1
|
Karnik SJ, Nazzal MK, Kacena MA, Bruzzaniti A. Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease. Calcif Tissue Int 2023; 113:83-95. [PMID: 37243755 PMCID: PMC11179715 DOI: 10.1007/s00223-023-01095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Lee YS, Kwak MK, Moon SA, Choi YJ, Baek JE, Park SY, Kim BJ, Lee SH, Koh JM. Regulation of bone metabolism by megakaryocytes in a paracrine manner. Sci Rep 2020; 10:2277. [PMID: 32042021 PMCID: PMC7010738 DOI: 10.1038/s41598-020-59250-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
Megakaryocytes (MKs) play key roles in regulating bone metabolism. To test the roles of MK-secreted factors, we investigated whether MK and promegakaryocyte (pro-MK) conditioned media (CM) may affect bone formation and resorption. K562 cell lines were differentiated into mature MKs. Mouse bone marrow macrophages were differentiated into mature osteoclasts, and MC3T3-E1 cells were used for osteoblastic experiments. Bone formation was determined by a calvaria bone formation assay in vivo. Micro-CT analyses were performed in the femurs of ovariectomized female C57B/L6 and Balb/c nude mice after intravenous injections of MK or pro-MK CM. MK CM significantly reduced in vitro bone resorption, largely due to suppressed osteoclastic resorption activity. Compared with pro-MK CM, MK CM suppressed osteoblastic differentiation, but stimulated its proliferation, resulting in stimulation of calvaria bone formation. In ovariectomized mice, treatment with MK CM for 4 weeks significantly increased trabecular bone mass parameters, such as bone volume fraction and trabecular thickness, in nude mice, but not in C57B/L6 mice. In conclusion, MKs may secrete anti-resorptive and anabolic factors that affect bone tissue, providing a novel insight linking MKs and bone cells in a paracrine manner. New therapeutic agents against metabolic bone diseases may be developed from MK-secreted factors.
Collapse
Affiliation(s)
- Young-Sun Lee
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Mi Kyung Kwak
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, 7, Keunjaebong-gil, Hwaseong-Si, Gyeonggi-Do, 445-907, Korea
| | - Sung-Ah Moon
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Young Jin Choi
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Ji Eun Baek
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
3
|
Yorgan T, David JP, Amling M, Schinke T. The high bone mass phenotype of Lrp5-mutant mice is not affected by megakaryocyte depletion. Biochem Biophys Res Commun 2018; 497:659-666. [PMID: 29454962 DOI: 10.1016/j.bbrc.2018.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone remodeling is a continuously ongoing process mediated by bone-resorbing osteoclasts and bone-forming osteoblasts. One key regulator of bone formation is the putative Wnt co-receptor Lrp5, where activating mutations in the extracellular domain cause increased bone formation in mice and humans. We have previously reported that megakaryocyte numbers are increased the bone marrow of mice carrying a high bone mass mutation (HBM) of Lrp5 (Lrp5G170V). Since megakaryocytes can promote bone formation, we addressed the question, if the bone remodeling phenotype of Lrp5G170V mice is affected by megakaryocyte depletion. For that purpose we took advantage of a mouse model carrying a mutation of the Mpl gene, encoding the thrombopoietin receptor. These mice (Mplhlb219) were crossed with Lrp5G170V mice to generate animals carrying both mutations in a homozygous state. Using μCT, undecalcified histology and bone-specific histomorphometry of 12 weeks old littermates we observed that megakaryocyte number was remarkably decreased in Mplhlb219/Lrp5G170V mice, yet the high bone mass phenotype of Lrp5G170V mice was not significantly affected by the homozygous Mpl mutation. Finally, when we analyzed 24 weeks old wildtype and Mplhlb219 mice we did not observe a statistically significant alteration of bone remodeling in the latter ones. Taken together, our results demonstrate that an increased number of bone marrow megakaryocytes does not contribute to the increased bone formation caused by Lrp5 activation.
Collapse
Affiliation(s)
- Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
4
|
Meijome TE, Ekwealor JTB, Hooker RA, Cheng YH, Ciovacco WA, Balamohan SM, Srinivasan TL, Chitteti BR, Eleniste PP, Horowitz MC, Srour EF, Bruzzaniti A, Fuchs RK, Kacena MA. C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. J Cell Biochem 2015; 117:959-69. [PMID: 26375403 DOI: 10.1002/jcb.25380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022]
Abstract
C-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out (c-Mpl(-/-) mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl(-/-) mice have a higher bone mass than WT controls. Using c-Mpl(-/-) mice we investigated the basis for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results in a net gain in bone volume with increases in OBs and OCs. In vitro, a higher percentage of c-Mpl(-/-) OBs were in active phases of the cell cycle, leading to an increased number of OBs. No difference in OB differentiation was observed in vitro as examined by real-time PCR and functional assays. In co-culture systems, which allow for the interaction between OBs and OC progenitors, c-Mpl(-/-) OBs enhanced osteoclastogenesis. Two of the major signaling pathways by which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were unaffected in c-Mpl(-/-) OBs. These data provide new findings for the role of MKs and c-Mpl expression in bone and may provide insight into the homeostatic regulation of bone mass as well as bone loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tomas E Meijome
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Jenna T B Ekwealor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - R Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Wendy A Ciovacco
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Sanjeev M Balamohan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | - Trishya L Srinivasan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis
| | | | - Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indiana, Indianapolis
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indiana, Indianapolis
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indiana, Indianapolis
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indiana, Indianapolis
