus regnans) at two spatial scales: A species-wide data set and a topographically-complex subregional data set. We genotyped 367 individual trees at over 3700 single-nucleotide polymorphisms (SNPs), quantified patterns of spatial genetic structure among populations, and used two analytical methods to identify loci associated with at least one of three environmental variables at each spatial scale. Together, the analyses identified 549 potentially adaptive SNPs at the subregion scale, and 435 SNPs at the range-wide scale. A total of 39 genic or near-genic SNPs, associated with 28 genes, were identified at both spatial scales, although no SNP was identified by both methods at both scales. We observed that nongenic regions had significantly higher homozygote excess than genic regions, possibly due to selective elimination of inbred genotypes during stand development. Our results suggest that strong environmental selection occurs in mountain ash, and that the identification of putatively adaptive loci can differ substantially depending on the spatial scale of analyses. We also highlight the importance of multiple adaptive genetic architectures for understanding patterns of local adaptation across large heterogenous landscapes, with comparison of putatively adaptive loci among spatial scales providing crucial insights into the process of adaptation.
Collapse
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia.,Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
33
|
Bal TMP, Llanos-Garrido A, Chaturvedi A, Verdonck I, Hellemans B, Raeymaekers JAM. Adaptive Divergence under Gene Flow along an Environmental Gradient in Two Coexisting Stickleback Species. Genes (Basel) 2021; 12:435. [PMID: 33803820 PMCID: PMC8003309 DOI: 10.3390/genes12030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.
Collapse
Affiliation(s)
- Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway;
| | | | - Anurag Chaturvedi
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland;
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Io Verdonck
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | | |
Collapse
|
34
|
Yadav S, J Stow A, Dudaniec RY. Microgeographical adaptation corresponds to elevational distributions of congeneric montane grasshoppers. Mol Ecol 2020; 30:481-498. [PMID: 33217095 DOI: 10.1111/mec.15739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Local adaptation can occur at small spatial scales relative to the dispersal capacity of species. Alpine ecosystems have sharp environmental clines that offer an opportunity to investigate the effects of fine-scale shifts in species' niche breadth on adaptive genetic processes. Here we examine two grasshopper species endemic to the Australian Alps (Kosciuscola spp.) that differ in elevational niche breadth: one broader, K. usitatus (1400-2200 m), and one narrower, K. tristis (1600-2000 m). We examine signatures of selection with respect to environmental and morphological variables in two mountain regions using FST outlier tests and environmental association analyses (EAAs) applied to single nucleotide polymorphism (SNP) data (K. usitatus: 9017 SNPs, n = 130; K. tristis: 7363 SNPs, n = 135). Stronger genetic structure was found in the more narrowly distributed K. tristis, which showed almost twice the number of SNPs under putative selection (10.8%) compared with K. usitatus (5.3%). When examining SNPs in common across species (n = 3058), 260 SNPs (8.5%) were outliers shared across species, and these were mostly associated with elevation, a proxy for temperature, suggesting parallel adaptive processes in response to climatic drivers. Additive polygenic scores (an estimate of the cumulative signal of selection across all candidate loci) were nonlinearly and positively correlated with elevation in both species. However, a steeper correlation in K. tristis indicated a stronger signal of spatially varying selection towards higher elevations. Our study illustrates that the niche breadth of co-occurring and related species distributed along the same environmental cline is associated with differences in patterns of microgeographical adaptation.
Collapse
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Adam J Stow
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
35
|
Angert AL, Bontrager MG, Ågren J. What Do We Really Know About Adaptation at Range Edges? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-012120-091002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent theory and empirical evidence have provided new insights regarding how evolutionary forces interact to shape adaptation at stable and transient range margins. Predictions regarding trait divergence at leading edges are frequently supported. However, declines in fitness at and beyond edges show that trait divergence has sometimes been insufficient to maintain high fitness, so identifying constraints to adaptation at range edges remains a key challenge. Indirect evidence suggests that range expansion may be limited by adaptive genetic variation, but direct estimates of genetic constraints at and beyond range edges are still scarce. Sequence data suggest increased genetic load in edge populations in several systems, but its causes and fitness consequences are usually poorly understood. The balance between maladaptive and positive effects of gene flow on fitness at range edges deserves further study. It is becoming increasingly clear that characterizations about degree of adaptation based solely on geographical peripherality are unsupported.
