1
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs inhibition improves sequential gene insertion of the full-length CFTR cDNA in airway stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102339. [PMID: 39398224 PMCID: PMC11470261 DOI: 10.1016/j.omtn.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two-halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558, which inhibit non-homologous end-joining (NHEJ) and micro-homology mediated end-joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2- to 3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Plasschaert LW, MacDonald KD, Moffit JS. Current landscape of cystic fibrosis gene therapy. Front Pharmacol 2024; 15:1476331. [PMID: 39439894 PMCID: PMC11493704 DOI: 10.3389/fphar.2024.1476331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis is a life-threatening disease that is caused by mutations in CFTR, a gene which encodes an ion channel that supports proper function of several epithelial tissues, most critically the lung. Without CFTR, airway barrier mechanisms are impaired, allowing for chronic, recurrent infections that result in airway remodeling and deterioration of lung structure and function. Small molecule modulators can rescue existing, defective CFTR protein; however, they still leave a subset of people with CF with no current disease modifying treatments, aside from lung transplantation. Gene therapy directed to the lung is a promising strategy to modify CF disease in the organ most associated with morbidity and mortality. It is accomplished through delivery of a CFTR transgene with an airway permissive vector. Despite more than three decades of research in this area, a lung directed gene therapy has yet to be realized. There is hope that with improved delivery vectors, sufficient transduction of airway cells can achieve therapeutic levels of functional CFTR. In order to do this, preclinical programs need to meet a certain level of CFTR protein expression in vitro and in vivo through improved transduction, particularly in relevant airway cell types. Furthermore, clinical programs must be designed with sensitive methods to detect CFTR expression and function as well as methods to measure meaningful endpoints for lung structure, function and disease. Here, we discuss the current understanding of how much and where CFTR needs to be expressed, the most advanced vectors for CFTR delivery and clinical considerations for detecting CFTR protein and function in different patient subsets.
Collapse
Affiliation(s)
| | - Kelvin D. MacDonald
- Carbon Biosciences, Waltham, MA, United States
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
3
|
Excoffon KJDA, Smith MD, Falese L, Schulingkamp R, Lin S, Mahankali M, Narayan PKL, Glatfelter MR, Limberis MP, Yuen E, Kolbeck R. Inhalation of SP-101 Followed by Inhaled Doxorubicin Results in Robust and Durable hCFTRΔR Transgene Expression in the Airways of Wild-Type and Cystic Fibrosis Ferrets. Hum Gene Ther 2024; 35:710-725. [PMID: 39155828 DOI: 10.1089/hum.2024.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Approved small molecule therapies benefit the majority of people with CF (pwCF), but unfortunately not all. Gene addition offers a mutation agnostic treatment option for all pwCF. SP-101 is an adeno-associated virus gene therapy vector (AAV2.5T) that has been optimized for efficient human airway cell transduction, and that contains a functional and regulated shortened human CFTR minigene (hCFTRΔR) with a small synthetic promoter/enhancer. To understand SP-101 airway distribution, activity, and the associated immune response, in vivo studies were performed in wild-type and CF ferrets. After single dose inhaled delivery of SP-101, followed by single dose inhaled doxorubicin (an AAV transduction augmenter) or saline, SP-101 vector genomes were detected throughout the respiratory tract. hCFTRΔR mRNA expression was highest in ferrets also receiving doxorubicin and persisted for the duration of the study (13 weeks). Pre-existing mucus in the CF ferrets did not present a barrier to effective transduction. Binding and neutralizing antibodies to the AAV2.5T capsid were observed regardless of doxorubicin exposure. Only a portion of ferrets exhibited a weak T-cell response to AAV2.5T and no T-cell response was seen against hCFTRΔR. These data strongly support the continued development of inhaled SP-101, followed by inhaled doxorubicin, for the treatment of CF.
Collapse
Affiliation(s)
| | - Mark D Smith
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | - Lillian Falese
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | | | - Shen Lin
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Eric Yuen
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| | - Roland Kolbeck
- Spirovant Sciences, Inc, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs Inhibition Improves Sequential Gene Insertion of the Full-Length CFTR cDNA in Airway Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607571. [PMID: 39185207 PMCID: PMC11343149 DOI: 10.1101/2024.08.12.607571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558 which inhibit non-homologous end joining (NHEJ) and micro-homology mediated end joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2-3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | | | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
6
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
7
|
Kesseli SJ, Krischak MK, Gao Q, Gonzalez T, Zhang M, Halpern SE, Kahan R, Song M, Huffman N, Xu H, Abraham N, Asokan A, Barbas AS, Hartwig MG. Adeno-associated virus mediates gene transduction after static cold storage treatment in rodent lung transplantation. J Thorac Cardiovasc Surg 2023; 166:e38-e49. [PMID: 38501313 DOI: 10.1016/j.jtcvs.2022.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Adeno-associated virus is a clinically used gene therapy vector but has not been studied in lung transplantation. We sought to determine the efficacy of adeno-associated virus delivery during static cold storage via the airway versus the pulmonary artery before lung transplantation in a rodent model. METHODS Lewis rat lung grafts were treated with a dose of 8e8 or 4e9 viral genome/μL recombinant adeno-associated virus subtype-9 vectors containing firefly luciferase genomes administered via the pulmonary artery or airway during cold storage. A control group did not receive adeno-associated virus. Recipient syngeneic rats then underwent single left lung transplantation. Animals underwent bioluminescence imaging on postoperative days 7, 14, 28, and 56. Explanted tissues were prepared as lysates to quantify luciferase activity. Immunohistochemistry was performed to evaluate cellular transgene expression patterns. RESULTS Control animals with no luminescent signal produced a background radiance of 6.1e4 p/s/cm2/sr. In the airway delivery group, mean radiance was greater than the control at 4e9 viral genome/μL postoperative day 7 radiance 6.9e4 p/s/cm2/sr (P = .04). In the pulmonary artery delivery group, we observed greater in vivo luminescence in animals receiving 4e9 viral genome/μL compared with all other groups. However, analysis of tissue lysate revealed greater luminescence in the airway delivery group and suggested off-target expression in heart and liver tissue in the pulmonary artery delivery group. Immunohistochemistry demonstrated transgene staining in distal airway epithelium and alveoli but sparing of the vasculature in the airway delivery group. CONCLUSIONS Adeno-associated virus mediates gene transduction during static cold storage in rat lung isografts when administered via the airway and pulmonary artery. Airway administration leads to robust transgene expression in respiratory epithelial cells, whereas pulmonary artery administration targets alternative cell types and increases extrapulmonary transgene expression.
Collapse
Affiliation(s)
- Samuel J Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC.
| | | | - Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Trevor Gonzalez
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Min Zhang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | | | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Mingqing Song
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Niki Huffman
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Hongzhi Xu
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Nader Abraham
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Andrew S Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
8
|
Wang G. Genome Editing for Cystic Fibrosis. Cells 2023; 12:1555. [PMID: 37371025 PMCID: PMC10297084 DOI: 10.3390/cells12121555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the genome. Within the past few years, new technologies, such as CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in a new era of genetic therapy. This review provided an update on this rapidly evolving field and the status of adapting the technology for CF therapy.