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana, Indianapolis.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Bethel M, Barnes CLT, Taylor AF, Cheng YH, Chitteti BR, Horowitz MC, Bruzzaniti A, Srour EF, Kacena MA. A novel role for thrombopoietin in regulating osteoclast development in humans and mice. J Cell Physiol 2015; 230:2142-51. [PMID: 25656774 DOI: 10.1002/jcp.24943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022]
Abstract
Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappaB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells, and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Calvin L T Barnes
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Amanda F Taylor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
6
|
Meijome TE, Hooker RA, Cheng YH, Walker W, Horowitz MC, Fuchs RK, Kacena MA. GATA-1 deficiency rescues trabecular but not cortical bone in OPG deficient mice. J Cell Physiol 2015; 230:783-90. [PMID: 25205203 DOI: 10.1002/jcp.24803] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 11/12/2022]
Abstract
GATA-1(low/low) mice have an increase in megakaryocytes (MKs) and trabecular bone. The latter is thought to result from MKs directly stimulating osteoblastic bone formation while simultaneously inhibiting osteoclastogenesis. Osteoprotegerin (OPG) is known to inhibit osteoclastogenesis and OPG(-/-) mice have reduced trabecular and cortical bone due to increased osteoclastogenesis. Interestingly, GATA-1(low/low) mice have increased OPG levels. Here, we sought to determine whether GATA-1 knockdown in OPG(-/-) mice could rescue the observed osteoporotic bone phenotype. GATA-1(low/low) mice were bred with OPG(-/-) mice and bone phenotype assessed. GATA-1(low/low) × OPG(-/-) mice have increased cortical bone porosity, similar to OPG(-/-) mice. Both OPG(-/-) and GATA-1(low/low) × OPG(-/-) mice, were found to have increased osteoclasts localized to cortical bone, possibly producing the observed elevated porosity. Biomechanical assessment indicates that OPG(-/-) and GATA-1(low/low) × OPG(-/-) femurs are weaker and less stiff than C57BL/6 or GATA-1(low/low) femurs. Notably, GATA-1(low/low) × OPG(-/-) mice had trabecular bone parameters that were not different from C57BL/6 values, suggesting that GATA-1 deficiency can partially rescue the trabecular bone loss observed with OPG deficiency. The fact that GATA-1 deficiency appears to be able to partially rescue the trabecular, but not the cortical bone phenotype suggests that MKs can locally enhance trabecular bone volume, but that MK secreted factors cannot access cortical bone sufficiently to inhibit osteoclastogenesis or that OPG itself is required to inhibit osteoclastogenesis in cortical bone.
Collapse
Affiliation(s)
- Tomas E Meijome
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | |
Collapse
|
7
|
Cheng YH, Streicher DA, Waning DL, Chitteti BR, Gerard-O'Riley R, Horowitz MC, Bidwell JP, Pavalko FM, Srour EF, Mayo LD, Kacena MA. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells. J Cell Physiol 2015; 230:578-86. [PMID: 25160801 DOI: 10.1002/jcp.24774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jones E, Schäfer R. Biological differences between native and cultured mesenchymal stem cells: implications for therapies. Methods Mol Biol 2015; 1235:105-120. [PMID: 25388390 DOI: 10.1007/978-1-4939-1785-3_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the current knowledge of the surface marker phenotype of native bone marrow mesenchymal stem/stromal cells (MSCs) in humans and in mouse models, highlighting similarities in the MSC marker "signature" between the two species. The chapter proceeds to discuss the published literature pertaining to native MSC topography and their interactions with hematopoietic stem cells and their progeny, as well as with blood vessels and nerve endings. Additionally, the chapter describes phenotypic and functional "drifts" that occur in MSC preparations as they are taken out of their native bone marrow microenvironment and induced to proliferate in vitro (in the presence of animal or human serum). We propose that the understanding of the biology of MSCs in their native niches in the bone marrow could lead to future developments in the treatment of hematological diseases such as multiple myeloma. Additionally, this knowledge would assist in the development of more "natural" MSC culture conditions, best preserving MSC functionality including their homing potential in order to optimize MSC transplantation in the context of graft-versus-host and other diseases.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, Leeds, LS9 7TF, UK,
| | | |
Collapse
|
9
|
Soves CP, Miller JD, Begun DL, Taichman RS, Hankenson KD, Goldstein SA. Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation. Bone 2014; 66:111-20. [PMID: 24882736 PMCID: PMC4125454 DOI: 10.1016/j.bone.2014.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/12/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022]
Abstract
Maintenance of bone mass and geometry is influenced by mechanical stimuli. Paradigms suggest that osteocytes embedded within the mineralized matrix and osteoblasts on the bone surfaces are the primary responders to physical forces. However, other cells within the bone marrow cavity, such as megakaryocytes (MKs), are also subject to mechanical forces. Recent studies have highlighted the potent effects of MKs on osteoblast proliferation as well as bone formation in vivo. We hypothesize that MKs are capable of responding to physical forces and that the interactions between these cells and osteoblasts can be influenced by mechanical stimulation. In this study, we demonstrate that two MK cell lines respond to fluid shear stress in culture. Furthermore, using laser capture microdissection, we isolated MKs from histologic sections of murine tibiae that were exposed to compressive loads in vivo. C-fos, a transcription factor shown to be upregulated in response to load in various tissue types, was increased in MKs from loaded relative to non-loaded limbs at a level comparable to that of osteocytes from the same limbs. We also developed a co-culture system to address whether mechanical stimulation of MKs in culture would impact osteoblast proliferation and differentiation. The presence of MKs in co-culture, but not conditioned media, had dramatic effects on proliferation of preosteoblast MC3T3-E1 cells in culture. Our data suggests a minimal decrease in proliferation as well as an increase in mineralization capacity of osteoblasts co-cultured with MKs exposed to shear compared to co-cultures with unstimulated MKs.
