1
|
Amino Acid Deletions in p6 Gag Domain of HIV-1 CRF07_BC Ameliorate Galectin-3 Mediated Enhancement in Viral Budding. Int J Mol Sci 2020; 21:ijms21082910. [PMID: 32326345 PMCID: PMC7216183 DOI: 10.3390/ijms21082910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023] Open
Abstract
HIV-1 CRF07_BC is a recombinant virus with amino acid (a.a.) deletions in p6Gag, which are overlapped with the Alix-binding domain. Galectin-3 (Gal3), a β-galactose binding lectin, has been reported to interact with Alix and regulate HIV-1 subtype B budding. This study aims to evaluate the role of Gal3 in HIV-1 CRF07_BC infection and the potential effect of a.a. deletions on Gal3-mediated regulation. A total of 38 HIV-1+ injecting drug users (IDUs) were enrolled in the study. Viral characterization and correlation of Gal3 were validated. CRF07_BC containing 7 a.a. deletions and wild-type in the p6Gag (CRF07_BC-7d and -wt) were isolated and infectious clones were generated. Viral growth kinetic and budding assays using Jurkat-CCR5/Jurkat-CCR5-Gal3 cells infected with CRF07_BC were performed. Results indicate that 69.4% (25/38) of the recruited patients were identified as CRF07_BC, and CRF07_BC-7d was predominant. Slow disease progression and significantly higher plasma Gal3 were noted in CRF07_BC patients (p < 0.01). Results revealed that CRF07_BC infection resulted in Gal3 expression, which was induced by Tat. Growth dynamic and budding assays indicated that Gal3 expression in Jurkat-CCR5 cells significantly enhanced CRF07_BC-wt replication and budding (p < 0.05), while the promoting effect was ameliorated in CRF07_BC-7d. Co-immunoprecipitation found that deletions in the p6Gag reduced Gal-3-mediated enhancement of the Alix–Gag interaction.
Collapse
|
2
|
Gordon K, Omar S, Nofemela A, Bandawe G, Williamson C, Woodman Z. Short Communication: A Recombinant Variant with Increased Envelope Entry Efficiency Emerged During Early Infection of an HIV-1 Subtype C Dual Infected Rapid Progressor. AIDS Res Hum Retroviruses 2016; 32:303-10. [PMID: 25905681 DOI: 10.1089/aid.2014.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in functionally constrained sites of the HIV envelope (Env) can affect entry efficiency and are potential targets for vaccine and drug design. We investigated Du151, a dual-infected individual with rapid disease progression. At her death 19 months postinfection (mpi), she was infected with a recombinant variant, which outgrew both parental viruses. We aimed to determine whether the recombinant virus had enhanced Env entry efficiency compared to the parental viruses and to identify the functional determinant. We generated 15 env clones at 1, 2, 8, and 19 mpi. Pseudovirus carrying a recombinant Env clone (PSV clone), C18 (19 mpi), had significantly higher entry efficiency compared to the parents, suggesting that the recombinant virus had enhanced fitness. To identify the functional determinant, we compared two recombinant PSV clones (C18 and C63)-differing in entry efficiency (2-fold) and by four and three amino acids in gp120 and gp41, respectively. The increased entry efficiency of a C18-gp41 PSV chimera indicated that the three amino acids in the C18 gp41 region were involved (K658, G671, and F717). Site-directed mutagenesis of the three amino acids of C63 showed that a single amino acid mutation, R658K, increased pseudovirion entry efficiency. The introduction of R658 into two PSV clones (C1 and C18) decreased their entry efficiency, suggesting that R658 carries a fitness cost. Thus, our data suggest that a recombinant virus emerged at 19 mpi with enhanced Env entry efficiency. Therefore, K658 in gp41 could in part be a contributing factor to the increased viral load and rapid disease progression of Du151.