Collapse
Affiliation(s)
- Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Lomunova MA, Gershovich PM. Gene Therapy for Cystic Fibrosis: Recent Advances and Future Prospects. Acta Naturae 2023; 15:20-31. [PMID: 37538805 PMCID: PMC10395777 DOI: 10.32607/actanaturae.11708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
Gene replacement therapies are novel therapeutic approaches that seek to tackle hereditary diseases caused by a congenital deficiency in a particular gene, when a functional copy of a gene can be delivered to the cells and tissues using various delivery systems. To do this, viral particles carrying a functional copy of the gene of interest and various nonviral gene delivery systems, including liposomes, nanoparticles, etc., can be used. In this review, we discuss the state of current knowledge regarding the molecular mechanisms and types of genetic mutations that lead to cystic fibrosis and highlight recent developments in gene therapy that can be leveraged to correct these mutations and to restore the physiological function of the carrier protein transporting sodium and chlorine ions in the airway epithelial cells. Restoration of carrier protein expression could lead to the normalization of ion and water transport across the membrane and induce a decrease in the viscosity of airway surface fluid, which is one of the pathological manifestations of this disease. This review also summarizes recently published preclinical and clinical data for various gene therapies to allow one to make some conclusions about future prospects for gene therapy in cystic fibrosis treatment.
Collapse
|
10
|
Prevalence of Neutralizing Antibodies against Adeno-Associated Virus Serotypes 1, 2, and 9 in Non-Injected Latin American Patients with Heart Failure—ANVIAS Study. Int J Mol Sci 2023; 24:ijms24065579. [PMID: 36982654 PMCID: PMC10051173 DOI: 10.3390/ijms24065579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/17/2023] Open
Abstract
Neutralizing antibody (NAb) activity against the viral capsid of adeno-associated viral (AAV) vectors decreases transduction efficiency, thus limiting transgene expression. Several reports have mentioned a variation in NAb prevalence according to age, AAV serotype, and, most importantly, geographic location. There are currently no reports specifically describing the anti-AAV NAb prevalence in Latin America. Here, we describe the prevalence of NAb against different serotypes of AAV vectors (AAV1, AAV2, and AAV9) in Colombian patients with heart failure (HF) (referred to as cases) and healthy individuals (referred to as controls). The levels of NAb were evaluated in serum samples of 60 subjects from each group using an in vitro inhibitory assay. The neutralizing titer was reported as the first dilution inhibiting ≥50% of the transgene signal, and the samples with neutralizing titers at ≥1:50 dilution were considered positive. The prevalence of NAb in the case and control groups were similar (AAV2: 43% and 45%, respectively; AAV1 33.3% in each group; AAV9: 20% and 23.2%, respectively). The presence of NAb for two or more of the serotypes analyzed was observed in 25% of the studied samples, with the largest amount in the positive samples for AAV1 (55–75%) and AAV9 (93%), suggesting serial exposures, cross-reactivity, or coinfection. Moreover, patients in the HF group exhibited more common combined seropositivity for NAb against AAV1 d AAV9 than those in the control group (91.6% vs. 35.7%, respectively; p = 0.003). Finally, exposure to toxins was significantly associated with the presence of NAb in all regression models. These results constitute the first report of the prevalence of NAb against AAV in Latin America, being the first step to implementing therapeutic strategies based on AAV vectors in this population in our region.
Collapse
|
11
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
12
|
Egan ME. Non-Modulator Therapies: Developing a Therapy for Every Cystic Fibrosis Patient. Clin Chest Med 2022; 43:717-725. [PMID: 36344076 DOI: 10.1016/j.ccm.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy brings hope to most patients with cystic fibrosis (CF), but not all. For approximately 12% of CF patients with premature termination codon mutations, large deletions, insertions, and frameshifts, the CFTR modulator therapy is not effective. Many believe that genetic-based therapies such as RNA therapies, DNA therapies, and gene editing technologies will be needed to treat mutations that are not responsive to modulator therapy. Delivery of these therapeutic agents to affected cells is the major challenge that will need to be overcome if we are to harness the power of these emerging therapies for the treatment of CF.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, Pediatric Pulmonary Allergy Immunology and Sleep Medicine, Yale Cystic Fibrosis Center, School of Medicine, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
14
|
Intranasal application of adeno-associated viruses: a systematic review. Transl Res 2022; 248:87-110. [PMID: 35597541 DOI: 10.1016/j.trsl.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/13/2023]
Abstract
Adeno-associated viruses (AAVs) represent some of the most commonly employed vectors for targeted gene delivery and their extensive study has resulted in the approval of multiple gene therapies to treat human diseases. The intranasal route of vector application in gene therapy offers several advantages over traditional ways of administration. In addition to targeting local tissue like the olfactory epithelium, it provides minimally invasive access to various organ systems, including the central nervous system and the respiratory tract. Through a systematic literature review, a total of 53 articles that investigated the intranasal application of AAVs were identified, included, and summarized in this manuscript. Within these studies, AAV-based gene therapy was mainly investigated for its application in various infectious, pulmonary, or neurologic and/or psychiatric diseases. This review gives a comprehensive overview of the current technological state of the art regarding the intranasal application of AAVs for gene transfer and discusses remaining hurdles, which still have to be resolved before this approach can effectively be implemented in the routine clinical setting.
Collapse
|
15
|
Karanth TK, Karanth VKLK, Ward BK, Woodworth BA, Karanth L. Medical interventions for chronic rhinosinusitis in cystic fibrosis. Cochrane Database Syst Rev 2022; 4:CD012979. [PMID: 35390177 PMCID: PMC8989145 DOI: 10.1002/14651858.cd012979.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Chronic rhinosinusitis frequently occurs in people with cystic fibrosis. Several medical interventions are available for treating chronic rhinosinusitis in people with cystic fibrosis; for example, different concentrations of nasal saline irrigations, topical or oral corticosteroids, antibiotics - including nebulized antibiotics - dornase alfa and modulators of the cystic fibrosis transmembrane conductance regulator (CFTR) (such as lumacaftor, ivacaftor or tezacaftor). However, the efficacy of these interventions is unclear. This is an update of a previously published review. OBJECTIVES The objective of this review is to compare the effects of different medical interventions in people diagnosed with cystic fibrosis and chronic rhinosinusitis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and hand searching of journals and conference abstract books. Date of last search of trials register: 09 September 2021. We also searched ongoing trials databases, other medical databases and the reference lists of relevant articles and reviews. Date of latest additional searches: 22 November 2021. SELECTION CRITERIA Randomized and quasi-randomized trials of different medical interventions compared to each other or to no intervention or to placebo. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials identified for potential inclusion in the review. We planned to conduct data collection and analysis in accordance with Cochrane methods and to independently rate the quality of the evidence for each outcome using the GRADE guidelines. MAIN RESULTS We identified no trials that met the pre-defined inclusion criteria. The most recent searches identified 44 new references, none of which were eligible for inclusion in the current version of this review; 12 studies are listed as excluded and one as ongoing. AUTHORS' CONCLUSIONS We identified no eligible trials assessing the medical interventions in people with cystic fibrosis and chronic rhinosinusitis. High-quality trials are needed which should assess the efficacy of different treatment options detailed above for managing chronic rhinosinusitis, preventing pulmonary exacerbations and improving quality of life in people with cystic fibrosis.