Collapse
Affiliation(s)
- Constance P Soves
- Orthopaedic Research Laboratories, University of Michigan, Room 2003 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Joshua D Miller
- Orthopaedic Research Laboratories, University of Michigan, Room 2003 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Dana L Begun
- Orthopaedic Research Laboratories, University of Michigan, Room 2003 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48109, USA
| | - Kurt D Hankenson
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Room 145 Myrin Bldg, Kennett Square PA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Steven A Goldstein
- Orthopaedic Research Laboratories, University of Michigan, Room 2003 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Veronesi E, Murgia A, Caselli A, Grisendi G, Piccinno MS, Rasini V, Giordano R, Montemurro T, Bourin P, Sensebé L, Rojewski MT, Schrezenmeier H, Layrolle P, Ginebra MP, Panaitescu CB, Gómez-Barrena E, Catani F, Paolucci P, Burns JS, Dominici M. Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration. Tissue Eng Part C Methods 2013; 20:239-51. [PMID: 23845029 DOI: 10.1089/ten.tec.2013.0250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine.
Collapse
Affiliation(s)
- Elena Veronesi
- 1 Laboratory of Cell Biology and Advanced Cancer Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia , Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cheng YH, Hooker RA, Nguyen K, Gerard-O'Riley R, Waning DL, Chitteti BR, Meijome TE, Chua HL, Plett AP, Orschell CM, Srour EF, Mayo LD, Pavalko FM, Bruzzaniti A, Kacena MA. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation. J Bone Miner Res 2013; 28:1434-45. [PMID: 23362087 PMCID: PMC3663900 DOI: 10.1002/jbmr.1876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/05/2013] [Accepted: 01/11/2013] [Indexed: 12/20/2022]
Abstract
Preclinical and clinical evidence from megakaryocyte (MK)-related diseases suggests that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We, therefore, examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 levels in OBs were significantly enhanced primarily because of increased Pyk2 gene transcription. Additionally, p53 and Mdm2 were both decreased in OBs upon MK stimulation, which would be permissive of cell cycle entry. We then demonstrated that OB number was markedly reduced when Pyk2-/- OBs, as opposed to wild-type (WT) OBs, were co-cultured with MKs. We also determined that MKs inhibit OB differentiation in the presence and absence of Pyk2 expression. Finally, given that MK-replete spleen cells from GATA-1-deficient mice can robustly stimulate OB proliferation and bone formation in WT mice, we adoptively transferred spleen cells from these mice into Pyk2-/- recipient mice. Importantly, GATA-1-deficient spleen cells failed to stimulate an increase in bone formation in Pyk2-/- mice, suggesting in vivo the important role of Pyk2 in the MK-induced increase in bone volume. Further understanding of the signaling pathways involved in the MK-mediated enhancement of OB number and bone formation will facilitate the development of novel anabolic therapies to treat bone loss diseases.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The last several decades have revealed numerous interactions between cells of the hematopoietic lineage and osteoblasts (OBs) of the mesenchymal lineage. For example, OBs are important players in the hematopoietic stem cell (HSC) niche and OBs are known to impact osteoclast (OC) development. Thus, although much is known regarding the impact OBs have on hematopoietic cells, less is known about the impact of hematopoietic cells on OBs. Here we will review this reciprocal relationship: the effects of hematopoietic cells on OBs. Specifically, we will examine the impact of hematopoietic cells such as HSCs, lymphocytes, and megakaryocytes, as well as the hematopoietic cell-derived OCs on OB proliferation, differentiation, and function.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1120 South Drive, FH 115, Indianapolis, IN 46202, USA
| | - Edward F. Srour
- Departments of Medicine, Pediatrics, and Microbiology and Immunology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 980 West Walnut Street, R3-C312, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1120 South Drive, FH 115, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood 2010; 117:986-96. [PMID: 20978266 DOI: 10.1182/blood-2010-05-285817] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species (ROS) are highly destructive toward cellular macromolecules. However, moderate levels of ROS can contribute to normal cellular processes including signaling. Herein we evaluate the consequence of a pro-oxidant environment on hematopoietic homeostasis. The NF-E2 related factor 2 (Nrf2) transcription factor regulates genes related to ROS scavenging and detoxification. Nrf2 responds to altered cellular redox status, such as occurs with loss of antioxidant selenoproteins after deletion of the selenocysteine-tRNA gene (Trsp). Conditional knockout of the Trsp gene using Mx1-inducible Cre-recombinase leads to selenoprotein deficiency and anemia on a wild-type background, whereas Trsp:Nrf2 double deficiency dramatically exacerbates the anemia and increases intracellular hydrogen peroxide levels in erythroblasts. Results indicate that Nrf2 compensates for defective ROS scavenging when selenoproteins are lost from erythroid cells. We also observed thymus atrophy in single Trsp-conditional knockout mice, suggesting a requirement for selenoprotein function in T-cell differentiation within the thymus. Surprisingly, no changes were observed in the myelomonocytic or megakaryocytic populations. Therefore, our results show that selenoprotein activity and the Nrf2 gene battery are particularly important for oxidative homeostasis in erythrocytes and for the prevention of hemolytic anemia.
