1
|
Lei D, Wang W, Zhao J, Zhou Y, Chen Y, Dai J, Qiu Y, Qi H, Li C, Liang B, Liu B, Wang Q, Li R. An injectable gambogic acid loaded nanocomposite hydrogel enhances antitumor effect by reshaping immunosuppressive tumor microenvironment. Mater Today Bio 2025; 31:101611. [PMID: 40104652 PMCID: PMC11919334 DOI: 10.1016/j.mtbio.2025.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Gambogic acid(GA)is a natural compound that exhibits strong antitumor activity against a variety of tumors. However, its poor water solubility, low specificity, and high toxicity lead to inevitable systemic adverse effects. To minimize side effects, combining gambogic acid (GA) with delivery systems such as nanohydrogels to develop an in situ vaccine system (ISV) shows great promise. In this study, we loaded GA into a novel in situ nanocomposite hydrogel vaccine system (Gel-NPs@GA) along with a near-infrared (NIR) fluorescent dye, IR-1061. The Gel-NPs@GA system allowed for temperature-triggered gelation, simplifying injection and the in vivo formation of a drug-releasing gel, with near-infrared monitoring for drug metabolism. Slow, continuous release of gelatinase-targeted GA nanoparticles from the hydrogel occurs, followed by cleavage of mPEG-peptide-PCL conjugates by gelatinase, causing particle aggregation for endocytosis by tumor cells. This approach tackled solubility issues and curbs excessive GA release, boosting therapeutic drug levels. The sustained GA release induces tumor cell apoptosis, releasing tumor antigens and reprogramming the immune-suppressive tumor microenvironment. In the CT26 colorectal cancer mice model, this in situ vaccine system significantly inhibited tumor growth. By integrating information about immune cell clusters within the tumor microenvironment with RNA sequencing results, we hypothesized that Gel-NPs@GA could synergistically stimulate the immune response through various pathways, promote the maturation of dendritic cells (DCs), increase the infiltration of T cells, and thereby remodel the tumor's immune microenvironment.
Collapse
Affiliation(s)
- Dan Lei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanru Wang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Yingling Zhou
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Juanjuan Dai
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuling Qiu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyue Qi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunhua Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, China
| | - Qin Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, China
| | - Rutian Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, China
| |
Collapse
|
2
|
Buwalda SJ. 'Click' hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int J Biol Macromol 2024; 282:136695. [PMID: 39447791 DOI: 10.1016/j.ijbiomac.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Click chemistry refers to a class of highly selective reactions that occur in one pot, are not disturbed by water or oxygen, proceed quickly to high yield and generate only inoffensive byproducts. Since its first definition by Barry Sharpless in 2001, click chemistry has increasingly been used for the preparation of hydrogels, which are water-swollen polymer networks with numerous biomedical applications. Polysaccharides, which can be obtained from renewable resources including plants, have drawn growing attention for use in hydrogels due to the recent focus on the development of a sustainable society and the reduction of the environmental impact of the chemical industry. Importantly, plant-based polysaccharides are often bioresorbable and exhibit excellent biocompatibility and biomimicry. This comprehensive review describes the synthesis, characterization and biomedical applications of hydrogels which combine the renewable and biocompatible aspects of polysaccharides with the chemically and biomedically favorable characteristics of click crosslinking. The manuscript focuses on click hydrogels prepared from alginate and cellulose, the most widely used polysaccharides for this type of hydrogel, but also click hydrogels based on other plant-derived polymers (e.g. pectin) are discussed. In addition, the challenges are described that should be overcome to facilitate translation from academia to the clinic.