Collapse
Affiliation(s)
- Kerry Gordon
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Shatha Omar
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andile Nofemela
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| | - Zenda Woodman
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Kharsany ABM, Frohlich JA, Yende-Zuma N, Mahlase G, Samsunder N, Dellar RC, Zuma-Mkhonza M, Karim SSA, Karim QA. Trends in HIV Prevalence in Pregnant Women in Rural South Africa. J Acquir Immune Defic Syndr 2015; 70:289-95. [PMID: 26186507 PMCID: PMC5056320 DOI: 10.1097/qai.0000000000000761] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Despite substantial progress in the delivery of HIV prevention programs, some communities continue to experience high rates of HIV infection. We report on temporal trends in HIV prevalence in pregnant women in a community in rural KwaZulu-Natal in South Africa. METHODS Annual, anonymous cross-sectional HIV sero-prevalence surveys were conducted between 2001 and 2013 among first visit prenatal clinic attendees. The time periods 2001 to 2003 were defined as pre-antiretroviral therapy (ART), 2004 to 2008 as early ART, and 2009 to 2013 as contemporary ART roll-out, to correspond with the substantial scale-up of ART program. RESULTS Overall, HIV prevalence rose from 35.3% [95% confidence interval (CI): 32.3 to 38.3] pre-ART (2001-2003) to 39.0% (95% CI: 36.8 to 41.1) in the early ART (2004-2008) to 39.3% (95% CI: 37.2 to 41.4) in the contemporary ART (2009-2013) roll-out periods. In teenage women (<20 years), HIV prevalence declined from 22.5% (95% CI: 17.5 to 27.5) to 20.7% (95% CI: 17.5 to 23.8) and to 17.2% (95% CI: 14.3 to 20.2) over the similar ART roll-out periods (P = 0.046). Prevalence increased significantly in women 30 years and older (P < 0.001) over the same time period largely because of survival after ART scale up. Teenage girls with male partners of age 20-24 and ≥ 25 years had a 1.7-fold (95% CI: 1.3-2.4; P = 0.001) and 3-fold (95% CI: 2.1 to 4.3; P < 0.001) higher HIV prevalence respectively. CONCLUSIONS Notwithstanding the encouraging decline in teenagers, the ongoing high HIV prevalence in pregnant women in this rural community, despite prevention and treatment programs, is deeply concerning. Targeted interventions for teenagers, especially for those in age-disparate relationships, are needed to impact this HIV epidemic trajectory.
Collapse
Affiliation(s)
- Ayesha BM Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - Janet A Frohlich
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | | | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - Rachael C Dellar
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
| | - May Zuma-Mkhonza
- uMgungundlovu Health District (D22), KwaZulu-Natal Provincial Department of Health
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York
| |
Collapse
|
4
|
Cenci A, D'Avenio G, Tavoschi L, Chiappi M, Becattini S, Narino MDP, Picconi O, Bernasconi D, Fanales-Belasio E, Vardas E, Sukati H, Lo Presti A, Ciccozzi M, Monini P, Ensoli B, Grigioni M, Buttò S. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms. PLoS One 2014; 9:e95183. [PMID: 24788065 PMCID: PMC4005737 DOI: 10.1371/journal.pone.0095183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of “shifting” putative N-glycosylation sites (PNGSs) in the α2 helix (in C3) and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.
Collapse
Affiliation(s)
| | - Giuseppe D'Avenio
- Istituto Superiore di Sanità, Department of Technology and Health, Rome, Italy
| | - Lara Tavoschi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Michele Chiappi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | | | | | - Orietta Picconi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | | | | | - Eftyhia Vardas
- Stellenbosch University, Division of Medical Virology, Stellenbosch, South Africa; Lancet Laboratories, Johannesburg, South Africa
| | - Hosea Sukati
- National Center Public Health Laboratory, Manzini, Swaziland
| | - Alessandra Lo Presti
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy
| | - Massimo Ciccozzi
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy; University of Biomedical Campus, Rome, Italy
| | - Paolo Monini
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Barbara Ensoli
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Mauro Grigioni
- Istituto Superiore di Sanità, Department of Technology and Health, Rome, Italy
| | - Stefano Buttò
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| |
Collapse
|
5
|
Alexandre KB, Moore PL, Nonyane M, Gray ES, Ranchobe N, Chakauya E, McMahon JB, O’Keefe BR, Chikwamba R, Morris L. Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN. Virology 2013; 446:66-76. [PMID: 24074568 PMCID: PMC3787538 DOI: 10.1016/j.virol.2013.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/15/2013] [Accepted: 07/18/2013] [Indexed: 11/30/2022]
Abstract
We examined the ability of HIV-1 subtype C to develop resistance to the inhibitory lectins, griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN), which bind multiple mannose-rich glycans on gp120. Four primary HIV-1 strains cultured under escalating concentrations of these lectins became increasingly resistant tolerating 2 to 12 times their 50% inhibitory concentrations. Sequence analysis of gp120 showed that most had deletions of 1 to 5 mannose-rich glycans. Glycosylation sites at positions 230, 234, 241, 289 located in the C2 region and 339, 392 and 448 in the C3-C4 region were affected. Furthermore, deletions and insertions of up to 5 amino acids in the V4 region were observed in 3 of the 4 isolates. These data suggest that loss of glycosylation sites on gp120 as well as rearrangement of glycans in V4 are mechanisms involved in HIV-1 subtype C escape from GRFT, CV-N and SVN.
