1
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Kondashevskaya MV, Mikhaleva LM, Artem’yeva KA, Aleksankina VV, Areshidze DA, Kozlova MA, Pashkov AA, Manukhina EB, Downey HF, Tseilikman OB, Yegorov ON, Zhukov MS, Fedotova JO, Karpenko MN, Tseilikman VE. Unveiling the Link: Exploring Mitochondrial Dysfunction as a Probable Mechanism of Hepatic Damage in Post-Traumatic Stress Syndrome. Int J Mol Sci 2023; 24:13012. [PMID: 37629192 PMCID: PMC10455150 DOI: 10.3390/ijms241613012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
PTSD is associated with disturbed hepatic morphology and metabolism. Neuronal mitochondrial dysfunction is considered a subcellular determinant of PTSD, but a link between hepatic mitochondrial dysfunction and hepatic damage in PTSD has not been demonstrated. Thus, the effects of experimental PTSD on the livers of high anxiety (HA) and low anxiety (LA) rats were compared, and mitochondrial determinants underlying the difference in their hepatic damage were investigated. Rats were exposed to predator stress for 10 days. Then, 14 days post-stress, the rats were evaluated with an elevated plus maze and assigned to HA and LA groups according to their anxiety index. Experimental PTSD caused dystrophic changes in hepatocytes of HA rats and hepatocellular damage evident by increased plasma ALT and AST activities. Mitochondrial dysfunction was evident as a predominance of small-size mitochondria in HA rats, which was positively correlated with anxiety index, activities of plasma transaminases, hepatic lipids, and negatively correlated with hepatic glycogen. In contrast, LA rats had a predominance of medium-sized mitochondria. Thus, we show links between mitochondrial dysfunction, hepatic damage, and heightened anxiety in PTSD rats. These results will provide a foundation for future research on the role of hepatic dysfunction in PTSD pathogenesis.
Collapse
Affiliation(s)
- Marina V. Kondashevskaya
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - Lyudmila M. Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - Kseniya A. Artem’yeva
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - Valentina V. Aleksankina
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - David A. Areshidze
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - Maria A. Kozlova
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - Anton A. Pashkov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
- Federal Neurosurgical Center, Novosibirsk 630048, Russia
| | - Eugenia B. Manukhina
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - H. Fred Downey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Olga B. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
- Faculty of Basic Medicine, Chelyabinsk State University, Chelyabinsk 454080, Russia
| | - Oleg N. Yegorov
- Faculty of Basic Medicine, Chelyabinsk State University, Chelyabinsk 454080, Russia
| | - Maxim S. Zhukov
- A.P. Avtsyn Research Institute of Human Morphology, B.V. Petrovsky National Research Center of Surgery, Moscow 119991, Russia (L.M.M.)
| | - Julia O. Fedotova
- Laboratory of Neuroendocrinology, Pavlov Institute of Physiology, Saint Petersburg 199034, Russia
| | - Marina N. Karpenko
- Department of Physiology, Pavlov Institute of Experimental Medicine, Saint Petersburg 197376, Russia
| | - Vadim E. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, Chelyabinsk 454080, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Shin JH, Lee Y, Song EJ, Lee D, Jang SY, Byeon HR, Hong MG, Lee SN, Kim HJ, Seo JG, Jun DW, Nam YD. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front Microbiol 2023; 14:1123547. [PMID: 37007480 PMCID: PMC10060964 DOI: 10.3389/fmicb.2023.1123547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionNonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH.MethodsIn this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses.Results16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice.DiscussionOur study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Seo-Yul Jang
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hye Rim Byeon
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Moon-Gi Hong
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
- *Correspondence: Jae-Gu Seo,
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University, College of Medicine, Seoul, Republic of Korea
- Dae Won Jun,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Young-Do Nam,
| |
Collapse
|
4
|
Laursen TL, Mellemkjær A, Møller HJ, Grønbæk H, Kazankov K. Spotlight on liver macrophages for halting injury and progression in non-alcoholic fatty liver disease. Expert Opin Ther Targets 2022; 26:697-705. [PMID: 36205054 DOI: 10.1080/14728222.2022.2132145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome and is rapidly emerging as the leading cause of liver-related morbidity and mortality. Macrophages play an essential role in the development and progression of NAFLD. AREAS COVERED In this review, we provide an update on recent studies of drugs, which directly or indirectly affect macrophages in NAFLD, and discuss the implication of macrophage biomarkers to monitor the disease stage and progression/regression. EXPERT OPINION There is an unmet need for better understanding of disease pathogenesis from hepatic fat accumulation to disease progression with inflammation and fibrosis. We expect that future research will uncover additional objects/pathways as treatment targets. We speculate that this will involve better characterization of the gut microbiome, damage-associated molecular patterns (DAMPS) or molecules and pathways involved in development of DAMPS, and advanced molecular biology studies including single-cell sequencing of macrophage subpopulations. In addition, we speculate that studies focusing on pharmaceuticals that improve insulin resistance, diminish the metabolic syndrome and reduce fibrosis will prevail.