Collapse
Affiliation(s)
- Sytze J Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
3
|
Chalard AE, Porritt H, Lam Po Tang EJ, Taberner AJ, Winbo A, Ahmad AM, Fitremann J, Malmström J. Dynamic composite hydrogels of gelatin methacryloyl (GelMA) with supramolecular fibers for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 163:213957. [PMID: 39024864 DOI: 10.1016/j.bioadv.2024.213957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the field of tissue engineering, there is a growing need for biomaterials with structural properties that replicate the native characteristics of the extracellular matrix (ECM). It is important to include fibrous structures into ECM mimics, especially when constructing scar models. Additionally, including a dynamic aspect to cell-laden biomaterials is particularly interesting, since native ECM is constantly reshaped by cells. Composite hydrogels are developed to bring different combinations of structures and properties to a scaffold by using different types and sources of materials. In this work, we aimed to combine gelatin methacryloyl (GelMA) with biocompatible supramolecular fibers made of a small self-assembling sugar-derived molecule (N-heptyl-D-galactonamide, GalC7). The GalC7 fibers were directly grown in the GelMA through a thermal process, and it was shown that the presence of the fibrous network increased the Young's modulus of GelMA. Due to the non-covalent interactions that govern the self-assembly, these fibers were observed to dissolve over time, leading to a dynamic softening of the composite gels. Cardiac fibroblast cells were successfully encapsulated into composite gels for 7 days, showing excellent biocompatibility and fibroblasts extending in an elongated morphology, most likely in the channels left by the fibers after their degradation. These novel composite hydrogels present unique properties and could be used as tools to study biological processes such as fibrosis, vascularization and invasion.
Collapse
Affiliation(s)
- Anaïs E Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Emily J Lam Po Tang
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand; Manaaki Manawa Centre for Heart Research, The University of Auckland, Auckland, New Zealand
| | - Amatul M Ahmad
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Juliette Fitremann
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
4
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
5
|
Mahmoudi C, Tahraoui Douma N, Mahmoudi H, Iurciuc (Tincu) CE, Popa M. Hydrogels Based on Proteins Cross-Linked with Carbonyl Derivatives of Polysaccharides, with Biomedical Applications. Int J Mol Sci 2024; 25:7839. [PMID: 39063081 PMCID: PMC11277554 DOI: 10.3390/ijms25147839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.
Collapse
Affiliation(s)
- Chahrazed Mahmoudi
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Naïma Tahraoui Douma
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
| | - Hacene Mahmoudi
- National Higher School of Nanosciences and Nanotechnologies, Algiers 16000, Algeria;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
7
|
Peel A, Bennion D, Horne R, Hansen MR, Guymon CA. Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants. ACS APPLIED BIO MATERIALS 2024; 7:3124-3135. [PMID: 38584364 PMCID: PMC11110053 DOI: 10.1021/acsabm.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
The durability of photografted zwitterionic hydrogel coatings on cochlear implant biomaterials was examined to determine the viability of these antifouling surfaces during insertion and long-term implant usage. Tribometry was used to determine the effect of zwitterionic coatings on the lubricity of surfaces with varying hydration levels, applied normal force, and time frame. Additionally, flexural resistance was investigated using mandrel bending. Ex vivo durability was assessed by determining the coefficient of friction between tissues and treated surfaces. Furthermore, cochlear implantation force was measured using cadaveric human cochleae. Hydrated zwitterionic hydrogel coatings reduced frictional resistance approximately 20-fold compared to uncoated PDMS, which led to significantly lower mean force experienced by coated cochlear implants during insertion compared to uncoated systems. Under flexural force, zwitterionic films resisted failure for up to 60 min of desiccation. The large increase in lubricity was maintained for 20 h under continual force while hydrated. For loosely cross-linked systems, films remained stable and lubricious even after rehydration following complete drying. All coatings remained hydrated and functional under frictional force for at least 30 min in ambient conditions allowing drying, with lower cross-link densities showing the greatest longevity. Moreover, photografted zwitterionic hydrogel samples showed no evidence of degradation and nearly identical lubricity before and after implantation. This work demonstrates that photografted zwitterionic hydrogel coatings are sufficiently durable to maintain viability before, during, and after implantation. Mechanical properties, including greatly increased lubricity, are preserved after complete drying and rehydration for various applied forces. Additionally, this significantly enhanced lubricity translates to significantly decreased force during insertion of implants which should result in less trauma and scarring.