Collapse
Affiliation(s)
- Kabamba B. Alexandre
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Elin S. Gray
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Nthabeleng Ranchobe
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ereck Chakauya
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Maryland, USA
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, NCI-Frederick, Maryland, USA
| | - Rachel Chikwamba
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Lin NH, Becerril C, Giguel F, Novitsky V, Moyo S, Makhema J, Essex M, Lockman S, Kuritzkes DR, Sagar M. Env sequence determinants in CXCR4-using human immunodeficiency virus type-1 subtype C. Virology 2012; 433:296-307. [PMID: 22954962 DOI: 10.1016/j.virol.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 08/01/2012] [Indexed: 02/09/2023]
Abstract
HIV-1 subtype C (HIV-1C) CXCR4-using virus is isolated infrequently and is poorly characterized. Understanding HIV-1C env characteristics has implications for the clinical use of antiretrovirals that target viral entry. A total of 209 env clones derived from 10 samples with mixed CCR5-(R5), CXCR4-using (X4) or dual-tropic HIV-1C were phenotyped for coreceptor usage. Intra-patient X4 and R5 variants generally formed distinct monophyletic phylogenetic clusters. X4 compared to R5 envs had significantly greater amino acid variability and insertions, higher net positive charge, fewer glycosylation sites and increased basic amino acid substitutions in the GPGQ crown. Basic amino acid substitution and/or insertion prior to the crown are highly sensitive characteristics for predicting X4 viruses. Chimeric env functional studies suggest that the V3 loop is necessary but often not sufficient to impart CXCR4 utilization. Our studies provide insights into the unique genotypic characteristics of X4 variants in HIV-1C.
Collapse
Affiliation(s)
- Nina H Lin
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Anastassopoulou CG, Ketas TJ, Sanders RW, Klasse PJ, Moore JP. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance. Virology 2012; 428:86-97. [PMID: 22520838 DOI: 10.1016/j.virol.2012.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 11/26/2022]
Abstract
A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.
Collapse
Affiliation(s)
- Cleo G Anastassopoulou
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
8
|
Alexandre KB, Gray ES, Pantophlet R, Moore PL, McMahon JB, Chakauya E, O'Keefe BR, Chikwamba R, Morris L. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J Virol 2011; 85:9039-50. [PMID: 21697467 PMCID: PMC3165825 DOI: 10.1128/jvi.02675-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/13/2011] [Indexed: 01/08/2023] Open
Abstract
The glycans on HIV-1 gp120 play an important role in shielding neutralization-sensitive epitopes from antibody recognition. They also serve as targets for lectins that bind mannose-rich glycans. In this study, we investigated the interaction of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 to plates coated with anti-CD4bs antibodies b12 and b6 or the CD4 receptor mimetic CD4-IgG2. The average enhancement of b12 or b6 binding was higher for subtype B viruses than for subtype C, while for CD4-IgG2, it was similar for both subtypes, although lower than observed with antibodies. This GRFT-mediated enhancement of HIV-1 binding to b12 was reflected in synergistic neutralization for 2 of the 4 viruses tested. The glycan at position 386, which shields the CD4bs, was involved in both GRFT-mediated enhancement of binding and neutralization synergism between GRFT and b12. Although GRFT enhanced CD4bs exposure, it simultaneously inhibited ligand binding to the coreceptor binding site, suggesting that GRFT-dependent enhancement and neutralization utilize independent mechanisms. This study shows for the first time that GRFT interaction with gp120 exposes the CD4bs through binding the glycan at position 386, which may have implications for how to access this conserved site.
