1
|
Yuan X, Wang S, Yuan Z, Wan Z, Zhang L, Song R, Ge L, Zhao Y. Boosting the angiogenesis potential of self-assembled mesenchymal stem cell spheroids by size mediated physiological hypoxia for vascularized pulp regeneration. Acta Biomater 2025:S1742-7061(25)00262-4. [PMID: 40216320 DOI: 10.1016/j.actbio.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/22/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Hypoxia is a pivotal factor in enhancing the vascularization potential of both two-dimensional (2D) cultured cells and three-dimensional (3D) cellular spheroids. Nevertheless, spheroids that closely mimic the in vivo microenvironment often experience excessive hypoxia, leading to the necrotic core and the release of toxic byproducts, ultimately impeding the regenerative process. To balance cell vitality and pro-angiogenic properties of cellular spheroids, this study investigates size-dependent hypoxia in stem cell spheroids utilizing an oxygen transfer finite element model. Subsequently, we develop 3D cultured stem cells from human exfoliated deciduous teeth (SHED) spheroids with regulated size-dependent hypoxia. Comprehensive assessments indicate that SHED spheroids, inoculated at a density of 50,000 cells, display moderate physiological hypoxia, which optimizes their pro-angiogenic potential, fusion capacity, and reattachment ability. Compared with SHED sheets, SHED spheroids enhance vascularized pulp regeneration more effectively with a tightly connected odontoblastic-like layer. Moreover, high-throughput transcriptome sequencing and RT-qPCR analysis further confirm the spheroids' ability to promote angiogenesis and odontogenic differentiation. This study not only introduces a practical and effective approach for regulating size-dependent hypoxia in cellular spheroids, and simultaneously enhancing cell vitality and angiogenic potential, but also paves the way for the clinical application of SHED spheroids in regenerative dental pulp therapies. STATEMENT OF SIGNIFICANCE: The core of three-dimensionally cultured cellular spheroids often experiences hypoxia, and maintaining a balance between the activity and functionality of long-term cultured spheroids in the inevitably hypoxic microenvironment remains a significant challenge. This study introduces a method to optimize the hypoxic conditions of SHED spheroids by employing a reaction-diffusion model, which modulates internal hypoxia to balance cellular viability and angiogenic potential. Compared to two-dimensional cell sheets, the optimized SHED spheroids with high cell vitality, angiogenesis potential, tissue integration and reattatchment ability show superior efficacy in promoting the formation of vascularized pulp-like tissue. This work offers valuable insights into the role of hypoxia in stem cell spheroids functionality and provides a foundation for further research into the optimization of stem cell-based therapies for multiple clinical applications.
Collapse
Affiliation(s)
- Xiaojing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Shuyi Wang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, PR China
| | - Zuoying Yuan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, PR China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, PR China.
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, PR China
| | - Linxue Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Rui Song
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China.
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Mei X, Yang Z, Wang X, Shi A, Blanchard J, Elahi F, Kang H, Orive G, Zhang YS. Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization. LAB ON A CHIP 2025; 25:764-786. [PMID: 39775452 DOI: 10.1039/d4lc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ziyi Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Xiran Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92161, USA
| | - Alan Shi
- Brookline High School, Brookline, MA 02445, USA
| | - Joel Blanchard
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanny Elahi
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Fois MG, Tahmasebi Birgani ZN, López-Iglesias C, Knoops K, van Blitterswijk C, Giselbrecht S, Habibović P, Truckenmüller RK. In vitro vascularization of 3D cell aggregates in microwells with integrated vascular beds. Mater Today Bio 2024; 29:101260. [PMID: 39391792 PMCID: PMC11466645 DOI: 10.1016/j.mtbio.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues in vitro. This technical feasibility study proposes a new approach for the in vitro vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the in vitro vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.
Collapse
Affiliation(s)
- Maria G. Fois
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Zeinab N. Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Kèvin Knoops
- Microscopy CORE Lab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
4
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
5
|
Yang J, Wang L, Wu R, He Y, Zhao Y, Wang W, Gao X, Wang D, Zhao L, Li W. 3D Bioprinting in Cancer Modeling and Biomedicine: From Print Categories to Biological Applications. ACS OMEGA 2024; 9:44076-44100. [PMID: 39524656 PMCID: PMC11541486 DOI: 10.1021/acsomega.4c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The continuous interaction between tumor cells and the local microenvironment plays a decisive role in tumor development. Selecting effective models to simulate the tumor microenvironment to study the physiological processes of tumorigenesis and progression is extremely important and challenging. Currently, three-dimensional (3D) bioprinting technology makes it possible to replicate a physiologically relevant tumor microenvironment and induce genomic and proteomic expression to better mimic tumors in vivo. Meanwhile, it plays a crucial role in the prevention and treatment of human diseases, contributing to drug delivery and drug screening, tissue development and regenerative medicine. This paper provides an overview of the categories of 3D bioprinting technology, and the recent advances in the bioinks required for printing. In addition, we summarize the current tumor models based on 3D bioprinting and provide an assessment of possible future biological applications.
Collapse
Affiliation(s)
- Jianye Yang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Le Wang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Ruimei Wu
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Yanan He
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Yu Zhao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Wenchi Wang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Xiaochen Gao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Dan Wang
- Department
of Physical Education, School of Foundation Medical, Shandong Second Medical University, Weifang 261053, China
| | - Lidan Zhao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Wenfang Li
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| |
Collapse
|
6
|
El Hajj S, Ntaté MB, Breton C, Siadous R, Aid R, Dupuy M, Letourneur D, Amédée J, Duval H, David B. Bone Spheroid Development Under Flow Conditions with Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells in a 3D Porous Hydrogel Supplemented with Hydroxyapatite. Gels 2024; 10:666. [PMID: 39451319 PMCID: PMC11506954 DOI: 10.3390/gels10100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the niche interactions between blood and bone through the in vitro co-culture of osteo-competent cells and endothelial cells is a key factor in unraveling therapeutic potentials in bone regeneration. This can be additionally supported by employing numerical simulation techniques to assess local physical factors, such as oxygen concentration, and mechanical stimuli, such as shear stress, that can mediate cellular communication. In this study, we developed a Mesenchymal Stem Cell line (MSC) and a Human Umbilical Vein Endothelial Cell line (HUVEC), which were co-cultured under flow conditions in a three-dimensional, porous, natural pullulan/dextran scaffold that was supplemented with hydroxyapatite crystals that allowed for the spontaneous formation of spheroids. After 2 weeks, their viability was higher under the dynamic conditions (>94%) than the static conditions (<75%), with dead cells central in the spheroids. Mineralization and collagen IV production increased under the dynamic conditions, correlating with osteogenesis and vasculogenesis. The endothelial cells clustered at the spheroidal core by day 7. Proliferation doubled in the dynamic conditions, especially at the scaffold peripheries. Lattice Boltzmann simulations showed negligible wall shear stress in the hydrogel pores but highlighted highly oxygenated zones coinciding with cell proliferation. A strong oxygen gradient likely influenced endothelial migration and cell distribution. Hypoxia was minimal, explaining high viability and spheroid maturation in the dynamic conditions.