Collapse
Affiliation(s)
| | | | - Bryan K Ward
- Division of Otology, Neurotology and Skull Base Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Laxminarayan Karanth
- Department of Obstetrics and Gynaecology, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Melaka, Malaysia
| |
Collapse
|
16
|
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, Lee CM, Bao G, Randell SH, Artandi SE, Wine JJ, Kuo CJ, Desai TJ, Nayak JV, Sellers ZM, Porteus MH. Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus. Mol Ther 2022; 30:223-237. [PMID: 33794364 PMCID: PMC8753290 DOI: 10.1016/j.ymthe.2021.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.
Collapse
Affiliation(s)
| | - Ron Baik
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Lu Chen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawn T Bravo
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Shayda M Abazari
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Ameen A Salahudeen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steven E Artandi
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tushar J Desai
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Guggino WB, Yanda MK, Cebotaru CV, Cebotaru L. Transduction of Surface and Basal Cells in Rhesus Macaque Lung Following Repeat Dosing with AAV1CFTR. Hum Gene Ther 2021; 31:1010-1023. [PMID: 32862701 DOI: 10.1089/hum.2020.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To test the effectiveness of repeat dosing, we sprayed two doses (1013 vg each) of AAV1Δ27-264-CFTR into airways of four rhesus monkeys at 0 and 30 days, followed by a single dose of 1013 vg of AAV1GFP on day 60. Monkeys were sacrificed on day 90. No adverse events occurred, indicating that AAV1 vectors are safe. An elevated anti-AAV1 neutralizing titer was established by the third dose. A positive ELISPOT to the adeno-associated virus (AAV) capsid but not to cystic fibrosis transmembrane conductance regulator (CFTR) occurred after the third dose in three monkeys. AAV1-CFTR and GFP vectors were detectable in all lung sections and in the heart, liver, and spleen. The CFTR protein was higher in treated monkeys than in an untreated monkey. GFP protein was detected in treated lungs. Lung surface and keratin 5-positive basal cells showed higher CFTR staining than in the uninfected monkey and were positive for GFP staining, indicating widespread gene transduction by AAV1CFTR and GFP. AAV1 safely and effectively transduces monkey airway and basal cells. Both the significant numbers of vector genomes and transduction from AAV1CFTR and GFP virus seen in the monkeys 3 months after the first instillation suggest that repeat dosing with AAV1-based vectors is achievable.
Collapse
Affiliation(s)
- William B Guggino
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murali K Yanda
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cristina V Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Guggino WB, Cebotaru L. Gene Therapy for Cystic Fibrosis Paved the Way for the Use of Adeno-Associated Virus in Gene Therapy. Hum Gene Ther 2021; 31:538-541. [PMID: 32283956 DOI: 10.1089/hum.2020.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shortly after the cystic fibrosis (CF) gene was identified in 1989, the race began to develop a gene therapy for this condition. Major efforts utilized full-length cystic fibrosis transmembrane conductance regulator packaged into adenovirus, adeno-associated virus (AAV), or liposomes and delivered to the airways. The drive to find a treatment for CF based on gene therapy drove the early stages of gene therapy in general, particularly those involving AAV gene therapy. Since general overviews of CF gene therapy have already been published, this review considers specifically the efforts using AAV and is focused on honoring the contributions of Dr. Barrie Carter.
Collapse
Affiliation(s)
- William B Guggino
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
20
|
Mercier J, Ruffin M, Corvol H, Guillot L. Gene Therapy: A Possible Alternative to CFTR Modulators? Front Pharmacol 2021; 12:648203. [PMID: 33967785 PMCID: PMC8097140 DOI: 10.3389/fphar.2021.648203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a rare genetic disease that affects several organs, but lung disease is the major cause of morbidity and mortality. The gene responsible for CF, the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, has been discovered in 1989. Since then, gene therapy i.e., defective gene replacement by a functional one, remained the ultimate goal but unfortunately, it has not yet been achieved. However, patients care and symptomatic treatments considerably increased CF patients’ life expectancy ranging from 5 years old in the 1960s to 40 today. In the last decade, research works on CFTR protein structure and activity led to the development of new drugs which, by readdressing CFTR to the plasma membrane (correctors) or by enhancing its transport activity (potentiators), allow, alone or in combination, an improvement of CF patients’ lung function and quality of life. While expected, it is not yet known whether taking these drugs from an early age and for years will improve the quality of life of CF patients in the long term and further increase their life expectancy. Besides, these molecules are not available (specific variants of CFTR) or accessible (national health policies) for all patients and there is still no curative treatment. Another alternative that could benefit from new technologies, such as gene therapy, is therefore still attractive, although it is not yet offered to patients. Faced with the development of new CFTR correctors and potentiators, the question arises as to whether there is still a place for gene therapy and this is discussed in this perspective.
Collapse
Affiliation(s)
- J Mercier
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France
| | - M Ruffin
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France
| | - H Corvol
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France.,Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France
| | - L Guillot
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France
| |
Collapse
|
21
|
Allan KM, Farrow N, Donnelley M, Jaffe A, Waters SA. Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12:639475. [PMID: 33796025 PMCID: PMC8007963 DOI: 10.3389/fphar.2021.639475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in targeted therapies that improve CF transmembrane conductance regulator (CFTR) function. Despite being a multi-organ disease, extensive lung tissue destruction remains the major cause of morbidity and mortality. Progress towards a curative treatment strategy that implements a CFTR gene addition-technology to the patients’ lungs has been slow and not yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the body’s defense system and ensure an efficient and consistent clinical response before gene therapy is suitable for clinical care. Cell-based therapy–which relies on functional modification of allogenic or autologous cells ex vivo, prior to transplantation into the patient–is now a therapeutic reality for various diseases. For CF, pioneering research has demonstrated proof-of-principle for allogenic transplantation of cultured human airway stem cells into mouse airways. However, applying a cell-based therapy to the human airways has distinct challenges. We review CF gene therapies using viral and non-viral delivery strategies and discuss current advances towards autologous cell-based therapies. Progress towards identification, correction, and expansion of a suitable regenerative cell, as well as refinement of pre-cell transplant lung conditioning protocols is discussed.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia
| | - Nigel Farrow
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| |
Collapse
|
22
|
Egan ME. Emerging technologies for cystic fibrosis transmembrane conductance regulator restoration in all people with CF. Pediatr Pulmonol 2021; 56 Suppl 1:S32-S39. [PMID: 32681713 PMCID: PMC8114183 DOI: 10.1002/ppul.24965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Although effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy has the potential to change the lives of many patients with cystic fibrosis (CF), it is unlikely that these drugs will be a game changing therapy for all. There are about 10% of patients with CF who don't produce a mutant protein tomodulate, potentiate, or optimize and for these patients such therapies are unlikely to be of significant benefit. There is a need to develop new therapeutic approaches that can work for this patient population and can advance CF therapies. These new therapies will be genetic-based therapies and each approach will result in functional CFTR protein inpreviously affected CF cells. In this review we will examine the potential of RNA therapies, gene transfer therapies, and gene editing therapies for the treatment of CF as well as the challenges that will need to be facedas we harness the power of these emerging therapies towards a one-time cure.
