1
|
Vo TTT, Tran Q, Hong Y, Lee H, Cho H, Kim M, Park S, Kim C, Bayarmunkh C, Boldbaatar D, Kwon SH, Park J, Kim SH, Park J. AXL is required for hypoxia-mediated hypoxia-inducible factor-1 alpha function in glioblastoma. Toxicol Res 2023; 39:669-679. [PMID: 37779588 PMCID: PMC10541364 DOI: 10.1007/s43188-023-00195-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of central nervous system tumor. Molecular targeting may be important when developing efficient GBM treatment strategies. Sequencing of GBMs revealed that the receptor tyrosine kinase (RTK)/RAS/phosphatidylinositol-3-kinase pathway was altered in 88% of samples. Interestingly, AXL, a member of RTK, was proposed as a promising target in glioma therapy. However, the molecular mechanism of AXL modulation of GBM genesis and proliferation is still unclear. In this study, we investigated the expression and localization of hypoxia-inducible factor-1 alpha (HIF-1α) by AXL in GBM. Both AXL mRNA and protein are overexpressed in GBM. Short-interfering RNA knockdown of AXL in U251-MG cells reduced viability and migration. However, serum withdrawal reduced AXL expression, abolishing the effect on viability. AXL is also involved in hypoxia regulation. In hypoxic conditions, the reduction of AXL decreased the level and nuclear localization of HIF-1α. The co-expression of HIF-1α and AXL was found in human GBM samples but not normal tissue. This finding suggests a mechanism for GBM proliferation and indicates that targeting AXL may be a potential GBM therapeutic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00195-z.
Collapse
Affiliation(s)
- Thuy-Trang T. Vo
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Sungjin Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Choinyam Bayarmunkh
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
- Department of Physiology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Damdindorj Boldbaatar
- Department of Graduate Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
- Department of Physiology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Life Science, Hyehwa Liberal Arts College, LINC Plus Project Group, Daejeon University, Daejeon, 34520 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
2
|
Delcuratolo MD, Tucci M, Turco F, Di Stefano RF, Ungaro A, Audisio M, Samuelly A, Brusa F, Audisio A, Di Maio M, Scagliotti GV, Buttigliero C. Therapeutic sequencing in advanced renal cell carcinoma: How to choose considering clinical and biological factors. Crit Rev Oncol Hematol 2023; 181:103881. [PMID: 36427772 DOI: 10.1016/j.critrevonc.2022.103881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the last fifteen years a better understanding of the biological processes promoting tumour growth and progression led to an impressive revolution in metastatic renal cell carcinoma (mRCC) treatment landscape. Angiogenesis plays a critical role in the pathogenesis of RCC. These biological evidences led to targeted therapies interfering with vascular endothelial growth factor and mammalian target of rapamycin pathway. Another big step in the RCC therapeutic landscape was recently made because of the understanding of the interplay between angiogenesis and immune cells. Dual immune checkpoint inhibitors (ICIs) and ICIs plus tyrosine kinase inhibitors (TKI) combinations have been approved considering overall survival benefit compared to targeted therapies as first line treatment. We summarize the activity and the biological rationale of ICIs combinations as mRCC first line therapy. Additionally, we review the clinical and biological criteria useful to guide clinicians in the choice of treatment sequencing focusing on ICIs combinations resistance mechanisms.
Collapse
Affiliation(s)
- Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy.
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Antonio Ungaro
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marco Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Alessandro Samuelly
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Federica Brusa
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy
| | - Alessandro Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, Turin 10028, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| |
Collapse
|
3
|
Lotsberg ML, Davidsen KT, D’Mello Peters S, Haaland GS, Rayford A, Lorens JB, Engelsen AST. The Role of AXL Receptor Tyrosine Kinase in Cancer Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2022:307-327. [DOI: 10.1007/978-3-030-98950-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Chen TJ, Mydel P, Benedyk‐Machaczka M, Kamińska M, Kalucka U, Blø M, Furriol J, Gausdal G, Lorens J, Osman T, Marti H. AXL targeting by a specific small molecule or monoclonal antibody inhibits renal cell carcinoma progression in an orthotopic mice model. Physiol Rep 2021; 9:e15140. [PMID: 34877810 PMCID: PMC8652404 DOI: 10.14814/phy2.15140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
AXL tyrosine kinase activation enhances cancer cell survival, migration, invasiveness, and promotes drug resistance. AXL overexpression is typically detected in a high percentage of renal cell carcinomas (RCCs) and is strongly associated with poor prognosis. Therefore, AXL inhibition represents an attractive treatment option in these cancers. In this preclinical study, we investigated the antitumor role of a highly selective small molecule AXL inhibitor bemcentinib (BGB324, BerGenBio), and a newly developed humanized anti-AXL monoclonal function blocking antibody tilvestamab, (BGB149, BerGenBio), in vitro and an orthotopic RCC mice model. The 786-0-Luc human RCC cells showed high AXL expression. Both bemcentinib and tilvestamab significantly inhibited AXL activation induced by Gas6 stimulation in vitro. Furthermore, tilvestamab inhibited the downstream AKT phosphorylation in these cells. The 786-0-Luc human RCC cells generated tumors with high Ki67 and vimentin expression upon orthotopic implantation in athymic BALB/c nude mice. Most importantly, both bemcentinib and tilvestamab inhibited the progression of tumors induced by the orthotopically implanted 786-0 RCC cells. Remarkably, their in vivo antitumor effectiveness was not significantly enhanced by concomitant administration of a multi-target tyrosine kinase inhibitor. Bemcentinib and tilvestamab qualify as compounds of potentially high clinical interest in AXL overexpressing RCC.
Collapse
Affiliation(s)
- Tony J. Chen
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Piotr Mydel
- Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | | | - Marta Kamińska
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | - Urszula Kalucka
- Department of MicrobiologyJagiellonian UniversityKrakowPoland
| | | | - Jessica Furriol
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - James Lorens
- Department of BiomedicineCentre for Cancer BiomarkersNorwegian Centre of ExcellenceUniversity of BergenBergenNorway
| | - Tarig Osman
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
5
|
Gharghani MS, Simonian M, Bakhtiari F, Ghaffari MH, Fazli G, Bayat AA, Negahdari B. Chimeric antigen receptor T-cell therapy for breast cancer. Future Oncol 2021; 17:2961-2979. [PMID: 34156280 DOI: 10.2217/fon-2020-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the main reasons that researchers pay enormous attention to immunotherapy is that, despite significant advances in conventional therapy approaches, breast cancer remains the leading cause of death from malignant tumors among women. Genetically modifying T cells with chimeric antigen receptors (CAR) is one of the novel methods that has exhibited encouraging activity with relative safety, further urging investigators to develop several CAR T cells to target overexpressed antigens in breast tumors. This article is aimed not only to present such CAR T cells and discuss their remarkable results but also indicates their shortcomings with the hope of achieving possible strategies for improving therapeutic response.
Collapse
Affiliation(s)
- Mighmig Simonian Gharghani
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Miganoosh Simonian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| | - Faezeh Bakhtiari
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Mozhan Haji Ghaffari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| | - Ghazaleh Fazli
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| |
Collapse
|
6
|
Xu D, Sun D, Wang W, Peng X, Zhan Z, Ji Y, Shen Y, Geng M, Ai J, Duan W. Discovery of pyrrolo[2,3-d]pyrimidine derivatives as potent Axl inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2021; 220:113497. [PMID: 33957388 DOI: 10.1016/j.ejmech.2021.113497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
Axl has emerged as an attractive target for cancer therapy due to its strong correlation with tumor growth, metastasis, poor survival, and drug resistance. Herein, we report the design, synthesis and structure-activity relationship (SAR) investigation of a series of pyrrolo[2,3-d]pyrimidine derivatives as new Axl inhibitors. Among them, the most promising compound 13b showed high enzymatic and cellular Axl potencies. Furthermore, 13b possessed preferable pharmacokinetic properties and displayed promising therapeutic effect in BaF3/TEL-Axl xenograft tumor model. Compound 13b may serve as a lead compound for new antitumor drug discovery.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Deqiao Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210, China
| | - Wei Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Zhengsheng Zhan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210, China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Branch Lane, Xihu District, Hangzhou, 330106, China.