Collapse
Affiliation(s)
- Soukaina El Hajj
- Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Martial Bankoué Ntaté
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Cyril Breton
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Robin Siadous
- Laboratoire de Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, 33076 Bordeaux, France; (R.S.); (J.A.)
| | - Rachida Aid
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Paris Cité, 75018 Paris, France; (R.A.); (D.L.)
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Magali Dupuy
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Didier Letourneur
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Paris Cité, 75018 Paris, France; (R.A.); (D.L.)
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Joëlle Amédée
- Laboratoire de Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, 33076 Bordeaux, France; (R.S.); (J.A.)
| | - Hervé Duval
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Bertrand David
- Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
7
|
Kronemberger G, Spagnuolo FD, Karam AS, Chattahy K, Storey KJ, Kelly DJ. Rapidly Degrading Hydrogels to Support Biofabrication and 3D Bioprinting Using Cartilage Microtissues. ACS Biomater Sci Eng 2024; 10:6441-6450. [PMID: 39240109 PMCID: PMC11480940 DOI: 10.1021/acsbiomaterials.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
In recent years, there has been increased interest in the use of cellular spheroids, microtissues, and organoids as biological building blocks to engineer functional tissues and organs. Such microtissues are typically formed by the self-assembly of cellular aggregates and the subsequent deposition of a tissue-specific extracellular matrix (ECM). Biofabrication and 3D bioprinting strategies using microtissues may require the development of supporting hydrogels and bioinks to spatially localize such biological building blocks in 3D space and hence enable the engineering of geometrically defined tissues. Therefore, the aim of this work was to engineer scaled-up, geometrically defined cartilage grafts by combining multiple cartilage microtissues within a rapidly degrading oxidized alginate (OA) supporting hydrogel and maintaining these constructs in dynamic culture conditions. To this end, cartilage microtissues were first independently matured for either 2 or 4 days and then combined in the presence or absence of a supporting OA hydrogel. Over 6 weeks in static culture, constructs engineered using microtissues that were matured independently for 2 days generated higher amounts of glycosaminoglycans (GAGs) compared to those matured for 4 days. Histological analysis revealed intense staining for GAGs and negative staining for calcium deposits in constructs generated by using the supporting OA hydrogel. Less physical contraction was also observed in constructs generated in the presence of the supporting gel; however, the remnants of individual microtissues were more observable, suggesting that even the presence of a rapidly degrading hydrogel may delay the fusion and/or the remodeling of the individual microtissues. Dynamic culture conditions were found to modulate ECM synthesis following the OA hydrogel encapsulation. We also assessed the feasibility of 3D bioprinting of cartilage microtissues within OA based bioinks. It was observed that the microtissues remained viable after extrusion-based bioprinting and were able to fuse after 48 h, particularly when high microtissue densities were used, ultimately generating a cartilage tissue that was rich in GAGs and negative for calcium deposits. Therefore, this work supports the use of OA as a supporting hydrogel/bioink when using microtissues as biological building blocks in diverse biofabrication and 3D bioprinting platforms.
Collapse
Affiliation(s)
- Gabriela
S. Kronemberger
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Francesca D. Spagnuolo
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Aliaa S. Karam
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Kaoutar Chattahy
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Kyle J. Storey
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Daniel J. Kelly
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin D02 F6N2, Ireland
| |
Collapse
|
8
|
Vanlauwe F, Dermaux C, Shamieva S, Vermeiren S, Van Vlierberghe S, Blondeel P. Small molecular weight alginate gel porogen for the 3D bioprinting of microvasculature. Front Bioeng Biotechnol 2024; 12:1452477. [PMID: 39380897 PMCID: PMC11458444 DOI: 10.3389/fbioe.2024.1452477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
In order to recreate the complexity of human organs, the field of tissue engineering and regenerative medicine has been focusing on methods to build organs from the bottom up by assembling distinct small functional units consisting of a biomaterial and cells. This bottom-up engineering requires bioinks that can be assembled by 3D bioprinting and that permit fast vascularization of the construct to ensure survival of embedded cells. To this end, a small molecular weight alginate (SMWA) gel porogen is presented herein. Alginate is a biocompatible biomaterial, which can be easily converted into small porogen gels with the procedure reported in this article. The SMWA porogen is mixed with photo-crosslinkable hydrogels and leached from the hydrogel post-crosslinking to increase porosity and facilitate vascularization. As a proof of concept, this system is tested with the commonly used biomaterial Gelatin Methacryloyl (GelMA). The SMWA porogen-GelMA blend is proven to be bioprintable. Incubating the blend for 20 min in a low concentration phosphate buffered saline and sodium citrate solution significantly reduces the remaining porogen in the hydrogel . The intent to completely leach the porogen from the hydrogel was abandoned, as longer incubation times and higher concentrations of phosphate and citrate were detrimental to endothelial proliferation. Nonetheless, even with remnants of the porogen left in the hydrogel, the created porosity significantly improves viability, growth factor signaling, vasculogenesis, and angiogenesis in 3D bioprinted structures. This article concludes that the usage of the SMWA porogen can improve the assembly of microvasculature in 3D bioprinted structures. This technology can benefit the bottom-up assembly of large scaffolds with high cell density through 3D bioprinting by improving cell viability and allowing faster vascularization.