Collapse
|
14
|
Ciovacco WA, Cheng YH, Horowitz MC, Kacena MA. Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem 2010; 109:774-81. [PMID: 20052670 DOI: 10.1002/jcb.22456] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent data suggest that megakaryocytes (MKs) play a role in skeletal homeostasis. In vitro and in vivo data show that MKs stimulate osteoblast (OB) proliferation and inhibit osteoclast (OC) formation, thus favoring net bone deposition. There are several mouse models with dysregulated megakaryopoiesis and resultant high bone mass phenotypes. One such model that our group has extensively studied is GATA-1 deficient mice. GATA-1 is a transcription factor required for normal megakaryopoiesis, and mice deficient in GATA-1 have increases in immature MK number and a striking increase in bone mass. While the increased bone mass could simply be a result of increased MK number, here we take a more in depth look at the MKs of these mice to see if there is a unique factor inherent to GATA-1 deficient MKs that favors increased bone deposition. We show that increased MK number does correspond with increased OB proliferation and decreased OC formation that stage of maturation does not alter the effect of MKs on bone cell lineages beyond the megakaryoblast stage, and that GATA-1 deficient MKs survive longer than wild-type controls. So while increased MK number in GATA-1 deficient mice likely contributes to the high bone mass phenotype, we propose that the increased longevity of this lineage also plays a role. Since GATA-1 deficient MKs live longer they are able to exert both more proliferative influence on OBs and more inhibitory influence on OCs.
Collapse
Affiliation(s)
- Wendy A Ciovacco
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
15
|
Lemieux JM, Horowitz MC, Kacena MA. Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem 2010; 109:927-32. [PMID: 20052668 DOI: 10.1002/jcb.22468] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As the prevalence of osteoporosis is expected to increase over the next few decades, the development of novel therapeutic strategies to combat this disorder becomes clinically imperative. These efforts draw extensively from an expanding body of knowledge pertaining to the physiologic mechanisms of skeletal homeostasis. To this body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial role in balancing osteoblastic bone formation against osteoclastic resorption. Specifically, our laboratory has previously demonstrated that megakaryocytes (MKs) can induce osteoblast (OB) proliferation in vitro, but do so only when direct cell-to-cell contact is permitted. To further investigate the nature of this interaction, we have effectively neutralized several adhesion molecules known to function in the analogous interaction of MKs with another cell type of mesenchymal origin-the fibroblast (FB). Our findings implicate the involvement of fibronectin/RGD-binding integrins including alpha3beta1 (VLA-3) and alpha5beta1 (VLA-5) as well as glycoprotein (gp) IIb (CD41), all of which are known to be expressed on MK membranes. Furthermore, we demonstrate that interleukin (IL)-3 can enhance MK-induced OB activation in vitro, as demonstrated in the MK-FB model system. Taken together, these results suggest that although their physiologic and clinical implications are very different, these two models of hematopoietic-mesenchymal cell activation are mechanistically analogous in several ways.
Collapse
Affiliation(s)
- Justin M Lemieux
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
16
|
Boldyrev AA. Molecular mechanisms of homocysteine toxicity. BIOCHEMISTRY (MOSCOW) 2009; 74:589-98. [DOI: 10.1134/s0006297909060017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 2009; 114:2333-43. [PMID: 19433859 DOI: 10.1182/blood-2008-10-183459] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adequate recovery of hematopoietic stem cell (HSC) niches after cytotoxic conditioning regimens is essential to successful bone marrow transplantation. Yet, very little is known about the mechanisms that drive the restoration of these niches after bone marrow injury. Here we describe a profound disruption of the marrow microenvironment after lethal total body irradiation of mice that leads to the generation of osteoblasts restoring the HSC niche, followed by a transient, reversible expansion of this niche. Within 48 hours after irradiation, surviving host megakaryocytes were observed close to the endosteal surface of trabecular bone rather than in their normal parasinusoidal site concomitant with an increased stromal-derived factor-1 level. A subsequent increase in 2 megakaryocyte-derived growth factors, platelet-derived growth factor-beta and basic fibroblast growth factor, induces a 2-fold expansion of the population of N-cadherin-/osteopontin-positive osteoblasts, relative to the homeostatic osteoblast population, and hence, increases the number of potential niches for HSC engraftment. After donor cell engraftment, this expanded microenvironment reverts to its homeostatic state. Our results demonstrate the rapid recovery of osteoblastic stem cell niches after marrow radioablation, provide critical insights into the associated mechanisms, and suggest novel means to manipulate the bone marrow microenvironment to promote HSC engraftment.
Collapse
|
18
|
Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 2009; 18:371-80. [PMID: 19500466 DOI: 10.3727/096368909788534942] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bone marrow cell transplantation has been shown to induce angiogenesis and thus improve ischemic artery disease. This study evaluates the effects of intramuscular bone marrow cell transplantation in patients with limb-threatening critical limb ischemia with a very high risk for major amputation. After failed or impossible operative and/or interventional revascularization and after unsuccessful maximum conservative therapy, 51 patients with impending major amputation due to severe critical limb ischemia had autologous bone marrow cells (BMC) transplanted into the ischemic leg. Patients 1-12 received Ficoll-isolated bone marrow mononuclear cells (total cell number 1.1 +/- 1.1 x 10(9)), patients 13-51 received point of care isolated bone marrow total nucleated cells (3.0 +/- 1.7 x 10(9)). Limb salvage was 59% at 6 months and 53% at last follow-up (mean 411 +/- 261 days, range 175-1186). Perfusion measured with ankle-brachial index (ABI) and transcutaneous oxygen tension (tcpO(2)) at baseline and after 6 months increased in patients with consecutive limb salvage (ABI 0.33 +/- 0.18 to 0.46 +/- 0.15, tcpO(2) 12 +/- 12 to 25 +/- 15 mmHg) and did not change in patients eventually undergoing major amputation. No difference in clinical outcome between the isolation methods were seen. Clinically most important, patients with limb salvage improved from a mean Rutherford category of 4.9 at baseline to 3.3 at 6 months (p = 0.0001). Analgesics consumption was reduced by 62%. Total walking distance improved in nonamputees from zero to 40 m. Three severe periprocedural adverse events resolved without sequelae, and no unexpected long-term adverse events occurred. In no-option patients with end-stage critical limb ischemia due to peripheral artery disease, bone marrow cell transplantation is a safe procedure that can improve leg perfusion sufficiently to reduce major amputations and permit durable limb salvage.