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
7
|
Msaouel P, Genovese G, Gao J, Sen S, Tannir NM. TAM kinase inhibition and immune checkpoint blockade- a winning combination in cancer treatment? Expert Opin Ther Targets 2021; 25:141-151. [PMID: 33356674 DOI: 10.1080/14728222.2021.1869212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have shown great promise in a wide spectrum of malignancies. However, responses are not always durable, and this mode of treatment is only effective in a subset of patients. As such, there exists an unmet need for novel approaches to bolster ICI efficacy.Areas covered: We review the role of the Tyro3, Axl, and Mer (TAM) receptor tyrosine kinases in promoting tumor-induced immune suppression and discuss the benefits that may be derived from combining ICI with TAM kinase-targeted tyrosine kinase inhibitors. We searched the MEDLINE Public Library of Medicine (PubMed) and EMBASE databases and referred to ClinicalTrials.gov for relevant ongoing studies.Expert opinion: Targeting of TAM kinases may improve the efficacy of immune checkpoint blockade. However, it remains to be determined whether this effect will be better achieved by the selective targeting of each TAM receptor, depending on the context, or by multi-receptor TAM inhibitors. Triple inhibition of all TAM receptors is more likely to be associated with an increased risk for adverse events. Clinical trial designs should use high-resolution clinical endpoints and proper control arms to determine the synergistic effects of combining TAM inhibition with immune checkpoint blockade.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Wang KH, Ding DC. Dual targeting of TAM receptors Tyro3, Axl, and MerTK: Role in tumors and the tumor immune microenvironment. Tzu Chi Med J 2020; 33:250-256. [PMID: 34386362 PMCID: PMC8323642 DOI: 10.4103/tcmj.tcmj_129_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
In both normal and tumor tissues, receptor tyrosine kinases (RTKs) may be pleiotropically expressed. The RTKs not only regulate ordinary cellular processes, including proliferation, survival, adhesion, and migration, but also have a critical role in the development of many types of cancer. The Tyro3, Axl, and MerTK (TAM) family of RTKs (Tyro3, Axl, and MerTK) plays a pleiotropic role in phagocytosis, inflammation, and normal cellular processes. In this article, we highlight the cellular activities of TAM receptors and discuss their roles in cancer and immune cells. We also discuss cancer therapies that target TAM receptors. Further research is needed to elucidate the function of TAM receptors in immune cells toward the development of new targeted immunotherapies for cancer.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Nagamalla L, Kumar JVS. In silico screening of FDA approved drugs on AXL kinase and validation for breast cancer cell line. J Biomol Struct Dyn 2020; 39:2056-2070. [PMID: 32178589 DOI: 10.1080/07391102.2020.1742791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AXL kinase has been over expressed in many tumors and its involvement in cell proliferation, migration, survival, and resistance makes the kinase as attractive therapeutic target for many cancers. In this study, we performed a virtual screening of the food and drug administration (FDA) approved drug molecule database against AXL kinase for repurposing studies of breast cancer. We have identified three non-cancer drugs with good binding energies were subjected to in vitro breast cancer MCF-7 cell lines. Three drug molecules showing the activity with good IC50 values toward the cancer cell line. We also carried out a 2 dimensional (2 D) quantitative structure activity relation (QSAR) studies on N-[4-(Quinolin-4-yloxy)phenyl]benzenesulfonamides derivatives to design potent inhibitors for AXL kinase. The final QSAR equation was robust with good predictivity and the statistical validation having R2 and Q2 values are 0.91 and 0.86, respectively. QSAR equation descriptors informs about the chemical properties of AXL inhibitors and helpful for designing novel inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lavanya Nagamalla
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| |
Collapse
|
10
|
Song X, Akasaka H, Wang H, Abbasgholizadeh R, Shin JH, Zang F, Chen J, Logsdon CD, Maitra A, Bean AJ, Wang H. Hematopoietic progenitor kinase 1 down-regulates the oncogenic receptor tyrosine kinase AXL in pancreatic cancer. J Biol Chem 2020; 295:2348-2358. [PMID: 31959629 PMCID: PMC7039544 DOI: 10.1074/jbc.ra119.012186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The oncogenic receptor tyrosine kinase AXL is overexpressed in cancer and plays an important role in carcinomas of multiple organs. However, the mechanisms of AXL overexpression in cancer remain unclear. In this study, using HEK293T, Panc-1, and Panc-28 cells and samples of human pancreatic intraepithelial neoplasia (PanIN), along with several biochemical approaches and immunofluorescence microscopy analyses, we sought to investigate the mechanisms that regulate AXL over-expression in pancreatic ductal adenocarcinoma (PDAC). We found that AXL interacts with hematopoietic progenitor kinase 1 (HPK1) and demonstrate that HPK1 down-regulates AXL and decreases its half-life. The HPK1-mediated AXL degradation was inhibited by the endocytic pathway inhibitors leupeptin, bafilomycin A1, and monensin. HPK1 accelerated the movement of AXL from the plasma membrane to endosomes in pancreatic cancer cells treated with the AXL ligand growth arrest-specific 6 (GAS6). Moreover, HPK1 increased the binding of AXL to the Cbl proto-oncogene (c-Cbl); promoted AXL ubiquitination; decreased AXL-mediated signaling, including phospho-AKT and phospho-ERK signaling; and decreased the invasion capability of PDAC cells. Importantly, we show that AXL expression inversely correlates with HPK1 expression in human PanINs and that patients whose tumors have low HPK1 and high AXL expression levels have shorter survival than those with low AXL or high HPK1 expression (p < 0.001). Our results suggest that HPK1 is a tumor suppressor that targets AXL for degradation via the endocytic pathway. HPK1 loss of function may contribute to AXL overexpression and thereby enhance AXL-dependent downstream signaling and tumor invasion in PDAC.
Collapse
Affiliation(s)
- Xianzhou Song
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Hironari Akasaka
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Reza Abbasgholizadeh
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Ji-Hyun Shin
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Fenglin Zang
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jiayi Chen
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Anirban Maitra
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
11
|
Engineered IL-7 Receptor Enhances the Therapeutic Effect of AXL-CAR-T Cells on Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4795171. [PMID: 31998790 PMCID: PMC6970498 DOI: 10.1155/2020/4795171] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive malignant type of tumor that currently lacks effective targeted therapies. In hematological malignancies, chimeric antigen receptor T (CAR-T) cells have shown very significant antitumor ability; however, in solid tumors, the efficacy is poor. In order to apply CAR-T cells in the treatment of TNBC, in this study, constitutively activated IL-7 receptor (C7R) that has been reported is used to enhance the antitumor function of constructed CAR-T cells by ourselves. Using in vitro coincubation experiments with target cells and in vivo antitumor experiments in mice, we found that the coexpressed C7R can significantly improve the activation, cell proliferation, and cytotoxicity of CAR-T cells. In addition, the in vivo experiments suggested that the enhanced CAR-T cells displayed significant antitumor activity in a TNBC subcutaneous xenograft model, in which in vivo, the survival time of CAR-T cells was prolonged. Together, these results indicated that CAR-T cells that coexpress C7R may be a novel therapeutic strategy for TNBC.
Collapse
|
12
|
Wang Y, Xing L, Ji Y, Ye J, Dai Y, Gu W, Ai J, Song Z. Discovery of a potent tyrosine kinase AXL inhibitor bearing the 3-((2,3,4,5-tetrahydro-1H-benzo[d]azepin-7-yl)amino)pyrazine core. Bioorg Med Chem Lett 2019; 29:836-838. [PMID: 30685094 DOI: 10.1016/j.bmcl.2019.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/24/2022]
Abstract
Starting from the recently launched FLT3/AXL multi-targeted inhibitor Gilteritinib (5), we conducted a side-chain ring closure medicinal chemistry approach leading to the identification of compound 15c as a highly potent AXL inhibitor in the biochemical and cellular anti-proliferative assays, with IC50 values of 1.2 and 0.3 nM, respectively. Compared with the reference compound 5, our new discovered AXL inhibitor 15c is more potent in both assays.
Collapse
Affiliation(s)
- Yueliang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Xing
- CAS Key Laboratory of Receptor Research and the State Key Laboratory for Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinchun Ji
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiqing Ye
- CAS Key Laboratory of Receptor Research and the State Key Laboratory for Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Dai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wangting Gu
- CAS Key Laboratory of Receptor Research and the State Key Laboratory for Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zilan Song
- CAS Key Laboratory of Receptor Research and the State Key Laboratory for Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Wei J, Sun H, Zhang A, Wu X, Li Y, Liu J, Duan Y, Xiao F, Wang H, Lv M, Wang L, Wu C. A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects against triple negative breast cancers. Cell Immunol 2018; 331:49-58. [PMID: 29935762 DOI: 10.1016/j.cellimm.2018.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Abstract
Identifying targets for chimeric antigen receptor-modulated T lymphocyte (CAR-T) therapy against solid tumors is an urgent problem to solve. In this study, we showed for the first time that the receptor tyrosine kinase, AXL, is overexpressed in various tumor cell lines and patient tumor tissues including triple negative breast cancer (TNBC) cell lines and patient samples, making AXL a potent novel target for cancer therapy, specifically for TNBC treatment. We also engineered T cells with a CAR consisting of a novel single-chain variable fragment against AXL and revealed its antigen-specific cytotoxicity and ability to release cytokines in a TNBC cell line and other AXL-positive tumors in vitro. Furthermore, AXL-CAR-T cells displayed a significant anti-tumor effect and in vivo persistence in a TNBC xenograft model. Taken together, our findings indicate that AXL-CAR-T cells can represent a promising therapeutic strategy against TNBC.