Collapse
Affiliation(s)
- Florian Vanlauwe
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlotte Dermaux
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Sabina Shamieva
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Stef Vermeiren
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Phillip Blondeel
- Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
Ghasemzadeh-Hasankolaei M, Pinheiro D, Nadine S, Mano JF. Strategies to decouple cell micro-scale and macro-scale environments for designing multifunctional biomimetic tissues. SOFT MATTER 2024; 20:6313-6326. [PMID: 39049813 DOI: 10.1039/d4sm00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The regulation of cellular behavior within a three-dimensional (3D) environment to execute a specific function remains a challenge in the field of tissue engineering. In native tissues, cells and matrices are arranged into 3D modular units, comprising biochemical and biophysical signals that orchestrate specific cellular activities. Modular tissue engineering aims to emulate this natural complexity through the utilization of functional building blocks with unique stimulation features. By adopting a modular approach and using well-designed biomaterials, cellular microenvironments can be effectively decoupled from their macro-scale surroundings, enabling the development of engineered tissues with enhanced multifunctionality and heterogeneity. We overview recent advancements in decoupling the cellular micro-scale niches from their macroenvironment and evaluate the implications of this strategy on cellular and tissue functionality.
Collapse
Affiliation(s)
| | - Diogo Pinheiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Nadine
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Fang W, Yu Z, Gao G, Yang M, Du X, Wang Y, Fu Q. Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications. Mater Today Bio 2024; 27:101135. [PMID: 39040222 PMCID: PMC11262185 DOI: 10.1016/j.mtbio.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
3D bioprinting technology, a subset of 3D printing technology, is currently witnessing widespread utilization in tissue repair and regeneration endeavors. In particular, light-based 3D bioprinting technology has garnered significant interest and favor. Central to its successful implementation lies the judicious selection of photosensitive polymers. Moreover, by fine-tuning parameters such as light irradiation time, choice of photoinitiators and crosslinkers, and their concentrations, the properties of the scaffolds can be tailored to suit the specific requirements of the targeted tissue repair sites. In this comprehensive review, we provide an overview of commonly utilized bio-inks suitable for light-based 3D bioprinting, delving into the distinctive characteristics of each material. Furthermore, we delineate strategies for bio-ink selection tailored to diverse repair locations, alongside methods for optimizing printing parameters. Ultimately, we present a coherent synthesis aimed at enhancing the practical application of light-based 3D bioprinting technology in tissue engineering, while also addressing current challenges and future prospects.
Collapse
Affiliation(s)
- Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zhenwei Yu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xuan Du
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
11
|
Scalzone A, Imparato G, Urciuolo F, Netti PA. Bioprinting of human dermal microtissues precursors as building blocks for endogenous in vitroconnective tissue manufacturing. Biofabrication 2024; 16:035009. [PMID: 38574552 DOI: 10.1088/1758-5090/ad3aa5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The advent of 3D bioprinting technologies in tissue engineering has unlocked the potential to fabricatein vitrotissue models, overcoming the constraints associated with the shape limitations of preformed scaffolds. However, achieving an accurate mimicry of complex tissue microenvironments, encompassing cellular and biochemical components, and orchestrating their supramolecular assembly to form hierarchical structures while maintaining control over tissue formation, is crucial for gaining deeper insights into tissue repair and regeneration. Building upon our expertise in developing competent three-dimensional tissue equivalents (e.g. skin, gut, cervix), we established a two-step bottom-up approach involving the dynamic assembly of microtissue precursors (μTPs) to generate macroscopic functional tissue composed of cell-secreted extracellular matrix (ECM). To enhance precision and scalability, we integrated extrusion-based bioprinting technology into our established paradigm to automate, control and guide the coherent assembly ofμTPs into predefined shapes. Compared to cell-aggregated bioink, ourμTPs represent a functional unit where cells are embedded in their specific ECM.μTPs were derived from human dermal fibroblasts dynamically seeded onto gelatin-based microbeads. After 9 days,μTPs were suspended (50% v/v) in Pluronic-F127 (30% w/v) (µTP:P30), and the obtained formulation was loaded as bioink into the syringe of the Dr.INVIVO-4D6 extrusion based bioprinter.µTP:P30 bioink showed shear-thinning behavior and temperature-dependent viscosity (gel atT> 30 °C), ensuringµTPs homogenous dispersion within the gel and optimal printability. The bioprinting involved extruding several geometries (line, circle, and square) into Pluronic-F127 (40% w/v) (P40) support bath, leveraging its shear-recovery property. P40 effectively held the bioink throughout and after the bioprinting procedure, untilµTPs fused into a continuous connective tissue.µTPs fusion dynamics was studied over 8 days of culture, while the resulting endogenous construct underwent 28 days culture. Histological, immunofluorescence analysis, and second harmonic generation reconstruction revealed an increase in endogenous collagen and fibronectin production within the bioprinted construct, closely resembling the composition of the native connective tissues.
Collapse
Affiliation(s)
- Annachiara Scalzone
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|
12
|
Minne M, Terrie L, Wüst R, Hasevoets S, Vanden Kerchove K, Nimako K, Lambrichts I, Thorrez L, Declercq H. Generating human skeletal myoblast spheroids for vascular myogenic tissue engineering. Biofabrication 2024; 16:025035. [PMID: 38437715 DOI: 10.1088/1758-5090/ad2fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Engineered myogenic microtissues derived from human skeletal myoblasts offer unique opportunities for varying skeletal muscle tissue engineering applications, such asin vitrodrug-testing and disease modelling. However, more complex models require the incorporation of vascular structures, which remains to be challenging. In this study, myogenic spheroids were generated using a high-throughput, non-adhesive micropatterned surface. Since monoculture spheroids containing human skeletal myoblasts were unable to remain their integrity, co-culture spheroids combining human skeletal myoblasts and human adipose-derived stem cells were created. When using the optimal ratio, uniform and viable spheroids with enhanced myogenic properties were achieved. Applying a pre-vascularization strategy, through addition of endothelial cells, resulted in the formation of spheroids containing capillary-like networks, lumina and collagen in the extracellular matrix, whilst retaining myogenicity. Moreover, sprouting of endothelial cells from the spheroids when encapsulated in fibrin was allowed. The possibility of spheroids, from different maturation stages, to assemble into a more large construct was proven by doublet fusion experiments. The relevance of using three-dimensional microtissues with tissue-specific microarchitecture and increased complexity, together with the high-throughput generation approach, makes the generated spheroids a suitable tool forin vitrodrug-testing and human disease modeling.