Collapse
Affiliation(s)
- Tea Lund Laursen
- Department of Medicine, Randers Regional Hospital, Randers, Denmark
| | - Anders Mellemkjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Tuzer C, Sertbas Y, Duman E, Komoglu S, Kan O, Ay S, Yigit A, Sertbas M, Okuroglu N, Ozen B, Dalbeler A, Ozdemir A. The role of mean platelet volume in nonalcoholic fatty liver disease without cardiovascular comorbidities, obesity and diabetes mellitus. Eur J Gastroenterol Hepatol 2021; 33:1222-1228. [PMID: 34397640 DOI: 10.1097/meg.0000000000002189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND While the relation of mean platelet volume (MPV) with inflammatory diseases is obvious, its role in nonalcoholic fatty liver disease (NAFLD) without cardiovascular comorbidities, obesity and diabetes mellitus is not clear. METHODS A total of 249 patients (nonobese, nondiabetic and not having cardiac diseases) who underwent an abdominal ultrasonography assessment were enrolled. They were divided according to the absence (group 1) or presence (group 2) of hepatic steatosis. The patients with steatosis were further divided according to the severity of steatosis as group 2a (grade 1), 2b (grade 2) and 2c (grade 3). The demographic and laboratory features were compared between groups. RESULTS Hepatic steatosis was absent in 120 patients and detected in 129 patients (grade 1, 2, 3 hepatic steatosis in 75, 49 and 5 patients, respectively). BMI, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and serum AST, ALT, triglyceride levels were significantly higher in group 2 than in group 1 (P < 0.001, P < 0.001, P < 0.001, P = 0.005, P < 0.001, respectively). BMI, serum AST and triglyceride levels were significant factors for NAFLD (P < 0.001, P = 0.018, P = 0.001). MPV was neither different between groups (P > 0.05) nor a predictor factor for NAFLD (P > 0.05). CONCLUSION MPV is a useless parameter to detect NAFLD without cardiovascular comorbidities, obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Can Tuzer
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Yasar Sertbas
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Emrah Duman
- Department of Radiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sabiha Komoglu
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Omer Kan
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Seval Ay
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Abdurrahman Yigit
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Meltem Sertbas
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Nalan Okuroglu
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Birgul Ozen
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Aysegul Dalbeler
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| | - Ali Ozdemir
- Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital
| |
Collapse
|
6
|
Zhang Y, Zhou X, Liu P, Chen X, Zhang J, Zhang H, Li S, Chen Y, Song X, Wang J, Zeng H, Zhang X, Tang C, Yu C, Li Y, Xu C. GCSF deficiency attenuates nonalcoholic fatty liver disease through regulating GCSFR-SOCS3-JAK-STAT3 pathway and immune cells infiltration. Am J Physiol Gastrointest Liver Physiol 2021; 320:G531-G542. [PMID: 33470903 DOI: 10.1152/ajpgi.00342.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Granulocyte colony stimulating factor (GCSF) is a cytokine with immunomodulation effects. However, little is known about its role in metabolic diseases. In the current study, we aimed to explore the role of GCSF in nonalcoholic fatty liver disease (NAFLD). Male GCSF-/- mice were used to investigate the function of GCSF in vivo after high-fat diet (HFD). Primary hepatocytes were used for evaluating the function of GCSF in vitro. Liver immune cells were isolated and analyzed by flow cytometry. Our results showed that GCSF administration significantly increased serum triglyceride (TG) levels in patients. Circulating GCSF was markedly elevated in HFD-fed mice. GCSF-/- mice exhibited alleviated HFD-induced obesity, insulin resistance, and hepatic steatosis. Extra administration of GCSF significantly aggravated palmitic acid (PA)-induced lipid