1
|
Magdy G, Elattar RH, Abdel Salam RA, Hadad GM, El-Deen AK. Unlocking the power of nanohybrids: A critical review on carbon nanomaterial-functionalized silver nanoparticles for advanced antimicrobial applications. Colloids Surf B Biointerfaces 2025; 252:114678. [PMID: 40209605 DOI: 10.1016/j.colsurfb.2025.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Over the last decades, nanotechnology has enabled the development of several inorganic nanoparticles with significant biocidal properties against diverse microorganisms. Silver nanoparticles (AgNPs) are among the most promising antimicrobial nanomaterials that have attracted substantial attention in various fields due to their low cost, low toxicity, biocompatibility, photo and chemical stability, easy preparation, high fluorescence, and tunability. Carbon nanomaterials (CNMs) are another appealing nanomaterial with antimicrobial qualities. While the antimicrobial efficacy of both AgNPs and CNMs is well-established, there is significant interest in the creation of CNMs/AgNPs hybrid materials for several applications due to their potential to exhibit synergistic bactericidal properties that surpass the yields of their components. This review represents a general overview of the different kinds, characterization techniques, synthesis processes, and antimicrobial activity of CNMs/AgNPs, along with an analysis of their benefits, drawbacks, and antimicrobial applications. Researchers and scientists interested in learning more about the potential of CNMs/AgNPs for advanced antimicrobial applications are likely to find this review to be a valuable resource.
Collapse
Affiliation(s)
- Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt.
| | - Rehab H Elattar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Randa A Abdel Salam
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ghada M Hadad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Dowbysz A, Samsonowicz M, Kukfisz B, Koperniak P. Glass/Polyester Laminates Modified with L-Arginine Phosphate-Effects on the Flammability and Smoke Emission. MATERIALS (BASEL, SWITZERLAND) 2025; 18:286. [PMID: 39859757 PMCID: PMC11766700 DOI: 10.3390/ma18020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5-15 wt.%) of bio-based flame retardant (FR) prepared via hand lay-up method were assessed in terms of the limiting oxygen index (LOI) and smoke density tests. It was observed that the addition of ArgPA results in the formation of a charred layer with visible bubbles. The LOI of GFRP with 15 wt.% of ArgPA increased from 20.73 V/V % (non-modified GFRP) to 24.55 V/V %, and the material classification was improved from combustible to self-extinguishing. FRs usually increase the specific optical density of smoke, which was also observed for ArgPA-modified GFRPs. However, the specific optical density of smoke at the 4th minute of measurement (Ds(4)) obtained for ArgPA-modified GFRPs was lower than for GFRPs modified with commercially used APP. TG/FTIR studies of resin modified with ArgPA revealed the presence of phosphorus compounds and non-combustible gases in the decomposition products. Results demonstrate the potential of ArgPA as an effective, bio-based FR for the enhancement of GFRP fire safety.
Collapse
Affiliation(s)
- Adriana Dowbysz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland;
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland;
| | - Bożena Kukfisz
- Institute of Safety Engineering, Fire University, Slowackiego Street 52/54, 01-629 Warsaw, Poland;
| | - Piotr Koperniak
- Lukasiewicz Research Network—Institute of Aviation, 110/114 Krakowska Avenue, 02-256 Warsaw, Poland;
| |
Collapse
|
3
|
Qi J, Zhang P, Zhang T, Zhang R, Zhang Q, Wang J, Zong M, Gong Y, Liu X, Wu X, Li B. Metal-doped carbon dots for biomedical applications: From design to implementation. Heliyon 2024; 10:e32133. [PMID: 38868052 PMCID: PMC11168406 DOI: 10.1016/j.heliyon.2024.e32133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Carbon dots (CDs), as a new kind of fluorescent nanomaterials, show great potential for application in several fields due to their unique nano-size effect, easy surface functionalization, controllable photoluminescence, and excellent biocompatibility. Conventional preparation methods for CDs typically involve top-down and bottom-up approaches. Doping is a major step forward in CDs design methodology. Chemical doping includes both non-metal and metal doping, in which non-metal doping is an effective strategy for modulating the fluorescence properties of CDs and improving photocatalytic performance in several areas. In recent years, Metal-doped CDs have aroused the interest of academics as a promising nano-doping technique. This approach has led to improvements in the physicochemical and optical properties of CDs by altering their electron density distribution and bandgap capacity. Additionally, the issues of metal toxicity and utilization have been addressed to a large extent. In this review, we categorize metals into two major groups: transition group metals and rare-earth group metals, and an overview of recent advances in biomedical applications of these two categories, respectively. Meanwhile, the prospects and the challenges of metal-doped CDs for biomedical applications are reviewed and concluded. The aim of this paper is to break through the existing deficiencies of metal-doped CDs and fully exploit their potential. I believe that this review will broaden the insight into the synthesis and biomedical applications of metal-doped CDs.