Collapse
Affiliation(s)
- Mendy Minne
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Rebecca Wüst
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Steffie Hasevoets
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek, Belgium
| | - Kato Vanden Kerchove
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Kakra Nimako
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| |
Collapse
|
13
|
Li H, Shang Y, Zeng J, Matsusaki M. Technology for the formation of engineered microvascular network models and their biomedical applications. NANO CONVERGENCE 2024; 11:10. [PMID: 38430377 PMCID: PMC10908775 DOI: 10.1186/s40580-024-00416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Tissue engineering and regenerative medicine have made great progress in recent decades, as the fields of bioengineering, materials science, and stem cell biology have converged, allowing tissue engineers to replicate the structure and function of various levels of the vascular tree. Nonetheless, the lack of a fully functional vascular system to efficiently supply oxygen and nutrients has hindered the clinical application of bioengineered tissues for transplantation. To investigate vascular biology, drug transport, disease progression, and vascularization of engineered tissues for regenerative medicine, we have analyzed different approaches for designing microvascular networks to create models. This review discusses recent advances in the field of microvascular tissue engineering, explores potential future challenges, and offers methodological recommendations.
Collapse
Affiliation(s)
- He Li
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
14
|
De Maeseneer T, Van Damme L, Aktan MK, Braem A, Moldenaers P, Van Vlierberghe S, Cardinaels R. Powdered Cross-Linked Gelatin Methacryloyl as an Injectable Hydrogel for Adipose Tissue Engineering. Gels 2024; 10:167. [PMID: 38534585 DOI: 10.3390/gels10030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The tissue engineering field is currently advancing towards minimally invasive procedures to reconstruct soft tissue defects. In this regard, injectable hydrogels are viewed as excellent scaffold candidates to support and promote the growth of encapsulated cells. Cross-linked gelatin methacryloyl (GelMA) gels have received substantial attention due to their extracellular matrix-mimicking properties. In particular, GelMA microgels were recently identified as interesting scaffold materials since the pores in between the microgel particles allow good cell movement and nutrient diffusion. The current work reports on a novel microgel preparation procedure in which a bulk GelMA hydrogel is ground into powder particles. These particles can be easily transformed into a microgel by swelling them in a suitable solvent. The rheological properties of the microgel are independent of the particle size and remain stable at body temperature, with only a minor reversible reduction in elastic modulus correlated to the unfolding of physical cross-links at elevated temperatures. Salts reduce the elastic modulus of the microgel network due to a deswelling of the particles, in addition to triple helix denaturation. The microgels are suited for clinical use, as proven by their excellent cytocompatibility. The latter is confirmed by the superior proliferation of encapsulated adipose tissue-derived stem cells in the microgel compared to the bulk hydrogel. Moreover, microgels made from the smallest particles are easily injected through a 20G needle, allowing a minimally invasive delivery. Hence, the current work reveals that powdered cross-linked GelMA is an excellent candidate to serve as an injectable hydrogel for adipose tissue engineering.
Collapse
Affiliation(s)
- Tess De Maeseneer
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J Box 2424, 3001 Leuven, Belgium
| | - Lana Van Damme
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University (UGent), Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J Box 2424, 3001 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University (UGent), Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J Box 2424, 3001 Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Kopinski-Grünwald O, Guillaume O, Ferner T, Schädl B, Ovsianikov A. Scaffolded spheroids as building blocks for bottom-up cartilage tissue engineering show enhanced bioassembly dynamics. Acta Biomater 2024; 174:163-176. [PMID: 38065247 DOI: 10.1016/j.actbio.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Due to the capability of cell spheroids (SPH) to assemble into large high cell density constructs, their use as building blocks attracted a lot of attention in the field of biofabrication. Nevertheless, upon maturation, the composition along with the size of such building blocks change, affecting their fusiogenic ability to form a cohesive tissue construct of controllable size. This natural phenomenon remains a limitation for the standardization of spheroid-based therapies in the clinical setting. We recently showed that scaffolded spheroids (S-SPH) can be produced by forming spheroids directly within porous PCL-based microscaffolds fabricated using multiphoton lithography (MPL). In this new study, we compare the bioassembly potential of conventional SPHs versus S-SPHs depending on their degree of maturation. Doublets of both types of building blocks were cultured and their fusiogenicity was compared by measuring the intersphere angle, the length of the fusing spheroid pairs (referred to as doublet length) as well as their spreading behaviour. Finally, the possibility to fabricate macro-sized tissue constructs (i.e. cartilage-like) from both chondrogenic S-SPHs and SPHs was analyzed. This study revealed that, in contrast to conventional SPHs, S-SPHs exhibit robust and stable fusiogenicity, independently from their degree of maturation. In order to understand this behavior, we further analyze the intersection area of doublets, looking at the kinetic of cell migration and at the mechanical stability of the formed tissue using dissection measurements. Our findings indicate that the presence of microscaffolds enhances the ability of spheroids to be used as building blocks for bottom-up tissue engineering, which is an important advantage compared to conventional spheroid-based therapy approaches. STATEMENT OF SIGNIFICANCE: The approach of using SPHs as building blocks for bottom-up tissue engineering offers a variety of advantages. At the same time the self-assembly of large tissues remains challenging due to several intrinsic properties of SPHs, such as for instance the shrinkage of tissues assembled from SPHs, or the reduced fusiogenicity commonly observed with mature SPHs. In this work, we demonstrate the capability of scaffolded spheroids (S-SPH) to fuse and recreate cartilage-like tissue constructs despite their advanced maturation stage. In this regard, the presence of microscaffolds compensates for some of the intrinsic limitations of SPHs and can help to overcome current limitations of spheroid-based tissue engineering.
Collapse
Affiliation(s)
- Oliver Kopinski-Grünwald
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Tamara Ferner
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria; University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
16
|
Lee SY, Phuc HD, Um SH, Mongrain R, Yoon JK, Bhang SH. Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases. J Tissue Eng 2024; 15:20417314241282476. [PMID: 39345255 PMCID: PMC11437565 DOI: 10.1177/20417314241282476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.