accumulation in primary hepatocytes. Mechanically, GCSF could bind to granulocyte colony stimulating factor receptor (GCSFR) and regulate suppressors of cytokine signaling 3, Janus kinase, signal transducer and activator of transcription 3 (SOCS3-JAK-STAT3) pathway. GCSF also enhanced hepatic neutrophils and macrophages infiltration, thereby modulating NAFLD. These findings suggest that GCSF plays an important regulatory role in NAFLD and may be a potential therapeutic target for NAFLD.NEW & NOTEWORTHY We found GCSF was involved in lipid metabolism and NAFLD development. GCSF administration increased serum triglyceride levels in patients. GCSF deficiency alleviated HFD-induced insulin resistance and hepatic steatosis in mice. GCSF could directly act on hepatocytes through GCSFR-SOCS3-JAK-STAT3 pathway, and regulate the infiltration of immune cells into the liver to indirectly modulate NAFLD. Our finding indicates that GCSF may provide new strategies for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Kjær MB, George J, Kazankov K, Grønbæk H. Current perspectives on the pathophysiology of metabolic associated fatty liver disease: are macrophages a viable target for therapy? Expert Rev Gastroenterol Hepatol 2021; 15:51-64. [PMID: 32878486 DOI: 10.1080/17474124.2020.1817740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolic associated fatty liver disease (MAFLD) is a new nomenclature for fatty liver replacing nonalcoholic fatty liver disease (NAFLD). MAFLD has emerged as the leading cause of liver-related morbidity and mortality with increasing incidence due to its close association with the global epidemic of obesity and type 2 diabetes mellitus. Macrophages play a key role in MAFLD development and progression of steatohepatitis and fibrosis. Therefore, targeting macrophages may be a new therapeutic approach for MAFLD and MAFLD with steatohepatitis. AREAS COVERED We provide a comprehensive review of the significant role of macrophages in MAFLD. Further, we evaluate the current status of lifestyle interventions and pharmacological treatments with a focus on effects mediated through direct or indirect targeting of macrophages. EXPERT OPINION Targeting macrophages holds promise as a treatment option for the management of MAFLD and steatohepatitis. Improved stratification of patients according to MAFLD phenotype would contribute to more adequate design enhancing the yield of clinical trials ultimately leading to personalized medicine for patients with MAFLD. Furthermore, reflecting the multifactorial pathogenesis of MAFLD, combination therapies based on the various pathophysiological driver events including as pertinent to this review, macrophage recruitment, polarization and action, present an intriguing target for future investigation.
Collapse
Affiliation(s)
- Mikkel Breinholt Kjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney , Sydney, Australia
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
8
|
Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci 2020; 21:ijms21020494. [PMID: 31941015 PMCID: PMC7013734 DOI: 10.3390/ijms21020494] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
The prevalence of sarcopenic obesity is increasing worldwide, particularly amongst aging populations. Insulin resistance is the core mechanism of sarcopenic obesity and is also associated with variable cardiometabolic diseases such as cardiovascular disease, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. Fat accumulation in muscle tissue promotes a proinflammatory cascade and oxidative stress, leading to mitochondrial dysfunction, impaired insulin signaling, and muscle atrophy. To compound the problem, decreased muscle mass aggravates insulin resistance. In addition, the crosstalk between myokines and adipokines leads to negative feedback, which in turn aggravates sarcopenic obesity and insulin resistance. In this review, we focus on the molecular mechanisms linking sarcopenic obesity and insulin resistance with various biological pathways. We also discuss the impact and mechanism of sarcopenic obesity and insulin resistance on cardiometabolic disease.
