1
|
Meador LR, Kessans SA, Kilbourne J, Kibler KV, Pantaleo G, Roderiguez ME, Blattman JN, Jacobs BL, Mor TS. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles. Virology 2017; 507:242-256. [PMID: 28458036 PMCID: PMC5529300 DOI: 10.1016/j.virol.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1.
Collapse
Affiliation(s)
- Lydia R Meador
- Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ, USA; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Sarah A Kessans
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Karen V Kibler
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne, Switzerland
| | | | - Joseph N Blattman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Tsafrir S Mor
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Shi Y, Feng Y, Ding X, Chen J, Xu J, Wan Y. Short Communication: The Distribution of Potential N-Linked Glycosylation Sites in Gp120 Differs Among Major HIV-1 Subtypes Circulating in China. AIDS Res Hum Retroviruses 2016; 32:101-8. [PMID: 26384088 DOI: 10.1089/aid.2015.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CRF01_AE shows an obvious sexual transmission advantage over other major HIV-1 subtypes circulating in China. Previous studies showed that the presence or absence of potential N-linked glycosylation sites (PNGSs) in variable loops might affect HIV-1 transmission; it is therefore of interest to compare the distribution of potential PNGSs on envelopes of different subtypes circulating in China. Compared to CRF07_BC, CRF08_BC, B, and B' subtypes isolated in China, CRF01_AE subtypes isolated from both China and outside China had significantly fewer PNGSs in total and in V2/V4, while they had significantly more PNGSs in V5. HIV-1 subtype CRF01_AE has a unique PNGS distribution pattern in Gp120, which may contribute to its advantage in sexual transmission in China.
Collapse
Affiliation(s)
- Yin Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Wenzhou Medical University, Wenzhou, China
| | - Yanmeng Feng
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jian Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Wenzhou Medical University, Wenzhou, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Wenzhou Medical University, Wenzhou, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Aiamkitsumrit B, Sullivan NT, Nonnemacher MR, Pirrone V, Wigdahl B. Human Immunodeficiency Virus Type 1 Cellular Entry and Exit in the T Lymphocytic and Monocytic Compartments: Mechanisms and Target Opportunities During Viral Disease. Adv Virus Res 2015; 93:257-311. [PMID: 26111588 DOI: 10.1016/bs.aivir.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4+ T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected. Although a single virus may have the capacity to infect both a CD4+ T cell and a cell of the monocyte-macrophage lineage, the mechanisms involved in both the entry of the virus into the cell and the viral egress from the cell during budding and viral release differ depending on the cell type. These host-virus interactions and processes can result in the differential targeting of different cell types by selected viral quasispecies and the overall amount of infectious virus released into the extracellular environment or by direct cell-to-cell spread of viral infectivity. This review covers the major steps of virus entry and egress with emphasis on the parts of the replication process that lead to differences in how the virus enters, replicates, and buds from different cellular compartments, such as CD4+ T cells and cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Moscoso CG, Xing L, Hui J, Hu J, Kalkhoran MB, Yenigun OM, Sun Y, Paavolainen L, Martin L, Vahlne A, Zambonelli C, Barnett SW, Srivastava IK, Cheng RH. Trimeric HIV Env provides epitope occlusion mediated by hypervariable loops. Sci Rep 2014; 4:7025. [PMID: 25395053 PMCID: PMC4231788 DOI: 10.1038/srep07025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022] Open
Abstract
Hypervariable loops of HIV-1 Env protein gp120 are speculated to play roles in the conformational transition of Env to the receptor binding-induced metastable state. Structural analysis of full-length Env-based immunogens, containing the entire V2 loop, displayed tighter association between gp120 subunits, resulting in a smaller trimeric diameter than constructs lacking V2. A prominent basal quaternary location of V2 and V3′ that challenges previous reports would facilitate gp41-independent gp120-gp120 interactions and suggests a quaternary mechanism of epitope occlusion facilitated by hypervariable loops. Deletion of V2 resulted in dramatic exposure of basal, membrane-proximal gp41 epitopes, consistent with its predicted basal location. The structural features of HIV-1 Env characterized here provide grounds for a paradigm shift in loop exposure and epitope occlusion, while providing substantive rationale for epitope display required for elicitation of broadly neutralizing antibodies, as well as substantiating previous pertinent literature disregarded in recent reports.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Li Xing
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Jinwen Hui
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Jeffrey Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | | | - Onur M Yenigun
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Yide Sun
- Novartis Vaccines and Diagnostics Inc., 45 Sydney Street, Cambridge, MA 02139