Collapse
Affiliation(s)
- Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Huynh Dai Phuc
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, Montréal, QC, Canada
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Abadpour S, Niemi EM, Orrhult LS, Hermanns C, de Vries R, Nogueira LP, Haugen HJ, Josefsen D, Krauss S, Gatenholm P, van Apeldoorn A, Scholz H. Adipose-Derived Stromal Cells Preserve Pancreatic Islet Function in a Transplantable 3D Bioprinted Scaffold. Adv Healthc Mater 2023; 12:e2300640. [PMID: 37781993 PMCID: PMC11469278 DOI: 10.1002/adhm.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Intra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold. Manufacturing the 3D bioprinted double-layered scaffolds with primary islets and ASCs using a mix of alginate/nanofibrillated cellulose (NFC) bioink is reported. The diffusion properties of the bioink and the supportive effect of human ASCs on islet viability, glucose sensing, insulin secretion, and reducing the secretion of pro-inflammatory cytokines are demonstrated. Diabetic mice transplanted with islet-ASC scaffolds reach normoglycemia seven days post-transplantation with no significant difference between this group and the group received islets under the kidney capsules. In addition, animals transplanted with islet-ASC scaffolds stay normoglycemic and show elevated levels of C-peptide compared to mice transplanted with islet-only scaffolds. The data present a functional 3D bioprinted scaffold for islets and ASCs transplanted to the extrahepatic site and suggest a possible role of ASCs on improving the islet micro-environment.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant MedicineOslo University HospitalOslo0372Norway
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
| | - Essi M. Niemi
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Department of Vascular SurgeryAker HospitalOslo University HospitalOslo0586Norway
| | - Linnea Strid Orrhult
- 3D Bioprinting CenterWWSCDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Carolin Hermanns
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | - Rick de Vries
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | | | | | - Dag Josefsen
- Section for Cellular TherapyRadiumhospitaletOslo University HospitalOslo0379Norway
| | - Stefan Krauss
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Department of Immunology and Transfusion MedicineOslo University HospitalOslo0372Norway
| | - Paul Gatenholm
- 3D Bioprinting CenterWWSCDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
- CELLHEAL ASSandvika1337Norway
| | - Aart van Apeldoorn
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | - Hanne Scholz
- Department of Transplant MedicineOslo University HospitalOslo0372Norway
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Section for Cellular TherapyRadiumhospitaletOslo University HospitalOslo0379Norway
| |
Collapse
|
19
|
Fang Y, Ji M, Wu B, Xu X, Wang G, Zhang Y, Xia Y, Li Z, Zhang T, Sun W, Xiong Z. Engineering Highly Vascularized Bone Tissues by 3D Bioprinting of Granular Prevascularized Spheroids. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43492-43502. [PMID: 37691550 DOI: 10.1021/acsami.3c08550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The convergence of 3D bioprinting with powerful manufacturing capability and cellular self-organization that can reproduce intricate tissue microarchitecture and function is a promising direction toward building functional tissues and has yet to be demonstrated. Here, we develop a granular aggregate-prevascularized (GAP) bioink for engineering highly vascularized bone tissues by capitalizing on the condensate-mimicking, self-organization, and angiogenic properties of prevascularized mesenchymal spheroids. The GAP bioink utilizes prevascularized aggregates as building blocks, which are embedded densely in extracellular matrices conducive to spontaneous self-organization. We printed various complex structures with high cell density (∼1.5 × 108 cells/cm3), viability (∼80%), and shape fidelity using GAP bioink. After printing, the prevascularized mesenchymal spheroids developed an interconnected vascular network through angiogenic sprouting. We printed highly vascularized bone tissues using GAP bioink and found that prevascularized spheroids were more conducive to osteogenesis and angiogenesis. We envision that the design of the GAP bioink could be further integrated with human-induced pluripotent stem cell-derived organoids, which opens new avenues to create patient-specific vascularized tissues for therapeutic applications..
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Mengke Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Bingyan Wu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Xinxin Xu
- Senior Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Ge Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Yingkai Xia
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Zhe Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States of America
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| |
Collapse
|
20
|
Caprio ND, Burdick JA. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Acta Biomater 2023; 165:4-18. [PMID: 36167240 PMCID: PMC10928646 DOI: 10.1016/j.actbio.2022.09.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Cellular spheroids are aggregates of cells that are being explored to address fundamental biological questions and as building blocks for engineered tissues. Spheroids possess distinct advantages over cellular monolayers or cell encapsulation in 3D natural and synthetic hydrogels, including direct cell-cell interactions and high cell densities, which better mimic aspects of many tissues. Despite these advantages, spheroid cultures often exhibit uncontrollable growth and may be too simplistic to mimic complex tissue structures. To address this, biomaterials are being leveraged to further expand the use of cellular spheroids for biomedical applications. In this review, we provide an overview of recent studies that utilize engineered biomaterials to guide spheroid formation and function, as well as their fabrication into tissues for use as tissue models and for therapeutic applications. First, we describe biomaterial strategies that allow the high-throughput fabrication of homogeneously-sized spheroids. Next, we summarize how engineered biomaterials are introduced into spheroid cultures either internally as microparticles or externally as hydrogel microenvironments to influence spheroid behavior (e.g., differentiation, fusion). Lastly, we discuss a variety of biofabrication strategies (e.g., 3D bioprinting, melt electrowriting) that have been used to develop macroscale tissue models and implantable constructs through the guided assembly of spheroids. Overall, the goal of this review is to provide a summary of how biomaterials are currently being engineered and leveraged to support spheroids in biomedical applications, as well as to provide a future outlook of the field. STATEMENT OF SIGNIFICANCE: Cellular spheroids are becoming increasingly used as in vitro tissue models or as 'building blocks' for tissue engineering and repair strategies. Engineered biomaterials and their processing through biofabrication approaches are being leveraged to structurally support and guide spheroid processes. This review summarizes current approaches where such biomaterials are being used to guide spheroid formation, function, and fabrication into tissue constructs. As the field is rapidly expanding, we also provide an outlook on future directions and how new engineered biomaterials can be implemented to further the development of biofabricated spheroid-based tissue constructs.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
21
|
Schulik J, Salehi S, Boccaccini AR, Schrüfer S, Schubert DW, Arkudas A, Kengelbach-Weigand A, Horch RE, Schmid R. Comparison of the Behavior of 3D-Printed Endothelial Cells in Different Bioinks. Bioengineering (Basel) 2023; 10:751. [PMID: 37508778 PMCID: PMC10376299 DOI: 10.3390/bioengineering10070751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Biomaterials with characteristics similar to extracellular matrix and with suitable bioprinting properties are essential for vascular tissue engineering. In search for suitable biomaterials, this study investigated the three hydrogels alginate/hyaluronic acid/gelatin (Alg/HA/Gel), pre-crosslinked alginate di-aldehyde with gelatin (ADA-GEL), and gelatin methacryloyl (GelMA) with respect to their mechanical properties and to the survival, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). In addition, the behavior of HUVECs was compared with their behavior in Matrigel. For this purpose, HUVECs were mixed with the inks both as single cells and as cell spheroids and printed using extrusion-based bioprinting. Good printability with shape fidelity was determined for all inks. The rheological measurements demonstrated the gelling consistency of the inks and shear-thinning behavior. Different Young's moduli of the hydrogels were determined. However, all measured values where within the range defined in the literature, leading to migration and sprouting, as well as reconciling migration with adhesion. Cell survival and proliferation in ADA-GEL and GelMA hydrogels were demonstrated for 14 days. In the Alg/HA/Gel bioink, cell death occurred within 7 days for single cells. Sprouting and migration of the HUVEC spheroids were observed in ADA-GEL and GelMA. Similar behavior of the spheroids was seen in Matrigel. In contrast, the spheroids in the Alg/HA/Gel ink died over the time studied. It has been shown that Alg/HA/Gel does not provide a good environment for long-term survival of HUVECs. In conclusion, ADA-GEL and GelMA are promising inks for vascular tissue engineering.