Collapse
|
9
|
Wijarnpreecha K, Panjawatanan P, Aby E, Ahmed A, Kim D. Nonalcoholic fatty liver disease in the over-60s: Impact of sarcopenia and obesity. Maturitas 2019; 124:48-54. [PMID: 31097179 DOI: 10.1016/j.maturitas.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children and adults of all ethnicities. NAFLD is commonly seen in individuals with metabolic abnormalities, such as obesity and insulin resistance, which are closely associated with sarcopenia. Sarcopenia, defined as low muscle mass and impaired muscle function, is associated with NAFLD and worse outcomes in patients with NAFLD. As the world's elderly population and the prevalence of obesity continues to grow at an unprecedented rate, NAFLD and sarcopenia are projected to increase. Given that there are no approved pharmacologic treatments for NAFLD, it is imperative to gain a better understanding of the disease pathophysiology, to guide treatment options. Recent studies have given new insight into sarcopenic obesity, but there is no consensus on its definition. In this review, we attempt to address the impact of sarcopenia and obesity on NAFLD, especially in the elderly population.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | | | - Elizabeth Aby
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019; 16:145-159. [PMID: 30482910 DOI: 10.1038/s41575-018-0082-x] [Citation(s) in RCA: 647] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often progressive subtype nonalcoholic steatohepatitis (NASH) are becoming the leading cause of liver-related morbidity and mortality worldwide, and a primary indication for liver transplantation. The pathophysiology of NASH is multifactorial and not yet completely understood; however, innate immunity is a major contributing factor in which liver-resident macrophages (Kupffer cells) and recruited macrophages play a central part in disease progression. In this Review, we assess the evidence for macrophage involvement in the development of steatosis, inflammation and fibrosis in NASH. In this process, not only the polarization of liver macrophages towards a pro-inflammatory phenotype is important, but adipose tissue macrophages, especially in the visceral compartment, also contribute to disease severity and insulin resistance. Macrophage activation is mediated by factors such as endotoxins and translocated bacteria owing to increased intestinal permeability, factors released from damaged or lipoapoptotic hepatocytes, as well as alterations in gut microbiota and defined nutritional components, including certain free fatty acids, cholesterol and their metabolites. Reflecting the important role of macrophages in NASH, we also review studies investigating drugs that target macrophage recruitment to the liver, macrophage polarization and their inflammatory effects as potential treatment options for patients with NASH.