Collapse
Affiliation(s)
- Berthold Amann
- Department of Medicine, Franziskuskrankenhaus, Berlin Vascular Center, Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Kacena MA, Ciovacco WA. Megakaryocyte-bone cell interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 658:31-41. [PMID: 19950013 DOI: 10.1007/978-1-4419-1050-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Emerging data show that megakaryocytes (MKs) play a role in the replication and development of bone cells. Both in vivo and in vitro evidence now show that MKs can have significant effects on cells of the osteoclast (OC) and osteoblast (OB) lineage, with obvious manifestations on bone phenotype, and probable significance for human pathology.There are currently four mouse models in which increases in MK number lead to a specific bone pathology of markedly increased bone volume. While these models all achieve megakaryocytosis by different mechanisms, the resultant osteosclerotic phenotype observed is consistent across all models.In vitro data suggest that MKs play a role in OC and OB proliferation and differentiation. While MKs express receptor activator of nuclear factor kappa B ligand (RANKL), a prerequisite for osteoclastogenesis, they also express many factors known to inhibit OC development, and co-cultures of MKs with OCs show a significant decrease in osteoclastogenesis. In contrast, MKs express several proteins with a known critical role in osteoblastogenesis and bone formation, and co-cultures of these two lineages result in up to a six-fold increase in OB proliferation and alterations in OB differentiation.This research demonstrates the complex regulatory interactions at play between MKs and bone cells, and opens up potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
20
|
Ciovacco WA, Goldberg CG, Taylor AF, Lemieux JM, Horowitz MC, Donahue HJ, Kacena MA. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 2009; 44:80-6. [PMID: 18848655 PMCID: PMC2659565 DOI: 10.1016/j.bone.2008.08.117] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/15/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions (GJs) are membrane-spanning channels that facilitate intercellular communication by allowing small signaling molecules (e.g. calcium ions, inositol phosphates, and cyclic nucleotides) to pass from cell to cell. Over the past two decades, many studies have described a role for GJ intercellular communication (GJIC) in the proliferation and differentiation of many cells, including bone cells. Recently, we reported that megakaryocytes (MKs) enhance osteoblast (OB) proliferation by a juxtacrine signaling mechanism. Here we determine whether this response is facilitated by GJIC. First we demonstrate that MKs express connexin 43 (Cx43), the predominant GJ protein expressed by bone cells, including OBs. Next, we provide data showing that MKs can communicate with OBs via GJIC, and that the addition of two distinct GJ uncouplers, 18alpha-glycyrrhetinic acid (alphaGA) or oleamide, inhibits this communication. We then demonstrate that inhibiting MK-mediated GJIC further enhances the ability of MKs to stimulate OB proliferation. Finally, we show that while culturing MKs with OBs reduces gene expression of several differentiation markers/matrix proteins (type I collagen, osteocalcin, and alkaline phosphatase), reduces alkaline phosphatase enzymatic activity, and decreases mineralization in OBs, blocking GJIC does not result in MK-induced reductions in OB gene expression, enzymatic levels, or mineralized nodule formation. Overall, these data provide evidence that GJIC between MKs and OBs is functional, and that inhibiting GJIC in MK-OB cultures enhances OB proliferation without apparently altering differentiation when compared to similarly treated OB cultures. Thus, these observations regarding MK-OB GJIC inhibition may provide insight regarding potential novel targets for anabolic bone formation.
Collapse
Affiliation(s)
- Wendy A Ciovacco
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hermann PC, Huber SL, Herrler T, von Hesler C, Andrassy J, Kevy SV, Jacobson MS, Heeschen C. Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant 2008; 16:1059-1069. [PMID: 18351022 DOI: 10.3727/000000007783472363] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem and progenitor cell therapy is a novel strategy to enhance cardiovascular regeneration. Cell isolation procedures are crucial for the functional activity of the administered cellular product. Therefore, new isolation techniques have to be evaluated in comparison to the Ficoll isolation procedure as the current gold standard. Here we prospectively evaluated a novel point-of-care device (Harvest BMAC System) for the concentration of bone marrow total nucleated cells (TNC) in comparison to the Ficoll isolation procedure for bone marrow mononucleated cells (MNC). The yield in total numbers of TNC was 2.4-fold higher for Harvest compared to Ficoll. Despite significant differences in their cellular compositions, the colony-forming capacity was similar for both products. Intriguingly, the migratory capacity was significantly higher for the Harvest TNC (164 +/- 66%; p = 0.007). In a mouse model of hind limb ischemia, the increase in blood flow recovery was similar between Harvest BM-TNC and Ficoll BM-MNC (0.53 +/- 0.20 vs. 0.46 +/- 0.15; p = 0.88). However, adjustment of the injected cell number based on the higher yield of Harvest TNC resulted in a significant better recovery (0.64 +/- 0.16 vs. 0.46 +/- 0.15; p = 0.003). Cells concentrated by the Harvest point-of-care device show similar or greater functional activity compared to Ficoll isolation. However, the greater yield of cells and the wider range of cell types for the Harvest device may translate into an even greater therapeutic effect.