Collapse
Affiliation(s)
- Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Yajuan Gong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
4
|
Priyadarshini E, Minzar M, Pandey S, Rawat K. Synergistic reduction of nitrophenols by Au-CDs nanoconjugates with NaBH 4. NANOTECHNOLOGY 2024; 35:275101. [PMID: 38502954 DOI: 10.1088/1361-6528/ad355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Developing sustainable and innovative approaches for the efficient reduction of nitrophenols is crucial for environmental remediation, for managing health concerns posed by their widespread presence as hazardous pollutants in industrial effluents and contaminated water. We report the use of 12.9 ± 1 nm (TEM data) sized gold carbon dot nanoconjugates (Au@CDs) for catalytic conversion of o, m, p-nitrophenols to aminophenols by sodium borohydride. A simple approach was followed to synthesize ultra-small and highly stable Au@CDs, using citric acid and PEG as reducing and stabilizing agents. X-ray diffraction analysis verified the formation of nano-crystalline nanoconjugates. These nanoconjugates showed a remarkable catalytic activity in the range of 0.22-0.33 s-1(varying with nanoconjugate concentration) which was much higher compared to conventional chemical methods of reduction. All the catalytic reaction experiments were performed at room temperature (27 ± 2 °C). Furthermore, an increase in rate constant was observed with increasing concentration of nanoconjugates. The catalytic activity of Au@CDs nanoconjugates was observed to be in order of m-nitrophenol > o-nitrophenol > p-nitrophenol with apparent rate constant (kaap) values of 0.068, 0.043 and 0.031, respectively. Comparative analysis with GNPs, CDs and Au@CDs nanoconjugates stated that the nanoconjugates had superior catalytic activity. The research can have significant implications in the development of new strategies for environmental remediation and biomedical applications.
Collapse
Affiliation(s)
| | - Mohd Minzar
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Kamla Rawat
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Wang X, Zhang R, Ma X, Xu Z, Ma M, Zhang T, Ma Y, Shi F. Carbon dots@noble metal nanoparticle composites: research progress report. Analyst 2024; 149:665-688. [PMID: 38205593 DOI: 10.1039/d3an01580g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Carbon dots@noble metal nanoparticle composites are formed by combining carbon dots and metal nanoparticles using various strategies. Carbon dots exhibit a reducing ability and function as stabilisers; consequently, metal-ion solutions can be directly reduced by them to synthesise gold, silver, and gold-silver alloy particles. Carbon dots@gold/silver/gold-silver particle composites have demonstrated the potential for several practical applications owing to their superior properties and simple preparation process. Until now, several review articles have been published to summarise fluorescent carbon dots or noble metal nanomaterials. Compared with metal-free carbon dots, carbon dots@noble metal nanoparticles have a unique morphology and structure, resulting in new physicochemical properties, which allow for sensing, bioimaging, and bacteriostasis applications. Therefore, to promote the effective development of carbon dots@noble metal nanoparticle composites, this paper primarily reviews carbon dots@gold/silver/gold-silver alloy nanoparticle composites for the first time in terms of the following aspects. (1) The synthesis strategies of carbon dots@noble metal nanoparticle composites are outlined. The principle and function of carbon dots in the synthesis strategies are examined. The advantages and disadvantages of these methods and composites are analysed. (2) The characteristics and properties of such composites are described. (3) The applications of these composite materials are summarised. Finally, the potentials and limitations of carbon dots@noble metal nanoparticle composites are discussed, thus laying the foundation for their further development.