Collapse
Affiliation(s)
- Adreann Peel
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas Bennion
- Department
of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan Horne
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
9
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
10
|
Illescas-Lopez S, Martin-Romera JD, Mañas-Torres MC, Lopez-Lopez MT, Cuerva JM, Gavira JA, Carmona FJ, Álvarez de Cienfuegos L. Short-Peptide Supramolecular Hydrogels for In Situ Growth of Metal-Organic Framework-Peptide Biocomposites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390355 DOI: 10.1021/acsami.3c06943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.
Collapse
Affiliation(s)
- Sara Illescas-Lopez
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Javier D Martin-Romera
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Departamento de Física Aplicada, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Francisco J Carmona
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| |
Collapse
|
11
|
Prontera CT, Gallo N, Giannuzzi R, Pugliese M, Primiceri V, Mariano F, Maggiore A, Gigli G, Sannino A, Salvatore L, Maiorano V. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Gels 2023; 9:gels9040310. [PMID: 37102922 PMCID: PMC10137362 DOI: 10.3390/gels9040310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.
Collapse
Affiliation(s)
- Carmela Tania Prontera
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Giannuzzi
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Marco Pugliese
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vitantonio Primiceri
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Fabrizio Mariano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Maggiore
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
12
|
Sapuła P, Bialik-Wąs K, Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023; 15:253. [PMID: 36678882 PMCID: PMC9866639 DOI: 10.3390/pharmaceutics15010253] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The main aim of this review is to assess the potential use of natural cross-linking agents, such as genipin, citric acid, tannic acid, epigallocatechin gallate, and vanillin in preparing chemically cross-linked hydrogels for the biomedical, pharmaceutical, and cosmetic industries. Chemical cross-linking is one of the most important methods that is commonly used to form mechanically strong hydrogels based on biopolymers, such as alginates, chitosan, hyaluronic acid, collagen, gelatin, and fibroin. Moreover, the properties of natural cross-linking agents and their advantages and disadvantages are compared relative to their commonly known synthetic cross-linking counterparts. Nowadays, advanced technologies can facilitate the acquisition of high-purity biomaterials from unreacted components with no additional purification steps. However, while planning and designing a chemical process, energy and water consumption should be limited in order to reduce the risks associated with global warming. However, many synthetic cross-linking agents, such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate, poly (ethylene glycol) diacrylates, epichlorohydrin, and glutaraldehyde, are harmful to both humans and the environment. One solution to this problem could be the use of bio-cross-linking agents obtained from natural resources, which would eliminate their toxic effects and ensure the safety for humans and the environment.
Collapse
Affiliation(s)
- Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
13
|
Adjuik TA, Nokes SE, Montross MD, Wendroth O. The Impacts of Bio-Based and Synthetic Hydrogels on Soil Hydraulic Properties: A Review. Polymers (Basel) 2022; 14:polym14214721. [PMID: 36365717 PMCID: PMC9656743 DOI: 10.3390/polym14214721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Soil hydraulic properties are important for the movement and distribution of water in agricultural soils. The ability of plants to easily extract water from soil can be limited by the texture and structure of the soil, and types of soil amendments applied to the soil. Superabsorbent polymers (hydrogels) have been researched as potential soil amendments that could help improve soil hydraulic properties and make water more available to crops, especially in their critical growing stages. However, a lack of a comprehensive literature review on the impacts of hydrogels on soil hydraulic properties makes it difficult to recommend specific types of hydrogels that positively impact soil hydraulic properties. In addition, findings from previous research suggest contrasting effects of hydrogels on soil hydraulic properties. This review surveys the published literature from 2000 to 2020 and: (i) synthesizes the impacts of bio-based and synthetic hydrogels on soil hydraulic properties (i.e., water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); (ii) critically discusses the link between the source of the bio-based and synthetic hydrogels and their impacts as soil amendments; and (iii) identifies potential research directions. Both synthetic and bio-based hydrogels increased water retention in soil compared to unamended soil with decreasing soil water pressure head. The application of bio-based and synthetic hydrogels both decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil evaporation. Hybrid hydrogels (i.e., a blend of bio-based and synthetic backbone materials) may be needed to prolong the benefit of repeated water absorption in soil for the duration of the crop growing season.
