1
|
Abdulagatov IM, Khanaliev VY, Ragimov RM, Maksumova AM, Khamidov МА, Abdullaeva NM, Mollaeva NR. Atomic-layer-deposition application for antibacterial coating of biomedical materials: surgical sutures. Biomed Mater 2025; 20:025012. [PMID: 39787700 DOI: 10.1088/1748-605x/ada841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Suture-associated surgical site infection (SSI) causes bacterial pathogens to colonize on the suture surface that are highly resistant to antibiotic treatment. Conventional suture materials used in surgical practice are causing complications such as infection and chronic inflammation. Surgical suture materials with antibacterial coatings are widely used in surgical practice. However, all the widely used antibacterial agents are not permanent (limited lasting) due to their instability and release depending on environmental conditions (pH or temperature, for example). Therefore, more long-lasting (low-dose) and effective antibacterial function materials are required. In the present work, we proposed a new material and method of antibacterial coating the surgical sutures based on the atomic layer deposition (ALD) technique to enhance its antibacterial activity for treatment of the SSI. We have proposed applying a vanadium-doped TiO2nanofilm (hybrid nanomaterial, TiVOx) with 27.5 nm thickness to enhance the antibacterial property of surgical sutures using the ALD technique. We have illustrated that a base coating of Al2O3(seed layer) applied to the suture surface, which directly contacts the polypropylene (PP) suture, improves the adhesion of the deposited antibacterial material TiVOx. This provides a long-lasting antibacterial effect on the suture (a prolonged antibacterial effect of the coating material), i.e. increases the stability of the deposition (stable in water, air, in the human body, in different pH mediums, and at temperatures up to 70 °C). The sutures did not deteriorate after several wash cycles with sterilizing solvents. Also, the antibacterial agent (TiVOx) is nontoxic. The concentration of vanadium in the film is below the toxicity limits due to the low diffusivity of vanadium and high adhesion with the base coating material (Al2O3). Sutures coated with V-doped TiO2were characterized using scanning electron microscopy images, and elemental analysis was performed using energy dispersive spectroscopy Spectroscopy. The antibacterial activity of TiVOxcoated sutures against two types of microorganisms,E. coliand Proteus vulgaris (Pr. Vulgaris) was compared to that of noncoated sutures. The quantitative assessment of antibacterial activity of suture materials with and without ALD nanocoating TiVOxagainstE. coliandPr. Vulgarishas been performed. No growth of bacteria around the suture material with antibacterial TiVOxALD nanocoating throughout the entire observation period of 48 and 72 h was observed. However, after 48 h, the concentration of bacteria of theE. Coliaround the suture material without ALD TiVOxnanocoating on nutrient agar was 5.5 ± 0.3 Log CFU cm-3, and after 72 h it was 8.0 ± 0.5 Log CFU cm-3. For Pr. Vilgaris, after 48 h, the concentration of bacteria around the suture material without ALD TiVOxnanocoating on nutrient agar was 2.1 ± 0.1 Log CFU cm-3, while after 72 h it was 4.5 ± 0.2 Log CFU cm-3. ALD-coated TiVOxon the PP sutures inhibited approximately 100% of biofilm formation. Also, the inhibition zones in the disc diffusion assay revealed that all the ALD TiVOxcoating inhibited (100%) the growth ofE. coliandPr. Vulgaris, notably compared to the uncoated suture samples.
Collapse
Affiliation(s)
- Ilmutdin M Abdulagatov
- Department of Physical Chemistry, Dagestan State University, 367000, 43a M. Gadzhieva Str., Makhachkala, Dagestan, Russia
- Dagestan State Medical University, 367000 Makhachkala, Dagestan, Russia
| | | | - Razin M Ragimov
- Dagestan State Medical University, 367000 Makhachkala, Dagestan, Russia
| | - Abai M Maksumova
- Department of Physical Chemistry, Dagestan State University, 367000, 43a M. Gadzhieva Str., Makhachkala, Dagestan, Russia
- Dagestan State Medical University, 367000 Makhachkala, Dagestan, Russia
| | | | | | - Naida R Mollaeva
- Dagestan State Medical University, 367000 Makhachkala, Dagestan, Russia
| |
Collapse
|
2
|
Ding R, Yu L, Peng P, Zhang J, Xu H, Li H, Wu H, Yan L, Li P. Durable and Robust Antibacterial Polypropylene Hernia Mesh for Abdominal Wall Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25686-25697. [PMID: 38739862 DOI: 10.1021/acsami.4c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious "superbug" methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.