Collapse
Affiliation(s)
- Xuejing Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Renyin Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Mingze Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Tieying Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
6
|
Zhu J, Han Q, Li Q, Wang F, Dong M, Liu N, Li X, Chen D, Yang D, Song Y, Yang Y. A multi-enzyme-like activity exhibiting mussel-inspired nanozyme hydrogel for bacteria-infected wound healing. Biomater Sci 2023; 11:2711-2725. [PMID: 36802175 DOI: 10.1039/d2bm02004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial infection, tissue hypoxia, and inflammatory and oxidative stress are several key problems in wound healing of chronic infections. Herein, a multi-enzyme-like activity exhibiting multifunctional hydrogel made up of mussel-inspired carbon dot reduced-Ag (CDs/AgNPs) and Cu/Fe-nitrogen-doped carbon (Cu,Fe-NC) was designed. Due to the loss of glutathione (GSH) and oxidase (OXD)-like activity of the nanozyme (decomposes O2 to generate a superoxide anion radical (O2˙-) and hydroxyl radical production (˙OH)), the multifunctional hydrogel exhibited excellent antibacterial performance. More importantly, during the bacterial elimination within the inflammatory phase of wound healing, the hydrogel could act as a catalase (CAT)-like agent to supply adequate O2 by catalyzing intracellular H2O2 for hypoxia abatement. The catechol groups on the CDs/AgNPs endowed them with the dynamic redox equilibrium properties of phenol-quinones, thus providing the hydrogel with mussel-like adhesion properties. The multifunctional hydrogel was shown to excellently promote bacterial infection wound healing and maximize the efficiency of nanozymes.
Collapse
Affiliation(s)
- Junrun Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research/Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Miaodan Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Nuoya Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Xiao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China. .,Department of Gynaecology, the First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Dan Chen
- Peking University, School of Materials Science and Engineering, Beijing 100871, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China. .,State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
7
|
M P A, Pardhiya S, Rajamani P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105579. [PMID: 35001502 DOI: 10.1002/smll.202105579] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Pollution-induced degradation of the environment is a serious problem for both developing and developed countries. Existing remediation methods are restricted, necessitating the development of novel remediation technologies. Nanomaterials with unique characteristics have recently been developed for remediation. Quantum dots (QDs) are semiconductor nanoparticles (1-10 nm) with optical and electrical characteristics that differ from bigger particles owing to quantum mechanics, making them intriguing for sensing and remediation applications. Carbon dots (CDs) offer better characteristics than typical QDs, such as, CdSe QDs in terms of contaminant sensing and remediation. Non-toxicity, chemical inertness, photo-induced electron transfer, good biocompatibility, and adjustable photoluminescence behavior are all characteristics of CDs. CDs are frequently made from sustainable raw materials as they are cost-effective, environmentally compactable, and excellent in reducing waste generation. The goal of this review article is to briefly describe CDs fabrication methods, to deeply investigate the criteria and properties of CDs that make them suitable for sensing and remediation of contaminants, and also to highlight recent advances in their use in sensing and remediation of contaminants.
Collapse
Affiliation(s)
- Ajith M P
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
8
|
Liu T, Pang Q, Mai K, He X, Xu L, Zhou F, Liu Y. Silver nanoparticle@carbon quantum dot composite as an antibacterial agent. RSC Adv 2022; 12:9621-9627. [PMID: 35424924 PMCID: PMC8959443 DOI: 10.1039/d2ra00561a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
A AgNPs@S,N-CQDs composite was synthesized by a one-step approach. It possessed AgNPs naturally surrounded by S,N-CQDs, and the size of the particles was found to be uniform and stable via a series of characterization methods. The antibacterial properties of the composite material were studied, and it had good antibacterial properties against S. aureus, E. coli, MRSA and C. albicans. The minimum inhibitory concentrations were 63 μg mL-1 against S. aureus and MRSA and 32 μg mL-1 against E. coli and C. albicans. In addition, the AgNPs@S,N-CQDs composite had an antibacterial effect via the generation of ROS, which was verified using the DCFH-DA kit. Finally, HepG2 cells were used to study its biocompatibility. The antibacterial properties and biocompatibility results show that the AgNPs@S,N-CQDs composite material can serve as a promising antibacterial agent.