Collapse
Affiliation(s)
- Jing Wei
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Huiyan Sun
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Aimei Zhang
- Pathology Department Weifang Heart Hospital, Shandong Province, PR China
| | - Xuejie Wu
- Department of Urology, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Yuxiang Li
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jiawei Liu
- College of Basic Medicine, The Fourth Military Medical University, Xi'an, Shannxi 710000, PR China
| | - Yanting Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ming Lv
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Chutse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
14
|
Zhang G, Wang M, Zhao H, Cui W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol Lett 2017; 15:2726-2734. [PMID: 29434997 DOI: 10.3892/ol.2017.7694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Axl receptor tyrosine kinase (hereafter Axl) is a member of the tyrosine-protein kinase receptor Tyro3, Axl and proto-oncogene tyrosine-protein kinase Mer family of receptor tyrosine kinases, possessing multiple different functions in normal cells. Axl is overexpressed and activated in numerous different human cancer types, triggering several signaling pathways and enhancing tumor progression. The present review assesses previous studies on the function of Axl in non-small cell lung cancer (NSCLC). Axl is overexpressed in the tumor tissues of a number of patients with NSCLC and is associated with poorer clinical outcomes; it promotes NSCLC tumor growth, invasion/metastasis, drug resistance and the epithelial-mesenchymal transition, thus providing a survival advantage to tumor cells. Therefore, Axl may be a promising target in NSCLC treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Meng Wang
- Department of Oncology, Shandong Jining First People's Hospital, Jining, Shandong 272111, P.R. China
| | - Hongli Zhao
- Department of Gastroenterology, Shandong Control Center for Digestive Diseases, Jining, Shandong 272033, P.R. China
| | - Wen Cui
- Cancer Pathology Research Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
15
|
Siska PJ, Beckermann KE, Rathmell WK, Haake SM. Strategies to overcome therapeutic resistance in renal cell carcinoma. Urol Oncol 2017; 35:102-110. [PMID: 28089416 PMCID: PMC5318278 DOI: 10.1016/j.urolonc.2016.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Renal cell cancer (RCC) is a prevalent and lethal disease. At time of diagnosis, most patients present with localized disease. For these patients, the standard of care includes nephrectomy with close monitoring thereafter. While many patients will be cured, 5-year recurrence rates range from 30% to 60%. Furthermore, nearly one-third of patients present with metastatic disease at time of diagnosis. Metastatic disease is rarely curable and typically lethal. Cytotoxic chemotherapy and radiation alone are incapable of controlling the disease. Extensive effort was expended in the development of cytokine therapies but response rates remain low. Newer agents targeting angiogenesis and mTOR signaling emerged in the 2000s and revolutionized patient care. While these agents improve progression free survival, the development of resistance is nearly universal. A new era of immunotherapy is now emerging, led by the checkpoint inhibitors. However, therapeutic resistance remains a complex issue that is likely to persist. METHODS AND PURPOSE In this review, we systematically evaluate preclinical research and clinical trials that address resistance to the primary RCC therapies, including anti-angiogenesis agents, mTOR inhibitors, and immunotherapies. As clear cell RCC is the most common adult kidney cancer and has been the focus of most studies, it will be the focus of this review.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/antagonists & inhibitors
- Cytotoxicity, Immunologic/drug effects
- Disease Progression
- Disease-Free Survival
- Drug Resistance, Neoplasm
- Humans
- Immunotherapy/methods
- Kidney/blood supply
- Kidney/pathology
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Nephrectomy
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Peter J Siska
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 646, Nashville, TN 37232. TEL: (615) 936-2003; FAX: (615) 343-7602.
| | - Kathryn E Beckermann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 646, Nashville, TN 37232. TEL: (615) 936-2003; FAX: (615) 343-7602.
| | - W Kimryn Rathmell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 777, Nashville, TN 37232. TEL: (615) 322-4967; FAX: (615) 343-7602.
| | - Scott M Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 777, Nashville, TN 37232. TEL: (615) 322-4967; FAX: (615) 343-7602.
| |
Collapse
|
16
|
Davidsen KT, Haaland GS, Lie MK, Lorens JB, Engelsen AST. The Role of Axl Receptor Tyrosine Kinase in Tumor Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2017:351-376. [DOI: 10.1007/978-3-319-39147-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Role of axl in preeclamptic EPCs functions. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2016; 36:395-401. [PMID: 27376810 DOI: 10.1007/s11596-016-1598-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/03/2016] [Indexed: 12/14/2022]
Abstract
Axl encodes the tyrosine-protein kinase receptor, participating in the proliferation and migration of many cells. This study examined the role of Axl in functions of endothelial progenitor cells (EPCs). Axl was detected by RT-PCR and Western blotting in both placentas and EPCs from normal pregnancy and preeclampsia patients. The Axl inhibitor, BMS777-607, was used to inhibit the Axl signalling pathway in EPCs. Cell proliferation, differentiation, migration and adhesion were measured by CCK-8 assay, cell differentiation assay, Transwell assay, and cell adhesion assay, respectively. Results showed the expression levels of Axl mRNA and protein were significantly higher in both placentas and EPCs from preeclampsia patients than from normal pregnancy (P<0.05). After treatment with BMS777-607, proliferation, differentiation, migration and adhesion capability of EPCs were all significantly decreased. Our study suggests Axl may play a role in the function of EPCs, thereby involving in the pathogenesis of preeclampsia.
Collapse
|
18
|
Iaboni M, Russo V, Fontanella R, Roscigno G, Fiore D, Donnarumma E, Esposito CL, Quintavalle C, Giangrande PH, de Franciscis V, Condorelli G. Aptamer-miRNA-212 Conjugate Sensitizes NSCLC Cells to TRAIL. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e289. [PMID: 27111415 PMCID: PMC5014461 DOI: 10.1038/mtna.2016.5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/29/2015] [Indexed: 12/03/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent for its remarkable ability to selectively induce apoptosis in cancer cells, without affecting the viability of healthy bystander cells. The TRAIL tumor suppressor pathway is deregulated in many human malignancies including lung cancer. In human non-small cell lung cancer (NSCLC) cells, sensitization to TRAIL therapy can be restored by increasing the expression levels of the tumor suppressor microRNA-212 (miR-212) leading to inhibition of the anti-apoptotic protein PED/PEA-15 implicated in treatment resistance. In this study, we exploited a previously described RNA aptamer inhibitor of the tyrosine kinase receptor Axl (GL21.T) expressed on lung cancer cells, as a means to deliver miR-212 into human NSCLC cells expressing Axl. We demonstrate efficient delivery of miR-212 following conjugation of the miR to GL21.T (GL21.T-miR212 chimera). We show that the chimera downregulates PED and restores TRAIL-mediate cytotoxicity in cancer cells. Importantly, treatment of Axl+ lung cancer cells with the chimera resulted in (i) an increase in caspase activation and (ii) a reduction of cell viability in combination with TRAIL therapy. In conclusion, we demonstrate that the GL21.T-miR212 chimera can be employed as an adjuvant to TRAIL therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | - Valentina Russo
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | | | | | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | | | | | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | | | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
- IEOS, CNR, Naples, Italy
| |
Collapse
|
19
|
Cho CY, Huang JS, Shiah SG, Chung SY, Lay JD, Yang YY, Lai GM, Cheng AL, Chen LT, Chuang SE. Negative feedback regulation of AXL by miR-34a modulates apoptosis in lung cancer cells. RNA (NEW YORK, N.Y.) 2016; 22:303-15. [PMID: 26667302 PMCID: PMC4712679 DOI: 10.1261/rna.052571.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/18/2015] [Indexed: 05/25/2023]
Abstract
The AXL receptor tyrosine kinase is frequently overexpressed in cancers and is important in cancer invasion/metastasis and chemoresistance. Here, we demonstrate a regulatory feedback loop between AXL and microRNA (miRNA) at the post-transcriptional level. Both the GAS6-binding domain and the kinase domain of AXL, particularly the Y779 tyrosine phosphorylation site, are shown to be crucial for this autoregulation. To clarify the role of miRNAs in this regulation loop, approaches using bioinformatics and molecular techniques were applied, revealing that miR-34a may target the 3' UTR of AXL mRNA to inhibit AXL expression. Interestingly and importantly, AXL overexpression may induce miR-34a expression by activating the transcription factor ELK1 via the JNK signaling pathway. In addition, ectopic overexpression of ELK1 promotes apoptosis through, in part, down-regulation of AXL. Therefore, we propose that AXL is autoregulated by miR-34a in a feedback loop; this may provide a novel opportunity for developing AXL-targeted anticancer therapies.