Collapse
Affiliation(s)
| | - Elin S. Gray
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ralph Pantophlet
- Faculty of Health Sciences
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Ereck Chakauya
- Centre for Scientific and Industrial Research, Pretoria, South Africa
| | - Barry R. O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Rachel Chikwamba
- Centre for Scientific and Industrial Research, Pretoria, South Africa
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
9
|
Fonteh PN, Keter FK, Meyer D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: potential for incorporation into virostatic cocktails. J Inorg Biochem 2011; 105:1173-80. [PMID: 21708102 DOI: 10.1016/j.jinorgbio.2011.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Four bis(thiosemicarbazonate)gold(III) complexes (1-4) with a general formula [Au(L)]Cl {L=L1, glyoxal-bis(N(4)-methylthiosemicarbazone); L2, glyoxal-bis(N(4)-ethylthiosemicarbazone); L3, diacetyl-bis(N(4)-methylthiosemicarbazone); L4, diacetyl-bis(N(4)-ethylthiosemicarbazone)} were synthesised and screened for activity against the human immunodeficiency virus (HIV). Complexes 1-4 were characterised using (1)H-NMR and IR spectroscopy; and their purity established by micronanalysis. Complex 3 inhibited viral infection of TZM-bl cells by 98% (IC(50)=6.8±0.6μM) at a non toxic concentration of 12.5μM while complex 4 inhibited infection of these cells by 72 and 98% (IC(50)=5.3±0.4μM) at concentrations of 6.25 and 12.5μM respectively. The mechanism of inhibition of infection in TZM-bl cells is presumably as a result of the cytostatic or anti-proliferative activity that was observed for complex 4 in real time cell electronic sensing (RT-CES) and carboxyflourescein succinimidyl ester (CFSE) analysis. Treatment of T lymphocytes from HIV infected individuals with 4 decreased CD4+ T cell expression (p=0.0049) as demonstrated by multi-parametric flow cytometry without suppressing cytokine production. None of the ligands (L1-L4) demonstrated anti-viral activity, supporting the importance of metal (gold) complexation in these potential drugs. Complexes 3 and 4 were shown to have ideal lipophilicity values that were similar when shake flask (0.97±0.5 and 2.42±0.6) and in silico prediction (0.8 and 1.5) methods were compared. The activity and drug-like properties of complexes 3 and 4 suggests that these novel metal-based compounds could be combined with virus inhibitory drugs to work as cytostatic agents in the emerging class of anti-HIV drugs known as virostatics.
Collapse
Affiliation(s)
- Pascaline N Fonteh
- Department of Biochemistry, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa
| | | | | |
Collapse
|
10
|
Gharu L, Ringe R, Bhattacharya J. HIV-1 clade C envelopes obtained from late stage symptomatic Indian patients varied in their ability towards relative CD4 usages and sensitivity to CCR5 antagonist TAK-779. Virus Res 2011; 158:216-24. [PMID: 21524671 DOI: 10.1016/j.virusres.2011.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
The mechanism by which strictly CCR5 using HIV-1 clade C variants exacerbate disease progression in absence of coreceptor switch is not clearly known. We previously reported HIV-1 clade C envelopes (Env) obtained from late stage Indian patients with expanded coreceptor tropism. Here we compared such Envs (having expanded coreceptor tropism) with strictly CCR5 using Envs also obtained from late stage in their capacity to utilize CD4 and CCR5 for productive entry. We found that while envelopes with low CD4 dependence tend to infect primary CD4(+) T cells better than those required optimum CD4 for entry, no significant association was found between low CD4 usage and infectivity of primary CD4(+) T cells by Env-pseudotyped viruses and their sensitivity to CCR5 antagonist TAK-779. Interestingly, Envs that readily infected HeLa cells expressing low CD4 showed relative resistance to T20 indicating that conformational intermediates of these envelopes remained for a shorter period of time than is required for efficient inhibition by T20.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune 411026, India
| | | | | |
Collapse
|
11
|
Gharu L, Ringe R, Satyakumar A, Patil A, Bhattacharya J. Short communication: evidence of HIV type 1 clade C env clones containing low V3 loop charge obtained from an AIDS patient in India that uses CXCR6 and CCR8 for entry in addition to CCR5. AIDS Res Hum Retroviruses 2011; 27:211-9. [PMID: 20854195 DOI: 10.1089/aid.2009.0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Anupindi Satyakumar
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Ajit Patil
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| |
Collapse
|
12
|
