1
|
Palit N, Suryavanshi P, Banerjee S. 3D Printable Self-Healing Mineralized Hydrogels Loaded With Diclofenac Sodium: In Vitro and In Vivo Assessment. Biotechnol Bioeng 2025; 122:1530-1540. [PMID: 40071508 DOI: 10.1002/bit.28973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
The use of self-healing mineralized hydrogels in 3D printing has demonstrated significant advantages, including enhanced printing accuracy and the ability to maintain high shape fidelity throughout the printing process. After conducting an initial optimization study, we incorporated our self-healing mineralized hydrogel into semi-solid extrusion-based 3D printing to print diclofenac-loaded oral films. The dependence of the print speed on the nature of the material was established by varying the print speed. The process of optimizing the print speed was conducted using a blank hydrogel, which involved analyzing specific parameters, such as printing accuracy and the percentage of pore area under sizing. The results demonstrated that 2 mm/sec print speed showed a higher printing accuracy of 98.13% and pore area under-sizing value of 41.31%. Interestingly, the viscosity of the hydrogel increased from 5.30 to 133 PaS upon addition of the drug. The percentage pore area under sizing also decreased from 41.31% to 11.48% as the drug loading was increased from 0% to 3% w/w. The in vitro drug release study demonstrated that the 3% w/w diclofenac sodium-loaded oral films printed at 2 mm/sec exhibited a faster release profile. Furthermore, considerable bioavailability of diclofenac sodium (DS) was achieved from the 3D-printed oral films during the in vivo study. These results can be effectively used to develop a drug delivery system that can release medications accurately and consistently, either in a targeted area or systemically.
Collapse
Affiliation(s)
- Nachiketa Palit
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Purushottam Suryavanshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
2
|
Sun J, Chen C, Zhang B, Yao C, Zhang Y. Advances in 3D-printed scaffold technologies for bone defect repair: materials, biomechanics, and clinical prospects. Biomed Eng Online 2025; 24:51. [PMID: 40301861 PMCID: PMC12042599 DOI: 10.1186/s12938-025-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
The treatment of large bone defects remains a significant clinical challenge due to the limitations of current grafting techniques, including donor site morbidity, restricted availability, and suboptimal integration. Recent advances in 3D bioprinting technology have enabled the fabrication of structurally and functionally optimized scaffolds that closely mimic native bone tissue architecture. This review comprehensively examines the latest developments in 3D-printed scaffolds for bone regeneration, focusing on three critical aspects: (1) material selection and composite design encompassing metallic; (2) structural optimization with hierarchical porosity (macro/micro/nano-scale) and biomechanical properties tailored; (3) biological functionalization through growth factor delivery, cell seeding strategies and surface modifications. We critically analyze scaffold performance metrics from different research applications, while discussing current translational barriers, including vascular network establishment, mechanical stability under load-bearing conditions, and manufacturing scalability. The review concludes with a forward-looking perspective on innovative approaches such as 4D dynamic scaffolds, smart biomaterials with stimuli-responsive properties, and the integration of artificial intelligence for patient-specific design optimization. These technological advancements collectively offer unprecedented opportunities to address unmet clinical needs in complex bone reconstruction.
Collapse
Affiliation(s)
- Jie Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Cao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Shi G, Ren H, Zhao D, Cui Y, Su X, Yan S, Bu W. Feasibility and practicality of a novel teaching aid for microvascular anastomosis simulation training in neurosurgery generated by 3D printing. Front Surg 2025; 12:1546573. [PMID: 40370766 PMCID: PMC12075562 DOI: 10.3389/fsurg.2025.1546573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Background This study aimed to develop a novel teaching aid for microvascular anastomosis training in neurosurgery using 3D printing technology based on CT and MRI imaging data, and to evaluate its effectiveness and practicality. Methods Based on CT or MRI imaging data, a 3D model integrating micro-vessels, skull, and brain tissue was fabricated and connected to a peristaltic pump and a pipeline system to create a teaching aid for microvascular anastomosis simulation training. Twenty senior medical students were recruited and divided into two groups: a control group, which trained using traditional soft rubber tubes, and an observation group, which trained using the 3D-printed teaching aid. Following the training, participants from both groups performed chicken wing artery anastomosis. The training outcomes, including the patency rate of vascular anastomosis, the time required to complete the anastomosis, and the trainees' surgical performance, were evaluated. Additionally, six experienced neurosurgeons were recruited to teach the course using both teaching aids for two hours each. They were then surveyed via a questionnaire to assess and rate the effectiveness of the teaching aids. Results The observation group demonstrated a significantly higher patency rate of vascular anastomosis, a shorter time to complete the anastomosis, and higher scores for surgical proficiency and procedural standardization compared to the control group (all P < 0.001). Additionally, the neurosurgeons provided positive evaluations of the novel 3D-printed teaching aid, awarding high scores for its practicality, scientific rigor, and overall effectiveness. Conclusion The novel 3D-printed teaching aid serves as an effective tool for microvascular anastomosis training in neurosurgery, offering significant advantages such as enhanced training effectiveness, high-fidelity simulation, cost efficiency, and customization capabilities.
Collapse
Affiliation(s)
- Guosheng Shi
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huiling Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dawei Zhao
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunwei Cui
- Institute of Bone Research, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang Su
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suwei Yan
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Bu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Bhadouria N, Yadav S, Bukke SPN, Narapureddy BR. Advancements in vaccine delivery: harnessing 3D printing for microneedle patch technology. Ann Med Surg (Lond) 2025; 87:2059-2067. [PMID: 40212146 PMCID: PMC11981410 DOI: 10.1097/ms9.0000000000003060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/31/2025] [Indexed: 04/13/2025] Open
Abstract
The development of 3D-printed microneedle (MN) technology is a significant step in vaccine delivery, providing a painless, effective, and adaptable substitute for conventional injection-based techniques. Direct transdermal vaccination distribution without the need for needles is made possible by microneedle patches, which employ a variety of tiny needles that dissolve when they penetrate the skin. By using 3D printing to precisely customise microneedles' size, shape, and density to meet particular vaccine requirements, administration control can be improved and vaccine efficiency may even be increased. Furthermore, rapid prototyping made possible by 3D printing speeds up the development process, enabling quicker testing and improvement of vaccines. Additionally, this scalable technology can greatly increase vaccine accessibility, particularly in environments with limited resources. Research indicates that by directly interacting with the skin's immune-rich layers, microneedle patches enhance antigen delivery and elicit a strong immune response. Because MN technology offers a useful, self-administrable vaccination approach with little waste, it has significant potential for use in public health applications, notably during pandemics. This study emphasises how 3D-printed microneedle patches have the potential to revolutionise vaccination procedures and increase vaccine accessibility globally.
Collapse
Affiliation(s)
- Namrata Bhadouria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
6
|
Varshney S, Dwivedi A, Pandey V. Bioprinting techniques for regeneration of oral and craniofacial tissues: Current advances and future prospects. J Oral Biol Craniofac Res 2025; 15:331-346. [PMID: 40027866 PMCID: PMC11870160 DOI: 10.1016/j.jobcr.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Background Regenerative dentistry aims to reinstate, fix, renew, and regrow tissues within the oral and craniofacial domain. Existing regenerative methods are based on insights into tissue biology or disease processes that lead to tissue degradation. However, achieving complete and functional Tissue regeneration remains a primary challenge in real-world medical scenarios. Aim The review focuses on the application of bioprinting techniques for rejuvenating intricate Oral and craniofacial tissues, such as craniofacial bone, periodontal ligament, cementum, dental pulp, temporomandibular joint cartilage, and whole teeth. Methods Bioprinting, a cutting-edge technology in regenerative dentistry, strives to create entirely new Functional tissues and organs. This approach merges principles from engineering and biology to produce three-dimensional biologically operational constructs containing bioactive substances, Living cells and cell clusters using automated bioprinters. The review summarizes the outcomes achieved through bioprinting techniques in both in vitro (laboratory experiments) and in vivo (Studies on living organisms) experiments. Result The emergence of this innovative tissue engineering technology has yielded highly promising outcomes during the experimental stages. Conclusion These promising experimental results necessitate replication through human clinical trials to ascertain the viability of bioprinting techniques for mainstream clinical implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Shailesh Varshney
- Department of Periodontology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anshuman Dwivedi
- ,Department of Stem Cells & Regenerative Medicine, Santosh, University, Ghaziabad, Uttar Pradesh, India
| | - Vibha Pandey
- ,Department of Psychology, Himalayan, Garhwal University, Uttarakhand, India
| |
Collapse
|
7
|
Truong H, Abaci A, Gharacheh H, Guvendiren M. Embedded bioprinting of dense cellular constructs in bone allograft-enhanced hydrogel matrices for bone tissue engineering. Biomater Sci 2025. [PMID: 40018866 DOI: 10.1039/d4bm01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Bone tissue engineering aims to address critical-sized defects by developing biomimetic scaffolds that promote repair and regeneration. This study introduces a material extrusion-based embedded bioprinting approach to fabricate dense cellular constructs within methacrylated hyaluronic acid (MeHA) hydrogels enhanced with bioactive microparticles. Composite matrices containing human bone allograft or tricalcium phosphate (TCP) particles were evaluated for their rheological, mechanical, and osteoinductive properties. High cell viability (>95%) and uniform strand dimensions were achieved across all bioprinting conditions, demonstrating the method's ability to preserve cellular integrity and structural fidelity. The inclusion of bone or TCP particles did not significantly alter the viscosity, crosslinking kinetics, or compressive modulus of the MeHA hydrogels, ensuring robust mechanical stability and shape retention. However, bone allograft particles significantly enhanced osteogenic differentiation of human mesenchymal stem cells (hMSCs), as evidenced by increased alkaline phosphatase (ALP) activity and calcium deposition. Notably, osteogenesis was observed even in basal media, with a dose-dependent response to bone particle concentration, highlighting the intrinsic bioactivity of allograft particles. This study demonstrates the potential of combining embedded bioprinting with bioactive matrices to create dense, osteoinductive cellular constructs. The ability to induce osteogenesis without external growth factors positions this platform as a scalable and clinically relevant solution for bone repair and regeneration.