Collapse
Affiliation(s)
- Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Jhy-Shrian Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan Health Examination Center, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan School of Medicine, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shih-Ying Chung
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40401, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Gi-Ming Lai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ann-Lii Cheng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan Departments of Internal Medicine and Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
20
|
Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 2015; 35:2687-97. [PMID: 26364599 DOI: 10.1038/onc.2015.343] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022]
Abstract
Antiangiogenic therapy resistance occurs frequently in patients with metastatic renal cell carcinoma (RCC). The purpose of this study was to understand the mechanism of resistance to sunitinib, an antiangiogenic small molecule, and to exploit this mechanism therapeutically. We hypothesized that sunitinib-induced upregulation of the prometastatic MET and AXL receptors is associated with resistance to sunitinib and with more aggressive tumor behavior. In the present study, tissue microarrays containing sunitinib-treated and untreated RCC tissues were stained with MET and AXL antibodies. The low malignant RCC cell line 786-O was chronically treated with sunitinib and assayed for AXL, MET, epithelial-mesenchymal transition (EMT) protein expression and activation. Co-culture experiments were used to examine the effect of sunitinib pretreatment on endothelial cell growth. The effects of AXL and MET were evaluated in various cell-based models by short hairpin RNA or inhibition by cabozantinib, the multi-tyrosine kinases inhibitor that targets vascular endothelial growth factor receptor, MET and AXL. Xenograft mouse models tested the ability of cabozantinib to rescue sunitinib resistance. We demonstrated that increased AXL and MET expression was associated with inferior clinical outcome in patients. Chronic sunitinib treatment of RCC cell lines activated both AXL and MET, induced EMT-associated gene expression changes, including upregulation of Snail and β-catenin, and increased cell migration and invasion. Pretreatment with sunitinib enhanced angiogenesis in 786-0/human umbilical vein endothelial cell co-culture models. The suppression of AXL or MET expression and the inhibition of AXL and MET activation using cabozantinib both impaired chronic sunitinib treatment-induced prometastatic behavior in cell culture and rescued acquired resistance to sunitinib in xenograft models. In summary, chronic sunitinib treatment induces the activation of AXL and MET signaling and promotes prometastatic behavior and angiogenesis. The inhibition of AXL and MET activity may overcome resistance induced by prolonged sunitinib therapy in metastatic RCC.
Collapse
|
21
|
Fritz HK, Gustafsson A, Ljungberg B, Ceder Y, Axelson H, Dahlbäck B. The Axl-Regulating Tumor Suppressor miR-34a Is Increased in ccRCC but Does Not Correlate with Axl mRNA or Axl Protein Levels. PLoS One 2015; 10:e0135991. [PMID: 26287733 PMCID: PMC4546115 DOI: 10.1371/journal.pone.0135991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High expression of the receptor tyrosine kinase Axl is associated with poor prognosis in patients with Renal Cell Carcinoma (RCC), the most common malignancy of the kidney. The miR-34a has been shown to directly regulate Axl in cancer cells. The miR-34a is a mediator of p53-dependent tumor suppression, and low expression of miR-34a has been associated with worse prognosis in several cancers. Our aim was to elucidate whether miR-34a or the other members of the miR-34 family (miR-34b/c) regulate Axl in RCC. METHODOLOGY AND RESULTS Using western blot, flow cytometry, and RT-qPCR, we showed that Axl mRNA and protein are downregulated in 786-O cells by miR-34a and miR-34c but not by miR-34b. A luciferase reporter assay demonstrated direct interaction between the Axl 3' UTR and miR-34a and miR-34c. The levels of miR-34a/b/c were measured in tumor tissue in a cohort of 198 RCC patients, and the levels of miR-34a were found to be upregulated in clear cell RCC (ccRCC) tumors, but not associated with patient outcome. Neither of the miR-34 family members correlated with Axl mRNA, soluble Axl protein in serum, nor with immunohistochemistry of Axl in tumor tissue. In addition, we measured mRNA levels of a known miR-34a target, HNF4A, and found the HNF4A levels to be decreased in ccRCC tumors, but unexpectedly correlated positively rather than negatively with miR-34a. CONCLUSIONS Although miR-34a and miR-34c can regulate Axl expression in vitro, our data indicates that the miR-34 family members are not the primary regulators of Axl expression in RCC.
Collapse
Affiliation(s)
- Helena K. Fritz
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
| | - Anna Gustafsson
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
| | - Börje Ljungberg
- Umeå University, Departments of Surgical and Perioperative Sciences, Urology and Andrology, Umeå, Sweden
| | - Yvonne Ceder
- Lund University, Department of Laboratory Medicine, Division of Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Håkan Axelson
- Lund University, Department of Laboratory Medicine, Division of Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Björn Dahlbäck
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|
22
|
Kim YW, Yun SJ, Jeong P, Kim SK, Kim SY, Yan C, Seo SP, Lee SK, Kim J, Kim WJ. The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease. PLoS One 2015. [PMID: 26225770 PMCID: PMC4520492 DOI: 10.1371/journal.pone.0134552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that c-MET is overexpressed in cases of aggressive bladder cancer (BCa). Identification of crosstalk between c-MET and other RTKs such as AXL and PDGFR suggest that c-MET network genes (c-MET-AXL-PDGFR) may be clinically relevant to BCa. Here, we examine whether expression of c-MET network genes can be used to identify BCa patients at increased risk of developing aggressive disease. In vitro analysis, c-MET knockdown suppressed cell proliferation, invasion, and migration, and increased sensitivity to cisplatin-induced apoptosis. In addition, c-MET network gene (c-MET, AXL, and PDGFR) expression allowed discrimination of BCa tissues from normal control tissues and appeared to predict poor disease progression in non-muscle invasive BCa patients and poor overall survival in muscle invasive BCa patients. These results suggest that c-MET network gene expression is a novel prognostic marker for predicting which BCa patients have an increased risk of developing aggressive disease. These genes might be a useful marker for co-targeting therapy, and are expected to play an important role in improving both response to treatment and survival of BCa patients.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Phildu Jeong
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Seon-Kyu Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Chunri Yan
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung Phil Seo
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sang Keun Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jayoung Kim
- Department of Surgery, Harvard Medical School, Boston, MA, United States of America
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- * E-mail: (W-JK); (JK)
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
- * E-mail: (W-JK); (JK)
| |
Collapse
|
23
|
Axl receptor tyrosine kinase is a potential therapeutic target in renal cell carcinoma. Br J Cancer 2015; 113:616-25. [PMID: 26180925 PMCID: PMC4647683 DOI: 10.1038/bjc.2015.237] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/01/2022] Open
Abstract
Background: Axl plays multiple roles in tumourigenesis in several cancers. Here we evaluated the expression and biological function of Axl in renal cell carcinoma (RCC). Methods: Axl expression was analysed in a tissue microarray of 174 RCC samples by immunostaining and a panel of 11 normal tumour pairs of human RCC tissues by western blot, as well as in RCC cell lines by both western blot and quantitative PCR. The effects of Axl knockdown in RCC cells on cell growth and signalling were investigated. The efficacy of a humanised Axl targeting monoclonal antibody hMAb173 was tested in histoculture and tumour xenograft. Results: We have determined by immunohistochemistry (IHC) that Axl is expressed in 59% of RCC array samples with moderate to high in 20% but not expressed in normal kidney tissue. Western blot analysis of 11 pairs of tumour and adjacent normal tissue show high Axl expression in 73% of the tumours but not normal tissue. Axl is also expressed in RCC cell lines in which Axl knockdown reduces cell viability and PI3K/Akt signalling. The Axl antibody hMAb173 significantly induced RCC cell apoptosis in histoculture and inhibited the growth of RCC tumour in vivo by 78%. The hMAb173-treated tumours also had significantly reduced Axl protein levels, inhibited PI3K signalling, decreased proliferation, and induced apoptosis. Conclusions: Axl is highly expressed in RCC and critical for RCC cell survival. Targeting Axl is a potential approach for RCC treatment.
Collapse
|
24
|
Lee C. Overexpression of Tyro3 receptor tyrosine kinase leads to the acquisition of taxol resistance in ovarian cancer cells. Mol Med Rep 2015; 12:1485-92. [PMID: 25815442 DOI: 10.3892/mmr.2015.3542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
The majority of patients with ovarian cancer are diagnosed at the advanced stages (III/IV) and their 5-year-survival rate is relatively low. One of the major causes of the poor prognosis of ovarian cancer is the development of resistance to first-line chemotherapy, including platinum and taxol. Therefore, improvements in current understanding of chemoresistance is required for the successful treatment of ovarian cancer. In the present study, taxol-resistant ovarian cancer cells, SKOV3/TR, were established by exposing parental SKOV3 cells to increasing concentrations of taxol. . Briefly, cells were treated with 1.5 nM (for 4 weeks), 3 nM (for 4 weeks), 6 nM (for 5 weeks), 12 nM (for 5 weeks) and 24 nM taxol (for 8 weeks) over 6 months. The SKOV3/TR cells were found to be smaller in size and rounder in shape compared with their parental cells. Cell viability and colony formation assays demonstrated an increase in the population doubling time of the SKOV3/TR cells, indicating a reduction in the proliferative capacity of these cells. Reverse transcription-polymerase chain reaction and western blot analysis revealed that, among the TAM receptor tyrosine kinases (RTKs), the mRNA and protein expression levels of Tyro3 RTK were increased, while those of Axl and Mer RTK were decreased in the SKOV3/TR cells. In addition, restoration of the level of Tyro3 by transfecting Tyro3-specific small interfering RNA into the SKOV3/TR cells reduced the proliferative capacity of the cells, indicating that upregulation of the expression of Tyro3 in SKOV3/TR cells may promote survival in the presence of taxol, which eventually resulted in the acquisition of resistance upon taxol treatment. The present study subsequently found that, in the SKOV3/TR cells, the level of intracellular reactive oxygen species (ROS) was elevated, and antioxidant treatment with N-acetyl cysteine (NAC) exerted more profound antiproliferative effects compared with the parental cells. The western blot analysis demonstrated that treatment of the SKOV3/TR cells with NAC reduced the protein expression of Tyro3, and the inhibitory effect of NAC on the phosphorylation of Akt was increased, which may have had a positive effect on the proliferation of the SKOV3/TR cells. The levels of phosphorylation and protein expression of signal transducers and activators of transcription 3 (STAT3) were not affected by NAC treatment, indicating that the phosphorylation of Akt, but not expression or phosphorylation of STAT3, was associated with the increased intracellular ROS level in the SKOV3/TR cells. Taken together, the results of the present study demonstrated that the acquired taxol resistance of ovarian cancer cells was associated with ROS-dependent upregulation in the expression of Tyro3 RTK and the subsequent activation of Akt.