Coetzer M, Nedellec R, Cilliers T, Meyers T, Morris L, Mosier DE. Extreme genetic divergence is required for coreceptor switching in HIV-1 subtype C. J Acquir Immune Defic Syndr 2011; 56:9-15. [PMID: 20921899 PMCID: PMC3006070 DOI: 10.1097/qai.0b013e3181f63906] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Coreceptor switching from CCR5 to CXCR4 is less common in subtype C HIV-1 infection than in subtype B for reasons that are unclear. We have examined sequential virus samples from a subtype C-infected child who had evidence of coreceptor switching. METHODS To examine HIV-1 envelope evolution towards CXCR4 usage, env sequences were correlated with phenotypic characteristics determined by entry assays, as well as the ability to use alternative coreceptors such as FPRL1, CCR3, CCR8 and others. The value of a phenotype predictor based on V3 sequences was also assessed. RESULTS Ninety-three sequences revealed 3 distinct coexistent virus lineages and only some members of one lineage evolved to use CXCR4. These lineages also had diverse alternative coreceptor patterns including the ability to use FPRL1, CCR3, CCR8, APJ, CMKLR1, RDC-1, CXCR6, CCR1, GPCR1, GPR15 and CCR6. Coreceptor switching was associated with extensive and rapid sequence divergence in the V1/V2 region in addition to V3 changes. Furthermore, interlineage recombination within the C2 region resulted in low predictability of a V3 sequence-based phenotype algorithm, and highlighted the importance of V1/V2 and V3 sequences in coreceptor usage. CONCLUSION These results suggest that the evolution to coreceptor switching in subtype C infection requires more mutations than other subtypes, and this contributes to the reduced incidence of R5X4 viruses.
Collapse
MESH Headings
- Child
- Cloning, Molecular
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Molecular Sequence Data
- Phenotype
- Phylogeny
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/immunology
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/immunology
- Recombination, Genetic/genetics
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Mia Coetzer
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Archary D, Gordon ML, Green TN, Coovadia HM, Goulder PJR, Ndung'u T. HIV-1 subtype C envelope characteristics associated with divergent rates of chronic disease progression. Retrovirology 2010; 7:92. [PMID: 21050445 PMCID: PMC2992043 DOI: 10.1186/1742-4690-7-92] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months. Results Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07). However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006), V3 (p = 0.01) and C3 (p = 0.005) regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs) were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively). Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively). Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41. Conclusions These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution is an important correlate of disease progression in chronic HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Derseree Archary
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R, Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | |
Collapse
|
14
|
White EJ, McColgan B, Kassaye S, Zijenah L, Katzenstein D. Unusual five amino acid insert within subtype C HIV-1 envelope contributes to dual-tropism (X4R5). AIDS 2010; 24:1063-4. [PMID: 20299967 PMCID: PMC3428204 DOI: 10.1097/qad.0b013e328331f717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the course of HIV infection, some HIV-1 viruses switch from using the CCR5 (R5) coreceptor to using CXCR4 (X4). Here, we describe two subtype C isolates from a Zimbabwean patient that switched from using R5 to using both R5 and X4 with an accompanying addition of five amino acids to the V3 loop region of envelope. The insert appears to be derived from the human genome rather than a duplication within HIV-1.
Collapse
|
15
|
Sealy R, Zhan X, Lockey TD, Martin L, Blanchard J, Traina-Dorge V, Hurwitz JL. SHIV infection protects against heterologous pathogenic SHIV challenge in macaques: a gold-standard for HIV-1 vaccine development? Curr HIV Res 2010; 7:497-503. [PMID: 19925400 DOI: 10.2174/157016209789346255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A current debate in the HIV-1 vaccine field concerns the ability of an immunodeficiency virus to elicit a protective response. One argument is that HIV-1 superinfections are frequent in healthy individuals, because virus evades conventional immune surveillance, a serious obstacle to vaccine design. The opposing argument is that protection from superinfection is significant, reflecting a robust immune response that might be harnessed by vaccination to prevent disease. In an experiment designed to address the debate, two macaques received an I.V. inoculation with SHIV KU-1-d (a derivative of SHIV KU-1) and were rested for >10 months. Infection elicited diverse neutralizing antibody activities in both animals. Animals were then exposed to SHIV 89.6P (I.V.), a virus carrying a heterologous envelope protein relative to the vaccine strain. Infection was monitored by viral load and CD4+ T-cell measurements. All control animals were infected and most succumbed to disease. In contrast, protection from superinfection was statistically significant in test monkeys; one animal showed no evidence of superinfection at any time point and the second showed evidence of virus at only one time point over a 6-month observation period. Neither animal showed signs of disease. Perhaps this protective state may serve as a 'gold-standard' for HIV-1 vaccine development, as a similar degree of protection against immunodeficiency virus infections in humans would be much desired.