Collapse
Affiliation(s)
- Patrick C Hermann
- Department of Surgery, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29:403-40. [PMID: 18451259 PMCID: PMC2528852 DOI: 10.1210/er.2007-0038] [Citation(s) in RCA: 390] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/01/2008] [Indexed: 12/20/2022]
Abstract
Bone and the immune system are both complex tissues that respectively regulate the skeleton and the body's response to invading pathogens. It has now become clear that these organ systems often interact in their function. This is particularly true for the development of immune cells in the bone marrow and for the function of bone cells in health and disease. Because these two disciplines developed independently, investigators in each don't always fully appreciate the significance that the other system has on the function of the tissue they are studying. This review is meant to provide a broad overview of the many ways that bone and immune cells interact so that a better understanding of the role that each plays in the development and function of the other can develop. It is hoped that an appreciation of the interactions of these two organ systems will lead to better therapeutics for diseases that affect either or both.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Department of Medicine, The University of Connecticut Health Center, N4054, MC5456, 263 Farmington Avenue, Farmington, Connecticut 06030-5456, USA.
| | | | | |
Collapse
|
23
|
Transcriptional regulation of bone marrow thrombopoietin by platelet proteins. Exp Hematol 2008; 36:799-806. [PMID: 18410987 DOI: 10.1016/j.exphem.2008.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 02/06/2023]
Abstract
Platelet production is regulated primarily by the cytokine thrombopoietin (TPO). Although TPO is expressed in several different tissues, only in the bone marrow has the level of expression been reported to increase in response to reduced numbers of platelets. In these studies, we demonstrate that platelet granule proteins are able to transcriptionally repress TPO mRNA expression in a marrow stromal cell line as well as in primary bone marrow stromal cell cultures. Like TPO mRNA, secretion of TPO protein was also suppressed by serum treatment. Reporter gene constructs indicate that DNA elements located in an approximately 1.9-kb region between 250-bp upstream of the transcriptional initiation site and the middle of the second intron are able to mediate the transcriptional repression.
Collapse
|
24
|
Perry MJ, Redding KA, Alexander WS, Tobias JH. Mice rendered severely deficient in megakaryocytes through targeted gene deletion of the thrombopoietin receptor c-Mpl have a normal skeletal phenotype. Calcif Tissue Int 2007; 81:224-31. [PMID: 17674074 DOI: 10.1007/s00223-007-9051-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 06/11/2007] [Indexed: 01/27/2023]
Abstract
To explore whether a functional relationship exists between megakaryocytes and the cellular processes responsible for bone formation, we examined if Mpl ( -/- ) mice, which are severely megakaryocyte-deficient through c-Mpl gene deletion, have an abnormal skeletal phenotype compared to Mpl ( +/- ) and wild-type littermates. We also analyzed whether the osteogenic response to high-dose estrogen treatment is altered in Mpl ( -/- ) mice. Megakaryocyte numbers and skeletal indices were compared between Mpl ( -/- ) mice and littermate Mpl ( +/- ) and wild-type 12-week-old mice (six per group). Dual-energy X-ray absorbtiometry of whole body, excised tibias, and femurs was performed. Histomorphometric analyses of the proximal metaphysis and mid-diaphysis were carried out on longitudinal and transverse sections, respectively. Histomorphometry was performed on the proximal tibial metaphysis of four Mpl ( -/- ) and four wild-type mice following high-dose estrogen treatment (0.5 mg/animal/week) for 4 weeks. Mpl ( -/- ) mice had 10% the megakaryocyte number of Mpl ( +/- ) and wild-type littermates. Bone mineral density values in Mpl ( -/- ) mice were identical to those in Mpl ( +/- ) and wild-type mice for whole body, femur, and tibia. Histomorphometric analysis demonstrated that cancellous and cortical tibial bone parameters were similar across all genotypes. The osteogenic response to estrogen treatment was indistinguishable between Mpl ( -/- )and wild-type mice. We found that mice severely deficient in megakaryocytes have a normal skeletal phenotype. Additionally, the deficiency did not diminish the osteogenic marrow response to high-dose estrogen treatment. These results represent the first in vivo evidence that severe megakaryocyte deficiency does not affect bone formation, suggesting that this process is not dependent on normal megakaryocyte number.
Collapse
Affiliation(s)
- Mark J Perry
- Anatomy and Clinical Sciences North Bristol, University of Bristol, Southwell Street, Bristol, BS2 8EJ, UK.