Collapse
Affiliation(s)
- Hang Truong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Alperen Abaci
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Pop SI, Bud E, Jánosi KM, Bud A, Kerekes-Máthé B. Three-Dimensional Surgical Guides in Orthodontics: The Present and the Future. Dent J (Basel) 2025; 13:74. [PMID: 39996948 PMCID: PMC11854813 DOI: 10.3390/dj13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Surgical guides are integral tools in orthodontics, enhancing the precision and predictability of mini-implant placement. These guides facilitate accurate positioning, reduce risks to surrounding anatomical structures, and ensure proper angulation and depth during procedures. The aim of the present paper is to present a detailed review of the surgical guides used in orthodontics, focusing on their classification, mechanical properties, biocompatibility, and future developments. The advantages, disadvantages, clinical steps, and implications are also described based on the data in recent scientific literature. Future developments may incorporate artificial intelligence and augmented reality, further optimizing treatment planning and patient outcomes, thus solidifying the role of surgical guides in efficient orthodontic care.
Collapse
Affiliation(s)
| | - Eugen Bud
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania; (S.I.P.); (K.M.J.); (A.B.); (B.K.-M.)
| | | | | | | |
Collapse
|
9
|
Németh A, Vitai V, Kelemen K, Teutsch B, Szabó B, Gerber G, Varga G, Fazekas R, Hegyi P, Borbély J. Comparison of fit and trueness of single-unit and short-span fixed dental restorations fabricated by additive and subtractive manufacturing-A systematic review and meta-analysis. J Dent 2025; 153:105527. [PMID: 39706323 DOI: 10.1016/j.jdent.2024.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES Numerous studies have been conducted on the adaptation of dental restorations fabricated by additive (AM) and subtractive manufacturing (SM); however, the results are conflicting. This systematic review and meta-analysis aimed to evaluate the fit and trueness of fixed restorations made by AM compared to SM. DATA Studies investigating internal fit, marginal fit, and trueness of fixed prostheses were involved. SOURCES The protocol was registered in PROSPERO (registration number CRD42022323090). An electronic search was performed with a predefined search query across four medical databases on the 6th of September 2023. STUDY SELECTION A total of 57 eligible studies were included and sub-grouped by material type (metals, ceramics, acrylic resins, composites). The outcomes were specified as internal fit, marginal fit, and trueness expressed in micrometer (µm). Further subgrouping was based on measurement area: axial, occlusal, and marginal. When we analyzed marginal fit, there were no statistically significant differences between the two techniques in any of the subgroups. The measurement of internal fit metal and ceramic restorations provided no significant differences. However, milled acrylic resin restorations showed a significantly higher occlusal gap compared to 3D printed prostheses with 39.12 µm (95 % CI: 12.44; 65.79). In the case of trueness, a statistically significant difference was observed between ceramic AM and SM restorations with -47.76 µm (95 % CI: -95.51; -0.00). QUIN and GRADE Pro tools were used to evaluate the risk of bias and certainty of evidence. CONCLUSION Fixed restorations manufactured with additive manufacturing are valid alternatives to subtractive manufacturing in the digital workflow. CLINICAL SIGNIFICANCE Additive manufacturing is an accurate and cost-effective manufacturing method of digital workflow, especially for metal and resin fixed restorations. Once the challenges in ceramics manufacturing are addressed, AM will show more significant promise in the field.
Collapse
Affiliation(s)
- Anna Németh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Viktória Vitai
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Kata Kelemen
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Bence Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Gerber
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Réka Fazekas
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Restorative Dentistry and Endodontics, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest 1083, Hungary
| | - Judit Borbély
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Rony FK, Kimbell G, Serrano TR, Clay D, Ilias S, Azad MA. Extrusion-Based 3D Printing of Pharmaceuticals-Evaluating Polymer (Sodium Alginate, HPC, HPMC)-Based Ink's Suitability by Investigating Rheology. MICROMACHINES 2025; 16:163. [PMID: 40047629 PMCID: PMC11857113 DOI: 10.3390/mi16020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the essential characteristics, impacting their performance. This study evaluates inks based on sodium alginate (SA), hydroxypropyl cellulose (HPC H), and hydroxypropyl methylcellulose (HPMC K100 and K4) for PAM 3D printing by analyzing their rheology. The formulations included the model drug Fenofibrate, functional excipients (e.g., mannitol, polyethylene glycol, etc.), and water or water-ethanol mixtures. Pills and thin films as an oral dosage were printed using a 410 μm nozzle, a 10 mm/s speed, a 50% infill density, and a 60 kPa pressure. Among the various formulated inks, only the ink containing 0.8% SA achieved successful prints with the desired shape fidelity, linked to its rheological properties, which were assessed using flow, amplitude sweep, and thixotropy tests. This study concludes that (i) an ink's rheological properties-viscosity, shear thinning, viscoelasticity, modulus, flow point, recovery, etc.-have to be considered to determine whether it will print well; (ii) printability is independent of the dosage form; and (iii) the optimal inks are viscoelastic solids with specific rheological traits. This research provides insights for developing polymer-based inks for effective PAM 3D printing in pharmaceuticals.
Collapse
Affiliation(s)
- Farzana Khan Rony
- Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Georgia Kimbell
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Toby R. Serrano
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Destinee Clay
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Shamsuddin Ilias
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Mohammad A. Azad
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| |
Collapse
|
11
|
Gharacheh H, Abaci A, Alkhoury K, Choudhury E, Liaw CY, Chester SA, Guvendiren M. Comparative evaluation of melt- vs. solution-printed poly(ε-caprolactone)/hydroxyapatite scaffolds for bone tissue engineering applications. SOFT MATTER 2025; 21:844-854. [PMID: 39611880 DOI: 10.1039/d4sm01197j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Material extrusion-based three-dimensional (3D) printing is a widely used manufacturing technology for fabricating scaffolds and devices in bone tissue engineering (BTE). This technique involves two fundamentally different extrusion approaches: solution-based and melt-based printing. In solution-based printing, a polymer solution is extruded and solidifies via solvent evaporation, whereas in melt-based printing, the polymer is melted at elevated temperatures and solidifies as it cools post-extrusion. Solution-based printing can also be enhanced to generate micro/nano-scale porosity through phase separation by printing the solution into a nonsolvent bath. The choice of the printing method directly affects scaffold properties and the biological response of stem cells. In this study, we selected polycaprolactone (PCL), a biodegradable polymer frequently used in BTE, blended with hydroxyapatite (HA) nanoparticles, a bioceramic known for promoting bone formation, to investigate the effects of the printing approach on scaffold properties and performance in vitro using human mesenchymal stem cells (hMSCs). Our results showed that while both printing methods produced scaffolds with similar strut and overall scaffold dimensions, solvent-based printing resulted in porous struts, higher surface roughness, lower stiffness, and increased crystallinity compared to melt-based printing. Although stem cell viability and proliferation were not significantly influenced by the printing approach, melt-printed scaffolds promoted a more spread morphology and exhibited pronounced vinculin staining. Furthermore, composite scaffolds outperformed their neat counterparts, with melt-printed composite scaffolds significantly enhancing bone formation. This study highlights the critical role of the printing process in determining scaffold properties and performance, providing valuable insights for optimizing scaffold design in BTE.
Collapse
Affiliation(s)
- Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Alperen Abaci
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Keven Alkhoury
- Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ediha Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chya-Yan Liaw
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Shawn A Chester
- Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Ciocan Pendefunda AA, Dascalu CG, Bahrim S, Iordache C, Luca O, Antohe ME. Practical Implications in Contemporary Dental Aesthetics-Shade Selection Assessment Using Intraoral Scanners. Dent J (Basel) 2025; 13:43. [PMID: 39851619 PMCID: PMC11763794 DOI: 10.3390/dj13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Aesthetics is a challenging aspect to restore for both dentists and dental technicians. One of the characteristics of aesthetic restoration is the shade. The purpose of the study is to assess the accuracy of the shade selection feature of intraoral scanners (CEREC Omnican, 3Shape TRIOS) in comparison with an already established method-the VITA Easyshade V spectrophotometer (VE)-and test if there is any significant difference between the three devices. Methods: To conduct this in vitro study, the VITA Classical shade guide was used. The intraoral scanners would not be able to scan the VITA Classical as it is, hence, a study model (SM) was fabricated. To be able to test the accuracy of the intraoral scanners (IOSs) in detecting the dental color, a spectrophotometer had to be included in the study, as it was shown that it is the most accurate instrument for this purpose. Therefore, for the current study, the VITA Easyshade V spectrophotometer (VITA Zahnfabrik, Bad Sackingen, Germany) was selected. Results: The accuracy of the three devices when measuring the shade of the study model was calculated as a percentage. When comparing the primary results of the VE and the results obtained by the Omnicam and TRIOS, the latter is the most accurate (26.67%), whereas the other two scored 20%. The study also revealed the limitations of the instrumental devices that were used. Conclusions: First, both the VE and IOSs obtained unexpectedly low accuracy results. Possibly, the material VC is made of influenced the final accuracy values, but in practice, on a daily basis, dental materials represent a factor that cannot really be controlled.
Collapse
Affiliation(s)
- Alice Arina Ciocan Pendefunda
- Department of Odontology—Periodontology, Fixed Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Cristina Gena Dascalu
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Sebastian Bahrim
- Department of Implantology, Removable Restorations and Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (S.B.); (C.I.); (O.L.); (M.-E.A.)
| | - Cristina Iordache
- Department of Implantology, Removable Restorations and Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (S.B.); (C.I.); (O.L.); (M.-E.A.)
| | - Odette Luca
- Department of Implantology, Removable Restorations and Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (S.B.); (C.I.); (O.L.); (M.-E.A.)
| | - Magda-Ecaterina Antohe
- Department of Implantology, Removable Restorations and Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (S.B.); (C.I.); (O.L.); (M.-E.A.)
| |
Collapse
|
13
|
Kellersztein I, Tish D, Pederson J, Bechthold M, Daraio C. Multifunctional Biocomposite Materials from Chlorella vulgaris Microalgae. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413618. [PMID: 39558799 DOI: 10.1002/adma.202413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Extrusion 3D-printing of biopolymers and natural fiber-based biocomposites enables the fabrication of complex structures, ranging from implants' scaffolds to eco-friendly structural materials. However, conventional polymer extrusion requires high energy consumption to reduce viscosity, and natural fiber reinforcement often requires harsh chemical treatments to improve adhesion. We address these challenges by introducing a sustainable framework to fabricate natural biocomposites using Chlorella vulgaris microalgae as the matrix. Through bioink optimization and process refinement, we produced lightweight, multifunctional materials with hierarchical architectures. Infrared spectroscopy analysis reveals that hydrogen bonding plays a critical role in the binding and reinforcement of Chlorella cells by hydroxyethyl cellulose (HEC). As water content decreases, the hydrogen bonding network evolves from water-mediated interactions to direct hydrogen bonds between HEC and Chlorella, enhancing the mechanical properties. A controlled dehydration process maintains continuous microalgae morphology, preventing cracking. The resulting biocomposites exhibit a bending stiffness of 1.6 GPa and isotropic heat transfer and thermal conductivity of 0.10 W/mK at room temperature, demonstrating effective thermal insulation. These characteristics make Chlorella biocomposites promising candidates for applications requiring both structural performance and thermal insulation, offering a sustainable alternative to conventional materials in response to growing environmental demands.