Collapse
Affiliation(s)
- Jana Schulik
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Rafael Schmid
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery University Hospital of Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| |
Collapse
|
22
|
Zhang Z, Liu Y, Tao X, Du P, Enkhbat M, Lim KS, Wang H, Wang PY. Engineering Cell Microenvironment Using Nanopattern-Derived Multicellular Spheroids and Photo-Crosslinked Gelatin/Hyaluronan Hydrogels. Polymers (Basel) 2023; 15:polym15081925. [PMID: 37112072 PMCID: PMC10144125 DOI: 10.3390/polym15081925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cell cultures of dispersed cells within hydrogels depict the interaction of the cell-extracellular matrix (ECM) in 3D, while the coculture of different cells within spheroids combines both the effects of cell-cell and cell-ECM interactions. In this study, the cell co-spheroids of human bone mesenchymal stem cells/human umbilical vein endothelial cells (HBMSC/HUVECs) are prepared with the assistance of a nanopattern, named colloidal self-assembled patterns (cSAPs), which is superior to low-adhesion surfaces. A phenol-modified gelatin/hyaluronan (Gel-Ph/HA-Ph) hydrogel is used to encapsulate the multicellular spheroids and the constructs are photo-crosslinked using blue light. The results show that Gel-Ph/HA-Ph hydrogels with a 5%-to-0.3% ratio have the best properties. Cells in HBMSC/HUVEC co-spheroids are more favorable for osteogenic differentiation (Runx2, ALP, Col1a1 and OPN) and vascular network formation (CD31+ cells) compared to HBMSC spheroids. In a subcutaneous nude mouse model, the HBMSC/HUVEC co-spheroids showed better performance than HBMSC spheroids in angiogenesis and the development of blood vessels. Overall, this study paves a new way for using nanopatterns, cell coculturing and hydrogel technology for the generation and application of multicellular spheroids.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, NSW 2052, Australia
| | - Huaiyu Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
23
|
Prendergast ME, Heo SJ, Mauck RL, Burdick JA. Suspension bath bioprinting and maturation of anisotropic meniscal constructs. Biofabrication 2023; 15:10.1088/1758-5090/acc3c3. [PMID: 36913724 PMCID: PMC10156462 DOI: 10.1088/1758-5090/acc3c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 03/14/2023]
Abstract
Due to limited intrinsic healing capacity of the meniscus, meniscal injuries pose a significant clinical challenge. The most common method for treatment of damaged meniscal tissues, meniscectomy, leads to improper loading within the knee joint, which can increase the risk of osteoarthritis. Thus, there is a clinical need for the development of constructs for meniscal repair that better replicate meniscal tissue organization to improve load distributions and function over time. Advanced three-dimensional bioprinting technologies such as suspension bath bioprinting provide some key advantages, such as the ability to support the fabrication of complex structures using non-viscous bioinks. In this work, the suspension bath printing process is utilized to print anisotropic constructs with a unique bioink that contains embedded hydrogel fibers that align via shear stresses during printing. Constructs with and without fibers are printed and then cultured for up to 56 din vitroin a custom clamping system. Printed constructs with fibers demonstrate increased cell and collagen alignment, as well as enhanced tensile moduli when compared to constructs printed without fibers. This work advances the use of biofabrication to develop anisotropic constructs that can be utilized for the repair of meniscal tissue.
Collapse
Affiliation(s)
| | - Su-Jin Heo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
24
|
Kong Z, Wang X. Bioprinting Technologies and Bioinks for Vascular Model Establishment. Int J Mol Sci 2023; 24:891. [PMID: 36614332 PMCID: PMC9821327 DOI: 10.3390/ijms24010891] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, large diameter artery defects (diameter larger than 6 mm) can be substituted by unbiodegradable polymers, such as polytetrafluoroethylene. There are many problems in the construction of small diameter blood vessels (diameter between 1 and 3 mm) and microvessels (diameter less than 1 mm), especially in the establishment of complex vascular models with multi-scale branched networks. Throughout history, the vascularization strategies have been divided into three major groups, including self-generated capillaries from implantation, pre-constructed vascular channels, and three-dimensional (3D) printed cell-laden hydrogels. The first group is based on the spontaneous angiogenesis behaviour of cells in the host tissues, which also lays the foundation of capillary angiogenesis in tissue engineering scaffolds. The second group is to vascularize the polymeric vessels (or scaffolds) with endothelial cells. It is hoped that the pre-constructed vessels can be connected with the vascular networks of host tissues with rapid blood perfusion. With the development of bioprinting technologies, various fabrication methods have been achieved to build hierarchical vascular networks with high-precision 3D control. In this review, the latest advances in 3D bioprinting of vascularized tissues/organs are discussed, including new printing techniques and researches on bioinks for promoting angiogenesis, especially coaxial printing, freeform reversible embedded in suspended hydrogel printing, and acoustic assisted printing technologies, and freeform reversible embedded in suspended hydrogel (flash) technology.