Collapse
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Ole Wendroth
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY 40503, USA
| |
Collapse
|
14
|
Rehman TU, Shah LA. Rheological investigation of polymer hydrogels for industrial application: a review. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Tanzil Ur Rehman
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
15
|
Moghadam M, Seyed Dorraji MS, Dodangeh F, Ashjari HR, Mousavi SN, Rasoulifard MH. Design of a new light curable starch-based hydrogel drug delivery system to improve the release rate of quercetin as a poorly water-soluble drug. Eur J Pharm Sci 2022; 174:106191. [PMID: 35430382 DOI: 10.1016/j.ejps.2022.106191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 01/03/2023]
Abstract
In spite of quercetin advantages, its utilization as a cancer drug is confined due to its very low water solubility and bioavailability. Accordingly, we prepared a biodegradable starch-based hydrogel, using a new technique to control and improve quercetin release and bioavailability. For this purpose, the molecular structure of starch was modified by polyethylene glycol/acrylate and Fe3O4 nanoparticles were used to enhance mechanical properties of hydrogel. In order to prepare the final hydrogel drug carrier, the modified starch was directly mixed with quercetin and other additives in different ratios and cured under blue light. Synthesis confirmation and structural properties of the modified starch, silanized and pure Fe3O4 nanoparticles and final hydrogel were studied using 1H NMR, FT-IR, SEM, XRD, TGA, VSM and DLS analyses. We improved in vitro drug release to 56.62%, while the maximum release of quercetin from the starch-based hydrogel in our previous study was only 27% (Doosti et al., 2019).
Collapse
Affiliation(s)
- Maryam Moghadam
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Fatemeh Dodangeh
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Hamid Reza Ashjari
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran; Nano Baspar Sazan Co, Tabriz, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
16
|
Aguilera-Bulla D, Legay L, Buwalda SJ, Budtova T. Crosslinker-Free Hyaluronic Acid Aerogels. Biomacromolecules 2022; 23:2838-2845. [PMID: 35674777 DOI: 10.1021/acs.biomac.2c00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerogels based on hyaluronic acid (HA) were prepared without any chemical crosslinking by polymer dissolution, network formation via nonsolvent-induced phase separation, and supercritical CO2 drying. The influence of solution pH, concentration of HA, and type of nonsolvent on network volume shrinkage, aerogel density, morphology, and specific surface area was investigated. A marked dependence of aerogel properties on solution pH was observed: aerogels with the highest specific surface area, 510 m2/g, and the lowest density, 0.057 g/cm3, were obtained when the HA solution was at its isoelectric point (pH 2.5). This work reports the first results ever on neat HA aerogels and constitutes the background for their use as advanced materials for biomedical applications.
Collapse
Affiliation(s)
- Daniel Aguilera-Bulla
- MINES Paris, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Laurianne Legay
- MINES Paris, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Sytze J Buwalda
- MINES Paris, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- MINES Paris, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
17
|
NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. Int J Mol Sci 2022; 23:ijms23094722. [PMID: 35563114 PMCID: PMC9103572 DOI: 10.3390/ijms23094722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.
Collapse
|
18
|
Drug Delivery from Hyaluronic Acid–BDDE Injectable Hydrogels for Antibacterial and Anti-Inflammatory Applications. Gels 2022; 8:gels8040223. [PMID: 35448124 PMCID: PMC9033012 DOI: 10.3390/gels8040223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) injectable biomaterials are currently applied in numerous biomedical areas, beyond their use as dermal fillers. However, bacterial infections and painful inflammations are associated with healthcare complications that can appear after injection, restricting their applicability. Fortunately, HA injectable hydrogels can also serve as drug delivery platforms for the controlled release of bioactive agents with a critical role in the control of certain diseases. Accordingly, herein, HA hydrogels were crosslinked with 1 4-butanediol diglycidyl ether (BDDE) loaded with cefuroxime (CFX), tetracycline (TCN), and amoxicillin (AMX) antibiotics and acetylsalicylic acid (ASA) anti-inflammatory agent in order to promote antibacterial and anti-inflammatory responses. The hydrogels were thoroughly characterized and a clear correlation between the crosslinking grade and the hydrogels’ physicochemical properties was found after rheology, scanning electron microscopy (SEM), thermogravimetry (TGA), and differential scanning calorimetry (DSC) analyses. The biological safety of the hydrogels, expected due to the lack of BDDE residues observed in 1H-NMR spectroscopy, was also corroborated by an exhaustive biocompatibility test. As expected, the in vitro antibacterial and anti-inflammatory activity of the drug-loaded HA-BDDE hydrogels was confirmed against Staphylococcus aureus by significantly decreasing the pro-inflammatory cytokine levels.