| | - Lassi Paavolainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | - Loïc Martin
- Commissariat à l'énergie atomique et aux énergies alternatives, Institut de Biologie et Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette F-91191, France
| | - Anders Vahlne
- Karolinska Institutet, Structural Virology, Clinical Microbiology/University Hospital, 171 77 Stockholm, Sweden
| | - Carlo Zambonelli
- Novartis Vaccines and Diagnostics Inc., 45 Sydney Street, Cambridge, MA 02139
| | - Susan W Barnett
- Novartis Vaccines and Diagnostics Inc., 45 Sydney Street, Cambridge, MA 02139
| | | | - R Holland Cheng
- 1] Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 [2] Karolinska Institutet, Structural Virology, Clinical Microbiology/University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Klein K, Mann JFS, Rogers P, Shattock RJ. Polymeric penetration enhancers promote humoral immune responses to mucosal vaccines. J Control Release 2014; 183:43-50. [PMID: 24657807 DOI: 10.1016/j.jconrel.2014.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/26/2022]
Abstract
Protective mucosal immune responses are thought best induced by trans-mucosal vaccination, providing greater potential to generate potent local immune responses than conventional parenteral vaccination. However, poor trans-mucosal permeability of large macromolecular antigens limits bioavailability to local inductive immune cells. This study explores the utility of polymeric penetration enhancers to promote trans-mucosal bioavailability of insulin, as a biomarker of mucosal absorption, and two vaccine candidates: recombinant HIV-1 envelope glycoprotein (CN54gp140) and tetanus toxoid (TT). Responses to vaccinating antigens were assessed by measurement of serum and the vaginal humoral responses. Polyethyleneimine (PEI), Dimethyl-β-cyclodextrin (DM-β-CD) and Chitosan enhanced the bioavailability of insulin following intranasal (IN), sublingual (SL), intravaginal (I.Vag) and intrarectal (IR) administration. The same penetration enhancers also increased antigen-specific IgG and IgA antibody responses to the model vaccine antigens in serum and vaginal secretions following IN and SL application. Co-delivery of both antigens with PEI or Chitosan showed the highest increase in systemic IgG and IgA responses following IN or SL administration. However the highest IgA titres in vaginal secretions were achieved after IN immunisations with PEI and Chitosan. None of the penetration enhancers were able to increase antibody responses to gp140 after I.Vag immunisations, while in contrast PEI and Chitosan were able to induce TT-specific systemic IgG levels following I.Vag administration. In summary, we present supporting data that suggest appropriate co-formulation of vaccine antigens with excipients known to influence mucosal barrier functions can increase the bioavailability of mucosally applied antigens promoting the induction of mucosal and systemic antibody responses.
Collapse
Affiliation(s)
- Katja Klein
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Jamie F S Mann
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Paul Rogers
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Robin J Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
6
|
Aiamkitsumrit B, Dampier W, Antell G, Rivera N, Martin-Garcia J, Pirrone V, Nonnemacher MR, Wigdahl B. Bioinformatic analysis of HIV-1 entry and pathogenesis. Curr HIV Res 2014; 12:132-61. [PMID: 24862329 PMCID: PMC4382797 DOI: 10.2174/1570162x12666140526121746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102.
| |
Collapse
|
7
|
Hu K, Luo S, Tong L, Huang X, Jin W, Huang W, Du T, Yan Y, He S, Griffin GE, Shattock RJ, Hu Q. CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue. THE JOURNAL OF IMMUNOLOGY 2013; 191:1935-47. [DOI: 10.4049/jimmunol.1300120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Zhang C, Wan Y, Shi J, Zhou M, Meng Z, Yuan S, Qiu C, Zhang X, Xu X, Liu C, Xu J. Deglycosylation of HIV-1 AE Gp140 enhances the capacity to elicit neutralizing antibodies against the heterologous HIV-1 clade. AIDS Res Hum Retroviruses 2010; 26:569-75. [PMID: 20455767 DOI: 10.1089/aid.2009.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to test whether deglycosylation of an HIV-1 AE recombinant-derived gp140 could enhance the induction of neutralizing antibodies. N-to-Q mutations were introduced in the V1/V2 (m157/161) or V4 (m382/388) loops by using overlapping PCR. BALB/c mice were inoculated with different DNA vaccines at weeks 0, 2, 4, and 7. The Elispot assay was used to quantify Env-specific T-cell immunity, and the TZM-bl cell-based in vitro neutralizing assay with primary isolates was used to assess humoral immune responses. Our data showed that two mutant DNA vaccines, designated m157/161 and m382/388, mounted total T-cell responses that were at levels similar those of the unmutated vaccine. Although the levels of binding antibodies elicited by the two mutants were significantly lower than the levels elicited by the unmutated vaccine, cross-reactive neutralizing antibodies were observed only in the sera that received the mutant DNA vaccines. These data demonstrate that deglycosylation of HIV-1 Env could enhance the capacity to elicit cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Congyou Zhang
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|