Collapse
Affiliation(s)
- Zhiyuan Kong
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Guagliano G, Volpini C, Briatico-Vangosa F, Cornaglia AI, Visai L, Petrini P. Toward 3D-Bioprinted Models of the Liver to Boost Drug Development. Macromol Biosci 2022; 22:e2200264. [PMID: 36106413 DOI: 10.1002/mabi.202200264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Indexed: 01/15/2023]
Abstract
The main problems in drug development are connected to enormous costs related to the paltry success rate. The current situation empowered the development of high-throughput and reliable instruments, in addition to the current golden standards, able to predict the failures in the early preclinical phase. Being hepatotoxicity responsible for the failure of 30% of clinical trials, and the 21% of withdrawal of marketed drugs, the development of complex in vitro models (CIVMs) of liver is currently one of the hottest topics in the field. Among the different fabrication techniques, 3D-bioprinting is emerging as a powerful ally for their production, allowing the manufacture of three-dimensional constructs characterized by computer-controlled and customized geometry, and inter-batches reproducibility. Thanks to these, it is possible to rapidly produce tailored cell-laden constructs, to be cultured within static and dynamic systems, thus reaching a further degree of personalization when designing in vitro models. This review highlights and prioritizes the most recent advances related to the development of CIVMs of the hepatic environment to be specifically applied to pharmaceutical research, with a special focus on 3D-bioprinting, since the liver is primarily involved in the metabolism of drugs.
Collapse
Affiliation(s)
- Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Antonia Icaro Cornaglia
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Via Forlanini 2, Pavia, PV, 27100, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Università di Pavia Unit, Pavia, PV, 27100, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Politecnico di Milano Unit, Milano, MI, 20133, Italy
| |
Collapse
|
26
|
Vuille-Dit-Bille E, Deshmukh DV, Connolly S, Heub S, Boder-Pasche S, Dual J, Tibbitt MW, Weder G. Tools for manipulation and positioning of microtissues. LAB ON A CHIP 2022; 22:4043-4066. [PMID: 36196619 DOI: 10.1039/d2lc00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Complex three-dimensional (3D) in vitro models are emerging as a key technology to support research areas in personalised medicine, such as drug development and regenerative medicine. Tools for manipulation and positioning of microtissues play a crucial role in the microtissue life cycle from production to end-point analysis. The ability to precisely locate microtissues can improve the efficiency and reliability of processes and investigations by reducing experimental time and by providing more controlled parameters. To achieve this goal, standardisation of the techniques is of primary importance. Compared to microtissue production, the field of microtissue manipulation and positioning is still in its infancy but is gaining increasing attention in the last few years. Techniques to position microtissues have been classified into four main categories: hydrodynamic techniques, bioprinting, substrate modification, and non-contact active forces. In this paper, we provide a comprehensive review of the different tools for the manipulation and positioning of microtissues that have been reported to date. The working mechanism of each technique is described, and its merits and limitations are discussed. We conclude by evaluating the potential of the different approaches to support progress in personalised medicine.
Collapse
Affiliation(s)
- Emilie Vuille-Dit-Bille
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
- MicroBioRobotic Systems Laboratory, Institute of Mechanical Engineering, EPFL, Lausanne, Switzerland
| | - Dhananjay V Deshmukh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Sinéad Connolly
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Sarah Heub
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
| | | | - Jürg Dual
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gilles Weder
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
| |
Collapse
|
27
|
Xu H, Su Y, Liao Z, Liu Z, Huang X, Zhao L, Duan R, Hu Y, Wei Y, Lian X, Huang D. Coaxial bioprinting vascular constructs: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
29
|
Pan RL, Martyniak K, Karimzadeh M, Gelikman DG, DeVries J, Sutter K, Coathup M, Razavi M, Sawh-Martinez R, Kean TJ. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 2022; 9:95. [PMID: 36121526 PMCID: PMC9485345 DOI: 10.1186/s40634-022-00518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
Collapse
Affiliation(s)
- Rachel L Pan
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kari Martyniak
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Makan Karimzadeh
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - David G Gelikman
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jonathan DeVries
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kelly Sutter
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Mehdi Razavi
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Rajendra Sawh-Martinez
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Plastic and Reconstructive Surgery, AdventHealth, Orlando, FL, USA
| | - Thomas J Kean
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
30
|
Salg GA, Blaeser A, Gerhardus JS, Hackert T, Kenngott HG. Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies. Int J Mol Sci 2022; 23:ijms23158589. [PMID: 35955720 PMCID: PMC9369172 DOI: 10.3390/ijms23158589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Among advanced therapy medicinal products, tissue-engineered products have the potential to address the current critical shortage of donor organs and provide future alternative options in organ replacement therapy. The clinically available tissue-engineered products comprise bradytrophic tissue such as skin, cornea, and cartilage. A sufficient macro- and microvascular network to support the viability and function of effector cells has been identified as one of the main challenges in developing bioartificial parenchymal tissue. Three-dimensional bioprinting is an emerging technology that might overcome this challenge by precise spatial bioink deposition for the generation of a predefined architecture. Bioinks are printing substrates that may contain cells, matrix compounds, and signaling molecules within support materials such as hydrogels. Bioinks can provide cues to promote vascularization, including proangiogenic signaling molecules and cocultured cells. Both of these strategies are reported to enhance vascularization. We review pre-, intra-, and postprinting strategies such as bioink composition, bioprinting platforms, and material deposition strategies for building vascularized tissue. In addition, bioconvergence approaches such as computer simulation and artificial intelligence can support current experimental designs. Imaging-derived vascular trees can serve as blueprints. While acknowledging that a lack of structured evidence inhibits further meta-analysis, this review discusses an end-to-end process for the fabrication of vascularized, parenchymal tissue.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General-, Visceral-, and Transplantation Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
- Correspondence: (G.A.S.); (H.G.K.); Tel.: +49-6221-56310306 (G.A.S.); +49-6221-5636611 (H.G.K.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University Darmstadt, D-64289 Darmstadt, Germany; (A.B.); (J.S.G.)