| | | | | | | |
Collapse
|
25
|
(iii) The relevance of mesenchymal stem cells in vivo for future orthopaedic strategies aimed at fracture repair. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.cuor.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Scutt A, Williamson EM. Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. Calcif Tissue Int 2007; 80:50-9. [PMID: 17205329 DOI: 10.1007/s00223-006-0171-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/23/2006] [Indexed: 12/23/2022]
Abstract
Recently, the cannabinoid receptors CB(1) and CB(2) were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB(1) and CB(2) receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB(2) agonists BML190 and JWH015. The CB(1)-specific agonist ACEA had no effect, whereas the CB(2) antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB(2) receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB(1) and CB(2) receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB(2) receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Benzoxazines
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/physiology
- Cannabinoid Receptor Modulators/pharmacology
- Cannabinoids/pharmacology
- Cells, Cultured
- Colony-Forming Units Assay
- Cyclohexanols/pharmacology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Glycerides/pharmacology
- Indomethacin/analogs & derivatives
- Indomethacin/pharmacology
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/physiology
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/physiology
Collapse
Affiliation(s)
- A Scutt
- Tissue Engineering Group, Department of Engineering Materials, Kroto Research Institute Nanoscience and Technology Centre, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
| | | |
Collapse
|
27
|
Kacena MA, Gundberg CM, Horowitz MC. A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 2006; 39:978-984. [PMID: 16860008 DOI: 10.1016/j.bone.2006.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/26/2006] [Accepted: 05/27/2006] [Indexed: 11/30/2022]
Abstract
A growing body of evidence suggests that megakaryocytes (MK) or their growth factors play a role in skeletal homeostasis. MK have been shown to express and/or secrete several bone-related proteins including osteocalcin, osteonectin, bone sialoprotein, osteopontin, bone morphogenetic proteins, and osteoprotegerin. In addition, at least 3 mouse models have been described in which MK number was significantly elevated with an accompanying marked increase in bone mineral density. Mice overexpressing thrombopoietin, the major MK growth factor, have an osteosclerotic bone phenotype. Mice deficient in transcription factors GATA-1 and NF-E2, which are required for the differentiation of MK, exhibited a strikingly increased bone mass. Importantly, recent studies have demonstrated that MK can stimulate osteoblast (OB) proliferation and differentiation in vitro and that they can also inhibit osteoclast (OC) formation in vitro. These findings suggest that MK play a dual role in skeletal homeostasis by stimulating formation while simultaneously inhibiting resorption. Conversely, cells of the osteoblast lineage support hematopoiesis, including megakaryopoiesis. Postnatal hematopoiesis occurs almost solely in the bone marrow (BM), close to or on endosteal surfaces. This finding, in conjunction with the observed contact of OB with hematopoietic cells, has lead investigators to explore the molecular and cellular interactions between hematopoietic cells and cells of the OB lineage. Importantly, it has been shown that many of the cytokines that are critical for normal hematopoiesis and megakaryopoiesis are produced by OB. Indeed, culturing osteoblasts with CD34+ BM cells significantly enhances hematopoietic cell number by both enhancing the proliferation of long-term culture initiating cells and the proliferation and differentiation of MK. These data are consistent with cells in the OB lineage playing a critical role in the hematopoietic niche. Overall, these observations demonstrate the importance of MK-bone cell interactions in both skeletal homeostasis and hematopoiesis.
Collapse
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, P.O. Box 208071, New Haven, CT 06520-0871, USA.
| | - Caren M Gundberg
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, P.O. Box 208071, New Haven, CT 06520-0871, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, P.O. Box 208071, New Haven, CT 06520-0871, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review provides an update on the role of megakaryocytes in skeletal homeostasis, and discusses these findings in the context of rheumatoid arthritis. RECENT FINDINGS Thrombocytosis is a common complication of rheumatoid arthritis, and is presumably caused by an up-regulation in megakaryocytopoiesis. In general, patients with rheumatoid arthritis exhibit localized joint bone erosion with systemic bone loss, and rheumatoid arthritis patients with thrombocytosis tend to have more severe disease. Interestingly, in addition to their role in rheumatoid arthritis with thrombocytosis, it has been demonstrated recently that megakaryocytes play a dual role in regulating skeletal mass by inhibiting bone resorption while simultaneously stimulating bone formation. This seeming contradiction in the putative role of megakaryocytes in skeletal regulation and rheumatoid arthritis is the focus of this review. SUMMARY In rheumatoid arthritis there are substantial increases in the levels of several pro-inflammatory pleiotropic cytokines. As would be expected, in addition to their role in inflammation, these cytokines play a critical role in the megakaryocytopoiesis seen in patients who develop reactive thrombocytosis, and these cytokines also are known to regulate osteoclastogenesis. Thus, it appears that in rheumatoid arthritis with reactive thrombocytosis, the ability of the cytokines to enhance osteoclastogenesis outweighs the ability of megakaryocytes to inhibit osteoclastogenesis.
Collapse
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut 06520-0871, USA
| | | |
Collapse
|
29
|
Pals K, Vankelecom H, Denef C. Triiodothyronine expands the lactotroph and maintains the lactosomatotroph population, whereas thyrotrophin-releasing hormone augments thyrotroph abundance in aggregate cell cultures of postnatal rat pituitary gland. J Neuroendocrinol 2006; 18:203-16. [PMID: 16454804 DOI: 10.1111/j.1365-2826.2005.01404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, we used a three-dimensional pituitary cell culture system from early postnatal rats to examine the in vitro developmental potential of triiodothyronine (T3) and thyrotrophin-releasing hormone (TRH). Cell types were identified at the hormone mRNA level by single-cell reverse transcription-polymerase chain reaction and any change in abundance was further examined by immunofluorescence staining of the corresponding hormone protein. In aggregates from 14-day-old rats, long-term (12-16 days) treatment with T3 (0.5 nM) increased the abundance of cells expressing prolactin mRNA (PRLmRNA cells) by 2.5-fold and lowered that of nonhormonal cells and thyroid-stimulating hormone beta (TSHbeta)mRNA cells. The abundance of growth hormone (GH)mRNA cells decreased during culture compared to that in the freshly dispersed pituitary gland and T3 did not significantly affect this cell population. Cells coexpressing PRL mRNA and GH mRNA virtually disappeared during culture but reappeared in the presence of T3. T3 increased the abundance of PRL-immunoreactive (ir) cells in aggregates from 14-day-old rats, as well as in aggregates from newborn and 1-week-old rats. As estimated by bromodeoxyuridine (BrdU) labelling, a 3-day treatment with T3 enhanced the number of PRL-ir cells that had incorporated BrdU, but did not yet expand the total population of PRL-ir cells. Long-term treatment with TRH (100 nM) did not affect the proportion of PRLmRNA or GHmRNA cells, but consistently increased the proportional number of TSHbeta(mRNA) and TSHbeta-ir cells. The present data confirm the findings obtained in recent in vivo loss of function genetic studies suggesting that T3 plays a prominent role in postnatal expansion of the lactotroph population and that TRH is important for thyrotroph development. The data suggest that the effect of T3 is brought about by a direct action on the pituitary gland through a cell proliferation mechanism. T3 also appears to support the lactosomatotroph population. In view of the established theory that lactotrophs develop from GH-expressing progenitor cells and that this is a post mitotic event, we propose that T3 is mitogenic for GHmRNA cells that lack GH-ir material and that transdifferentiate into PRL-ir cells, but that a pathway of PRL cell development from mitotic nonhormonal cell progenitors may also be involved.