Collapse
Affiliation(s)
- Tianyu Liu
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Qianyue Pang
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Kang Mai
- Zhongshan Carefor Daily Necessities Ltd Zhongshan 528000 China
| | - Xiaoting He
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Li Xu
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 China
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| | - Feiyan Zhou
- Guangzhou Baiyunshan Weiyi Industrial Co., Ltd Guangzhou 510000 China
| | - Yi Liu
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 China
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| |
Collapse
|
9
|
Havrdová M, Urbančič I, Tománková KB, Malina L, Poláková K, Štrancar J, Bourlinos AB. Intracellular Trafficking of Cationic Carbon Dots in Cancer Cell Lines MCF-7 and HeLa-Time Lapse Microscopy, Concentration-Dependent Uptake, Viability, DNA Damage, and Cell Cycle Profile. Int J Mol Sci 2022; 23:1077. [PMID: 35162996 PMCID: PMC8835431 DOI: 10.3390/ijms23031077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translational Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translational Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Poláková
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Yao W, Hua Y, Yan Z, Wu C, Zhou F, Liu Y. Sulfhydryl functionalized carbon quantum dots as a turn-off fluorescent probe for sensitive detection of Hg 2. RSC Adv 2021; 11:36310-36318. [PMID: 35492750 PMCID: PMC9043377 DOI: 10.1039/d1ra06527k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 01/27/2023] Open
Abstract
Mercury ion (Hg2+) is one of the most toxic heavy metal ions and lowering the detection limit of Hg2+ is always a challenge in analytical chemistry and environmental analysis. In this work, sulfhydryl functionalized carbon quantum dots (HS-CQDs) were synthesized through a one-pot hydrothermal method. The obtained HS-CQDs were able to detect mercury ions Hg2+ rapidly and sensitively through fluorescence quenching, which may be ascribed to the formation of nonfluorescent ground-state complexes and electron transfer reaction between HS-CQDs and Hg2+. A modification of the HS-CQD surface by -SH was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The HS-CQDs sensing system obtained a good linear relationship over a Hg2+ concentration ranging from 0.45 μM to 2.1 μM with a detection limit of 12 nM. Delightfully, the sensor has been successfully used to detect Hg2+ in real samples with satisfactory results. This means that the sensor has the potential to be used for testing actual samples.
Collapse
Affiliation(s)
- Wei Yao
- College of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Yingchen Hua
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528400 China
| | - Zhihong Yan
- College of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Chunxian Wu
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528400 China
| | - Feiyan Zhou
- Guangzhou Baiyunshan Weiyi Industrial Co., Ltd Guangzhou 510000 China
| | - Yi Liu
- College of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510000 China
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528400 China
- Guangzhou Baiyunshan Weiyi Industrial Co., Ltd Guangzhou 510000 China
| |
Collapse
|
11
|
Xu Y, Hassan MM, Sharma AS, Li H, Chen Q. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit Rev Food Sci Nutr 2021; 63:486-504. [PMID: 34281447 DOI: 10.1080/10408398.2021.1950117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pathogenic bacteria and their metabolites are the leading risk factor in food safety and are one of the major threats to human health because of the capability of triggering diseases with high morbidity and mortality. Nano-optical sensors for bacteria sensing have been greatly explored with the emergence of nanotechnology and artificial intelligence. In addition, with the rapid development of cross fusion technology, other technologies integrated nano-optical sensors show great potential in bacterial and their metabolites sensing. This review focus on nano-optical strategies for bacteria and their metabolites sensing in the field of food safety; based on surface-enhanced Raman scattering (SERS), fluorescence, and colorimetric biosensors, and their integration with the microfluidic platform, electrochemical platform, and nucleic acid amplification platform in the recent three years. Compared with the traditional techniques, nano optical-based sensors have greatly improved the sensitivity with reduced detection time and cost. However, challenges remain for the simple fabrication of biosensors and their practical application in complex matrices. Thus, bringing out improvements or novelty in the pretreatment methods will be a trend in the upcoming future.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
12
|
Arunagiri V, Tsai HC, Darge HF, Hanurry EY, Lee CY, Lai JY, Wu SY. Enhanced Cellular Uptake in an Electrostatically Interacting Fucoidan-L-Arginine Fiber Complex. Polymers (Basel) 2021; 13:1795. [PMID: 34072354 PMCID: PMC8198147 DOI: 10.3390/polym13111795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Fucoidan is an abundant marine sulfated polysaccharide extracted from the cell wall of brown macroalgae (seaweed). Recently, fucoidan has been highly involved in various industrial applications, such as pharmaceuticals, biomedicals, cosmetics, and food. However, the presence of a sulfate group (negative surface charge) in the fucoidan structure limits its potential and biological activity for use in biomedical applications during cellular uptake. Thus, we aimed to improve the uptake of fucoidan by using an L-arginine uptake enhancer within an in vitro study. A Fucoidan-L-Arginine (Fuc-L-Arg) fiber complex was prepared via α-helical electrostatic interactions using a freeze-drying technique and confirmed using field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. In addition, fucoidan was conjugated with cyanine 3 (Cy3) dye to track its cellular uptake. Furthermore, the results of Fuc-L-Arg (1:1, 1:2.5) complexes revealed biocompatibility >80% at various concentrations (5, 10, 25, 50, 100 µg/mL). Owing to the higher internalization of the Fuc-L-Arg (1:5) complex, it exhibited <80% biocompatibility at higher concentrations (25, 50, 100 µg/mL) of the complex. In addition, improved cellular internalization of Fuc-L-Arg complexes (1:5) in HeLa cells have been proved via flow cytometry quantitative analysis. Hence, we highlight that the Fuc-L-Arg (1:5) fiber complex can act as an excellent biocomplex to exhibit potential bioactivities, such as targeting cancers, as fucoidan shows higher permeability in HeLa cells.