Collapse
Affiliation(s)
- Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705‑717, Republic of Korea
| |
Collapse
|
25
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
26
|
Messoussi A, Peyronnet L, Feneyrolles C, Chevé G, Bougrin K, Yasri A. Structural elucidation of the DFG-Asp in and DFG-Asp out states of TAM kinases and insight into the selectivity of their inhibitors. Molecules 2014; 19:16223-39. [PMID: 25310149 PMCID: PMC6271404 DOI: 10.3390/molecules191016223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
Structural elucidation of the active (DFG-Asp in) and inactive (DFG-Asp out) states of the TAM family of receptor tyrosine kinases is required for future development of TAM inhibitors as drugs. Herein we report a computational study on each of the three TAM members Tyro-3, Axl and Mer. DFG-Asp in and DFG-Asp out homology models of each one were built based on the X-ray structure of c-Met kinase, an enzyme with a closely related sequence. Structural validation and in silico screening enabled identification of critical amino acids for ligand binding within the active site of each DFG-Asp in and DFG-Asp out model. The position and nature of amino acids that differ among Tyro-3, Axl and Mer, and the potential role of these residues in the design of selective TAM ligands, are discussed.
Collapse
Affiliation(s)
- Abdellah Messoussi
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Lucile Peyronnet
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Clémence Feneyrolles
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Gwénaël Chevé
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V, Faculté des Sciences B.P., 1014 Rabat, Morocco.
| | - Aziz Yasri
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| |
Collapse
|
27
|
Woo SM, Min KJ, Kim S, Park JW, Kim DE, Kim SH, Choi YH, Kwon TK. Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion. Biochem Biophys Res Commun 2014; 451:455-60. [PMID: 25117439 DOI: 10.1016/j.bbrc.2014.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
Abstract
Withaferin A, a withanolide derived from the medicinal plant Withania somnifera, has been reported to exhibit anti-tumorigenic activity against various cancer cells. In this study, we show that withaferin A inhibits the constitutive and recombinant human growth-arrest-specific protein 6 (rhGas6)-induced phosphorylation of Axl and STAT3. In addition, withaferin A also induces the down-regulation of Axl protein expression in a lysosome-dependent manner and inhibits rhGas6-induced wound healing and cell migration. Furthermore, the overexpression of Axl attenuates withaferin A-induced apoptosis. Taken together, the data from the present study indicate that the withaferin A-mediated down-regulation of the Gas6/Axl signaling pathway mediates the inhibition of cell migration and the induction of apoptosis.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dong Eun Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Sang Hyun Kim
- Deaprtment of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea.
| |
Collapse
|
28
|
Suleiman L, Négrier C, Boukerche H. Protein S: A multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 2013; 88:637-54. [PMID: 23958677 DOI: 10.1016/j.critrevonc.2013.07.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 01/09/2023] Open
Abstract
Since its discovery in 1970, protein S (PS) has emerged as a key vitamin K-dependent natural anticoagulant protein at the crossroads of multiple biological processes, including coagulation, apoptosis, atherosclerosis, angiogenesis/vasculogenesis, and cancer progression. Following the binding to a unique family of protein tyrosine kinase receptors referred to as Tyro-3, Axl and Mer (TAM) receptors, PS can lead to regulation of coagulation, phagocytosis of apoptotic cells, cell survival, activation of innate immunity, vessel integrity and angiogenesis, and local invasion and metastasis. Because of these dynamics and multiple functions of PS, which are largely lost following invalidation of the mouse PROS1 gene, this molecule is currently intensively studied in biomedical research. The purpose of this review is to provide a brief chronicle of the discovery and current understanding of the mechanisms of PS signaling, and how PS and their signaling partners regulate various cellular functions, with a particular focus on TAM receptors.
Collapse
Affiliation(s)
- Lutfi Suleiman
- University Claude Bernard, Lyon I, INSERM, Department of Onco-Haematology, EA 4174, France
| | | | | |
Collapse
|
29
|
Paccez JD, Vogelsang M, Parker MI, Zerbini LF. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int J Cancer 2013; 134:1024-33. [PMID: 23649974 DOI: 10.1002/ijc.28246] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase Axl has been implicated in the malignancy of different types of cancer. Emerging evidence of Axl upregulation in numerous cancers, as well as reports demonstrating that its inhibition blocks tumor formation in animal models, highlight the importance of Axl as a new potential therapeutic target. Furthermore, recent data demonstrate that Axl plays a pivotal role in resistance to chemotherapeutic regimens. In this review we discuss the functions of Axl and its regulation and role in cancer development, resistance to therapy, and its importance as a potential drug target, focusing on acute myeloid leukemia, breast, prostate and non-small cell lung cancers.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
30
|
AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 2013; 33:1316-24. [PMID: 23474758 PMCID: PMC3994701 DOI: 10.1038/onc.2013.57] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/07/2012] [Accepted: 01/18/2013] [Indexed: 12/12/2022]
Abstract
Despite significant progress in the treatment of breast cancer particularly through the use of targeted therapy, relapse and chemo-resistance remain a major hindrance to the fight to minimize the burden of the disease. It is becoming increasingly clear that a rare subpopulation of cells known as cancer stem cells (CSC), able to be generated through epithelial to mesenchymal transition (EMT) and capable of tumor initiation and self-renewal, contributes to treatment resistance and metastases. This means that a more effective therapy should target both the chemoresistant CSCs and the proliferating epithelial cells that give rise to them in order to reverse EMT and attenuate their conversion to CSCs. Here, we demonstrate a novel function of AXL in acting upstream to induce EMT in normal and immortalized human mammary epithelial cells in an apparent positive feedback loop mechanism and regulate breast CSC (BCSC) self-renewal and chemoresistance. Downregulation of AXL using MP470 (amuvatinib) reversed EMT in mesenchymal normal human mammary epithelial cells and murine BCSCs attenuating self-renewal and restored chemosensitivity of the BCSCs. AXL expression was also found to be associated with expression of stem cell genes, regulation of metastases genes, increased tumorigenicity, and was important for BCSC invasion and migration. Inactivation of AXL also led to downregulation of NFκB pathway and reduced tumor formation in vivo. Together, our data suggest that targeted therapy against AXL, in combination with systemic therapies, has the potential to improve response to anti-cancer therapies and to reduce breast cancer recurrence and metastases.
Collapse
|
31
|
Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R, Grossman SR, Deb SP, Deb S. Gain-of-Function Activity of Mutant p53 in Lung Cancer through Up-Regulation of Receptor Protein Tyrosine Kinase Axl. Genes Cancer 2012; 3:491-502. [PMID: 23264849 DOI: 10.1177/1947601912462719] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/01/2012] [Indexed: 12/30/2022] Open
Abstract
p53 mutations are present in up to 70% of lung cancer. Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 or no p53. Expression of tumor-derived mutant p53 in cells leads to up-regulated expression of genes that may affect cell growth and oncogenesis. In our study of this aggressive phenotype, we have investigated the receptor protein tyrosine kinase Axl, which is up-regulated by p53 mutants at both RNA and protein levels in H1299 lung cancer cells expressing mutants p53-R175H, -R273H, and -D281G. Knockdown of endogenous mutant p53 levels in human lung cancer cells H1048 (p53-R273C) and H1437 (p53-R267P) led to a reduction in the level of Axl as well. This effect on Axl expression is refractory to the mutations at positions 22 and 23 of p53, suggesting that p53's transactivation domain may not play a critical role in the up-regulation of Axl gene expression. Chromatin immunoprecipitation (ChIP) assays carried out with acetylated histone antibodies demonstrated induced histone acetylation on the Axl promoter region by mutant p53. Direct mutant p53 nucleation on the Axl promoter was demonstrated by ChIP assays using antibodies against p53. The Axl promoter has a p53/p63 binding site, which however is not required for mutant p53-mediated transactivation. Knockdown of Axl by Axl-specific RNAi caused a reduction of gain-of-function (GOF) activities, reducing the cell growth rate and motility rate in lung cancer cells expressing mutant p53. This indicates that for lung cancer cell lines with mutant p53, GOF activities are mediated in part through Axl.