- Center for Synthetic Biology, Technical University Darmstadt, D-64289 Darmstadt, Germany
| | - Jamina Sofie Gerhardus
- Institute for BioMedical Printing Technology, Technical University Darmstadt, D-64289 Darmstadt, Germany; (A.B.); (J.S.G.)
| | - Thilo Hackert
- Department of General-, Visceral-, and Transplantation Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Hannes Goetz Kenngott
- Department of General-, Visceral-, and Transplantation Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
- Correspondence: (G.A.S.); (H.G.K.); Tel.: +49-6221-56310306 (G.A.S.); +49-6221-5636611 (H.G.K.)
| |
Collapse
|
31
|
Gao C, Lu C, Qiao H, Zhang Y, Liu H, Jian Z, Guo Z, Liu Y. Strategies for vascularized skin models in vitro. Biomater Sci 2022; 10:4724-4739. [PMID: 35861381 DOI: 10.1039/d2bm00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the largest organ of the human body, the skin has a complex multi-layered structure. The composition of the skin includes cells, extracellular matrix (ECM), vascular networks, and other appendages. Because of the shortage of donor sites, skin substitutes are of great significance in the field of skin tissue repair. Moreover, skin models for disease research, drug screening, and cosmetic testing fall far short of the demand. Skin tissue engineering has made remarkable progress in developing skin models over the years. However, there are still several problems to be resolved. One of the crucial aspects is the lack of vascular systems for nutrient transport and waste disposal. Here, we will focus on the discussion and analysis of advanced manufacturing strategies for prevascularized skin, such as a scaffold-based method, cell coating technology, cell sheet engineering, skin-on-a-chip, and three-dimensional (3D) bioprinting. These key challenges, which restrict the prevascularized skin and provide perspectives on future directions will also be highlighted.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhian Jian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China. .,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
32
|
Arjoca S, Robu A, Neagu M, Neagu A. Mathematical and computational models in spheroid-based biofabrication. Acta Biomater 2022:S1742-7061(22)00418-4. [PMID: 35853599 DOI: 10.1016/j.actbio.2022.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/01/2022]
Abstract
Ubiquitous in embryonic development, tissue fusion is of interest to tissue engineers who use tissue spheroids or organoids as building blocks of three-dimensional (3D) multicellular constructs. This review presents mathematical models and computer simulations of the fusion of tissue spheroids. The motivation of this study stems from the need to predict the post-printing evolution of 3D bioprinted constructs. First, we provide a brief overview of differential adhesion, the main morphogenetic mechanism involved in post-printing structure formation. It will be shown that clusters of cohesive cells behave as an incompressible viscous fluid on the time scale of hours. The discussion turns then to mathematical models based on the continuum hydrodynamics of highly viscous liquids and on statistical mechanics. Next, we analyze the validity and practical use of computational models of multicellular self-assembly in live constructs created by tissue spheroid bioprinting. Finally, we discuss the perspectives of the field as machine learning starts to reshape experimental design, and modular robotic workstations tend to alleviate the burden of repetitive tasks in biofabrication. STATEMENT OF SIGNIFICANCE: Bioprinted constructs are living systems, which evolve via morphogenetic mechanisms known from developmental biology. This review presents mathematical and computational tools devised for modeling post-printing structure formation. They help achieving a desirable outcome without expensive optimization experiments. While previous reviews mainly focused on assumptions, technical details, strengths, and limitations of computational models of multicellular self-assembly, this article discusses their validity and practical use in biofabrication. It also presents an overview of mathematical models that proved to be useful in the evaluation of experimental data on tissue spheroid fusion, and in the calibration of computational models. Finally, the perspectives of the field are discussed in the advent of robotic biofabrication platforms and bioprinting process optimization by machine learning.
Collapse
Affiliation(s)
- Stelian Arjoca
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania
| | - Andreea Robu
- Department of Automation and Applied Informatics, Politehnica University of Timisoara, Timisoara 300006, Romania
| | - Monica Neagu
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania
| | - Adrian Neagu
- Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania; Department of Physics & Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
33
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
34
|
Vakhrushev IV, Nezhurina EK, Karalkin PA, Tsvetkova AV, Sergeeva NS, Majouga AG, Yarygin KN. Heterotypic Multicellular Spheroids as Experimental and Preclinical Models of Sprouting Angiogenesis. BIOLOGY 2021; 11:18. [PMID: 35053016 PMCID: PMC8772844 DOI: 10.3390/biology11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Sprouting angiogenesis is the common response of live tissues to physiological and pathological angiogenic stimuli. Its accurate evaluation is of utmost importance for basic research and practical medicine and pharmacology and requires adequate experimental models. A variety of assays for angiogenesis were developed, none of them perfect. In vitro approaches are generally less physiologically relevant due to the omission of essential components regulating the process. However, only in vitro models can be entirely non-xenogeneic. The limitations of the in vitro angiogenesis assays can be partially overcome using 3D models mimicking tissue O2 and nutrient gradients, the influence of the extracellular matrix (ECM), and enabling cell-cell interactions. Here we present a review of the existing models of sprouting angiogenesis that are based on the use of endothelial cells (ECs) co-cultured with perivascular or other stromal cells. This approach provides an excellent in vitro platform for further decoding of the cellular and molecular mechanisms of sprouting angiogenesis under conditions close to the in vivo conditions, as well as for preclinical drug testing and preclinical research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Igor V. Vakhrushev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Elizaveta K. Nezhurina
- P.A. Hertsen Moscow Oncology Research Center, National Medical Research Radiological Center, 125284 Moscow, Russia;
| | - Pavel A. Karalkin
- Institute for Cluster Oncology, Sechenov University, 119435 Moscow, Russia;
| | | | - Nataliya S. Sergeeva
- Department of Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
35
|
Shafiee S, Shariatzadeh S, Zafari A, Majd A, Niknejad H. Recent Advances on Cell-Based Co-Culture Strategies for Prevascularization in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:745314. [PMID: 34900955 PMCID: PMC8655789 DOI: 10.3389/fbioe.2021.745314] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the fabrication of a functional vascular network to maintain the viability of engineered tissues is a major bottleneck in the way of developing a more advanced engineered construct. Inspired by vasculogenesis during the embryonic period, the in vitro prevascularization strategies have focused on optimizing communications and interactions of cells, biomaterial and culture conditions to develop a capillary-like network to tackle the aforementioned issue. Many of these studies employ a combination of endothelial lineage cells and supporting cells such as mesenchymal stem cells, fibroblasts, and perivascular cells to create a lumenized endothelial network. These supporting cells are necessary for the stabilization of the newly developed endothelial network. Moreover, to optimize endothelial network development without impairing biomechanical properties of scaffolds or differentiation of target tissue cells, several other factors, including target tissue, endothelial cell origins, the choice of supporting cell, culture condition, incorporated pro-angiogenic factors, and choice of biomaterial must be taken into account. The prevascularization method can also influence the endothelial lineage cell/supporting cell co-culture system to vascularize the bioengineered constructs. This review aims to investigate the recent advances on standard cells used in in vitro prevascularization methods, their co-culture systems, and conditions in which they form an organized and functional vascular network.
Collapse
Affiliation(s)
- Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zafari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Majd
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|