Collapse
Affiliation(s)
- Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (V.A.); (H.F.D.); (E.Y.H.); (C.Y.L.); (J.-Y.L.)
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (V.A.); (H.F.D.); (E.Y.H.); (C.Y.L.); (J.-Y.L.)
- Advance Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (V.A.); (H.F.D.); (E.Y.H.); (C.Y.L.); (J.-Y.L.)
- College of Medicine and Health Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (V.A.); (H.F.D.); (E.Y.H.); (C.Y.L.); (J.-Y.L.)
| | - Chang Yi Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (V.A.); (H.F.D.); (E.Y.H.); (C.Y.L.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (V.A.); (H.F.D.); (E.Y.H.); (C.Y.L.); (J.-Y.L.)
- Advance Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Graduate Institute of Business Administration, Fu Jen Catholic University, Taipei 242, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
13
|
Wei X, Cheng F, Yao Y, Yi X, Wei B, Li H, Wu Y, He J. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application. RSC Adv 2021; 11:18417-18422. [PMID: 35480903 PMCID: PMC9033427 DOI: 10.1039/d1ra02600c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections can seriously harm human health, and the overuse of traditional antibiotics and antibacterial agents will increase the resistance of bacteria. Therefore, it is necessary to prepare a new kind of antibacterial material. In this work, a carbon dots and silver nanoparticles (CDs/AgNPs) composite has been synthesized in a one-step facile method without the introduction of toxic chemicals, wherein CDs could serve as a reducing and stabilizing agent. The CDs/AgNPs composite was characterized by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), which demonstrate that the silver nanoparticles were successfully synthesized in the composite. The zeta potential of the CDs/AgNPs composite was −15.3 mV, indicating that the composite possesses high stability. Furthermore, the composite also exhibited biocidal effects for both Gram-negative E. coli bacteria and Gram-positive S. aureus bacteria. Thus, the composite is considered to be of great potential in bactericidal and biomedical applications. One-step facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite without the introduction of toxic chemicals.![]()
Collapse
Affiliation(s)
- Xinjing Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Yue Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Xiaotong Yi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Binxiao Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Hongbin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Yadong Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 People's Republic of China +86-0451-8641-4806 +86-0451-8641-4806
| |
Collapse
|
14
|
Singh B, Bahadur R, Rangara M, Gandhi MN, Srivastava R. Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS APPLIED BIO MATERIALS 2021; 4:4641-4651. [DOI: 10.1021/acsabm.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Misah Rangara
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Maharashtra 400614, India
| | - Mayuri N. Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Qin X, Liu J, Zhang Q, Chen W, Zhong X, He J. Synthesis of Yellow-Fluorescent Carbon Nano-dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells. NANOSCALE RESEARCH LETTERS 2021; 16:14. [PMID: 33475910 DOI: 10.1186/s11671-021-03478-2/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 05/26/2023]
Abstract
In recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this study, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380-500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, about 98% cells were active after the incubation with 400 μg mL-1 CQDs in the dark, which revealed the excellent biocompatibility of CQDs. Hence, the newly prepared CQDs are thus demonstrated to be materials which might be effective and safe to use for in vivo bioimaging and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Jinlin Liu
- Hunan Key Laboratory of Oral Health Research and Hunan 3D Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China
| | - Xiaoxia Zhong
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jie He
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
16
|
Qin X, Liu J, Zhang Q, Chen W, Zhong X, He J. Synthesis of Yellow-Fluorescent Carbon Nano-dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells. NANOSCALE RESEARCH LETTERS 2021; 16:14. [PMID: 33475910 PMCID: PMC7818297 DOI: 10.1186/s11671-021-03478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
In recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this study, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380-500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, about 98% cells were active after the incubation with 400 μg mL-1 CQDs in the dark, which revealed the excellent biocompatibility of CQDs. Hence, the newly prepared CQDs are thus demonstrated to be materials which might be effective and safe to use for in vivo bioimaging and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Jinlin Liu
- Hunan Key Laboratory of Oral Health Research and Hunan 3D Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan People’s Republic of China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xiaoxia Zhong
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Jie He
- Department of Oral and Maxillofacial-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
17
|
Yang B, Wu M, Pang S, Li D, Yang Y, Wang L, Li Z, Zhang J, Yang X. One-pot synthesis of folic acid modified carbonized polymer dots with red emittision for selective imaging of cancer cells. NANOTECHNOLOGY 2020; 31:475501. [PMID: 32886652 DOI: 10.1088/1361-6528/abadc5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbonized polymer dots (CPDs), as a novel fluorescent material, have broad application prospects in the fields of bio-imaging, bio-sensors, disease diagnosis and photovoltaic devices due to their low cost, low toxicity, easy modification and little environmental impact. In this paper, folic acid (FA) modified CPDs (FA-CPDs) are synthesized from p-Phenylenediamine (p-PD) and FA molecules using a traditional one pot hydrothermal reaction in order to detect cancer cells containing a folate receptor (FR). The synthesized FA-CPDs were characterized by transmission electron microscopy, Fourier transfrom infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, UV-vis and fluorescence techniques. The red fluorescence emission is realized by doping phosphorus atoms into the carbonized polymer. Upon excitation at 513 nm, the maximum emission wavelength of FA-CPDs aqueous solution was obtained at 613 nm. Moreover, the as-prepared FA-CPDs exhibit excellent excitation-independent behavior and good stability with high quantum yield (QY) at about 30.6%. The binding of FA-CPDs with FRs on cancer cells produces target recognition and enters the cells through endocytosis. Additionally, it is worth noting that FA-CPDs have good biocompatibility and imaging in HeLa cells has been successfully achieved. Therefore, our FA-CPDs have potential applications as biocompatibility probes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Boyu Yang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Knoblauch R, Geddes CD. Carbon Nanodots in Photodynamic Antimicrobial Therapy: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4004. [PMID: 32927673 PMCID: PMC7559411 DOI: 10.3390/ma13184004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Antibiotic resistance development in bacteria is an ever-increasing global health concern as new resistant strains and/or resistance mechanisms emerge each day, out-pacing the discovery of novel antibiotics. Increasingly, research focuses on alternate techniques, such as antimicrobial photodynamic therapy (APDT) or photocatalytic disinfection, to combat pathogens even before infection occurs. Small molecule "photosensitizers" have been developed to date for this application, using light energy to inflict damage and death on nearby pathogens via the generation of reactive oxygen species (ROS). These molecular agents are frequently limited in widespread application by synthetic expense and complexity. Carbon dots, or fluorescent, quasi-spherical nanoparticle structures, provide an inexpensive and "green" solution for a new class of APDT photosensitizers. To date, reviews have examined the overall antimicrobial properties of carbon dot structures. Herein we provide a focused review on the recent progress for carbon nanodots in photodynamic disinfection, highlighting select studies of carbon dots as intrinsic photosensitizers, structural tuning strategies for optimization, and their use in hybrid disinfection systems and materials. Limitations and challenges are also discussed, and contemporary experimental strategies presented. This review provides a focused foundation for which APDT using carbon dots may be expanded in future research, ultimately on a global scale.
Collapse
Affiliation(s)
| | - Chris D. Geddes
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 701 East Pratt Street, Baltimore, MD 21202, USA;
| |
Collapse
|
19
|
Liu C, Luo L, Liu L. Antibacterial effect and mechanism of silver-carried zirconium glycine-N,N-dimethylenephosphonate as a synergistic antibacterial agent. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|