Collapse
Affiliation(s)
- Catherine A Vaughan
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Jia L, Ma ZH, Ma QH, Yang XH, Zhao YF. Axl glycosylation mediates tumor cell proliferation, invasion and lymphatic metastasis in murine hepatocellular carcinoma. World J Gastroenterol 2012; 18:5369-76. [PMID: 23082053 PMCID: PMC3471105 DOI: 10.3748/wjg.v18.i38.5369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of Axl deglycosylation on tumor lymphatic metastases in mouse hepatocellular carcinoma cell lines.
METHODS: Western blotting was used to analyze the expression profile of Axl glycoprotein in mouse hepatocellular carcinoma cell line Hca-F treated with tunicamycin and PNGase F 3-(4,5)-dimethylthiazol(-zyl)-3,5-diphenyltetrazolium bromide (MTT) assay, extracellular matrix (ECM) invasion assay (in vitro) and tumor metastasis assay (in vivo) were utilized to evaluate the effect of Axl deglycosylation on the Hca-F cell proliferation, invasion and lymphatic metastasis.
RESULTS: Tunicamycin and PNGase F treatment markedly inhibited Axl glycoprotein synthesis and expression, proliferation, invasion, and lymphatic metastasis both in vitro and in vivo. In the MTT assay, proliferation was apparent in untreated Hca-F cells compared with treated Hca-F cells. In the ECM invasion assay (in vitro), treated cells passed through the ECMatrix gel in significantly smaller numbers than untreated cells (tunicamycin 5 μg/mL: 68 ± 8 vs 80 ± 9, P = 0.0222; 10 μg/mL: 50 ± 6 vs 80 ± 9, P = 0.0003; 20 μg/mL: 41 ± 4 vs 80 ± 9, P = 0.0001); (PNGase F 8 h: 66 ± 7 vs 82 ± 8, P = 0.0098; 16 h: 49 ± 4 vs 82 ± 8, P = 0.0001; 24 h: 34 ± 3 vs 82 ± 8, P = 0.0001). In the tumor metastasis assay (in vivo), average lymph node weights of the untreated Hca-F group compared with treated Hca-F groups (tunicamycin 5 μg/mL: 0.84 ± 0.21 g vs 0.72 ± 0.19 g, P = 0.3237; 10 μg/mL: 0.84 ± 0.21 g vs 0.54 ± 0.11 g, P = 0.0113; 20 μg/mL: 0.84 ± 0.21 g vs 0.42 ± 0.06 g, P = 0.0008); (PNGase F 8 h: 0.79 ± 0.15 g vs 0.63 ± 0.13 g, P = 0.0766; 16 h: 0.79 ± 0.15 g vs 0.49 ± 0.10 g, P = 0.0022; 24 h: 0.79 ± 0.15 g vs 0.39 ± 0.05 g, P = 0.0001). Also, average lymph node volumes of the untreated Hca-F group compared with treated Hca-F groups (tunicamycin 5 μg/mL: 815 ± 61 mm3vs 680 ± 59 mm3, P = 0.0613; 10 μg/mL: 815 ± 61 mm3vs 580 ± 29 mm3, P = 0.0001; 20 μg/mL: 815 ± 61 mm3vs 395 ± 12 mm3, P = 0.0001); (PNGase F 8 h: 670 ± 56 mm3vs 581 ± 48 mm3, P = 0.0532; 16 h: 670 ± 56 mm3vs 412 ± 22 mm3, P = 0.0001; 24 h: 670 ± 56 mm3vs 323 ± 11 mm3, P = 0.0001).
CONCLUSION: Alteration of Axl glycosylation can attenuate neoplastic lymphatic metastasis. Axl N-glycans may be a universal target for chemotherapy.
Collapse
|
33
|
Abstract
Axl is a tyrosine kinase receptor that was first identified as a transforming gene in human myeloid leukemia. Recent converging evidence suggests its implication in cancer progression and invasion for several solid tumors, including lung, breast, brain, thyroid, and pancreas. In the last decade, Axl has thus become an attractive target for therapeutic development of more aggressive cancers. An emerging class of therapeutic inhibitors is now represented by short nucleic acid aptamers. These molecules act as high affinity ligands with several advantages over conventional antibodies for their use in vivo, including their small size and negligible immunogenicity. Furthermore, these molecules can easily form conjugates able to drive the specific delivery of interfering RNAs, nanoparticles, or chemotherapeutics. We have thus generated and characterized a selective RNA-based aptamer, GL21.T that binds the extracellular domain of Axl at high affinity (12 nmol/l) and inhibits its catalytic activity. GL21.T blocked Axl-dependent transducing events in vitro, including Erk and Akt phosphorylation, cell migration and invasion, as well as in vivo lung tumor formation in mice xenografts. In this respect, the GL21.T aptamer represents a promising therapeutic molecule for Axl-dependent cancers whose importance is highlighted by the paucity of available Axl-specific inhibitory molecules.
Collapse
|
34
|
Zhao Y, Sun X, Jiang L, Yang F, Zhang Z, Jia L. Differential Expression of Axl and Correlation with Invasion and Multidrug Resistance in Cancer Cells. Cancer Invest 2012; 30:287-94. [DOI: 10.3109/07357907.2012.657816] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yongfu Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University,
Dalian, China,2
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University,
Dalian, China,3
| | - Lili Jiang
- Department of Foreign Language, Dalian Medical University,
Dalian, China,4
| | | | - Zhaohai Zhang
- College of Laboratory Medicine, Dalian Medical University,
Dalian, China,1
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University,
Dalian, China,1
| |
Collapse
|
35
|
Yeh CY, Shin SM, Yeh HH, Wu TJ, Shin JW, Chang TY, Raghavaraju G, Lee CT, Chiang JH, Tseng VS, Lee YCG, Shen CH, Chow NH, Liu HS. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer 2011; 11:139. [PMID: 21496277 PMCID: PMC3101176 DOI: 10.1186/1471-2407-11-139] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 04/16/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers. METHODS Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients. RESULTS A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α in vitro was through a ras- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (p < 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (p < 0.01). CONCLUSIONS In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.
Collapse
Affiliation(s)
- Chen-Yun Yeh
- Department of microbiology and immunology, College of medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Avilla E, Guarino V, Visciano C, Liotti F, Svelto M, Krishnamoorthy G, Franco R, Melillo RM. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res 2011; 71:1792-804. [PMID: 21343401 DOI: 10.1158/0008-5472.can-10-2186] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid cancer is the most common endocrine cancer, but its key oncogenic drivers remain undefined. In this study we identified the TYRO3 and AXL receptor tyrosine kinases as transcriptional targets of the chemokine CXCL12/SDF-1 in CXCR4-expressing thyroid cancer cells. Both receptors were constitutively expressed in thyroid cancer cell lines but not normal thyroid cells. AXL displayed high levels of tyrosine phosphorylation in most cancer cell lines due to constitutive expression of its ligand GAS6. In human thyroid carcinoma specimens, but not in normal thyroid tissues, AXL and GAS6 were often coexpressed. In cell lines expressing both receptors and ligand, blocking each receptor or ligand dramatically affected cell viability and decreased resistance to apoptotic stimuli. Stimulation of GAS6-negative cancer cells with GAS6 increased their proliferation and survival. Similarly, siRNA-mediated silencing of AXL inhibited cancer cell viability, invasiveness, and growth of tumor xenografts in nude mice. Our findings suggest that a TYRO3/AXL-GAS6 autocrine circuit sustains the malignant features of thyroid cancer cells and that targeting the circuit could offer a novel therapeutic approach in this cancer.
Collapse
Affiliation(s)
- Elvira Avilla
- Dipartimento di Biologia e Patologia Cellulare e Molecolare/Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G. Salvatore, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Song X, Wang H, Logsdon CD, Rashid A, Fleming JB, Abbruzzese JL, Gomez HF, Evans DB, Wang H. Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer 2011; 117:734-43. [PMID: 20922806 PMCID: PMC4403266 DOI: 10.1002/cncr.25483] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/07/2010] [Accepted: 05/10/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND The receptor tyrosine kinase Axl has been reported to be overexpressed in a variety of human cancers. Although previous studies have identified the role of Axl in the transformation, proliferation, survival, and invasion in cancers, the expression and functions of Axl in pancreatic cancer have not been studied in detail. METHODS The expression of Axl protein in 12 pancreatic cancer cell lines and 54 patient samples of stage II pancreatic ductal adenocarcinoma (PDA) and their paired non-neoplastic pancreatic tissue samples were examined. Using univariate and multivariate analysis, Axl expression was correlated with survival and other clinicopathologic features. To examine Axl functions in PDA, the effects of Axl knockdown on the invasion ability and radiation-induced apoptosis in PDA cell lines were measured. RESULTS Axl was overexpressed in 38 of 54 (70%) stage II PDA samples and 9 of 12 (75%) PDA cell lines. Axl overexpression was associated with higher frequencies of distant metastasis and poor overall and recurrence-free survivals (P = .03 and P = .04, respectively) independent of tumor size and stage or lymph node status in patients with stage II PDA. Knockdown of Axl expression in PDA cells abolished Gas6-mediated Akt activation, decreased invasion, and increased radiation-induced PARP cleavage and the percentage of apoptosis. CONCLUSIONS This study showed that Gas6 and Axl are frequently overexpressed in PDA cells and are associated with a poor prognosis in patients with stage II PDA. Axl promotes the invasion and survival of PDA cells. Therefore, targeting the Axl signaling pathway may represent a new approach to the treatment of PDA.