Collapse
Affiliation(s)
- Israel Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Daniel Tish
- Material Processes and Systems Group, Graduate School of Design, Harvard University, Cambridge, MA, 02138, USA
| | - John Pederson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Martin Bechthold
- Material Processes and Systems Group, Graduate School of Design, Harvard University, Cambridge, MA, 02138, USA
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
14
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
15
|
Palmieri E, Montaina L, Bellisario D, Lucarini I, Maita F, Ielmini M, Cataldi ME, Cerroni L, Condò R, Maiolo L. Towards Green Dentistry: Evaluating the Potential of 4D Printing for Sustainable Orthodontic Aligners with a Reduced Carbon Footprint. Polymers (Basel) 2024; 16:3566. [PMID: 39771418 PMCID: PMC11679438 DOI: 10.3390/polym16243566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment. This study focuses on ClearX aligners, an innovative 4D-printed solution aimed at extending usage duration and minimizing environmental impact. Using a comprehensive suite of tests, including morphological, optical, and mechanical evaluations conducted via scanning electron microscopy, UV-Vis spectroscopy, infrared spectroscopy, and bending and strain assessments, we evaluated the optical and mechanical stability of the ClearX material before and after thermal activation. Our results demonstrate that ClearX aligners retain their structural and functional properties after reshaping. Temporary changes in transparency, observed only under prolonged treatment durations exceeding manufacturer recommendations, are fully reversible within 12 h and do not compromise the aligner's usability. These findings support the potential of ClearX aligners to effectively combine patient-centered, high-quality orthodontic care with sustainable practices.
Collapse
Affiliation(s)
- Elena Palmieri
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Luca Montaina
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Denise Bellisario
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy;
| | - Ivano Lucarini
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Francesco Maita
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| | - Martina Ielmini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Maria Elena Cataldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Loredana Cerroni
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Roberta Condò
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133 Rome, Italy; (M.I.); (M.E.C.); (L.C.)
| | - Luca Maiolo
- Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy; (E.P.); (L.M.); (I.L.); (L.M.)
| |
Collapse
|
16
|
Rus F, Neculau C, Imre M, Duica F, Popa A, Moisa RM, Voicu-Balasea B, Radulescu R, Ripszky A, Ene R, Pituru S. Polymeric Materials Used in 3DP in Dentistry-Biocompatibility Testing Challenges. Polymers (Basel) 2024; 16:3550. [PMID: 39771402 PMCID: PMC11679966 DOI: 10.3390/polym16243550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
In the latter part of the 20th century, remarkable developments in new dental materials and technologies were achieved. However, regarding the impact of dental resin-based materials 3D-printed on cellular responses, there have been a limited number of published studies recently. The biocompatibility of dental restorative materials is a controversial topic, especially when discussing modern manufacturing technologies. Three-dimensional printing generates the release of residual monomers due to incomplete polymerization of materials and involves the use of potentially toxic substances in post-printing processes that cannot be completely eliminated. Considering the issue of biocompatibility, this article aims to establish an overview of this aspect, summarizing the different types of biocompatibility tests performed on materials used in 3D printing in dentistry. In order to create this comprehensive review, articles dealing with the issue of 3D printing in dentistry were analysed by accessing the main specialized search engines using specific keywords. Relevant data referring to types of materials used in 3DP to manufacture various dental devices, polymerization methods, factors affecting monomer release, cytotoxicity of unreacted products or post-curing treatments, and methods for assessing biocompatibility were analysed. Although the introduction of new restorative materials used in dental treatments is subject to national and international regulations and standards, it is necessary to investigate them regarding biocompatibility in order to support or deny the manufacturers' statements regarding this aspect.
Collapse
Affiliation(s)
- Florentina Rus
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Cristina Neculau
- Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Duica
- Clinical Emergency Hospital Bucharest, Floreasca 8, 014451 Bucharest, Romania
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Radu Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Razvan Ene
- Orthopedics and Traumatology Department, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania
| | - Silviu Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| |
Collapse
|
17
|
Tonk M, Gupta V, Dhwaj A, Sachdeva M. Current developments and advancements of 3-dimensional printing in personalized medication and drug screening. Drug Metab Pers Ther 2024; 39:167-182. [PMID: 39331538 DOI: 10.1515/dmpt-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
INTRODUCTION 3-Dimensional printing (3DP) is an additive manufacturing (AM) technique that is expanding quickly because of its low cost and excellent efficiency. The 3D printing industry grew by 19.5 % in 2021 in spite of the COVID-19 epidemic, and by 2026, the worldwide market is expected to be valued up to 37.2 billion US dollars. CONTENT Science Direct, Scopus, MEDLINE, EMBASE, PubMed, DOAJ, and other academic databases provide evidence of the increased interest in 3DP technology and innovative drug delivery approaches in recent times. SUMMARY In this review four main 3DP technologies that are appropriate for pharmaceutical applications: extrusion-based, powder-based, liquid-based, and sheet lamination-based systems are discussed. This study is focused on certain 3DP technologies that may be used to create dosage forms, pharmaceutical goods, and other items with broad regulatory acceptance and technological viability for use in commercial manufacturing. It also discusses pharmaceutical applications of 3DP in drug delivery and drug screening. OUTLOOK The pharmaceutical sector has seen the prospect of 3D printing in risk assessment, medical personalisation, and the manufacture of complicated dose formulas at a reasonable cost. AM has great promise to revolutionise the manufacturing and use of medicines, especially in the field of personalized medicine. The need to understand more about the potential applications of 3DP in medical and pharmacological contexts has grown over time.
Collapse
Affiliation(s)
- Megha Tonk
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| | - Vishal Gupta
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| | | | - Monika Sachdeva
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
18
|
Wang L, Ye C, Xue X, Xie M, Zhi Y, Feng X, Zhao P, Zhou J, Mi M, Li J, Gu Q, Zhao Y, Chen J, Zhou Y, Xue Y, Fu Z, Zhou L, Chen L, Pan L, Sun Y, Wang L, Wu S, He Y, Wang J. 3D-Printed Breast Prosthesis that Smartly Senses and Targets Breast Cancer Relapse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402345. [PMID: 39308160 PMCID: PMC11633491 DOI: 10.1002/advs.202402345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/16/2024] [Indexed: 12/12/2024]
Abstract
Breast reconstruction is essential for improving the appearance of patients after cancer surgery. Traditional breast prostheses are not appropriate for those undergoing partial resections and cannot detect and treat locoregional recurrence. Personalized shape prostheses that can smartly sense tumor relapse and deliver therapeutics are needed. A 3D-printed prosthesis that contains a therapeutic hydrogel is developed. The hydrogel, which is fabricated by crosslinking the polyvinyl alcohol with N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1,3-diaminium, is responsive to reactive oxygen species (ROS) in the tumor microenvironment. Specifically, RSL3, a ferroptosis inducer that is loaded in hydrogels, can trigger tumor ferroptosis. Intriguingly, RSL3 encapsulated in the ROS-responsive hydrogel exerts antitumor effects by increasing the numbers of tumor-infiltrated CD4+ T cells, CD8+ T cells, and M1 macrophages while reducing the number of M2 macrophages. Therefore, this new prosthesis not only allows personalized shape reconstruction, but also detects and inhibits tumor recurrence. This combination of aesthetic appearance and therapeutic function can be very beneficial for breast cancer patients undergoing surgery.
Collapse
Affiliation(s)
- Lu Wang
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Chenyang Ye
- Department of Medical OncologyKey Laboratory of Cancer Prevention and InterventionThe Second Affiliated Hospital of Zhejiang University School of MedicineCancer CenterZhejiang UniversityHangzhou310058China
| | - Xiangjie Xue
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Mingjun Xie
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Yicheng Zhi
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Xiao Feng
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Pengcheng Zhao
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Jichun Zhou
- Department of Surgical OncologyBiomedical Research Center and Key Laboratory of Biotherapy of Zhejiang ProvinceSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Mi Mi
- Department of Medical OncologyKey Laboratory of Cancer Prevention and InterventionThe Second Affiliated Hospital of Zhejiang University School of MedicineCancer CenterZhejiang UniversityHangzhou310058China
| | - Jinrui Li
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Qinhao Gu
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Ye Zhao
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Jiaxin Chen
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Yi Zhou
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Yanan Xue
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Zexin Fu
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Liuyi Zhou
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Lulu Chen
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Lei Pan
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Yi Sun
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Linbo Wang
- Department of Surgical OncologyBiomedical Research Center and Key Laboratory of Biotherapy of Zhejiang ProvinceSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Sufan Wu
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310058China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical Engineering, Zhejiang UniversityHangzhou310058China
| | - Ji Wang
- Center for Plastic & Reconstructive SurgeryDepartment of Plastic & Reconstructive SurgeryZhejiang Provincial People's Hospital (Affiliated People's HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|
19
|
Fu DS, Jin Y, Zhao ZH, Wang C, Shi YH, Zhou MJ, Zhao JX, Liu C, Qiao T, Liu CJ, Li XQ, Li WD, Liu Z. Three-Dimensional Printing to Guide Fenestrated/Branched TEVAR in Triple Aortic Arch Branch Reconstruction With a Curative Effect Analysis. J Endovasc Ther 2024; 31:1088-1097. [PMID: 36942654 DOI: 10.1177/15266028231161244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE To summarize experience with and the efficacy of fenestrated/branched thoracic endovascular repair (F/B-TEVAR) using physician-modified stent-grafts (PMSGs) under 3D printing guidance in triple aortic arch branch reconstruction. MATERIALS AND METHODS From February 2018 to April 2022, 14 cases of aortic arch aneurysms and 30 cases of aortic arch dissection (22 acute aortic arch dissection and 8 long-term aortic arch dissection)were treated by F/B-TEVAR in our department, including 34 males and 10 females, with an average age of 59.84 ± 11.72 years. Three aortic arch branches were affected in all patients. A 3D-printed model was made according to computed tomography angiography images and used to guide the fabrication of PMSGs. All patients were followed up. RESULTS A total of 132 branches were successfully reconstructed with no case of conversion to open surgery. The average operation time was 4.97 ± 1.40 hours, including a mean 44.05 ± 7.72 minutes for stent-graft customization, the mean postoperative hospitalization duration was 9.91 ± 4.47 days, the average intraoperative blood loss was 480.91 mL (100-2810 mL), and the mean postoperative intensive care unit monitoring duration was 1.02 days (0-5 days). No deaths occurred within 30 days of surgery. Postoperative neurological complications occurred in 1 case (2.3%), and retrograde type A dissection occurred in 1 case (2.3%). CONCLUSION Compared with conventional surgery, triple aortic arch branch reconstruction under the guidance of 3D printing is a minimally invasive treatment method with the advantages of accurate positioning, rapid postoperative recovery, few complications, and reliable short- to mid-term effects. CLINICAL IMPACT At present the PMSG usually depend on imaging data and software calculation. With the guidance of 3D printing technology, image data could be transformed into 3D model, which has improved the accuracy of the positioning of the fenestrations. The diameter reduction technique and the internal mini cuff technique have made a complement to the slimed-down fenestration selection process and the low rate of endoleak. As reproducible study, our results may provide reference for TEVAR in different cases.