Collapse
Affiliation(s)
- Amy L. Angert
- Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Megan G. Bontrager
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
36
|
Bachmann JC, Van Buskirk J. Adaptation to elevation but limited local adaptation in an amphibian. Evolution 2020; 75:956-969. [PMID: 33063864 DOI: 10.1111/evo.14109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
Abstract
We performed a reciprocal transplant experiment to estimate "parallel" adaptation to elevation and "unique" adaptation to local sites at the same elevation, using the frog Rana temporaria in the Swiss Alps. It is important to distinguish these two processes because they have different implications for population structure and ecological specialization. Larvae were reared from hatching to metamorphosis within enclosures installed in their pond of origin, in three foreign ponds at the same elevation, and in four ponds at different elevation (1500-2000 m higher or lower). There were two source populations from each elevation, and adults were held in a common environment for 1 year before they were crossed to produce offspring for the experiment. Fitness was a measure that integrated larval survival, development rate, and body size. Parallel adaptation to elevation was indicated by an advantage at the home elevation (11.5% fitness difference at low elevation and 47% at high elevation). This effect was stronger than that observed in most other studies, according to a survey of previous transplant experiments across elevation (N = 8 animal species and 71 plants). Unique local adaptation within elevational zones was only 0.3-0.7 times as strong as parallel adaptation, probably because gene flow is comparatively high among nearby wetlands at the same elevation. The home-elevation advantage may reduce gene flow across the elevational gradient and enable the evolution of habitat races specialized on elevation.
Collapse
Affiliation(s)
- Judith C Bachmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Small-scale population divergence is driven by local larval environment in a temperate amphibian. Heredity (Edinb) 2020; 126:279-292. [PMID: 32958927 DOI: 10.1038/s41437-020-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene-environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6-8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.
Collapse
|
38
|
Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The effective detection of both prey and predators is pivotal for the survival of mesopredators. However, the condition of being a mesopredator is strongly context dependent. Here we focus on two aquatic caudate species that have colonised caves: the Pyrenean newt (Calotriton asper) and the olm (Proteus anguinus). The former maintains both surface and subterranean populations, while only cave-adapted populations of the latter exist. Both species are apex predators in underground waterbodies, while the Pyrenean newt is a mesopredator in surface waterbodies. Shifting to a higher level of the trophic web through colonising caves may promote the loss of anti-predator response against surface apex predators, and an increase in the ability to detect prey. To test these two non-exclusive hypotheses, we integrated classical behavioural characterisations with a novel approach: the assessment of lateralisation (i.e. preference for one body side exposure). Behavioural experiments were performed using laboratory-reared individuals. We performed 684 trials on 39 Pyrenean newts and eight olms. Under darkness and light conditions, we tested how exposure to different chemical cues (predatory fish, prey and unknown scent) affected individuals’ activity and lateralisation. Both cave and surface Pyrenean newts responded to predator cues, while olms did not. In Pyrenean newts, predator cues reduced the time spent in movement and time spent in lateralisation associated with hunting. Our results show that predator recognition is maintained in a species where recently separated populations inhabit environments lacking of higher predators, while such behaviour tends to be lost in populations with longer history of adaptation.
Significance statement
Predator recognition can be maintained in animals adapted to predator free habitats, but varies with their history of adaptation. Species that are not at the apex of the food web can become top predators if they colonise subterranean environments. We compared the behavioural responses of the olm, a strictly cave species with a long underground evolutionary history, and of the Pyrenean newt, a facultative cave species that also has stream-dwelling populations. Moreover, we integrated a classical behavioural characterisation, such as movement detection, with a novel approach: the assessment of lateralisation. While olms do not respond to external predators scent, cave-dwelling newts still recognise it. This clearly indicates that predator recognition is still maintained in species that have colonised predator-free environments more recently.
Collapse
|
39
|
Sieger CS, Hovestadt T. The degree of spatial variation relative to temporal variation influences evolution of dispersal. OIKOS 2020. [DOI: 10.1111/oik.07567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte Sophie Sieger
- Dept. Animal Ecology and Tropical Biology, Biozentrum, Universität Würzburg Emil‐Fischer‐Str. 32 DE‐97074 Würzburg Germany
| | - Thomas Hovestadt
- Dept. Animal Ecology and Tropical Biology, Biozentrum, Universität Würzburg Emil‐Fischer‐Str. 32 DE‐97074 Würzburg Germany
| |
Collapse
|
40
|
Van Buskirk J, Jansen van Rensburg A. Relative importance of isolation‐by‐environment and other determinants of gene flow in an alpine amphibian. Evolution 2020; 74:962-978. [DOI: 10.1111/evo.13955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Josh Van Buskirk
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich 8057 Switzerland
| | - Alexandra Jansen van Rensburg
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich 8057 Switzerland
- School of Biological SciencesUniversity of Bristol Bristol BS8 1TQ United Kingdom
| |
Collapse
|