Collapse
Affiliation(s)
- Robert Sealy
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Singh A, Page T, Moore PL, Allgaier RL, Hiramen K, Coovadia HM, Walker BD, Morris L, Ndung’u T. Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates. Virology 2009; 393:56-67. [PMID: 19695656 PMCID: PMC3492694 DOI: 10.1016/j.virol.2009.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 05/19/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
Abstract
It is widely documented that a complete switch from the predominant CCR5 (R5) to CXCR4 (X4) phenotype is less common for HIV-1 subtype C (HIV-1C) compared to other major subtypes. We investigated whether dualtropic HIV-1C isolates represented dualtropic, mixed R5 and X4 clones or both. Thirty of 35 functional HIV-1 env clones generated by bulk PCR amplification from peripheral blood mononuclear cells (PBMCs) infected with seven dualtropic HIV-1C isolates utilized CXCR4 exclusively. Five of 35 clones displayed dualtropism. Endpoint dilution of one isolate did not yield a substantial proportion of R5-monotropic env clones. Sequence-based predictive algorithms showed that env sequences from PBMCs, CXCR4 or CCR5-expressing cell lines were indistinguishable and all possessed X4/dualtropic characteristics. We describe HIV-1C CXCR4-tropic env sequence features. Our results suggest a dramatic loss of CCR5 monotropism as dualtropism emerges in HIV-1C which has important implications for the use of coreceptor antagonists in therapeutic strategies for this subtype.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- Cluster Analysis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- HIV-1/classification
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- Receptors, CCR5/analysis
- Receptors, CXCR5/analysis
- Receptors, HIV/analysis
- Receptors, HIV/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
- Virus Internalization
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ashika Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Taryn Page
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Rachel L. Allgaier
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Keshni Hiramen
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Hoosen M. Coovadia
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics and Child Heath, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| |
Collapse
|
17
|
HIV-1 clade C env clones obtained from an Indian patient exhibiting expanded coreceptor tropism are presented with naturally occurring unusual amino acid substitutions in V3 loop. Virus Res 2009; 144:306-14. [PMID: 19409946 DOI: 10.1016/j.virusres.2009.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
HIV-1 subtype C is predominantly circulating in India and has been reported to be strictly CCR5 tropic irrespective of disease stages. In the present study, we examined env clones obtained from a late stage Indian patient with a history of multiple sexual partners and opportunistic infections for coreceptor usage and V3 loop sequence. The env clones were found to exploit several coreceptors in addition to CCR5 in a cell-associated and cell-free manner. Analysis of V3 loop sequence revealed that the NARI-VB105 env clones were presented with unique amino acid substitutions with GPGR motif, atypical of clade C envelope. Further genetic analysis showed the V3 sequences albeit belonging to subtype C; however clustered distinctly to that of other clade C envelopes originated in different geographical regions. Modelling data revealed that NARI-VB105 V3 loop contained several basic residues giving rise a high net positive charge of +8 to these envelopes.