Collapse
Affiliation(s)
- Dong-Sheng Fu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi Jin
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zi-He Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chao Wang
- Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Ying-Huan Shi
- Department of Computer Science and Technology, Nanjing University, Nanjing, China
| | - Ming-Jie Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing-Xiong Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang-Jian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
20
|
Chang PS, Lee TY, Kneiber D, Dy CJ, Ward PM, Kazarian G, Apostolakos J, Brogan DM. Design and In Vivo Testing of an Anatomic 3D-Printed Peripheral Nerve Conduit in a Rat Sciatic Nerve Model. HSS J 2024:15563316241299368. [PMID: 39583892 PMCID: PMC11583172 DOI: 10.1177/15563316241299368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Background: Three-dimensional (3D) printer technology has seen a surge in use in medicine, particularly in orthopedics. A recent area of research is its use in peripheral nerve repair, which often requires a graft or conduit to bridge segmental defects. Currently, nerve gaps are bridged using autografts, allografts, or synthetic conduits. Purpose: We sought to improve upon the current design of simple hollow, cylindrical conduits that often result in poor nerve regeneration. Previous attempts were made at reducing axonal dispersion with the use of multichanneled conduits. To our knowledge, none has attempted to mimic and test the anatomical topography of the nerve. Methods: Using serial histology sections, 3D reconstruction software, and computer-aided design, a scaffold was created based on the fascicular topography of a rat sciatic nerve. A 3D printer produced both cylindrical conduits and topography-based scaffolds. These were implanted in 12 Lewis rats: 6 rats with the topographical scaffold and 6 rats with the cylindrical conduit. Each rodent's uninjured contralateral limb was used as a control for comparison of functional and histologic outcomes. Walking track analysis was performed, and the Sciatic Functional Index (SFI) was calculated with the Image J software. After 6 weeks, rats were sacrificed and analyses performed on the regenerated nerve tissue. Primary outcomes measured included nerve (fiber) density, nerve fiber width, total number of nerve fibers, G-ratio (ratio of axon width to total fiber width), and percent debris. Secondary outcomes measured included electrophysiology studies of electromyography (EMG) latency and EMG amplitude and isometric force output by the gastrocnemius and tibialis anterior. Results: There were no differences observed between the cylindrical conduit and topographical scaffold in terms of histological outcomes, muscle force, EMG, or SFI. Conclusion: This study of regeneration of the sciatic nerve in a rat model suggests the feasibility of 3D-printed topographical scaffolds. More research is required to quantify the functional outcomes of this technology for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Peter S. Chang
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tony Y. Lee
- School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - David Kneiber
- Department of Anesthesiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Christopher J. Dy
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Patrick M. Ward
- Department of Orthopaedic Surgery, University of Chicago, Chicago, IL, USA
| | | | - John Apostolakos
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - David M. Brogan
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
21
|
Rand S, Surapaneni T, Bartels MNM, Gitkind A. Approaches to Prosthetic Limb Restoration in Resource-Limited Settings/Countries: 3 Dimensional Printing. Phys Med Rehabil Clin N Am 2024; 35:897-904. [PMID: 39389643 DOI: 10.1016/j.pmr.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Much of the burden of living with a disability is concentrated among those populations least financially able to bear the burden. As the price of 3 dimensional (3D) printing decreases, individual access to this technology increases. 3D-printed prostheses can be designed specifically for use in resource-poor settings, including developing countries, to minimize the cost of consumable parts while optimizing durability in harsh environmental conditions.
Collapse
Affiliation(s)
- Stephanie Rand
- Department of Rehabilitation Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA.
| | - Tushara Surapaneni
- Department of Emergency Medicine, Eden Medical Center, 20103 Lake Chabot Road, Castro Valley, CA 94546, USA
| | - Matthew N M Bartels
- Department of Rehabilitation Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA
| | - Andrew Gitkind
- Department of Rehabilitation Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA
| |
Collapse
|
22
|
Zhang J, Qing J, Hu K, Cheng H. Integrating 3D technology with the Sampaio classification for enhanced percutaneous nephrolithotomy in complex renal calculi treatment. Front Surg 2024; 11:1471958. [PMID: 39502085 PMCID: PMC11534594 DOI: 10.3389/fsurg.2024.1471958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background To investigate the safety and efficacy of percutaneous nephrolithotomy (PCNL) in the treatment of complicated renal calculi by integrating three-dimensional (3D) computed tomography (CT) reconstruction with the Sampaio classification of the renal collecting system. Methods Sixty-four consecutive patients with complex kidney calculi who underwent PCNL between January 2019 and October 2023 were retrospectively analyzed and divided into experimental group (3D printing) and control group (CT imaging) according to their willingness to pay for 3D imaging. Both groups underwent preoperative CT urography. The Digital Imaging and Communications (DICOM) in Medicine data of the experimental group from CT imaging were used for 3D reconstruction and model printing. Then, the Sampaio classification system was used to design the puncture channel and develop a surgical strategy. Results The 3D-printed models of the experimental group successfully displayed the Sampaio classification system. There was no significant difference in the baseline parameters between the groups. Compared with the control group, the experimental group exhibited significant improvements in the puncture time, number of puncture needles, number of puncture channels, target calyx consistency, number of first puncture channels, and stone clearance. There were no significant differences in the total operative time, decrease in the hemoglobin level, length of hospital stay, and postoperative complications between the groups. Conclusions Integration of 3D technology with the Sampaio classification of the renal collecting system can enhance the preoperative evaluation and planning of percutaneous renal access. This approach allows a more precise method of PCNL for treating complex renal calculi.
Collapse
Affiliation(s)
- Jiamo Zhang
- Department of Urology, Yangchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Qing
- Department of Urology, Yangchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Hu
- Department of Urology, Yangchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Honglin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Zhang X, Gao X, Zhang X, Yao X, Kang X. Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds. Int J Nanomedicine 2024; 19:10661-10684. [PMID: 39464675 PMCID: PMC11505483 DOI: 10.2147/ijn.s469302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/10/2024] [Indexed: 10/29/2024] Open
Abstract
Hydrogels are multifunctional platforms. Through reasonable structure and function design, they use material engineering to adjust their physical and chemical properties, such as pore size, microstructure, degradability, stimulus-response characteristics, etc. and have a variety of biomedical applications. Hydrogel three-dimensional (3D) printing has emerged as a promising technique for the precise deposition of cell-laden biomaterials, enabling the fabrication of intricate 3D structures such as artificial vertebrae and intervertebral discs (IVDs). Despite being in the early stages, 3D printing techniques have shown great potential in the field of regenerative medicine for the fabrication of various transplantable tissues within the human body. Currently, the utilization of engineered hydrogels as carriers or scaffolds for treating intervertebral disc degeneration (IVDD) presents numerous challenges. However, it remains an indispensable multifunctional manufacturing technology that is imperative in addressing the escalating issue of IVDD. Moreover, it holds the potential to serve as a micron-scale platform for a diverse range of applications. This review primarily concentrates on emerging treatment strategies for IVDD, providing an in-depth analysis of their merits and drawbacks, as well as the challenges that need to be addressed. Furthermore, it extensively explores the biological properties of hydrogels and various nanoscale biomaterial inks, compares different prevalent manufacturing processes utilized in 3D printing, and thoroughly examines the potential clinical applications and prospects of integrating 3D printing technology with hydrogels.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi’an Jiao Tong University, Xi’An, Shaanxi, P.R. China
| |
Collapse
|
24
|
Wu LN, Zhang ZF, Li RJ, Xin DQ, Wang JF. 3D Printing for Personalized Solutions in Cervical Spondylosis. Orthop Res Rev 2024; 16:251-259. [PMID: 39435304 PMCID: PMC11492914 DOI: 10.2147/orr.s486438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
In the context of the digital revolution, 3D printing technology brings innovation to the personalized treatment of cervical spondylosis, a clinically common degenerative disease that severely impacts the quality of life and increases the economic burden of patients. Although traditional surgeries, medications, and physical therapies are somewhat effective, they often fail` to meet individual needs, thus affecting treatment adherence and outcomes. 3D printing, with its customizability, precision, material diversity, and short production cycles, shows tremendous potential in the treatment of cervical spondylosis. This review discusses the multiple applications of 3D printing in the treatment of cervical spondylosis, including the design, manufacture, and advantages of 3D-printed cervical collars, the role of 3D models in clinical teaching and surgical simulation, and the application of 3D-printed scaffolds and implants in cervical surgery. It also discusses the current challenges and future directions.
Collapse
Affiliation(s)
- Li-Na Wu
- Orthopaedic Clinical Research Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Zhi-Feng Zhang
- Orthopaedic Clinical Research Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Ru-Jun Li
- Orthopaedic Clinical Research Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Da-Qi Xin
- Orthopaedic Clinical Research Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Jun-Feng Wang
- Orthopaedic Clinical Research Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| |
Collapse
|
25
|
Zoghi S. Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks. Biomed Eng Comput Biol 2024; 15:11795972241288099. [PMID: 39364141 PMCID: PMC11447703 DOI: 10.1177/11795972241288099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Tissue engineering is a multidisciplinary field that uses biomaterials to restore tissue function and assist with drug development. Over the last decade, the fabrication of three-dimensional (3D) multifunctional scaffolds has become commonplace in tissue engineering and regenerative medicine. Thanks to the development of 3D bioprinting technologies, these scaffolds more accurately recapitulate in vivo conditions and provide the support structure necessary for microenvironments conducive to cell growth and function. The purpose of this review is to provide a background on the leading 3D bioprinting methods and bioink selections for tissue engineering applications, with a specific focus on the growing field of developing multifunctional bioinks and possible future applications.