Collapse
|
19
|
Groult S, Buwalda S, Budtova T. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. BIOMATERIALS ADVANCES 2022; 135:212732. [PMID: 35929208 DOI: 10.1016/j.bioadv.2022.212732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
The release of the model drug theophylline from cellulose-pectin composite aerogels was investigated. Cellulose and pectin formed an interpenetrated network, and the goal was to study and understand the influence of each component and its solubility in simulated gastric and intestinal fluids on the kinetics of release. Cellulose was dissolved, coagulated in water, followed by impregnation with pectin solution, crosslinking of pectin with calcium (in some cases this step was omitted), solvent exchange and supercritical CO2 drying. Theophylline was loaded via impregnation and its release into simulated gastric fluid was monitored for 1 h followed by release into simulated intestinal fluid. The properties of the composite aerogels were varied via the cellulose and pectin concentrations as well as the calcium content in the precursor solutions. The release kinetics was correlated with aerogel specific surface area, bulk density as well as network swelling and erosion. The Korsmeyer-Peppas model was employed to identify the dominant release mechanisms during the various stages of the release.
Collapse
Affiliation(s)
- Sophie Groult
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Sytze Buwalda
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
20
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
21
|
Agarwal T, Tan SA, Onesto V, Law JX, Agrawal G, Pal S, Lim WL, Sharifi E, Moghaddam FD, Maiti TK. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
22
|
Hasan MM, Uddin MF, Zabin N, Shakil MS, Alam M, Achal FJ, Ara Begum MH, Hossen MS, Hasan MA, Morshed MM. Fabrication and Characterization of Chitosan-Polyethylene Glycol (Ch-Peg) Based Hydrogels and Evaluation of Their Potency in Rat Skin Wound Model. Int J Biomater 2021; 2021:4877344. [PMID: 34691184 PMCID: PMC8531824 DOI: 10.1155/2021/4877344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Thermal burns are a major cause of death and suffering around the globe. They can cause debilitating, life-altering injuries as well as lead to significant psychological and financial consequences. Several research works have been conducted in attempt to find a wound healing therapy that is successful. At present, hydrogels have been widely used in cutting-edge research for this purpose because they have suitable properties. This study aimed to see how therapy with chitosan-polyethylene glycol (Ch-Peg) based hydrogels affected the healing of burn wounds in rats. With the concern of public health, xanthan gum (X), boric acid (B), gelatin (Ge), polyethylene glycol (Peg), chitosan (Ch), glutaraldehyde (G), and HPLC-grade water were prepared using X : Ge : G, X : Ge : Peg : G, X : Ge : Ch : G, X : Ge : Peg : Ch : G, X : Ge : B : Ch : G, X : Ge : B : Peg : G, and X : Ge : B : Peg : Ch : G. The produced composite hydrogels were examined for swelling ability, biodegradability, rheological characteristics, and porosity. The 3D structure of the hydrogel was revealed by scanning electron microscopy (SEM). After that, the structural characterization technique named Fourier-transform infrared spectroscopy (FTIR) was used to describe the composites (SEM). Lastly, in a rat skin wound model, the efficacy of the produced hydrogels was studied. Swelling ability, biodegradability, rheological properties, and porosity were all demonstrated in composite hydrogels that contained over 90% water. Hydrogels with good polymeric networks and porosity were observed using SEM. The existence of bound water and free, intra- and intermolecule hydrogen-linked OH and NH in the hydrogels was confirmed using FTIR. In a secondary burned rat model, all hydrogels showed significant wound healing effectiveness when compared to controls. When compared to other composite hydrogels, wounds treated with X : Ge : Peg : Ch : G, X : Ge : B : Peg : G, and X : Ge : B : Peg : Ch:G recovered faster after 28 days. In conclusion, this research suggests that X : Ge : Peg : Ch : G, X : Ge : B : Peg : G, and X : Ge : B : Peg : Ch : G could be used to treat skin injuries in the clinic.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Forhad Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nayera Zabin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Salman Shakil