Collapse
|
18
|
Novitsky V, Lagakos S, Herzig M, Bonney C, Kebaabetswe L, Rossenkhan R, Nkwe D, Margolin L, Musonda R, Moyo S, Woldegabriel E, van Widenfelt E, Makhema J, Essex M. Evolution of proviral gp120 over the first year of HIV-1 subtype C infection. Virology 2009; 383:47-59. [PMID: 18973914 PMCID: PMC2642736 DOI: 10.1016/j.virol.2008.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 07/14/2008] [Accepted: 09/11/2008] [Indexed: 11/21/2022]
Abstract
The evolution of proviral gp120 during the first year after seroconversion in HIV-1 subtype C infection was addressed in a case series of eight subjects. Multiple viral variants were found in two out of eight cases. Slow rate of viral RNA decline and high early viral RNA set point were associated with a higher level of proviral diversity from 0 to 200 days after seroconversion. Proviral divergence from MRCA over the same period also differed between subjects with slow and fast decline of viral RNA, suggesting that evolution of proviral gp120 early in infection may be linked to the level of viral RNA replication. Changes in the length of variable loops were minimal, and length reduction was more common than length increase. Potential N-linked glycosylation sites ranged +/-one site, showing common fluctuations in the V4 and V5 loops. These results highlight the role of proviral gp120 diversity and diversification in the pathogenesis of acute HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Vladimir Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB 402, 651 Huntington Avenue, Boston, MA, 02115, USA
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Stephen Lagakos
- Department of Biostatistics, Harvard School of Public Health, 2-423, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Michaela Herzig
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB 402, 651 Huntington Avenue, Boston, MA, 02115, USA
| | - Caitlin Bonney
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB 402, 651 Huntington Avenue, Boston, MA, 02115, USA
| | - Lemme Kebaabetswe
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Raabya Rossenkhan
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - David Nkwe
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Lauren Margolin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB 402, 651 Huntington Avenue, Boston, MA, 02115, USA
| | - Rosemary Musonda
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Elias Woldegabriel
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Erik van Widenfelt
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - Joseph Makhema
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| | - M. Essex
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB 402, 651 Huntington Avenue, Boston, MA, 02115, USA
- Botswana–Harvard School of Public Health AIDS Initiative Partnership, Private Bag BO 320, Bontleng, Gaborone, Botswana
| |
Collapse
|
19
|
Forsman A, Weiss RA. Why is HIV a pathogen? Trends Microbiol 2008; 16:555-60. [PMID: 18977141 DOI: 10.1016/j.tim.2008.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/19/2022]
Abstract
The pathogenesis of HIV begins with a profound depletion of CD4+ T cells in the gut followed by a long period of clinically silent but dynamic virus replication and diversification with high host cell turnover before the onset of AIDS. The AIDS-defining opportunistic infections and tumors mark the end-point of a long balancing act between virus and host that occurs when CD4+ T cell numbers fall below a level that can sustain immunity. Comparative studies of lentivirus infections in other species show that AIDS is not an inevitable outcome of infection because simian immunodeficiency virus in natural hosts seldom causes disease. What distinguishes pathogenic from 'passenger' infection is a systemic activation of immune responses followed by destruction of the integrity of lymphoid follicles. Macrophage and dendritic cell infection also contribute to pathogenesis. Maedi-Visna virus infection in sheep, which targets these cells but not T lymphocytes, also leads to progressive disease and death that resembles the wasting and brain diseases of HIV without the T cell immunodeficiency. Thus, lessons from pathogenic and nonpathogenic lentivirus infections provide insight into the complex syndrome called AIDS.
Collapse
Affiliation(s)
- Anna Forsman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | | |
Collapse
|
20
|
Abstract
The envelope gene (env) of human immunodeficiency virus type 1 (HIV-1) undergoes rapid divergence from the transmitted sequence and increasing diversification during the prolonged course of chronic infection in humans. In about half of infected individuals or more, env evolution leads to expansion of the use of entry coreceptor from CCR5 alone to CCR5 and CXCR4. The stochastic nature of this coreceptor switch is not well explained by host selective forces that should be relatively constant between infected individuals. Moreover, differences in the incidence of coreceptor switching among different HIV-1 subtypes suggest that properties of the evolving virus population drive the switch. We evaluated the functional properties of sequential env clones from a patient with evidence of coreceptor switching at 5.67 years of infection. We found an abrupt decline in the ability of viruses to use CCR5 for entry at this time, manifested by a 1- to 2-log increase in susceptibility to CCR5 inhibitors and a reduced ability to infect cell lines with low CCR5 expression. There was an abnormally rapid 5.4% divergence in env sequences from 4.10 to 5.76 years of infection, with the V3 and V4/V5 regions showing the greatest divergence and evidence of positive selection. These observations suggest that a decline in the fitness of R5 virus populations may be one driving force that permits the emergence of R5X4 variants.