Collapse
Affiliation(s)
- Shervin Zoghi
- School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
26
|
Duan M, Lv S, Fan B, Fan W. Effect of 3D printed teeth and virtual simulation system on the pre-clinical access cavity preparation training of senior dental undergraduates. BMC MEDICAL EDUCATION 2024; 24:913. [PMID: 39180072 PMCID: PMC11344365 DOI: 10.1186/s12909-024-05869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The objective of the present study was to evaluate the effect of 3D printed teeth and virtual simulation system on the pre-clinical access cavity preparation training of senior dental undergraduates. METHODS The 3D printed teeth were manufactured based on the micro-CT data of an extracted lower first molar. Ninety-eight senior dental undergraduate students were required to finish the access cavity preparation of lower first molar within 20 min on plastic and 3D printed teeth on the manikin system as well as on a virtual simulation machine respectively with randomly selected sequences. Expert dentists scored the operated teeth. The scores from the virtual simulation system were also recorded. All the scores were analyzed and compared. Following the procedure, two questionnaires were sent to students to further evaluate the feelings and optimal training sequence. RESULTS No significant differences were found between plastic and 3D printed teeth scores, while virtual simulation achieved a valid/invalid area removal ratio of 96.86% ± 5.08% and 3.97% ± 1.85%, respectively. Most students found plastic teeth training the easiest and favored the three-training combination (36.36%). 71.42% of the students thought the virtual simulation training should be put at the first place of the three trainings. Over 80% of students agreed with incorporating 3D printed teeth and virtual simulation into their routine training courses. In addition, the general advantages and disadvantages of the virtual simulation system and 3D printed teeth training received almost equal recognition by students. CONCLUSIONS Virtual simulation system training + plastic teeth training + 3D printed teeth training might be the optimal training sequence. Virtual simulation system training could not completely replace the traditional training methods on the manikin system at the moment. With further modifications, 3D printed teeth could be expected to replace the plastic teeth for the pre-clinical access cavity preparation training.
Collapse
Affiliation(s)
- Mengting Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Silei Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bing Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Wei Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
27
|
Chu JH, Zhang Y, Jiang Y, Wu HF, Wang WY, Wang M, Zhang JH, Yan K, Yao XM. Research trends of bone tumor treatment with 3D printing technology from 2013 to 2022: a bibliometric analysis. Discov Oncol 2024; 15:359. [PMID: 39160379 PMCID: PMC11333674 DOI: 10.1007/s12672-024-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE Bibliometrics was employed in this study to determine the research trends in the worldwide application of 3D printing technology to treat bone tumors over the previous 10 years. METHODS Published from 2013 to 2022, the papers related to bone tumors treated with 3D printing were located in Web of Science Core Collection (WoSCC), PubMed, and Scopus. The screened articles were included in this bibliometric study. From these papers in WoSCC, information on annual publications, journals, keywords, countries, authors, institutions, and cited references were extracted and visualized with CiteSpace (version 6.1.R6) software to investigate the state of bone tumor treatment using 3D printing as well as research hotspots. The Carrot2 online visualization tool and Vosviewer software (version 1.6.20) were employed to visualize the publications from PubMed and Scopus, respectively, in order to ascertain the most popular research topics from both databases. RESULTS A total of 606, 233, and 364 publications were obtained from WoSCC, PubMed, and Scopus, respectively, between the years 2013 and 2022. In WoSCC, the peak number of publications was found in 2021, with 145 publications published. Acta Biomaterialia (11 publications) and World Neurosurgery (10 publications) were the most prolific journals, and Biomaterials was the journal cited the most (244 times). Yong Zhou was the most productive author with 14 publications, while Kwok-Chuen Wong (69 citations) and William F Enneking, (69 citations) possessed the most citations. The country with the largest quantity of publications was China (207). Among all institutions, Shanghai Jiao Tong University produced the most publications (29). Rapid prototyping was the keyword with the strongest citation burst (4.73). 'Reconstruction', 'surgery', 'resection', and 'design' caught the significant attention of researchers. 3D-printed materials, pelvic reconstruction, mandibular reconstruction, computer-assisted surgical techniques, photothermal therapy, and in vitro experiments were recognized as hot subjects and trends in current research. The most frequently occurring topics in Scopus are not significantly different from those found in WoSCC. The most prevalent research areas in PubMed encompass implant, patient-specific, bioceramic, models, and pelvic.
Collapse
Affiliation(s)
- Jia-Hao Chu
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhang
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University's Third Affiliated Hospital, Hangzhou, China
| | - Yi Jiang
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-Fan Wu
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Yi Wang
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Wang
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Hui Zhang
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Yan
- Zhejiang Chinese Medical University's Third Affiliated Hospital, Hangzhou, China
| | - Xin-Miao Yao
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Chinese Medical University's Third Affiliated Hospital, Hangzhou, China.
| |
Collapse
|
28
|
Xue H, Chen S, Hu Y, Huang J, Shen Y. Advances in 3D printing for the repair of tympanic membrane perforation: a comprehensive review. Front Bioeng Biotechnol 2024; 12:1439499. [PMID: 39188376 PMCID: PMC11345550 DOI: 10.3389/fbioe.2024.1439499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Tympanic membrane perforation (TMP) is one of the most common conditions in otolaryngology worldwide, and hearing damage caused by inadequate or prolonged healing can be distressing for patients. This article examines the rationale for utilizing three-dimensional (3D) printing to produce scaffolds for repairing TMP, compares the advantages and disadvantages of 3D printed and bioprinted grafts with traditional autologous materials and other tissue engineering materials in TMP repair, and highlights the practical and clinical significance of 3D printing in TMP repair while discussing the current progress and promising future of 3D printing and bioprinting. There is a limited number of reviews specifically dedicated to 3D printing for TMP repair. The majority of reviews offer a general overview of the applications of 3D printing in the broader realm of tissue regeneration, with some mention of TMP repair. Alternatively, they explore the biopolymers, cells, and drug molecules utilized for TMP repair. However, more in-depth analysis is needed on the strategies for selecting bio-inks that integrate biopolymers, cells, and drug molecules for tympanic membrane repair.
Collapse
Affiliation(s)
- Hao Xue
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shengjia Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Hu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juntao Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
29
|
Abdullah SJ, Shaikh Mohammed J. 3D-printed design iteration of a low-tech positive obstacle pushing/gliding wheelchair accessory. Disabil Rehabil Assist Technol 2024; 19:2178-2189. [PMID: 37880957 DOI: 10.1080/17483107.2023.2272861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Steering a wheelchair while navigating through manual doors or against obstacles is challenging for some users. Previously, a low-cost, low-tech accessory made using off-the-shelf components, conventional manufacturing, and 3D-printed fasteners demonstrated the proof-of-concept for uncrossable positive obstacle pushing or gliding. Current work presents the fabrication and testing of an entirely 3D-printed prototype of the accessory. METHODS The accessory was 3D-printed using ABS (10% fill density) in sections. A finite element stress analysis simulation was performed for the entire accessory. Prototype tests were done with the accessory installed on an unoccupied powered wheelchair against a door and an obstacle with ∼25 N and ∼50 N resistance forces, respectively. RESULTS The maximum stresses in none of the crucial components exceeded the break strength of ABS. Test results demonstrate the ability and mechanical robustness of the fully 3D-printed accessory to push open manual doors, allowing easy navigation through doors, and to push or glide against obstacles. The current prototype improves over the previous prototype in terms of manufacturability, weight, design, and safety. CONCLUSIONS To the best of our knowledge, this is the first demonstration of an entirely 3D-printed wheelchair accessory that pushes or glides against uncrossable positive obstacles. Future studies would involve end-user satisfaction assessment and functionality evaluation in different scenarios under clinical supervision. The pushing or gliding ability of the accessory could be beneficial to wheelchair users with neuromuscular disorders or paraplegia.
Collapse
Affiliation(s)
- Soran Jalal Abdullah
- Department of Manufacturing Technology, Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Javeed Shaikh Mohammed
- Department of Manufacturing Technology, Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
30
|
Giannico AT, Buch D, Lisboa LEO, Denadai BB, Torres MFP, Foggiatto JA. 3D Digital and Printed Hearts from Different Canine Breeds as an Educational Tool for Radiographic Interpretation. JOURNAL OF VETERINARY MEDICAL EDUCATION 2024; 51:505-511. [PMID: 39499571 DOI: 10.3138/jvme-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Three-dimensional (3D) printing is a new method of creating anatomical models, which can enhance the training of students and health professionals. The large breed-variation in dogs means that interpretation of thoracic radiographs can be challenging for the inexperienced radiologist. The aim of this study was to develop digital and printed 3D cardiac models from six canine breeds and evaluate their use as a tool for studying breed variations in radiology. The printed and digital 3D cardiac models were used by postgraduate veterinary students in diagnostic imaging along with a theoretical class on the subject and students completed a pre- and post-test, assessing cardiac size on thoracic radiographs in order to verify the usefulness of the models. The students then completed a satisfaction questionnaire using a Likert scale. There was a significant difference between the pre-test and the post-test results, with greater accuracy after using the 3D models. More errors were made in pre-test interpretation of radiographs from English Cocker Spaniel, English Bulldog, and Yorkshire Terrier and there were a significantly higher number of correct answers after using the 3D models. The vast majority of responses to all questions in the satisfaction questionnaire were positive, with partial or total agreement of the participants. This study demonstrates that digitally printed cardiac models from different breeds of dogs are effective learning tools. They helped students to better understand the relevant spatial relationship and cardiac morphology and to compare this anatomy with the radiographic image. Models are provided in 3D PDF and STL files for download.