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Morshed Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Fahima Jahan Achal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Most. Hosney Ara Begum
- BCSIR Laboratories, Bangladesh Council for Scientific and Industrial Research, Shahbag, Dhaka 1000, Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Mahbubul Morshed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
23
|
Synthesis of Hydrophilic Poly(butylene succinate-butylene dilinoleate) (PBS-DLS) Copolymers Containing Poly(Ethylene Glycol) (PEG) of Variable Molecular Weights. Polymers (Basel) 2021; 13:polym13183177. [PMID: 34578078 PMCID: PMC8468582 DOI: 10.3390/polym13183177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023] Open
Abstract
Polymeric materials have numerous applications from the industrial to medical fields because of their vast controllable properties. In this study, we aimed to synthesize series of poly(butylene succinate-dilinoleic succinate-ethylene glycol succinate) (PBS-DLS-PEG) copolymers, by two-step polycondensation using a heterogeneous catalyst and a two-step process. PEG of different molecular weights, namely, 1000 g/mol and 6000 g/mol, was used in order to study its effect on the surface and thermal properties. The amount of the PBS hard segment in all copolymers was fixed at 70 wt%, while different ratios between the soft segments (DLS and PEG) were applied. The chemical structure of PBS-DLS-PEG was evaluated using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Gel permeation chromatography was used to determine the molecular weight and dispersity index. The results of structural analysis indicate the incorporation of PEG in the macrochain. The physical and thermal properties of the newly synthesized copolymers were also evaluated using water contact angle measurements, differential scanning calorimetry and dynamic thermomechanical analysis. It was found that increasing the amount of PEG of a higher molecular weight increased the surface wettability of the new materials while maintaining their thermal properties. Importantly, the two-step melt polycondensation allowed a direct fabrication of a polymeric filament with a well-controlled diameter directly from the reactor. The obtained results clearly show that the use of two-step polycondensation in the melt allows obtaining novel PBS-DLS-PEG copolymers and creates new opportunities for the controlled processing of these hydrophilic and thermally stable copolymers for 3D printing technology, which is increasingly used in medical techniques.
Collapse
|
24
|
Bacteriophage Delivery Systems Based on Composite PolyHIPE/Nanocellulose Hydrogel Particles. Polymers (Basel) 2021; 13:polym13162648. [PMID: 34451188 PMCID: PMC8401677 DOI: 10.3390/polym13162648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
The role of bacteriophage therapy in medicine has recently regained an important place. Oral phage delivery for gastrointestinal treatment, transport through the stomach, and fast release in the duodenum is one of such applications. In this work, an efficient polyHIPE/hydrogel system for targeted delivery of bacteriophages with rapid release at the target site is presented. T7 bacteriophages were encapsulated in low crosslinked anionic nanocellulose-based hydrogels, which successfully protected phages at pH < 3.9 (stomach) and completely lost the hydrogel network at a pH above 3.9 (duodenum), allowing their release. Hydrogels with entrapped phages were crosslinked within highly porous spherical polyHIPE particles with an average diameter of 24 μm. PolyHIPE scaffold protects the hydrogels from mechanical stimuli during transport, preventing the collapse of the hydrogel structure and the unwanted phage release. On the other hand, small particle size, due to the large surface-to-volume ratio, enables rapid release at the target site. As a consequence, a fast zero-order release was achieved, providing improved patient compliance and reduced frequency of drug administration. The proposed system therefore exhibits significant potential for a targeted drug delivery in medicine and pharmacy.