Collapse
|
21
|
Calis JCJ, Rotteveel HP, van der Kuyl AC, Zorgdrager F, Kachala D, van Hensbroek MB, Cornelissen M. Severe anaemia is not associated with HIV-1 env gene characteristics in Malawian children. BMC Infect Dis 2008; 8:26. [PMID: 18312662 PMCID: PMC2311312 DOI: 10.1186/1471-2334-8-26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 02/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaemia is the most common haematological complication of HIV and associated with a high morbidity and a poor prognosis. The pathogenesis of HIV-associated anaemia is poorly understood and may include a direct effect of HIV on erythropoiesis. In vitro studies have suggested that specific HIV strains, like X4 that uses the CXCR4 co-receptor present on erythroid precursors, are associated with diminished erythropoiesis. This co-receptor affinity is determined by changes in the hypervariable loop of the HIV-1 envelope genome. In a previous case-control study we observed an association between HIV and severe anaemia in Malawian children that could not be fully explained by secondary infections and micronutrient deficiencies alone. We therefore explored the possibility that alterations in the V1-V2-V3 fragment of HIV-1 were associated with severe anaemia. METHODS Using peripheral blood nucleic acid isolates of HIV-infected children identified in the previous studied we assessed if variability of the V1-V2-V3 region of HIV and the occurrence of X4 strains were more common in HIV-infected children with (cases, n = 29) and without severe anaemia (controls, n = 30). For 15 cases bone marrow isolates were available to compare against peripheral blood. All children were followed for 18 months after recruitment. RESULTS Phylogenetic analysis showed that HIV-1 subtype C was present in all but one child. All V1-V2-V3 characteristics tested: V3 charge, V1-V2 length and potential glycosylation sites, were not found to be different between cases and controls. Using a computer model (C-PSSM) four children (7.8%) were identified to have an X4 strain. This prevalence was not different between study groups (p = 1.00). The V3 loop characteristics for bone marrow and peripheral blood isolates in the case group were identical. None of the children identified as having an X4 strain developed a (new) episode of severe anaemia during follow up. CONCLUSION The prevalence of X4 strains in these young HIV-1-subtype-C-infected children that were most likely vertically infected and naïve to anti-retroviral therapy can be considered high compared to previous results from Malawi. It is unlikely that V1-V2-V3 fragment characteristics and HIV co-receptor affinity is an important feature in the development of severe anaemia in Malawian children.
Collapse
Affiliation(s)
- Job CJ Calis
- Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Hellen P Rotteveel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - David Kachala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Michaël Boele van Hensbroek
- Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Lahuerta M, Aparicio E, Bardaji A, Marco S, Sacarlal J, Mandomando I, Alonso P, Martinez MA, Menendez C, Naniche D. Rapid spread and genetic diversification of HIV type 1 subtype C in a rural area of southern Mozambique. AIDS Res Hum Retroviruses 2008; 24:327-35. [PMID: 18271719 DOI: 10.1089/aid.2007.0134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we analyzed the human immunodeficiency type 1 (HIV-1) viruses circulating between 1999 and 2004 in antiretroviral-naive women from a rural area of southern Mozambique. Nucleotide sequencing of the HIV-1 long terminal repeat (LTR) U3, envelope (env) C2V3C3, and protease (pr) genomic regions was performed from women sera samples collected in 1999 and 2004. Phylogenetic analysis revealed that all amplified sequences belonged to subtype C. Although env sequences were predominantly CCR5-tropic (R5), CXCR4-tropic (X4) variants were also identified (13%). Both 1999 and 2004 sequences were widely dispersed across multiple clusters and were related to different reference sequences from neighboring countries. Sequences from 2004 showed significantly more nucleotide genetic diversity than sequences from 1999. Importantly, genetic diversification was also observed at the pr and env amino acid level, suggesting that positive selection forces were implicated in the viral diversification. These results indicate the rapid spread and diversification of subtype C virus in Mozambique where HIV-1 prevalence in the Manhiça antenatal clinic reached 23% in 2004.
Collapse
Affiliation(s)
- Maria Lahuerta
- Barcelona Center for International Health Research (CRESIB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universtitat de Barcelona, Barcelona, Spain
| | - Ester Aparicio
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916 Badalona, Spain
| | - Azucena Bardaji
- Barcelona Center for International Health Research (CRESIB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universtitat de Barcelona, Barcelona, Spain
- The Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Sandra Marco
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916 Badalona, Spain
| | - Jahit Sacarlal
- The Manhiça Health Research Center (CISM), Manhiça, Mozambique
- Faculdade de Medicina da Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Pedro Alonso
- Barcelona Center for International Health Research (CRESIB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universtitat de Barcelona, Barcelona, Spain
- The Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Miguel Angel Martinez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916 Badalona, Spain
| | - Clara Menendez
- Barcelona Center for International Health Research (CRESIB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universtitat de Barcelona, Barcelona, Spain
- The Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Denise Naniche
- Barcelona Center for International Health Research (CRESIB), Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universtitat de Barcelona, Barcelona, Spain
| |
Collapse
|