Collapse
Affiliation(s)
- Amália T Giannico
- Postgraduate Program in Mechanical and Materials Engineering, Federal University of Technology - Paraná (UTFPR), R. Dep. Heitor Alencar Furtado, 5000 - Cidade Industrial, Curitiba, Paraná, 81280-340, Brazil
| | - Danielle Buch
- Department of Imaging Diagnostics, Pontifical Catholic University of Paraná (PUCPR), Rua Imaculada Conceição, 1155 - Prado Velho - 80215-901
| | - Luiz Eduardo O Lisboa
- Mechanical and Materials Engineering, Federal University of Technology - Paraná (UTFPR), R. Dep. Heitor Alencar Furtado, 5000 - Cidade Industrial, Curitiba, Paraná, 81280-340, Brazil
| | - Bruno B Denadai
- Mechanical Department, Federal University of Technology - Paraná (UTFPR), R. Dep. Heitor Alencar Furtado, 5000 - Cidade Industrial, Curitiba, Paraná, 81280-340, Brazil
| | - Maria Fernanda P Torres
- Anatomy Department, Federal University of Paraná (UFPR), Av. Francisco Heráclito dos Santos, 100 - Jardim das Américas, Curitiba, Paraná, 81531-980, Brazil
| | - José Aguiomar Foggiatto
- Mechanical Department, Federal University of Technology - Paraná (UTFPR), R. Dep. Heitor Alencar Furtado, 5000 - Cidade Industrial, Curitiba, Paraná, 81280-340, Brazil
| |
Collapse
|
31
|
Dotta TC, D'Ercole S, Iezzi G, Pedrazzi V, Galo R, Petrini M. The Interaction between Oral Bacteria and 3D Titanium Porous Surfaces Produced by Selective Laser Melting-A Narrative Review. Biomimetics (Basel) 2024; 9:461. [PMID: 39194440 DOI: 10.3390/biomimetics9080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The interaction between oral bacteria and dental implant surfaces is a critical factor in the success and longevity of dental implants. With advancements in additive manufacturing technologies, selective laser melting (SLM) has emerged as a prominent method for producing titanium implants with highly controlled microstructures and porosities. These 3D printed titanium surfaces offer significant benefits, such as enhanced osseointegration and improved mechanical properties. However, the same surface features that promote bone cell attachment and proliferation may also provide favorable conditions for bacterial adhesion and biofilm formation. Understanding the dynamics of these interactions is essential for developing implant surfaces that can effectively resist bacterial colonization while promoting tissue integration. This narrative review explores the complex interplay between oral bacteria and SLM-produced titanium porous surfaces, examining current research findings and potential strategies for optimizing implant design to mitigate the risks of infection and ensure successful clinical outcomes.
Collapse
Affiliation(s)
- Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil
| | - Simonetta D'Ercole
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vinicius Pedrazzi
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil
| | - Rodrigo Galo
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
32
|
Kim H, Lim S, Park M, Kim K, Kang SH, Lee Y. Optimization of Fast Non-Local Means Noise Reduction Algorithm Parameter in Computed Tomographic Phantom Images Using 3D Printing Technology. Diagnostics (Basel) 2024; 14:1589. [PMID: 39125465 PMCID: PMC11312005 DOI: 10.3390/diagnostics14151589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Noise in computed tomography (CT) is inevitably generated, which lowers the accuracy of disease diagnosis. The non-local means approach, a software technique for reducing noise, is widely used in medical imaging. In this study, we propose a noise reduction algorithm based on fast non-local means (FNLMs) and apply it to CT images of a phantom created using 3D printing technology. The self-produced phantom was manufactured using filaments with similar density to human brain tissues. To quantitatively evaluate image quality, the contrast-to-noise ratio (CNR), coefficient of variation (COV), and normalized noise power spectrum (NNPS) were calculated. The results demonstrate that the optimized smoothing factors of FNLMs are 0.08, 0.16, 0.22, 0.25, and 0.32 at 0.001, 0.005, 0.01, 0.05, and 0.1 of noise intensities, respectively. In addition, we compared the optimized FNLMs with noisy, local filters and total variation algorithms. As a result, FNLMs showed superior performance compared to various denoising techniques. Particularly, comparing the optimized FNLMs to the noisy images, the CNR improved by 6.53 to 16.34 times, COV improved by 6.55 to 18.28 times, and the NNPS improved by 10-2 mm2 on average. In conclusion, our approach shows significant potential in enhancing CT image quality with anthropomorphic phantoms, thus addressing the noise issue and improving diagnostic accuracy.
Collapse
Affiliation(s)
- Hajin Kim
- Department of Health Science, General Graduate School of Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (H.K.); (S.L.); (M.P.)
| | - Sewon Lim
- Department of Health Science, General Graduate School of Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (H.K.); (S.L.); (M.P.)
| | - Minji Park
- Department of Health Science, General Graduate School of Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (H.K.); (S.L.); (M.P.)
| | - Kyuseok Kim
- Department of Biomedical Engineering, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si 13135, Republic of Korea;
| | - Seong-Hyeon Kang
- Department of Biomedical Engineering, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si 13135, Republic of Korea;
| | - Youngjin Lee
- Department of Radiological Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
33
|
Tsolakis IA, Lyros I, Christopoulou I, Tsolakis AI, Papadopoulos MA. Comparing the accuracy of 3 different liquid crystal display printers for dental model printing. Am J Orthod Dentofacial Orthop 2024; 166:7-14. [PMID: 38647515 DOI: 10.1016/j.ajodo.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION This study aimed to evaluate the accuracy in terms of trueness and precision of 3 different liquid crystal display (LCD) printers with different cost levels. METHODS Three LCD 3-dimensional (3D) printers were categorized into tiers 1-3 on the basis of cost level. The printers' accuracies were assessed in terms of trueness and precision. For this research, 10 standard tessellation language (STL) reference files were used. For trueness, each STL file was printed once with each 3D printer. For precision, 1 randomly chosen STL file was printed 10 times with each 3D printer. After that, a model scanner was used to scan the models, and STL comparisons were performed using reverse engineering software. For the measurements regarding trueness and precision, the Friedman test was used. RESULTS There were significant differences among the 3 printers (P <0.05). The trueness and precision error were lower in models printed with a tier-1 printer than in the remaining 3D printers (P <0.05). The tier-2 and -3 printers presented very similar performance. CONCLUSIONS LCD 3D printers can be accurately used in orthodontics for model printing depending on the specific orthodontic use. The cost of a printer is relevant to the results only for the higher expense of the 3D printer in this study.
Collapse
Affiliation(s)
- Ioannis A Tsolakis
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH.
| | - Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Isidora Christopoulou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos I Tsolakis
- Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH; Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Moschos A Papadopoulos
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
34
|
Chen G, Zhang J, He J, Li Y, Li C, Lin Z, Wu H, Zhou L. The application of 3D printing in dentistry: A bibliometric analysis from 2012 to 2023. J Prosthet Dent 2024:S0022-3913(24)00418-9. [PMID: 38955600 DOI: 10.1016/j.prosdent.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
STATEMENT OF PROBLEM Three-dimensional (3D) printing has had extensive applications across dentistry, but a comprehensive bibliometric analysis relating to the application of 3D printing in dentistry is lacking. PURPOSE The purpose of this study was to conduct a comprehensive bibliometric analysis of the scientific literature concerning the application of 3D printing in dentistry from 2012 to 2023. MATERIAL AND METHODS The literature search was conducted in the Web of Science Core Collection Database. The retrieved literature data were downloaded as plain text file in "full record and cited references" format, with software programs (VOSviewer, CiteSpace, Biblioshiny, RStudio, Carrot2, and Microsoft Excel) used for bibliometric analysis and quantitative assessment. RESULTS The bibliometric analysis incorporated 1911 publications. Revilla-León, Marta was the most productive author. Zurich University had the highest number of publications and citations. The United States dominated the research landscape with the highest publication volume and H-index. The Journal of Prosthetic Dentistry was the leading journal in both publication volume and citation frequency. Co-occurrence analysis of keyword and co-cited analysis of reference indicated a robust research environment, characterized by a strong focus on the pursuit of accuracy in dental restorative solutions, biocompatibility of materials, and clinical applications. CONCLUSIONS Research on 3D printing in the field of dentistry continues to grow. Collaborations with leading organizations and countries have been established, with Revilla-León, Marta et al playing a pivotal role. Top journals represented included the Journal of Prosthetic Dentistry and Dental Materials. Main research domain resided in prosthodontics and implantology. Hot research topics included improvements in accuracy, dental materials, and clinical applications centered on implant guide design.
Collapse
Affiliation(s)
- Guangwei Chen
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Jingkun Zhang
- Master's student, Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Jianfeng He
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Yongqi Li
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Chengwei Li
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Zhiyan Lin
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Huilin Wu
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Libin Zhou
- Associate Professor, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China.
| |
Collapse
|
35
|
Zhao H, Huang S, Li S, Han Z, Huang W. Customized Orthosis for Nonsurgical Correction of Congenital Auricle Deformities in Newborns. Plast Reconstr Surg 2024; 154:167e-169e. [PMID: 37252912 DOI: 10.1097/prs.0000000000010765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
SUMMARY A misshaped pinna, caused by extrinsic pressures such as birth canal extrusion or incorrect position, is a common congenital auricular deformity in newborns. Surgery is a routine option to address this deformity, but it is traumatic and may lead to unacceptable aesthetic outcomes. Commercial ear mold orthoses with uniform size have been used for nonsurgical orthotic treatment, but are not applicable in all cases, depending on the auricle morphology. The authors used computer-aided design and three-dimensional (3D) printing technology to develop a novel customized orthosis for congenital auricular deformities. 3D ear models were constructed using computer-aided design software and a novel customized orthosis model was established after a process of correction, adjustment, and construction, with precise matching to allow tight attachment to the outer ear free from uneven skin pressing. After 3D-printing a customized orthosis injection mold, medical silicone injection molding was used to produce customized orthoses. Clinical application was conducted in 3 newborns and achieved satisfactory results. This novel customized auricle orthosis is an effective option for nonsurgical correction of a misshaped pinna.