Collapse
Affiliation(s)
- Marie E Egan
- Division of Pulmonary Allergy Immunology Sleep Medicine, Department of Pediatrics, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
23
|
Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev 2021; 168:196-216. [PMID: 32416111 DOI: 10.1016/j.addr.2020.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Genome-editing systems based on clustered, regularly interspaced, short palindromic repeat (CRISPR)/associated protein (CRISPR/Cas), are emerging as a revolutionary technology for the treatment of various genetic diseases. To date, the delivery of genome-editing biomacromolecules by viral or non-viral vectors have been proposed as new therapeutic options for lung genetic disorders, such as cystic fibrosis (CF) and α-1 antitrypsin deficiency (AATD), and it has been accepted that these delivery vectors can introduce CRISPR/Cas9 machineries into target cells or tissues in vitro, ex vivo and in vivo. However, the efficient local or systemic delivery of CRISPR/Cas9 elements to the lung, enabled by either viral or by non-viral carriers, still remains elusive. Herein, we first introduce lung genetic disorders and their current treatment options, and then summarize CRISPR/Cas9-based strategies for the therapeutic genome editing of these disorders. We further summarize the pros and cons of different routes of administration for lung genetic disorders. In particular, the potentials of aerosol delivery for therapeutic CRISPR/Cas9 biomacromolecules for lung genome editing are discussed and highlighted. Finally, current challenges and future outlooks in this emerging area are briefly discussed.
Collapse
|
24
|
Apaydin EA, Richardson AS, Baxi S, Vockley J, Akinniranye O, Ross R, Larkin J, Motala A, Azhar G, Hempel S. An evidence map of randomised controlled trials evaluating genetic therapies. BMJ Evid Based Med 2020; 26:bmjebm-2020-111448. [PMID: 33172937 DOI: 10.1136/bmjebm-2020-111448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Genetic therapies replace or inactivate disease-causing genes or introduce new or modified genes. These therapies have the potential to cure in a single application rather than treating symptoms through repeated administrations. This evidence map provides a broad overview of the genetic therapies that have been evaluated in randomised controlled trials (RCTs) for efficacy and safety. ELIGIBILITY CRITERIA Two independent reviewers screened publications using predetermined eligibility criteria. Study details and data on safety and efficacy were abstracted from included trials. Results were visualised in an evidence map. INFORMATION SOURCES We searched PubMed, EMBASE, Web of Science, ClinicalTrials.gov and grey literature to November 2018. RISK OF BIAS Only RCTs were included in this review to reduce the risk of selection bias in the evaluation of genetic therapy safety and efficacy. INCLUDED STUDIES We identified 119 RCTs evaluating genetic therapies for a variety of clinical conditions. SYNTHESIS OF RESULTS On average, samples included 107 participants (range: 1-1022), and were followed for 15 months (range: 0-124). Interventions using adenoviruses (40%) to treat cardiovascular diseases (29%) were the most common. DESCRIPTION OF THE EFFECT In RCTs reporting safety and efficacy outcomes, in the majority (60%) genetic therapies were associated with improved symptoms but in nearly half (45%) serious adverse event (SAEs) were also reported. Improvement was reported in trials treating cancer, cardiovascular, ocular and muscular diseases. However, only 19 trials reported symptom improvement for at least 1 year. STRENGTHS AND LIMITATIONS OF EVIDENCE This is the first comprehensive evidence map of RCTs evaluating the safety and efficacy of genetic therapies. Evidence for long-term effectiveness and safety is still sparse. This lack of evidence has implications for the use, ethics, pricing and logistics of genetic therapies. INTERPRETATION This evidence map provides a broad overview of research studies that allow strong evidence statements regarding the safety and efficacy of genetic therapies. Most interventions improve symptoms, but SAE are also common. More research is needed to evaluate genetic therapies with regard to the potential to cure diseases.
Collapse
Affiliation(s)
- Eric A Apaydin
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
- Center for the Study of Healthcare Innovation, Implementation and Policy, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andrea S Richardson
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Pittsburgh, Pennsylvania, USA
| | - Sangita Baxi
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Jerry Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Olamigoke Akinniranye
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Rachel Ross
- West Los Angeles Medical Center, Kaiser Foundation Hospitals, Los Angeles, California, USA
| | - Jody Larkin
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Aneesa Motala
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Gulrez Azhar
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Susanne Hempel
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
- Southern California Evidence Review Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
25
|
Carneiro A, Lee H, Lin L, van Haasteren J, Schaffer DV. Novel Lung Tropic Adeno-Associated Virus Capsids for Therapeutic Gene Delivery. Hum Gene Ther 2020; 31:996-1009. [PMID: 32799685 DOI: 10.1089/hum.2020.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efforts to identify mutations that underlie inherited genetic diseases combined with strides in the development of gene therapy vectors over the last three decades have culminated in the approval of several adeno-associated virus (AAV)-based gene therapies. Genetic diseases that manifest in the lung such as cystic fibrosis (CF) and surfactant deficiencies, however, have so far proven to be elusive targets. Early clinical trials in CF using AAV serotype 2 (AAV2) achieved safety, but not efficacy endpoints; however, importantly, these studies provided critical information on barriers that need to be surmounted to translate AAV lung gene therapy toward clinical success. Bolstered with an improved understanding of AAV biology and more clinically relevant lung models, next-generation molecular biology and bioinformatics approaches have given rise to novel AAV capsid variants that offer improvements in transduction efficiency, immunological profile, and the ability to circumvent physical barriers in the lung such as mucus. This review discusses the principal limiting barriers to clinical success in lung gene therapy and focuses on novel engineered AAV capsid variants that have been developed to overcome those challenges.
Collapse
Affiliation(s)
- Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Hyuncheol Lee
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - Li Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Joost van Haasteren
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Innovative Genomics Institute (IGI), University of California, Berkeley, California, USA
| |
Collapse
|
26
|
Vu A, McCray PB. New Directions in Pulmonary Gene Therapy. Hum Gene Ther 2020; 31:921-939. [PMID: 32814451 PMCID: PMC7495918 DOI: 10.1089/hum.2020.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The lung has long been a target for gene therapy, yet efficient delivery and phenotypic disease correction has remained challenging. Although there have been significant advancements in gene therapies of other organs, including the development of several ex vivo therapies, in vivo therapeutics of the lung have been slower to transition to the clinic. Within the past few years, the field has witnessed an explosion in the development of new gene addition and gene editing strategies for the treatment of monogenic disorders. In this review, we will summarize current developments in gene therapy for cystic fibrosis, alpha-1 antitrypsin deficiency, and surfactant protein deficiencies. We will explore the different gene addition and gene editing strategies under investigation and review the challenges of delivery to the lung.
Collapse
Affiliation(s)
- Amber Vu
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
27
|
Bañuls L, Pellicer D, Castillo S, Navarro-García MM, Magallón M, González C, Dasí F. Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far? J Clin Med 2020; 9:E2577. [PMID: 32784514 PMCID: PMC7463867 DOI: 10.3390/jcm9082577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions-cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)-alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.