Collapse
Affiliation(s)
- Xianzhou Song
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Craig D. Logsdon
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Asif Rashid
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - James L. Abbruzzese
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Henry F. Gomez
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Douglas B. Evans
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas,Department of Surgery, The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Huamin Wang
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood 2011; 117:1928-37. [PMID: 21135257 PMCID: PMC3056640 DOI: 10.1182/blood-2010-09-305649] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, we detected that chronic lymphocytic leukemia (CLL) B-cell-derived microvesicles in CLL plasma carry a constitutively phosphorylated novel receptor tyrosine kinase (RTK), Axl, indicating that Axl was acquired from the leukemic B cells. To examine Axl status in CLL, we determined the expression of phosphorylated-Axl (P-Axl) in freshly isolated CLL B cells by Western blot analysis. We detected differential levels of P-Axl in CLL B cells, and further analysis showed that expression of P-Axl was correlated with the other constitutively phosphorylated kinases, including Lyn, phosphoinositide-3 kinase, SyK/ζ-associated protein of 70 kDa, phospholipase C γ2 in CLL B cells. We found that these intracellular signaling molecules were complexed with P-Axl in primary CLL B cells. When Axl and Src kinases were targeted by a Src/Abl kinase inhibitor, bosutinib (SKI-606), or a specific-inhibitor of Axl (R428), robust induction of CLL B-cell apoptosis was observed in both a dose- and time-dependent manner. Therefore, we have identified a novel RTK in CLL B cells which appears to work as a docking site for multiple non-RTKs and drives leukemic cell survival signals. These findings highlight a unique target for CLL treatment.
Collapse
|
39
|
He L, Zhang J, Jiang L, Jin C, Zhao Y, Yang G, Jia L. Differential expression of Axl in hepatocellular carcinoma and correlation with tumor lymphatic metastasis. Mol Carcinog 2010; 49:882-91. [PMID: 20635370 DOI: 10.1002/mc.20664] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein kinases play important roles in tumor development and progression. A variety of members of the signal transduction enzymes serve as targets for therapeutic intervention in cancer. The dysregulation of Axl receptor and its ligand growth arrest-specific 6 (Gas6) is implicated in the pathogenesis of several cancers. In this study, the differential expressions of Axl were investigated in mouse hepatocarcinoma cell lines Hca-F and Hca-P, which have high- and low-metastatic potential to lymph nodes. Experimental inhibition of Axl by siRNA assessed further the metastatic potential of Axl. The results showed that down-regulation of Axl expression attenuated Hca-F cells proliferation, migration, and invasion in vitro, as well as inhibited metastasis to peripheral lymph nodes in vivo. Further analysis demonstrated that the addition of exogenous Gas6 mediated the migration and invasion of Hca-F cells both in vitro and in vivo through Axl. Furthermore, Gas6 stimulation of Axl in Hca-F cells resulted primarily in the down-regulation of Cyr61, a member of the CCN protein family involved in tumor progression. These data suggest that Axl acts as a tumor lymphatic metastasis-associated gene, and may function partly through the regulation of Cyr61.
Collapse
Affiliation(s)
- Ling He
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Linger RM, Keating AK, Earp HS, Graham DK. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets 2010; 14:1073-90. [PMID: 20809868 PMCID: PMC3342018 DOI: 10.1517/14728222.2010.515980] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE OF THE FIELD Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the role of these receptor tyrosine kinases (RTKs) in development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to cell survival, migration, invasion, metastasis and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. AREAS COVERED IN THIS REVIEW Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, NSCLC, and breast cancer is examined. A discussion of Axl and/or Mer inhibitors in development is provided. WHAT THE READER WILL GAIN Potential toxicities associated with Axl or Mer inhibition are addressed. We propose that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a therapeutic opportunity to target both tumor cells and the stromal components that facilitate disease progression. TAKE HOME MESSAGE Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies.
Collapse
Affiliation(s)
- Rachel M.A. Linger
- Department of Pediatrics, University of Colorado Denver School of Medicine, Mail Stop 8302, 12800 E. 19 Avenue, Room 4401A, Aurora, CO 80045
| | - Amy K. Keating
- Department of Pediatrics, University of Colorado Denver School of Medicine, Mail Stop 8302, 12800 E. 19 Avenue, Room 4405, Aurora, CO 80045
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, CB 7295, Chapel Hill, NC 27599
| | - Douglas K. Graham
- Department of Pediatrics, University of Colorado Denver School of Medicine, Mail Stop 8302, 12800 E. 19 Avenue, Room 4408, Aurora, CO 80045, Phone: 303-724-4006, Fax: 303-724-4015
| |
Collapse
|
41
|
Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y, Pei L. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 2010; 29:5254-64. [PMID: 20603615 DOI: 10.1038/onc.2010.268] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Axl is expressed in various types of cancer and is involved in multiple processes of tumorigenesis, including promoting tumor cell growth, migration, invasion, metastasis as well as angiogenesis. To evaluate further the mechanisms involved in the expression/activation of Axl in various aspects of tumorigenesis, especially its roles in modulating tumor stromal functions, we have developed a phage-derived mAb (YW327.6S2) that recognizes both human and murine Axl. YW327.6S2 binds to both human and murine Axl with high affinity. It blocks the ligand Gas6 binding to the receptor, downregulates receptor expression, inhibits receptor activation and downstream signaling. In A549 non-small-cell lung cancer (NSCLC) and MDA-MB-231 breast cancer models, YW327.6S2 attenuates xenograft tumor growth and potentiates the effect of anti-VEGF treatment. In NSCLC models, YW327.6S2 also enhances the effect of erlotinib and chemotherapy in reducing tumor growth. Furthermore, YW327.6S2 reduces the metastasis of MDA-MB-231 breast cancer cells to distant organs. YW327.6S2 induces tumor cell apoptosis in NSCLC, reduces tumor-associated vascular density and inhibits the secretion of inflammatory cytokines and chemokines from tumor-associated macrophages in the breast cancer model. In conclusion, anti-Axl mAb can enhance the therapeutic efficacy of anti-VEGF, EGFR small-molecule inhibitors as well as chemotherapy. Axl mAb affects not only tumor cells but also tumor stroma through its modulation of tumor-associated vasculature and immune cell functions.
Collapse
Affiliation(s)
- X Ye
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Induction, regulation, and biologic function of Axl receptor tyrosine kinase in Kaposi sarcoma. Blood 2010; 116:297-305. [PMID: 20442363 DOI: 10.1182/blood-2009-12-257154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Axl is an oncogenic receptor tyrosine kinase that plays multiple roles in tumorigenesis and metastasis of many cancers. This study is the first to demonstrate that Axl is induced in Kaposi sarcoma and Kaposi sarcoma herpesvirus (KSHV) transformed endothelial cells. Conditionally, expression of one KSHV latency protein vFLIP induces Axl expression in endothelial cells. This induction can be blocked by nuclear factor-kappaB inhibitor, consistent with the known vFLIP mechanism of action. KS cell lines lacking KSHV also have elevated Axl expression, which probably resulted from hypomethylation of AXL promoter. Axl activation activates downstream phosphoinositol-3 kinase signaling, and Axl knockdown by siRNA impairs phosphoinositol-3 kinase signaling. Furthermore, Axl knockdown inhibits KS cell growth and invasion. To explore the potential for translation of these findings, we generated monoclonal antibodies to block the biologic functions of Axl. MAb173, which induces receptor degradation, showed activity in vitro to inhibit KS cell invasion. Moreover, in vivo xenograft studies with KS cells with or without KSHV infection showed that MAb173 reduced tumor growth, increased tumor cell apoptosis, and markedly decreased Axl protein level in tumors. Axl thus has a potential role in KS pathogenesis and is a candidate for prognostic and therapeutic investigations.