Collapse
Affiliation(s)
- Hui Zhao
- From the Departments of Plastic and Aesthetic Surgery
| | | | - Suxia Li
- From the Departments of Plastic and Aesthetic Surgery
| | - Zhenyan Han
- Obstetrics and Gynecology, Third Affiliated Hospital, Sun Yat-Sen University
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University
| |
Collapse
|
36
|
Forbes TP, Gillen JG, Feeney W, Ho J. Quality by Design Considerations for Drop-on-Demand Point-of-Care Pharmaceutical Manufacturing of Precision Medicine. Mol Pharm 2024; 21:3268-3280. [PMID: 38661480 PMCID: PMC11262155 DOI: 10.1021/acs.molpharmaceut.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Distributed and point-of-care (POC) manufacturing facilities enable an agile pharmaceutical production paradigm that can respond to localized needs, providing personalized and precision medicine. These capabilities are critical for narrow therapeutic index drugs and pediatric or geriatric dosing, among other specialized needs. Advanced additive manufacturing, three-dimensional (3D) printing, and drop-on-demand (DoD) dispensing technologies have begun to expand into pharmaceutical production. We employed a quality by design (QbD) approach to identify critical quality attributes (CQAs), critical material attributes (CMAs), and critical process parameters (CPPs) of a POC pharmaceutical manufacturing paradigm. This theoretical framework encompasses the production of active pharmaceutical ingredient (API) "inks" at a centralized facility, which are distributed to POC sites for DoD dispensing into/onto delivery vehicles (e.g., orodispersible films, capsules, single liquid dose vials). Focusing on the POC dispensing/dosing processes, QbD considerations and cause-and-effect analyses identified the dispensed API quantity and solid-state form (CQAs), as well as the nozzle diameter, system pressure channel, and number of drops dispensed (CPPs) for detailed investigation. Final assay quantification and content uniformity CQAs were measured from demonstrative levothyroxine sodium single-dose liquid vials of glycerin/water, meeting the standard acceptance values. Each POC facility is unlikely to maintain full quality control laboratory capabilities, requiring the development of appropriate atline or inline methods to ensure quality control. We developed control strategies, including atline ultraviolet-visible (UV-vis) verification of the API ink prior to dispensing, inline drop counting during dispensing, intermediate atline-dispensed volume checks, and offline batch confirmation by liquid chromatography-tandem mass spectrometry (LC-MS/MS) following production.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - John Greg Gillen
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - William Feeney
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | - Johnny Ho
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| |
Collapse
|
37
|
Habiba R, Amaro A, Trindade D, Moura C, Silva R, Antão A, Martins RF, Malça C, Branco R. Comparative Analysis of Impact Strength among Various Polymeric Materials for Orthotic Production. Polymers (Basel) 2024; 16:1843. [PMID: 39000698 PMCID: PMC11243978 DOI: 10.3390/polym16131843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Orthotic devices play an important role in medical treatment, addressing various pathologies and promoting patient recovery. Customization of orthoses to fit individual patient morphologies and needs is essential for optimal functionality and patient comfort. The advent of additive manufacturing has revolutionized the biomedical field, offering advantages such as cost reduction, increased personalization, and enhanced dimensional adaptability for orthotics manufacturing. This research focuses on the impact strength of nine polymeric materials printed by additive manufacturing, including an evaluation of the materials' performance under varying conditions comprising different printing directions (vertical and horizontal) and exposure to artificial sweat for different durations (0 days, 24 days, and 189 days). The results showed that Nylon 12 is good for short-term (24 days) immersion, with absorbed energies of 78 J and 64 J for the vertical and horizontal directions, whereas Polycarbonate (PC) is good for long-term immersion (189 days), with absorbed energies of 66 J and 78 J for the vertical and horizontal directions. Overall, the findings contribute to a better understanding of the suitability of these materials for biomedical applications, considering both short-term and long-term exposure to physiological and environmental conditions.
Collapse
Affiliation(s)
- Rachel Habiba
- Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
| | - Ana Amaro
- CEMMPRE-ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal;
| | - Daniela Trindade
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Carla Moura
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Research Center for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Rui Silva
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, 1495 Cruz Quebrada Dafundo, 1649-004 Lisbon, Portugal
| | - André Antão
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
| | - Rui F. Martins
- UNIDEMI, Department of Mechanical and Industrial Engineering, Nova School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Cândida Malça
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- Coimbra Institute of Engineering (ISEC), Polytechnic Institute of Coimbra, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal
| | - Ricardo Branco
- CEMMPRE-ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal;
| |
Collapse
|
38
|
Cunha CMQDA, Campelo APBS, Sales LB, Ary IBLM, Gomes JWF, Campelo MWS. Development and mechanical-functional validation of 3D-printed laparoscopic forceps. Rev Col Bras Cir 2024; 51:e20243619. [PMID: 38896634 PMCID: PMC11185057 DOI: 10.1590/0100-6991e-20243619-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/14/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION 3-dimensional printing has enabled the development of unique and affordable additive manufacturing, including the prototyping and production of surgical forceps. Objective: demonstrate the development, 3D printing and mechanical-functional validation of a laparoscopic grasping forceps. METHODS the clamp was designed using a computer program and printed in 3 dimensions with polylactic acid (PLA) filament and added 5 screws for better leverage. Size and weight measurements were carried out, as well as mechanicalfunctional grip and rotation tests in the laboratory with a validated simulator. RESULTS Called "Easylap", the clamp weighed 48 grams, measured 43cm and was printed in 8 pieces, taking an average of 12 hours to produce. It allowed the simulation of the functional characteristics of laparoscopic pressure forceps, in addition to the rotation and rack locking mechanism. However, its strength is reduced due to the material used. CONCLUSION It is possible to develop plastic laparoscopic grasping forceps through 3-dimensional printing.
Collapse
Affiliation(s)
| | | | | | | | | | - Márcio Wilker Soares Campelo
- - Centro Universitário Christus, Mestrado de Inovação Tecnológica em Saúde - Fortaleza - CE - Brasil
- - Universidade Federal do Ceará, Departamento de Cirurgia - Fortaleza - CE - Brasil
| |
Collapse
|
39
|
Sim MY, Park JB, Kim DY, Kim HY, Park JM. Dimensional accuracy and surface characteristics of complete-arch cast manufactured by six 3D printers. Heliyon 2024; 10:e30996. [PMID: 38778963 PMCID: PMC11109808 DOI: 10.1016/j.heliyon.2024.e30996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Objective This in vitro study aimed to quantitatively and qualitatively evaluate and compare the horizontal and vertical accuracies of complete-arch casts produced by six 3D printers with different printing principles and resolutions using a low-viscosity resin material. Methods A reference cast was designed by CAD software. The 3D printers used were DLPa (Asiga MAX), DLPk (cara Print 4.0), LCD2o (Ondemand 2 K Printer), LCD2p (Photon Mono X), LCD4s (SONIC 4 K), and SLA (ZENITH U). Ten casts were printed for each 3D printer using a low-viscosity resin. The accuracy of each printed cast was evaluated using shell-to-shell deviations, 12 linear, one angular, and five height deviations, with a reference cast as the control. The surface features of the casts were examined using field-emission scanning electron microscopy (FE-SEM) and digital cameras. Results The evaluation of shell-to-shell deviation revealed that DLPa and SLA printers exhibited low trueness values, whereas LCD printers displayed high trueness values. Among the LCD printers, LCD4s and LCD2o exhibited the lowest and highest trueness values, respectively. DLPa printers showed lower trueness values for intercanine and intermolar distances, whereas LCD printers generally demonstrated high trueness values. However, LCD4s exhibited similar trueness values to those of SLA and DLPk. The height deviation was smallest in the anterior area, whereas the largest height deviation occurred in the canine teeth. The surface characteristics indicated that the SLA casts had greater light reflection and blunt canine tips. The FE-SEM observations highlighted that the LCD and DLP printers exhibited varying layer characteristics, with some presenting rough and uneven borders in the anterior lingual area. Significance The accuracy of 3D printed casts varied among the 3D printer groups: DLPa and SLA were accurate for shell-to-shell deviation, with DLPa being the most accurate for linear and angular deviations. Regardless of the XY resolution, the DLP printers outperformed the LCD printers. Among the LCD group of 3D printers, higher-resolution LCD4s demonstrated increased accuracy. The SLA exhibited soft layer borders in the FE-SEM owing to its laser spot characteristics and prominent light reflection in the digital camera images.
Collapse
Affiliation(s)
- Mi-Young Sim
- Department of Orthodontics and Dentofacial Orthopedics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - June-Beom Park
- Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Deok-Yeoung Kim
- Department of Prosthodontics School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hae-Young Kim
- Department of Health Policy and Management, College of Health Science & Department of Public Health Sciences, Graduate School, and BK21 Four R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Ji-Man Park
- Department of Prosthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Kollmuss M, Edelhoff D, Schwendicke F, Wuersching SN. In Vitro Cytotoxic and Inflammatory Response of Gingival Fibroblasts and Oral Mucosal Keratinocytes to 3D Printed Oral Devices. Polymers (Basel) 2024; 16:1336. [PMID: 38794529 PMCID: PMC11125196 DOI: 10.3390/polym16101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of this study was to examine the biocompatibility of 3D printed materials used for additive manufacturing of rigid and flexible oral devices. Oral splints were produced and finished from six printable resins (pairs of rigid/flexible materials: KeySplint Hard [KR], KeySplint Soft [KF], V-Print Splint [VR], V-Print Splint Comfort [VF], NextDent Ortho Rigid [NR], NextDent Ortho Flex [NF]), and two types of PMMA blocks for subtractive manufacturing (Tizian Blank PMMA [TR], Tizian Flex Splint Comfort [TF]) as controls. The specimens were eluted in a cell culture medium for 7d. Human gingival fibroblasts (hGF-1) and human oral mucosal keratinocytes (hOK) were exposed to the eluates for 24 h. Cell viability, glutathione levels, apoptosis, necrosis, the cellular inflammatory response (IL-6 and PGE2 secretion), and cell morphology were assessed. All eluates led to a slight reduction of hGF-1 viability and intracellular glutathione levels. The strongest cytotoxic response of hGF-1 was observed with KF, NF, and NR eluates (p < 0.05 compared to unexposed cells). Viability, caspase-3/7 activity, necrosis levels, and IL-6/PGE2 secretion of hOK were barely affected by the materials. All materials showed an overall acceptable biocompatibility. hOK appeared to be more resilient to noxious agents than hGF-1 in vitro. There is insufficient evidence to generalize that flexible materials are more cytotoxic than rigid materials. From a biological point of view, 3D printing seems to be a viable alternative to milling for producing oral devices.