Collapse
Affiliation(s)
- Lucía Bañuls
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Daniel Pellicer
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Silvia Castillo
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Paediatrics Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - María Mercedes Navarro-García
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - María Magallón
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Cruz González
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Pneumology Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Francisco Dasí
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| |
Collapse
|
28
|
Alton EWFW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harman TE, Hyde S, McLachlan G. Gene Therapy for Respiratory Diseases: Progress and a Changing Context. Hum Gene Ther 2020; 31:911-916. [PMID: 32746737 DOI: 10.1089/hum.2020.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Eric W F W Alton
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - A Christopher Boyd
- UK CF Gene Therapy Consortium, London, United Kingdom.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C Davies
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Deborah R Gill
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Tracy E Harman
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Stephen Hyde
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gerry McLachlan
- UK CF Gene Therapy Consortium, London, United Kingdom.,The Roslin Institute & R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Vaidyanathan S, Salahudeen AA, Sellers ZM, Bravo DT, Choi SS, Batish A, Le W, Baik R, de la O S, Kaushik MP, Galper N, Lee CM, Teran CA, Yoo JH, Bao G, Chang EH, Patel ZM, Hwang PH, Wine JJ, Milla CE, Desai TJ, Nayak JV, Kuo CJ, Porteus MH. High-Efficiency, Selection-free Gene Repair in Airway Stem Cells from Cystic Fibrosis Patients Rescues CFTR Function in Differentiated Epithelia. Cell Stem Cell 2020; 26:161-171.e4. [PMID: 31839569 PMCID: PMC10908575 DOI: 10.1016/j.stem.2019.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Cystic fibrosis (CF) is a monogenic disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Mortality in CF patients is mostly due to respiratory sequelae. Challenges with gene delivery have limited attempts to treat CF using in vivo gene therapy, and low correction levels have hindered ex vivo gene therapy efforts. We have used Cas9 and adeno-associated virus 6 to correct the ΔF508 mutation in readily accessible upper-airway basal stem cells (UABCs) obtained from CF patients. On average, we achieved 30%-50% allelic correction in UABCs and bronchial epithelial cells (HBECs) from 10 CF patients and observed 20%-50% CFTR function relative to non-CF controls in differentiated epithelia. Furthermore, we successfully embedded the corrected UABCs on an FDA-approved porcine small intestinal submucosal membrane (pSIS), and they retained differentiation capacity. This study supports further development of genetically corrected autologous airway stem cell transplant as a treatment for CF.
Collapse
Affiliation(s)
| | - Ameen A Salahudeen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Dawn T Bravo
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Shannon S Choi
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arpit Batish
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wei Le
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Ron Baik
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Sean de la O
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Milan P Kaushik
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Noah Galper
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Jessica H Yoo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona, Tucson, Tucson, AZ 85724, USA
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Tushar J Desai
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA.
| | - Calvin J Kuo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
31
|
Karanth TK, Karanth VKLKL, Ward BK, Woodworth BA, Karanth L. Medical interventions for chronic rhinosinusitis in cystic fibrosis. Cochrane Database Syst Rev 2019; 10:CD012979. [PMID: 31642064 PMCID: PMC6805252 DOI: 10.1002/14651858.cd012979.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic rhinosinusitis frequently occurs in people with cystic fibrosis. Several medical interventions are available for treating chronic rhinosinusitis in people with cystic fibrosis; for example, different concentrations of nasal saline irrigations, topical or oral corticosteroids, antibiotics - including nebulized antibiotics, dornase alfa and modulators of the cystic fibrosis transmembrane conductance regulator (CFTR) (such as lumacaftor, ivacaftor or tezacaftor). However, the efficacy of these interventions is unclear. OBJECTIVES The objective of this review is to compare the effects of different medical interventions in people diagnosed with cystic fibrosis and chronic rhinosinusitis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and hand searching of journals and conference abstract books. Date of last search of trials register: 22 May 2019.We also searched ongoing trials databases, other medical databases and the reference lists of relevant articles and reviews. Date of latest additional searches: 20 May 2019. SELECTION CRITERIA Randomized and quasi-randomized trials of different medical interventions compared to each other or to no intervention or to placebo. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials identified for potential inclusion in the review. We planned to conduct data collection and analysis in accordance with Cochrane methods and to independently rate the quality of the evidence for each outcome using the GRADE guidelines. MAIN RESULTS We identified no trials that met the pre-defined inclusion criteria. The searches identified 47 trials, none of which were eligible for inclusion in the current version of this review. AUTHORS' CONCLUSIONS We identified no eligible trials assessing the medical interventions in people with cystic fibrosis and chronic rhinosinusitis. High-quality trials are needed which should assess the efficacy of different treatment options detailed above for managing chronic rhinosinusitis, preventing pulmonary exacerbations and improving quality of life in people with cystic fibrosis.
Collapse
Affiliation(s)
| | | | - Bryan K Ward
- Johns Hopkins HospitalDivision of Otology, Neurotology and Skull Base Surgery1800 Orleans StreetBaltimoreMarylandUSA21287
| | - Bradford A Woodworth
- University of Alabama563 Boshell Diabetes Building1808 7th Avenue SouthBirminghamUSAAL 35233
| | - Laxminarayan Karanth
- Melaka Manipal Medical CollegeDepartment of Obstetrics and GynaecologyBukit Baru, Jalan BatuHamparMelakaMalaysia75150
| | | |
Collapse
|
32
|
Keeler AM, Flotte TR. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu Rev Virol 2019; 6:601-621. [PMID: 31283441 PMCID: PMC7123914 DOI: 10.1146/annurev-virology-092818-015530] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent market approvals of recombinant adeno-associated virus (rAAV) gene therapies in Europe and the United States are landmark achievements in the history of modern science. These approvals are also anticipated to herald the emergence of a new class of therapies for monogenic disorders, which had hitherto been considered untreatable. These events can be viewed as stemming from the convergence of several important historical trends: the study of basic virology, the development of genomic technologies, the imperative for translational impact of National Institutes of Health-funded research, and the development of economic models for commercialization of rare disease therapies. In this review, these historical trends are described and the key developments that have enabled clinical rAAV gene therapies are discussed, along with an overview of the current state of the field and future directions.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| | - Terence R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
33
|
Miah KM, Hyde SC, Gill DR. Emerging gene therapies for cystic fibrosis. Expert Rev Respir Med 2019; 13:709-725. [PMID: 31215818 DOI: 10.1080/17476348.2019.1634547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.
Collapse
Affiliation(s)
- Kamran M Miah
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Stephen C Hyde
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Deborah R Gill
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
34
|
Zhou ZP, Yang LL, Cao H, Chen ZR, Zhang Y, Wen XY, Hu J. In Vitro Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs. Hum Gene Ther 2019; 30:1101-1116. [PMID: 31099266 DOI: 10.1089/hum.2019.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early efforts in cystic fibrosis (CF) gene therapy faced major challenges in delivery efficiency and sustained therapeutic gene expression. Recent advancements in engineered site-specific endonucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 make permanent CF transmembrane conductance regulator (CFTR) gene correction possible. However, because of safety concerns of the CRISPR/Cas9 system and challenges in in vivo delivery to inflamed CF airway, CRISPR-based gene correction strategies need to be tested in proper animal models. In this study, we aimed at creating vectors for testing CFTR gene correction in pig models. We constructed helper-dependent adenoviral (HD-Ad) vectors to deliver CRISPR/Cas9 and a donor template (a 6 kb LacZ or 8.7 kb human CFTR expression cassette) into cultured pig cells. We demonstrated precise integration of each donor into the GGTA1 safe harbor through Cas9-induced homology directed repair with 3 kb homology arms. In addition, we showed that both LacZ and hCFTR were persistently expressed in transduced cells. Furthermore, we created a CFTR-deficient cell line for testing CFTR correction. We detected hCFTR mRNA and protein expression in cells transduced with the hCFTR vector. We also demonstrated CFTR function in the CF cells transduced with the HD-Ad delivering the CRISPR-Cas9 system and hCFTR donor at late cellular passages using the membrane potential sensitive dye-based assay (FLIPR®). Combined with our previous report on gene delivery to pig airway basal cells, these data provide the feasibility of testing CRISPR/Cas9-mediated permanent human CFTR correction through HD-Ad vector delivery in pigs.