Collapse
Affiliation(s)
- K Pals
- Laboratory of Cell Pharmacology, University of Leuven (K.U.Leuven), Medical School, Campus Gasthuisberg (O & N), B-3000, Leuven, Belgium
| | | | | |
Collapse
|
30
|
Jäger M, Westhoff B, Wild A, Krauspe R. [Bone harvesting from the iliac crest]. DER ORTHOPADE 2006; 34:976-82, 984, 986-90, 992-4. [PMID: 16075252 DOI: 10.1007/s00132-005-0839-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autogenous bone grafts from the iliac crest are frequently harvested for autologous bone transplantation. Although an autologous bone transplant does improve the local bone healing potency, significant donor site morbidity must be considered. METHODS In this study we elucidate special bone harvesting techniques from the iliac crest and review the literature related to clinical significance of donor site morbidity. Furthermore, our own experiences are compared and discussed critically with relevant data of other investigators. RESULTS The increasing number of scientific publications which focus on bone harvesting techniques and related complications in recent years indicate the high interest and relevance of this issue. There is a tendency to alternatives such as biomaterials as bone substitutes, whereas the role of growth factors and cell therapeutics in the treatment of bony defects are still being evaluated in clinical studies. CONCLUSION Although autologous, heterotopic bone transplantation is still the gold standard in the treatment of bony defects, there is a tendency towards the application of biomaterials, stem cells, and growth factors. Conscientious observation of relevant anatomic considerations during bone harvesting procedures may help to avoid complications.
Collapse
Affiliation(s)
- M Jäger
- Orthopädische Klinik, Heinrich-Heine-Universität, Düsseldorf
| | | | | | | |
Collapse
|
31
|
Abstract
Megakaryocytes (MKs) expand and differentiate over several days in response to thrombopoietin (Tpo) before releasing innumerable blood platelets. The final steps in platelet assembly and release represent a unique cellular transformation that is orchestrated by a range of transcription factors, signaling molecules, and cytoskeletal elements. Here we review recent advances in the physiology and molecular basis of MK differentiation. Genome-wide approaches, including transcriptional profiling and proteomics, have been used to identify novel platelet products and differentiation markers. The extracellular factors, stromal-derived factor (SDF)-1 chemokine and fibroblast growth factor (FGF)-4 direct MK interactions with the bone marrow stroma and regulate cytokine-independent cell maturation. An abundance of bone marrow MKs induce pathologic states, including excessive bone formation and myelofibrosis, and the basis for these effects is now better appreciated. We review the status of transcription factors that control MK differentiation, with special emphasis on nuclear factor-erythroid 2 (NF-E2) and its two putative target genes, beta1-tubulin and 3-beta-hydroxysteroid reductase. MKs express steroid receptors and some estrogen ligands, which may constitute an autocrine loop in formation of proplatelets, the cytoplasmic protrusions within which nascent blood platelets are assembled. Finally, we summarize our own studies on cellular and molecular facets of proplatelet formation and place the findings within the context of outstanding questions about mechanisms of thrombopoiesis.
Collapse
Affiliation(s)
- H Schulze
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Ito A, Hibino E, Shimizu K, Kobayashi T, Yamada Y, Hibi H, Ueda M, Honda H. Magnetic force-based mesenchymal stem cell expansion using antibody-conjugated magnetoliposomes. J Biomed Mater Res B Appl Biomater 2005; 75:320-7. [PMID: 16025453 DOI: 10.1002/jbm.b.30304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, there has been an accumulation of evidence indicating that human mesenchymal stem cells (MSCs, multipotent cells resident in the bone marrow) are useful for autologous cell transplantation. However, only small numbers of MSCs have been obtained in bone marrow aspirates. We have developed a novel methodology for enriching and proliferating MSCs from bone marrow aspirates using antibody-conjugated magnetoliposomes (AMLs). The AMLs are liposomes conjugated to anti-CD105 antibody (immunoliposomes) and contain magnetite nanoparticles (diameter 10 nm). In the present study, the AMLs were added to a small volume (1 mL) of human bone marrow aspirate. After a 1-h incubation period, the bone marrow aspirates containing AMLs were seeded into 10-cm tissue culture dishes, and a disk-shaped magnet (diameter 2.2 cm; height 1 cm; 4000 Gauss) was positioned under the dish to enrich MSCs by magnetic force. The MSCs proliferated, forming colonies at the site where the magnet was positioned. In contrast, no colonies and very few viable cells were observed in ordinary culture based on plastic-adherent tendencies of cells without use of AMLs. These results suggest that this AML culture method can rapidly and efficiently expand a small number of MSCs into numbers suitable for clinical application.
Collapse
Affiliation(s)
- Akira Ito
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|