Collapse
|
43
|
GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 2010; 12:116-27. [PMID: 20126470 DOI: 10.1593/neo.91384] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 11/05/2009] [Accepted: 11/11/2009] [Indexed: 12/22/2022] Open
Abstract
Our recent studies have shown that annexin II, expressed on the cell surface of osteoblasts, plays an important role in the adhesion of hematopoietic stem cells (HSCs) to the endosteal niche. Similarly, prostate cancer (PCa) cells express the annexin II receptor and seem to use the stem cell niche for homing to the bone marrow. The role of the niche is thought to be the induction and sustenance of HSC dormancy. If metastatic PCa cells occupy a similar or the same ecological niche as HSCs, then it is likely that the initial role of the HSC niche will be to induce dormancy in metastatic cells. In this study, we demonstrate that the binding of PCa to annexin II induces the expression of the growth arrest-specific 6 (GAS6) receptors AXL, Sky, and Mer, which, in the hematopoietic system, induce dormancy. In addition, GAS6 produced by osteoblasts prevents PCa proliferation and protects PCa from chemotherapy-induced apoptosis. Our results suggest that the activation of GAS6 receptors on PCa in the bone marrow environment may play a critical role as a molecular switch, establishing metastatic tumor cell dormancy.
Collapse
|
44
|
Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, Halsey W, Sathe GM, Martin AM, Gilmer TM. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 2009; 69:6871-8. [PMID: 19671800 DOI: 10.1158/0008-5472.can-08-4490] [Citation(s) in RCA: 360] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HER2-directed therapies, such as trastuzumab and lapatinib, are important treatments for breast cancer. However, some tumors do not respond or develop resistance to these agents. We isolated and characterized multiple lapatinib-resistant, HER2-positive, estrogen receptor (ER)-positive breast cancer clones derived from lapatinib-sensitive BT474 cells by chronic exposure to lapatinib. We show overexpression of AXL as a novel mechanism of acquired resistance to HER2-targeted agents in these models. GSK1363089 (foretinib), a multikinase inhibitor of AXL, MET, and vascular endothelial growth factor receptor currently in phase II clinical trials, restores lapatinib and trastuzumab sensitivity in these resistant cells that exhibit increased AXL expression. Furthermore, small interfering RNA to AXL, estrogen deprivation, or fulvestrant, an ER antagonist, decreases AXL expression and restores sensitivity to lapatinib in these cells. Taken together, these data provide scientific evidence to assess the expression of AXL in HER2-positive, ER-positive patients who have progressed on either lapatinib or trastuzumab and to test the combination of HER2-targeted agents and GSK1363089 in the clinic.
Collapse
Affiliation(s)
- Li Liu
- Department of Translational Research, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009; 28:3442-55. [PMID: 19633687 DOI: 10.1038/onc.2009.212] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dysregulation of Axl and its ligand growth arrest-specific 6 is implicated in the pathogenesis of several human cancers. In this study, we have used RNAi and monoclonal antibodies to assess further the oncogenic potential of Axl. Here we show that Axl knockdown reduces growth of lung and breast cancer xenograft tumors. Inhibition of Axl expression attenuates breast cancer cell migration and inhibits metastasis to the lung in an orthotopic model, providing the first in vivo evidence that links Axl directly to cancer metastasis. Axl knockdown in endothelial cells impaired tube formation and this effect was additive with anti-vascular endothelial growth factor (VEGF). Further analysis demonstrated that Axl regulates endothelial cell functions by modulation of signaling through angiopoietin/Tie2 and Dickkopf (DKK3) pathways. We have developed and characterized Axl monoclonal antibodies that attenuate non-small cell lung carcinoma xenograft growth by downregulation of receptor expression, reducing tumor cell proliferation and inducing apoptosis. Our data demonstrate that Axl plays multiple roles in tumorigenesis and that therapeutic antibodies against Axl may block Axl functions not only in malignant tumor cells but also in the tumor stroma. The additive effect of Axl inhibition with anti-VEGF suggests that blocking Axl function could be an effective approach for enhancing antiangiogenic therapy.
Collapse
|
46
|
Gustafsson A, Martuszewska D, Johansson M, Ekman C, Hafizi S, Ljungberg B, Dahlbäck B. Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin Cancer Res 2009; 15:4742-9. [PMID: 19567592 DOI: 10.1158/1078-0432.ccr-08-2514] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Overexpression of the receptor tyrosine kinase Axl is implicated in several cancers. Therefore, we conducted this study to determine the expression of Axl and its ligand Gas6 in various renal cell carcinoma (RCC) types and in oncocytoma. EXPERIMENTAL DESIGN Real-time quantitative reverse transcription-PCR was used to quantify tumor mRNA levels for Axl and Gas6 in a cohort (n = 221) of RCC patients. Serum levels of soluble sAxl and Gas6 proteins were measured using specific ELISA assays (n = 282). The presence of Axl protein in tumor tissue was evaluated by immunohistochemistry (n = 294). Results were correlated to tumor-associated variables, clinical biochemical tests, and patient survival. RESULTS Tumor Axl mRNA levels correlated independently to survival when assessed against tumor stage and grade. In the study group, the median cancer-specific survival of all RCC patients during 307 months of follow-up was 55 months (confidence interval, +/-40.4). The 25% of patients with lowest tumor Axl mRNA levels had significantly better survival than the rest (P = 0.0005), with 70% of the patients still alive at the end of follow-up. In contrast, in patients with medium-high Axl mRNA, only 25% were alive at the end of follow-up. Tumor Gas6 mRNA levels correlated to survival, tumor-associated variables, and disease severity as did serum levels of soluble sAxl and Gas6 protein. However, no correlation between Axl protein in tumor tissue and survival was found. CONCLUSIONS Axl and Gas6 expression in RCC are associated with tumor advancement and patient survival. In particular, low tumor Axl mRNA levels independently correlated with improved survival.
Collapse
Affiliation(s)
- Anna Gustafsson
- Lund University, Department of Laboratory Medicine, Sections for Clinical Chemistry, University Hospital Malmö, Malmö SE-205 02, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Linger RMA, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100:35-83. [PMID: 18620092 DOI: 10.1016/s0065-230x(08)00002-x] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and downstream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are overexpressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.
Collapse
Affiliation(s)
- Rachel M A Linger
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, USA
| | | | | | | |
Collapse
|
48
|
Hong CC, Lay JD, Huang JS, Cheng AL, Tang JL, Lin MT, Lai GM, Chuang SE. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett 2008; 268:314-24. [PMID: 18502572 DOI: 10.1016/j.canlet.2008.04.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 12/20/2022]
Abstract
By using a novel profiling analysis of protein tyrosine kinases differentially expressed in the sensitive and refractory leukemia from the same patients we found that AXL was upregulated in drug-resistant leukemia. Furthermore, AXL could be induced by chemotherapy drugs in the acute myeloid leukemia U937 cells and this induction was dependent on the CCWGG methylation status of the AXL promoter. In U937 cells ectopically overexpressing AXL, addition of exogenous Gas6 induced AXL phosphorylation and activation of the Akt and ERK1/2 survival pathways. The Gas6-AXL activation pathway of drug resistance was associated with increased expression of Bcl-2 and Twist. These results show that upregulation of AXL by chemotherapy might induce drug resistance in acute myeloid leukemia in the presence of Gas6 stimulation.
Collapse
Affiliation(s)
- Chih-Chen Hong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW. Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene 2008; 27:4044-55. [PMID: 18345028 DOI: 10.1038/onc.2008.57] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activity of the Axl receptor tyrosine kinase is positively correlated with tumor metastasis; however, its detailed role in the mechanism of tumor invasion is still not completely understood. Here, we show that Axl enhances the expression of matrix metalloproteinase 9 (MMP-9), required for Axl-mediated invasion both in vitro and in vivo. We found that the highly selective MEK1/2 inhibitors U0126 and PD98059, and the expressed dominant-negative form of extracellular signal-regulated kinase (ERK), completely block Axl-mediated MMP-9 activation. In contrast, the phosphatidylinositol 3-kinase inhibitor LY294002 and wortmannin had little effect on activation. Interestingly, however, the Axl ligand Gas6 is not involved in Axl-mediated MMP-9 activation. Mutation of Glu59(Axl) and Thr77(Axl) dramatically reduced Gas6-Axl binding but continued to induce MMP-9 activation. In addition, overexpression of Axl-activated ERK and enhanced nuclear factor-kappaB (NF-kappaB) transactivation and brahma-related gene-1 (Brg-1) translocation. Exposure to the NF-kappaB inhibitor silibinin, which inhibits IkappaBalpha kinase activity, or overexpression of the dominant-negative mutant IkappaB and Brg-1 strikingly inhibited Axl-mediated MMP-9 activation. These data indicate that coordination of ERK signaling and NF-kappaB and Brg-1 activation are indispensable to regulation of Axl-dependent MMP-9 gene transcription. Together with previous data, our results provide a plausible mechanism for Axl-mediated tumor invasion and establish a functional link between the Axl and MMP-9 signaling pathways.
Collapse
Affiliation(s)
- K-Y Tai
- Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Nielsen-Preiss SM, Allen MP, Xu M, Linseman DA, Pawlowski JE, Bouchard RJ, Varnum BC, Heidenreich KA, Wierman ME. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells. Endocrinology 2007; 148:2806-14. [PMID: 17332061 DOI: 10.1210/en.2007-0039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration.
Collapse
|