Collapse
Affiliation(s)
- Zhichang Peter Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Liang Leo Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Huibi Cao
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Ziyan Rachel Chen
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Yiqian Zhang
- Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Xiao-Yan Wen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Department of Medicine, Physiology and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program of Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
35
|
Stanford S, Pink R, Creagh D, Clark A, Lowe G, Curry N, Pasi J, Perry D, Fong S, Hayes G, Chandrakumaran K, Rangarajan S. Adenovirus-associated antibodies in UK cohort of hemophilia patients: A seroprevalence study of the presence of adenovirus-associated virus vector-serotypes AAV5 and AAV8 neutralizing activity and antibodies in patients with hemophilia A. Res Pract Thromb Haemost 2019; 3:261-267. [PMID: 31011710 PMCID: PMC6462753 DOI: 10.1002/rth2.12177] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/18/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Current treatment for severe hemophilia A is replacement of deficient factor. Although replacement therapy has improved life expectancy and quality, limitations include frequent infusions and high costs. Gene therapy is a potential alternative that utilizes an adeno-associated virus (AAV) vector containing the human genetic code for factor 8 (FVIII) that transduces the liver, enabling endogenous production of FVIII. Individuals with preexisting immunity to AAV serotypes may be less likely to benefit from this treatment. OBJECTIVES This study measured seroprevalence of antibodies to AAV5 and 8 in an UK adult hemophilia A cohort. PATIENTS/METHODS Patients were recruited from seven hemophilia centres in the UK. Citrated plasma samples from 100 patients were tested for preexisting activities against AAV5 and 8 using AAV transduction inhibition and total antibodies assays. RESULTS Twent-one percent of patients had antibodies against AAV5 and 23% had antibodies against AAV8. Twenty-five percent and 38% of patients exhibited inhibitors of AAV5 or AAV8 cellular transduction respectively. Overall seroprevalence using either assay against AAV5 was 30% and against AAV8 was 40% in this cohort of hemophilia A patients. Seropositivity for both AAV5 and AAV8 was seen in 24% of participants. CONCLUSIONS Screening for preexisting immunity may be important in identifying patients most likely to benefit from gene therapy. Clinical studies may be needed to evaluate the impact of preexisting immunity on the safety and efficacy of AAV mediated gene therapy.
Collapse
Affiliation(s)
- Sophia Stanford
- Department of Hemophilia, Haemostasis and ThrombosisHampshire Hospitals NHS Foundation TrustBasingstokeHampshireUK
| | - Ruth Pink
- Department of Hemophilia, Haemostasis and ThrombosisHampshire Hospitals NHS Foundation TrustBasingstokeHampshireUK
| | - Desmond Creagh
- Haematology DepartmentRoyal Cornwall HospitalTruroCornwallUK
| | - Amanda Clark
- Bristol Hemophilia Comprehensive Care CentreUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Gillian Lowe
- Comprehensive Care Hemophilia CentreUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Nicola Curry
- Oxford Haemophilia and Thrombosis CentreOxford University Hospitals NHS Foundation Trust and Oxford Comprehensive BRC, Blood ThemeOxfordUK
| | - John Pasi
- Royal London Haemophilia CentreBarts Health NHS TrustLondonUK
| | - David Perry
- Cambridge Haemophilia and Thrombophilia CentreCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | | | | | - Kandiah Chandrakumaran
- Peritoneal Malignancy Institute and SurgeryHampshire Hospitals NHS Foundation TrustBasingstokeHampshireUK
| | - Savita Rangarajan
- Department of Hemophilia, Haemostasis and ThrombosisHampshire Hospitals NHS Foundation TrustBasingstokeHampshireUK
| |
Collapse
|
36
|
Targeted Gene Delivery through the Respiratory System: Rationale for Intratracheal Gene Transfer. J Cardiovasc Dev Dis 2019; 6:jcdd6010008. [PMID: 30781363 PMCID: PMC6462990 DOI: 10.3390/jcdd6010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Advances in DNA- and RNA-based technologies have made gene therapy suitable for many lung diseases, especially those that are hereditary. The main objective of gene therapy is to deliver an adequate amount of gene construct to the intended target cell, achieve stable transduction in target cells, and to produce a clinically therapeutic effect. This review focuses on the cellular organization in the normal lung and how gene therapy targets the specific cell types that are affected by pulmonary disorders caused by genetic mutations. Furthermore, it examines the pulmonary barriers that can compromise the absorption and transduction of viral vectors and genetic agents by the lung. Finally, it discusses the advantages and limitations of direct intra-tracheal gene delivery with different viral vectors in small and large animal models and in clinical trials.
Collapse
|
37
|
Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9:genes9110538. [PMID: 30405068 PMCID: PMC6266271 DOI: 10.3390/genes9110538] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
38
|
Lopes-Pacheco M, Kitoko JZ, Morales MM, Petrs-Silva H, Rocco PRM. Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Exp Cell Res 2018; 372:99-107. [PMID: 30244179 DOI: 10.1016/j.yexcr.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vector platforms have shown considerable therapeutic success in gene therapy for inherited disorders. In cystic fibrosis (CF), administration of first-generation rAAV2 was safe, but clinical benefits were not clearly demonstrated. Therefore, next-generation vectors that overcome rate-limiting steps in rAAV transduction are needed to obtain successful gene therapy for this devastating disease. In this study, we evaluated the effects of single-strand or self-complementary (sc) rAAV vectors containing single or multiple tyrosine-to-phenylalanine (Y-F) mutations in capsid surface-exposed residues on serotypes 2, 8 or 9. For this purpose, CF bronchial epithelial (CFBE) cells were transduced with rAAV vectors, and the transgene expression of enhanced green fluorescence protein (eGFP) was analyzed at different time points. The effects of vectors on the cell viability, host cell cycle and in association with co-adjuvant drugs that modulate intracellular vector trafficking were also investigated. Six rAAV vectors demonstrated greater percentage of eGFP+ cells compared to their counterparts at days 4, 7 and 10 post-transduction: rAAV2 Y(272,444,500,730)F, with 1.95-, 3.5- and 3.06-fold increases; rAAV2 Y(252,272,444,500,704,730)F, with 1.65-, 2.12-, and 2-fold increases; scrAAV2 WT, with 1.69-, 2.68-, and 2.32-fold increases; scrAAV8 Y773F, with 57-, 6.06-, and 7-fold increases; scrAAV9 WT, with 7.47-, 4.64-, and 3.66-fold increases; and scrAAV9 Y446F, with 8.39-, 4.62-, and 4.4-fold increases. At days 15, 20, and 30 post-transduction, these vectors still demonstrated higher transgene expression than transfected cells. Although the percentage of eGFP+ cells reduced during the time-course analysis, the delta mean fluorescence intensity increased. These vectors also led to increased percentage of cells in G1-phase without eliciting any cytotoxicity. Prior administration of bortezomib or genistein did not increase eGFP expression in cells transduced with either rAAV2 Y(272,444,500,730)F or rAAV2 Y(252,272,444,500,704,730)F. In conclusion, self-complementary and tyrosine capsid mutations on rAAV serotypes 2, 8, and 9 led to more efficient transduction than their counterparts in CFBE cells by overcoming the intracellular trafficking and second-strand DNA synthesis limitations.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Osman G, Rodriguez J, Chan SY, Chisholm J, Duncan G, Kim N, Tatler AL, Shakesheff KM, Hanes J, Suk JS, Dixon JE. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release 2018; 285:35-45. [PMID: 30004000 PMCID: PMC6573017 DOI: 10.1016/j.jconrel.2018.07.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
Abstract
The lung remains an attractive target for the gene therapy of monogenetic diseases such as cystic fibrosis (CF). Despite over 27 clinical trials, there are still very few gene therapy vectors that have shown any improvement in lung function; highlighting the need to develop formulations with improved gene transfer potency and the desirable physiochemical characteristics for efficacious therapy. Herein, we introduce a novel cell penetrating peptide (CPP)-based non-viral vector that utilises glycosaminoglycan (GAG)-binding enhanced transduction (GET) for highly efficient gene transfer. GET peptides couple directly with DNA through electrostatic interactions to form nanoparticles (NPs). In order to adapt the GET peptide for efficient in vivo delivery, we engineered PEGylated versions of the peptide and employed a strategy to form DNA NPs with different densities of PEG coatings. We were able to identify candidate formulations (PEGylation rates ≥40%) that shielded the positively charged surface of particles, maintained colloidal stability in bronchoalveolar lavage fluid (BALF) and retained gene transfer activity in human bronchial epithelial cell lines and precision cut lung slices (PCLS) in vitro. Using multiple particle tracking (MPT) technology, we demonstrated that PEG-GET complexes were able to navigate the mucus mesh and diffuse rapidly through patient CF sputum samples ex vivo. When tested in mouse lung models in vivo, PEGylated particles demonstrated superior biodistribution, improved safety profiles and efficient gene transfer of a reporter luciferase plasmid compared to non-PEGylated complexes. Furthermore, gene expression was significantly enhanced in comparison to polyethylenimine (PEI), a non-viral gene carrier that has been widely tested in pre-clinical settings. This work describes an innovative approach that combines novel GET peptides for enhanced transfection with a tuneable PEG coating for efficacious lung gene therapy.