Collapse
Affiliation(s)
- Maximilian Kollmuss
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany; (F.S.); (S.N.W.)
| | - Daniel Edelhoff
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany;
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany; (F.S.); (S.N.W.)
| | - Sabina Noreen Wuersching
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany; (F.S.); (S.N.W.)
| |
Collapse
|
41
|
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, Zhou X, Yang B, Chen Z. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024; 12:1425-1448. [PMID: 38374788 DOI: 10.1039/d3bm01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To date, organ transplantation remains an effective method for treating end-stage diseases of various organs. In recent years, despite the continuous development of organ transplantation technology, a variety of problems restricting its progress have emerged one after another, and the shortage of donors is at the top of the list. Bioprinting is a very useful tool that has huge application potential in many fields of life science and biotechnology, among which its use in medicine occupies a large area. With the development of bioprinting, advances in medicine have focused on printing cells and tissues for tissue regeneration and reconstruction of viable human organs, such as the heart, kidneys, and bones. In recent years, with the development of organ transplantation, three-dimensional (3D) bioprinting has played an increasingly important role in this field, giving rise to many unsolved problems, including a shortage of organ donors. This review respectively introduces the development of 3D bioprinting as well as its working principles and main applications in the medical field, especially in the applications, and advancements and challenges of 3D bioprinting in organ transplantation. With the continuous update and progress of printing technology and its deeper integration with the medical field, many obstacles will have new solutions, including tissue repair and regeneration, organ reconstruction, etc., especially in the field of organ transplantation. 3D printing technology will provide a better solution to the problem of donor shortage.
Collapse
Affiliation(s)
- Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhiping Hu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
42
|
Kapoor K. 3D visualization and printing: An "Anatomical Engineering" trend revealing underlying morphology via innovation and reconstruction towards future of veterinary anatomy. Anat Sci Int 2024; 99:159-182. [PMID: 38236439 DOI: 10.1007/s12565-023-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The amalgamation of veterinary anatomy, technology and innovation has led to development of latest technological advancement in the field of veterinary medicine, i.e., three-dimensional (3D) imaging and reconstruction. 3D visualization technique followed by 3D reconstruction has been proven to enhance non-destructive 3D visualization grossly or microscopically, e.g., skeletal muscle, smooth muscle, ligaments, cartilage, connective tissue, blood vessels, nerves, lymph nodes, and glands. The core aim of this manuscript is to document non-invasive 3D visualization methods being adopted currently in veterinary anatomy to reveal underlying morphology and to reconstruct them by 3D softwares followed by printing, its applications, current challenges, trends and future opportunities. 3D visualization methods such as MRI, CT scans and micro-CT scans are utilised in revealing volumetric data and underlying morphology at microscopic levels as well. This will pave a way to transform and re-invent the future of teaching in veterinary medicine, in clinical cases as well as in exploring wildlife anatomy. This review provides novel insights into 3D visualization and printing as it is the future of veterinary anatomy, thus making it spread to become the plethora of opportunities for whole veterinary science.
Collapse
Affiliation(s)
- Kritima Kapoor
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
43
|
Kalogeropoulou M, Díaz-Payno PJ, Mirzaali MJ, van Osch GJVM, Fratila-Apachitei LE, Zadpoor AA. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications. Biofabrication 2024; 16:022002. [PMID: 38224616 DOI: 10.1088/1758-5090/ad1e6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and regenerative medicine (TERM). 4D printing is based on 3D printing, featuring the introduction of time as the fourth dimension, in which there is a transition from a 3D printed scaffold to a new, distinct, and stable state, upon the application of one or more stimuli. Here, we present an overview of the current developments of the 4D printing technology for TERM, with a focus on approaches to achieve temporal changes of the shape of the printed constructs that would enable biofabrication of highly complex structures. To this aim, the printing methods, types of stimuli, shape-shifting mechanisms, and cell-incorporation strategies are critically reviewed. Furthermore, the challenges of this very recent biofabrication technology as well as the future research directions are discussed. Our findings show that the most common printing methods so far are stereolithography (SLA) and extrusion bioprinting, followed by fused deposition modelling, while the shape-shifting mechanisms used for TERM applications are shape-memory and differential swelling for 4D printing and 4D bioprinting, respectively. For shape-memory mechanism, there is a high prevalence of synthetic materials, such as polylactic acid (PLA), poly(glycerol dodecanoate) acrylate (PGDA), or polyurethanes. On the other hand, different acrylate combinations of alginate, hyaluronan, or gelatin have been used for differential swelling-based 4D transformations. TERM applications include bone, vascular, and cardiac tissues as the main target of the 4D (bio)printing technology. The field has great potential for further development by considering the combination of multiple stimuli, the use of a wider range of 4D techniques, and the implementation of computational-assisted strategies.
Collapse
Affiliation(s)
- Maria Kalogeropoulou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Gerjo J V M van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
45
|
Sztorch B, Konieczna R, Pakuła D, Frydrych M, Marciniec B, Przekop RE. Preparation and Characterization of Composites Based on ABS Modified with Polysiloxane Derivatives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:561. [PMID: 38591380 PMCID: PMC10856207 DOI: 10.3390/ma17030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024]
Abstract
In this study, organosilicon compounds were used as modifiers of filaments constituting building materials for 3D printing technology. Polymethylhydrosiloxane underwent a hydrosilylation reaction with styrene, octadecene, and vinyltrimethoxysilane to produce new di- or tri-functional derivatives with varying ratios of olefins. These compounds were then mixed with silica and incorporated into the ABS matrix using standard processing methods. The resulting systems exhibited changes in their physicochemical and mechanical characteristics. Several of the obtained composites (e.g., modified with VT:6STYR) had an increase in the contact angle of over 20° resulting in a hydrophobic surface. The addition of modifiers also prevented a decrease in rheological parameters regardless of the amount of filler added. In addition, comprehensive tests of the thermal decomposition of the obtained composites were performed and an attempt was made to precisely characterize the decomposition of ABS using FT-IR and optical microscopy, which allowed us to determine the impact of individual groups on the thermal stability of the system.
Collapse
Affiliation(s)
- Bogna Sztorch
- Centre for Advanced Technologies, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (R.K.); (D.P.); (M.F.); (B.M.); (R.E.P.)
| | - Roksana Konieczna
- Centre for Advanced Technologies, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (R.K.); (D.P.); (M.F.); (B.M.); (R.E.P.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Daria Pakuła
- Centre for Advanced Technologies, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (R.K.); (D.P.); (M.F.); (B.M.); (R.E.P.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Miłosz Frydrych
- Centre for Advanced Technologies, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (R.K.); (D.P.); (M.F.); (B.M.); (R.E.P.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Bogdan Marciniec
- Centre for Advanced Technologies, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (R.K.); (D.P.); (M.F.); (B.M.); (R.E.P.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Robert E. Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (R.K.); (D.P.); (M.F.); (B.M.); (R.E.P.)
| |
Collapse
|
46
|
Süsgün Yıldırım Z, Batmaz SG. Monomer release, cell adhesion, and cell viability of indirect restorative materials manufactured with additive, subtractive, and conventional methods. J Oral Sci 2024; 66:9-14. [PMID: 37866923 DOI: 10.2334/josnusd.23-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
PURPOSE The aim of this study was to measure residual monomer, cell adhesion, and cell viability of 3-dimensional printable permanent resin (PR), hybrid ceramic block (HCB), and indirect composite (IC) produced with additive, subtractive, and conventional techniques. METHODS Five 8 × 8 × 2 mm3 samples of each material were prepared for each experiment. In a 24-h period, monomer release was analyzed with high-performance liquid chromatography, and cell viability and adhesion were evaluated with the water-soluble tetrazolium salt test. Data were analyzed with IBM SPSS Statistics 26.0 statistical software, and results were regarded as significant at α = 0.05. RESULTS Monomer release (triethylene glycol dimethacrylate, urethane dimethacrylate, and Bisphenol A glycerolate dimethacrylate) was significantly higher in the IC group. Mean cell viability was significantly lower in the HCB group than in the IC group. CONCLUSION All monomers in the tested materials were released at rates that were below clinical significance. Cell adhesion rates in the groups were similar. Cytotoxic response was classified as minor in the HCB and PR groups and non-cytotoxic in the IC group.
Collapse
Affiliation(s)
| | - Sevde Gül Batmaz
- Department of Restorative Dentistry, Faculty of Dentistry, Cukurova University
| |
Collapse
|
47
|
Sun H, Ma H, Wang L, Liu Y, Hou T, Tang W, Yu Q, An M, Wen M. Biomimetic microchannel network with functional endothelium formed by sacrificial electrospun fibers inside 3D gelatin methacryloyl (GelMA) hydrogel models. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A 2024; 25:79-96. [DOI: 10.1631/jzus.a23d0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 01/05/2025]
|
48
|
Valls-Esteve A, Tejo-Otero A, Adell-Gómez N, Lustig-Gainza P, Fenollosa-Artés F, Buj-Corral I, Rubio-Palau J, Munuera J, Krauel L. Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering (Basel) 2023; 11:31. [PMID: 38247908 PMCID: PMC10813349 DOI: 10.3390/bioengineering11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient-professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Núria Adell-Gómez
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Pamela Lustig-Gainza
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Pediatric Surgical Oncology, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, 08027 Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau—Centre CERCA, 08041 Barcelona, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| |
Collapse
|
49
|
Carou-Senra P, Rodríguez-Pombo L, Monteagudo-Vilavedra E, Awad A, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. 3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations. Nutrients 2023; 16:61. [PMID: 38201891 PMCID: PMC10780524 DOI: 10.3390/nu16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment's efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Einés Monteagudo-Vilavedra
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - María L. Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
50
|
Kwaczyński K, Szymaniec O, Bobrowska DM, Poltorak L. Solvent-activated 3D-printed electrodes and their electroanalytical potential. Sci Rep 2023; 13:22797. [PMID: 38129451 PMCID: PMC10739953 DOI: 10.1038/s41598-023-49599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This work is a comprehensive study describing the optimization of the solvent-activated carbon-based 3D printed electrodes. Three different conductive filaments were used for the preparation of 3D-printed electrodes. Electrodes treatment with organic solvents, electrochemical characterization, and finally electroanalytical application was performed in a dedicated polyamide-based cell also created using 3D printing. We have investigated the effect of the used solvent (acetone, dichloromethane, dichloroethane, acetonitrile, and tetrahydrofuran), time of activation (from immersion up to 3600 s), and the type of commercially available filament (three different options were studied, each being a formulation of a polylactic acid and conductive carbon material). We have obtained and analysed a significant amount of collected data which cover the solvent-activated carbon-based electrodes surface wettability, microscopic insights into the surface topography analysed with scanning electron microscopy and atomic force microscopy, and finally voltammetric evaluation of the obtained carbon electrodes electrochemical response. All data are tabulated, discussed, and compared to finally provide the superior activation procedure. The electroanalytical performance of the chosen electrode is discussed based on the voltammetric detection of ferrocenemethanol.
Collapse
Affiliation(s)
- Karolina Kwaczyński
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| | - Olga Szymaniec
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Diana M Bobrowska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|