Collapse
|
25
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
26
|
Khodeir M, Jia H, Vlad A, Gohy JF. Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate and Oligo(Ethyleneglycol) Methacrylate in Controlled Release and Catalysis. Polymers (Basel) 2021; 13:1307. [PMID: 33923527 PMCID: PMC8073720 DOI: 10.3390/polym13081307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Hydrogels have reached momentum due to their potential application in a variety of fields including their ability to deliver active molecules upon application of a specific chemical or physical stimulus and to act as easily recyclable catalysts in a green chemistry approach. In this paper, we demonstrate that the same redox-responsive hydrogels based on polymer networks containing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radicals and oligoethylene glycol methyl ether methacrylate (OEGMA) can be successfully used either for the electrochemically triggered release of aspirin or as catalysts for the oxidation of primary alcohols into aldehydes. For the first application, we take the opportunity of the positive charges present on the oxoammonium groups of oxidized TEMPO to encapsulate negatively charged aspirin molecules. The further electrochemical reduction of oxoammonium groups into nitroxide radicals triggers the release of aspirin molecules. For the second application, our hydrogels are swelled with benzylic alcohol and tert-butyl nitrite as co-catalyst and the temperature is raised to 50 °C to start the oxidation reaction. Interestingly enough, benzaldehyde is not miscible with our hydrogels and phase-separate on top of them allowing the easy recovery of the reaction product and the recyclability of the hydrogel catalyst.
Collapse
Affiliation(s)
| | | | | | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1, B-1348 Louvain-la-Neuve, Belgium; (M.K.); (H.J.); (A.V.)
| |
Collapse
|
27
|
Molecular dynamics of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels studied by broadband dielectric spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Kopač T, Krajnc M, Ručigaj A. A mathematical model for pH-responsive ionically crosslinked TEMPO nanocellulose hydrogel design in drug delivery systems. Int J Biol Macromol 2020; 168:695-707. [PMID: 33246006 DOI: 10.1016/j.ijbiomac.2020.11.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022]
Abstract
Ionically crosslinked hydrogels based on TEMPO nanocelullose and alginate were prepared to develop a generalized pH value, temperature and biopolymer concentration dependent mathematical model. The distinctive attention was in the demonstration of hydrogen bonds effects in the mathematical model, prevailing especially in the field of low crosslink densities of TEMPO nanocellulose hydrogel in acid medium. Accordingly, alginate hydrogels were subjected to the research as comparable samples with less significant hydrogel bonds effect. The equation was built upon the determination of the average mesh size in a TEMPO nanocellulose and alginate hydrogel network and studying its changes in different pH release environments. Based on rheological measurements of TEMPO nanocellulose and alginate from the basic and acidic release environment, the mechanism of swelling and shrinkage was thoroughly discussed as well as the influence of substituent groups, ionic interactions and hydrogen bonds in different pH medium were evaluated. Due to the protonation of carboxylic groups, TEMPO nanocellulose and alginate hydrogels shrink in an acid environment. The presented approach will accelerate, improve and reduce the cost of research in the field of controlled release technology with target drug delivery.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
29
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|
30
|
Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E1637. [PMID: 32717878 PMCID: PMC7465920 DOI: 10.3390/polym12081637] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fabrication of nerve conduits for perfectly repairing or replacing damaged peripheral nerve is an urgent demand worldwide, but it is also a formidable clinical challenge. In the last decade, with the rapid development of manufacture technologies, 3D printing and bioprinting have been becoming remarkable stars in the field of neural engineering. In this review, we explore that the biomaterial inks (hydrogels, thermoplastic, and thermoset polyesters and composite) and bioinks have been selected for 3D printing and bioprinting of peripheral nerve conduits. This review covers 3D manufacturing technologies, including extrusion printing, inkjet printing, stereolithography, and bioprinting with inclusion of cells, bioactive molecules, and drugs. Finally, an outlook on the future directions of 3D printing and 4D printing in customizable nerve therapies is presented.
Collapse
Affiliation(s)
- Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|