Collapse
Affiliation(s)
- Gizem Osman
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jason Rodriguez
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sze Yan Chan
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jane Chisholm
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg Duncan
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Namho Kim
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amanda L Tatler
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Justin Hanes
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jung Soo Suk
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
40
|
Vandamme C, Adjali O, Mingozzi F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum Gene Ther 2018; 28:1061-1074. [PMID: 28835127 PMCID: PMC5649404 DOI: 10.1089/hum.2017.150] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.
Collapse
Affiliation(s)
- Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Oumeya Adjali
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Federico Mingozzi
- Genethon and IMSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| |
Collapse
|
41
|
Carlon MS, Vidović D, Birket S. Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenat Diagn 2017; 37:1181-1190. [DOI: 10.1002/pd.5164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
| | - Dragana Vidović
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
- Current affiliation: Cellular Protein Chemistry, Faculty of Science; Utrecht University; The Netherlands
| | - Susan Birket
- Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
42
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
43
|
Guggino WB, Benson J, Seagrave J, Yan Z, Engelhardt J, Gao G, Conlon TJ, Cebotaru L. A Preclinical Study in Rhesus Macaques for Cystic Fibrosis to Assess Gene Transfer and Transduction by AAV1 and AAV5 with a Dual-Luciferase Reporter System. HUM GENE THER CL DEV 2017; 28:145-156. [PMID: 28726496 DOI: 10.1089/humc.2017.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease that is potentially treatable by gene therapy. Since the identification of the gene encoding CF transmembrane conductance regulator, a number of preclinical and clinical trials have been conducted using the first generation of adeno-associated virus, AAV2. All these studies showed that AAV gene therapy for CF is safe, but clinical benefit was not clearly demonstrated. Thus, a new generation of AAV vectors based on other serotypes is needed to move the field forward. This study tested two AAV serotypes (AAV1 and AAV5) using a dual-luciferase reporter system with firefly and Renilla luciferase genes packaged into AAV1 or AAV5, respectively. Two male and two female Rhesus macaques were each instilled in their lungs with both serotypes using a Penn-Century microsprayer. Both AAV1 and AAV5 vector genomes were detected in all the lung samples when measured at the time of necropsy, 45 days after instillation. However, the vector genome number for AAV1 was at least 10-fold higher than for AAV5. Likewise, luciferase activity was also detected in the same samples at 45 days. AAV1-derived activity was not statistically greater than that derived from AAV5. These data suggest that gene transfer is greater for AAV1 than for AAV5 in macaque lungs. Serum neutralizing antibodies were increased dramatically against both serotypes but were less abundant with AAV1 than with AAV5. No adverse events were noted, again indicating that AAV gene therapy is safe. These results suggest that with more lung-tropic serotypes such as AAV1, new clinical studies of gene therapy using AAV are warranted.
Collapse
Affiliation(s)
- William B Guggino
- 1 Department of Physiology, Johns Hopkins University , Baltimore, Maryland
| | - Janet Benson
- 2 Lovelace Respiratory Research Institute , Albuquerque, New Mexico
| | | | - Ziying Yan
- 3 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - John Engelhardt
- 3 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Guangping Gao
- 4 Department of Microbiology & Physiological Systems, University of Massachusetts , Worcester, Massachusetts
| | - Thomas J Conlon
- 5 Department of Pediatrics, University of Florida , Gainesville, Florida
| | - Liudmila Cebotaru
- 6 Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
44
|
Guggino WB, Cebotaru L. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 2017; 17:1265-1273. [PMID: 28657358 DOI: 10.1080/14712598.2017.1347630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Since the cystic fibrosis (CF) gene was discovered in 1989, researchers have worked to develop a gene therapy. One of the most promising and enduring vectors is the AAV, which has been shown to be safe. In particular, several clinical trials have been conducted with AAV serotype 2. All of them detected viral genomes, but identification of mRNA transduction was not consistent; clinical outcomes in Phase II studies were also inconsistent. The lack of a positive outcome has been attributed to a less-than-efficient viral infection by AAV2, a weak transgene promoter and the host immune response to the vector. Areas covered: Herein, the authors focus on AAV gene therapy for CF, evaluating past experience with this approach and identifying ways forward, based on the progress that has already been made in identifying and overcoming the limitations of AAV gene therapy. Expert opinion: Such progress makes it clear that this is an opportune time to push forward toward the development of a gene therapy for CF. Drugs to treat the basic defect in CF represent a remarkable advance but cannot treat a significant cohort of patients with rare mutations. Thus, there is a critical need to develop a gene therapy for those individuals.
Collapse
Affiliation(s)
- William B Guggino
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| | - Liudmila Cebotaru
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
45
|
Jungmann A, Müller O, Rapti K. Cell-Based Measurement of Neutralizing Antibodies Against Adeno-Associated Virus (AAV). Methods Mol Biol 2017; 1521:109-126. [PMID: 27910044 DOI: 10.1007/978-1-4939-6588-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years gene therapy using adeno-associated viral (AAV) vectors to treat cardiac disease has seen an unprecedented surge, owing to its safety, low immunogenicity relative to other vectors and high and long-term transduction efficiency. This field has also been hampered by the presence of preexisting neutralizing antibodies, not only in patients participating in clinical trials but also in preclinical large animal models. These conflicting circumstances have generated the need for a simple, efficient, and fast assay to screen subjects for the presence of neutralizing antibodies, or lack thereof, in order for them to be included in gene therapy trials.