Collapse
Affiliation(s)
- Rui Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Jiajun Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Haoqi Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Haoyu Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Hanxue Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
3
|
Ding R, Peng P, Huo J, Wang K, Liu P, Wu H, Yan L, Li P. pH-Responsive antibacterial metal-phenolic network coating on hernia meshes. Biomater Sci 2024; 12:2730-2742. [PMID: 38639196 DOI: 10.1039/d4bm00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Polypropylene (PP) mesh is widely used in hernioplasty, but it is prone to contamination by pathogenic bacteria. Here, we present an infection microenvironment-responsive metal-phenolic network (MPN) coating, which is made up of Cu2+ and tannic acid (TA) (referred to as CT coating), and is fabricated on PP meshes by layer-by-layer (LbL) assembly. The CT coating provided a robust protection for the PP mesh from pathogenic bacterial infection in a pH-responsive manner due to the pH-responsive disassembly kinetics of MPN complexes. Moreover, the PP meshes with ten CT coating cycles (PP-CT(10)) exhibited excellent stability in a physiological environment, with the killing ratio against "superbug" methicillin-resistant Staphylococcus aureus (MRSA) at pH 5.5 exceeding 99% even after 28 days of PBS (pH 7.4) immersion. In addition, the PP-CT(10) exhibited excellent in vivo anti-infective ability in a rodent subcutaneous implant MRSA infection model, and the results of histological and immunohistochemical analyses demonstrated that the reduced bacterial number alleviated the inflammatory response at implant sites. This study revealed that MPN coating is a promising strategy, which could provide a self-defensive ability for various implants to combat post-surgical infections in a pH-responsive manner.
Collapse
Affiliation(s)
- Rui Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Pengxiang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Hanxue Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
4
|
Abdulagatov IM, Maksumova AM, Magomedov MZ, Tsakhaeva RO, Khidirova SM, Salikhov AM. Antibacterial Food Packaging Nanomaterial Based on Atomic Layer Deposition for Long-Term Food Storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:596-606. [PMID: 39119618 PMCID: PMC11303349 DOI: 10.1007/s13197-023-05867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 08/10/2024]
Abstract
The aim of the present work is to use the latest achievements of nanotechnology (atomic layer deposition, ALD) in the field of food packaging to prevent biofilm formation by food-associated bacteria. Some potential applications of nanotechnology in the food packaging industry are studied in the manuscript, in the field of antibacterial materials for food packaging. The ALD technique was used to synthesize vanadium (V)-doped TiO2 thin nanofilm on commercially available polypropylene (PP) food container to enhance an antibacterial activity for potential use in food packaging, to reduce spoilage, thereby, prolonging the food shelf- life. To better understand the ability and effectiveness of the antimicrobial packaging material of V-doped TiO2, to prevent the biofilm formation by dairy-associated pathogenic bacteria, the coated and uncoated PP containers with a fresh raw cow's milk were tested. We have illustrated the effectiveness of ALD Al2O3 + TiVOx nanocoating against populations of milk-borne pathogenic bacteria.