Collapse
Affiliation(s)
- Andreas Jungmann
- Department of Internal Medicine III, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld410, 69120, Heidelberg, Germany
| | - Oliver Müller
- Department of Internal Medicine III, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld410, 69120, Heidelberg, Germany
| | - Kleopatra Rapti
- Department of Internal Medicine III, Heidelberg University Hospital, University of Heidelberg, Im Neuenheimer Feld410, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, Powers LS, Gansemer ND, Ostedgaard LS, Engelhardt JF, Stoltz DA, Welsh MJ, Sinn PL, Schaffer DV, Zabner J. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight 2016; 1:e88728. [PMID: 27699238 DOI: 10.1172/jci.insight.88728] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl- transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.
Collapse
Affiliation(s)
- Benjamin Steines
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David D Dickey
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and
| | - Jamie Bergen
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | - John R Weinstein
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Xiaopeng Li
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Viral S Shah
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Lynda S Ostedgaard
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David A Stoltz
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Michael J Welsh
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Molecular Physiology and Biophysics
| | - Patrick L Sinn
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Howard Hughes Medical Institute, and
| | - David V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Joseph Zabner
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Perry LA, Penny‐Dimri JC, Aslam AA, Lee TWR, Southern KW. Topical cystic fibrosis transmembrane conductance regulator gene replacement for cystic fibrosis-related lung disease. Cochrane Database Syst Rev 2016; 2016:CD005599. [PMID: 27314455 PMCID: PMC8682957 DOI: 10.1002/14651858.cd005599.pub5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cystic fibrosis is caused by a defective gene encoding a protein called the cystic fibrosis transmembrane conductance regulator (CFTR), and is characterised by chronic lung infection resulting in inflammation and progressive lung damage that results in a reduced life expectancy. OBJECTIVES To determine whether topical CFTR gene replacement therapy to the lungs in people with cystic fibrosis is associated with improvements in clinical outcomes, and to assess any adverse effects. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings.Date of most recent search: 05 May 2016.An additional search of the National Institutes for Health (NIH) Genetic Modification Clinical Research Information System (GeMCRIS) was also performed for the years 1992 to 2015.Date of most recent search: 20 April 2016. SELECTION CRITERIA Randomised controlled studies comparing topical CFTR gene delivery to the lung, using either viral or non-viral delivery systems, with placebo or an alternative delivery system in people with confirmed cystic fibrosis. DATA COLLECTION AND ANALYSIS The authors independently extracted data and assessed study quality. Authors of included studies were contacted and asked for any available additional data. Meta-analysis was limited due to differing study designs. MAIN RESULTS Four randomised controlled studies met the inclusion criteria for this review, involving a total of 302 participants lasting from 29 days to 13 months; 14 studies were excluded. The included studies differed in terms of CFTR gene replacement agent and study design, which limited the meta-analysis. One study only enrolled adult males, the remaining studies included both males and females aged 12 years and over.Risk of bias in the studies was moderate. Random sequence generation and allocation concealment was only described in the more recent study; the remaining three studies were judged to have an unclear risk of bias. All four studies documented double-blinding to the intervention, but there is some uncertainty with regards to participant blinding in one study. Some outcome data were missing from all four studies.There were no differences in either the number of respiratory exacerbations or the number of participants with an exacerbation between replacement therapy or placebo groups at any time point. Meta-analysis of most respiratory function tests showed no difference between treatment and placebo groups, but the smallest study (n = 16) reported forced vital capacity (litres) increased more in the placebo group at up to 24 hours. A further study reported a significant improvement in forced expiratory volume at one second (litres) at 30 days after participants had received their first dose of favouring the gene therapy agent, but this finding was not confirmed when combined with at second study in the meta-analysis. The more recent study (n = 140) demonstrated a small improvement in forced vital capacity (per cent predicted) at two and three months and again at 11 and 12 months for participants receiving CFTR gene replacement therapy compared to those receiving placebo. The same study reported a significant difference in the relative change in forced expiratory volume at one second (per cent predicted) at two months, three months and 12 months.One small study reported significant concerns with "influenza-like" symptoms in participants treated with CFTR gene replacement therapy; this was not reported on repeated use of the same agent in a larger recent study.There was no other evidence of positive impact on outcomes, in particular improved quality of life or reduced treatment burden.Two studies measured ion transport in the lower airways; one (n = 16) demonstrated significant changes toward normal values in the participants who received gene transfer agents (P < 0.0001), mean difference 6.86 (95% confidence interval 3.77 to 9.95). The second study (n = 140) also reported significant changes toward normal values (P = 0.032); however, aggregate data were not available for analysis. In the most recent study, there was also evidence of increased salt transport in cells obtained by brushing the lower airway. These outcomes, whilst important, are not of direct clinical relevance. AUTHORS' CONCLUSIONS One study of liposome-based CFTR gene transfer therapy demonstrated some improvements in respiratory function in people with CF, but this limited evidence of efficacy does not support this treatment as a routine therapy at present. There was no evidence of efficacy for viral-mediated gene delivery.Future studies need to investigate clinically important outcome measures.
Collapse
Affiliation(s)
| | - Jahan C Penny‐Dimri
- Monash UniversityDepartment of Surgery246 Clayton RdMelbourneVictoriaAustralia
| | - Aisha A Aslam
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolUKL12 2AP
| | - Tim WR Lee
- A Floor, Clarendon Wing, Leeds General InfirmaryLeeds Regional Paediatric Cystic Fibrosis CentreGreat George StreetLeedsWest YorkshireUKLS1 3EX
| | - Kevin W Southern
- University of LiverpoolDepartment of Women's and Children's HealthAlder Hey Children's NHS Foundation TrustEaton RoadLiverpoolUKL12 2AP
| | | |
Collapse
|
48
|
|
49
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
50
|
Loring HS, ElMallah MK, Flotte TR. Development of rAAV2-CFTR: History of the First rAAV Vector Product to be Used in Humans. Hum Gene Ther Methods 2016; 27:49-58. [PMID: 26895204 PMCID: PMC4834522 DOI: 10.1089/hgtb.2015.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
The first human gene therapy trials using recombinant adeno-associated virus (rAAV) vectors were performed in cystic fibrosis (CF) patients. Over 100 CF patients were enrolled in 5 separate trials of rAAV2-CFTR administration via nasal, endobronchial, maxillary sinus, and aerosol delivery. Recombinant AAV vectors were designed to deliver the CF transmembrane regulator (CFTR) gene and correct the basic CFTR defect by restoring chloride transport and reverting the upregulation of proinflammatory cytokines. However, vector DNA expression was limited in duration because of the low incidence of integration and natural airway epithelium turnover. In addition, repeated administration of AAV-CFTR vector resulted in a humoral immune response that prevented effective gene transfer from subsequent doses of vector. AAV serotype 2 was used in human trials before the comparison with other serotypes and determination that serotypes 1 and 5 not only possess higher tropism for the airway epithelium, but also are capable of bypassing the binding and trafficking processes-both were important hindrances to the effectiveness of rAAV2. Although rAAV-CFTR gene therapy does not appear likely to supplant newer small-molecule CFTR modulators in the near future, early work with rAAV-CFTR provided an important foundation for later use of rAAV in humans.
Collapse
Affiliation(s)
- Heather S. Loring
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mai K. ElMallah
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
- Microbiology & Physiologic Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|