Collapse
Affiliation(s)
- Ilmutdin M. Abdulagatov
- Physical Chemistry Department, Dagestan State University, 43a M. Gadzhieva Str, Makhachkala, Dagestan Russian Federation
| | - Abai M. Maksumova
- Physical Chemistry Department, Dagestan State University, 43a M. Gadzhieva Str, Makhachkala, Dagestan Russian Federation
| | - Mustafa Z. Magomedov
- State Veterinary Laboratory, 88 M. Dakhadaeva Str., Makhachkala, Dagestan Russian Federation
| | - Raiganat O. Tsakhaeva
- State Veterinary Laboratory, 88 M. Dakhadaeva Str., Makhachkala, Dagestan Russian Federation
| | - Sadina M. Khidirova
- Physical Chemistry Department, Dagestan State University, 43a M. Gadzhieva Str, Makhachkala, Dagestan Russian Federation
| | - Ali M. Salikhov
- Dagestan State Medical University, Makhachkala, Dagestan Russian Federation
| |
Collapse
|
5
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
6
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
7
|
Mirel S, Pusta A, Moldovan M, Moldovan S. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives. J Clin Med 2022; 11:jcm11030883. [PMID: 35160332 PMCID: PMC8836564 DOI: 10.3390/jcm11030883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of biomaterials have given rise to new options for surgery. New-generation medical devices can control chemical breakdown and resorption, prevent post-operative adhesion, and stimulate tissue regeneration. For the fabrication of medical devices, numerous biomaterials can be employed, including non-degradable biomaterials (silicone, polypropylene, expanded polytetrafluoroethylene) or biodegradable polymers, including implants and three-dimensional scaffolds for tissue engineering, which require particular physicochemical and biological properties. Based on the combination of new generation technologies and cell-based therapies, the biocompatible and bioactive properties of some of these medical products can lead to progress in the repair of injured or harmed tissue and in tissue regeneration. An important aspect in the use of these prosthetic devices is the associated infection risk, due to the medical complications and socio-economic impact. This paper provides the latest achievements in the field of antimicrobial surgical meshes for hernia repair and discusses the perspectives in the development of these innovative biomaterials.
Collapse
Affiliation(s)
- Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihaela Moldovan
- Pediatric Surgery Department, Emergency Clinical Children’s Hospital, 400370 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Surgery Department, Prof. Dr. O. Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
8
|
Marinaro F, Silva JM, Barros AA, Aroso IM, Gómez-Blanco JC, Jardin I, Lopez JJ, Pulido M, de Pedro MÁ, Reis RL, Sánchez-Margallo FM, Casado JG, López E. A Fibrin Coating Method of Polypropylene Meshes Enables the Adhesion of Menstrual Blood-Derived Mesenchymal Stromal Cells: A New Delivery Strategy for Stem Cell-Based Therapies. Int J Mol Sci 2021; 22:13385. [PMID: 34948187 PMCID: PMC8706515 DOI: 10.3390/ijms222413385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Polypropylene (PP) mesh is well-known as a gold standard of all prosthetic materials of choice for the reinforcement of soft tissues in case of hernia, organ prolapse, and urinary incontinence. The adverse effects that follow surgical mesh implantation remain an unmet medical challenge. Herein, it is outlined a new approach to allow viability and adhesion of human menstrual blood-derived mesenchymal stromal cells (MenSCs) on PP surgical meshes. A multilayered fibrin coating, based on fibrinogen and thrombin from a commercial fibrin sealant, was optimized to guarantee a homogeneous and stratified film on PP mesh. MenSCs were seeded on the optimized fibrin-coated meshes and their adhesion, viability, phenotype, gene expression, and immunomodulatory capacity were fully evaluated. This coating guaranteed MenSC viability, adhesion and did not trigger any change in their stemness and inflammatory profile. Additionally, MenSCs seeded on fibrin-coated meshes significantly decreased CD4+ and CD8+ T cell proliferation, compared to in vitro stimulated lymphocytes (p < 0.0001). Hence, the proposed fibrin coating for PP surgical meshes may allow the local administration of stromal cells and the reduction of the exacerbated inflammatory response following mesh implantation surgery. Reproducible and easy to adapt to other cell types, this method undoubtedly requires a multidisciplinary and translational approach to be improved for future clinical uses.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - Joana M. Silva
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Alexandre A. Barros
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ivo M. Aroso
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Juan C. Gómez-Blanco
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - Isaac Jardin
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain; (I.J.); (J.J.L.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain;
| | - Jose J. Lopez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain; (I.J.); (J.J.L.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain;
| | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier G. Casado
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain;
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Immunology Unit, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| |
Collapse
|