Collapse
|
11
|
Wu B, Xiao Z, Zhang W, Chen H, Liu H, Pan J, Cai X, Liang G, Zhou B, Shan X, Zhang Y. A novel resveratrol-curcumin hybrid, a19, attenuates high fat diet-induced nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 110:951-960. [PMID: 30625517 DOI: 10.1016/j.biopha.2018.11.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/05/2018] [Accepted: 11/25/2018] [Indexed: 12/22/2022] Open
|
12
|
Yamashiro LH, de Souza GEP, de Melo Soares D. Role of CINC-1 and CXCR2 receptors on LPS-induced fever in rats. Pflugers Arch 2018; 471:301-311. [PMID: 30349936 DOI: 10.1007/s00424-018-2222-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
The classic model of fever induction is based on the administration of lipopolysaccharide (LPS) from Gram-negative bacteria in experimental animals. LPS-induced fever results in the synthesis/release of many mediators that assemble an LPS-fever cascade. We have previously demonstrated that cytokine-induced neutrophil chemoattractant (CINC)-1, a Glu-Leu-Arg (ELR) + chemokine, centrally administered to rats, induces fever and increases prostaglandin E2 in the cerebrospinal fluid. We now attempt to investigate the involvement of CINC-1 and its functional receptor CXCR2 on the fever induced by exogenous and endogenous pyrogens in rats. We also investigated the effect of reparixin, an allosteric inhibitor of CXCR1/CXCR2 receptors, on fever induced by either systemic administration of LPS or intracerebroventricular injection of CINC-1, as well as TNF-α, IL-1β, IL-6, or ET-1, known mediators of febrile response. Our results show increased CINC-1 mRNA expression in the liver, hypothalamus, CSF, and plasma following LPS injection. Moreover, reparixin administered right before CINC-1 or LPS abolished the fever induced by CINC-1 and significantly reduced the response induced by LPS. In spite of these results, reparixin does not modify the fever induced by IL-1β, TNF-α, and IL-6, but significantly reduces ET-1-induced fever. Therefore, it is plausible to suggest that CINC-1 might contribute to LPS-induced fever in rats by activating CXCR2 receptor on the CNS. Moreover, it can be hypothesized that CINC-1 is placed upstream TNF-α, IL-1β, and IL-6 among the prostaglandin-dependent fever-mediator cascade and amidst the prostaglandin-independent synthesis pathway of fever.
Collapse
Affiliation(s)
- Lívia Harumi Yamashiro
- Laboratory of Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Science, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Glória Emília Petto de Souza
- Laboratory of Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Science, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denis de Melo Soares
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão do Jeremoabo, no. 147, Ondina, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
13
|
Zhang Y, Wu B, Zhang H, Ge X, Ying S, Hu M, Li W, Huang Y, Wang L, Chen C, Shan X, Liang G. Inhibition of MD2-dependent inflammation attenuates the progression of non-alcoholic fatty liver disease. J Cell Mol Med 2017; 22:936-947. [PMID: 29077272 PMCID: PMC5783870 DOI: 10.1111/jcmm.13395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD) can progress to the more serious non‐alcoholic steatohepatitis (NASH), characterized by inflammatory injury and fibrosis. The pathogenic basis of NAFLD progressing to NASH is currently unknown, but growing evidence suggests MD2 (myeloid differentiation factor 2), an accessory protein of TLR4, is an important signalling component contributing to this disease. We evaluated the effectiveness of the specific MD2 inhibitor, L6H21, in reducing inflammatory liver injury in a relevant high‐fat diet (HFD) mouse model of NASH and in the palmitic acid (PA)‐stimulated human liver cell line (HepG2). For study, genetic knockout (MD2−/−) mice were fed a HFD or control diet for 24 weeks, or wild‐type mice placed on a similar diet regimen and treated with L6H21 for the last 8 or 16 weeks. Results indicated that MD2 inhibition with L6H21 was as effective as MD2 knockout in preventing the HFD‐induced hepatic lipid accumulation, pro‐fibrotic changes and expression of pro‐inflammatory molecules. Direct challenge of HepG2 with PA (200 μM) increased MD2‐TLR4 complex formation and expression of pro‐inflammatory and pro‐fibrotic genes and L6H21 pre‐treatment prevented these PA‐induced responses. Interestingly, MD2 knockout or L6H21 increased expression of the anti‐inflammatory molecule, PPARγ, in liver tissue and the liver cell line. Our results provide further evidence for the critical role of MD2 in the development of NASH and conclude that MD2 could be a potential therapeutic target for NAFLD/NASH treatment. Moreover, the small molecule MD2 inhibitor, L6H21, was an effective and selective investigative agent for future mechanistic studies of MD2.
Collapse
Affiliation(s)
- Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailing Zhang
- Department of Endocrinology, The Affiliated First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shilong Ying
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengwei Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,College of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| | - Xiaoou Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Qin CC, Liu YN, Hu Y, Yang Y, Chen Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 2017; 23:3043-3052. [PMID: 28533661 PMCID: PMC5423041 DOI: 10.3748/wjg.v23.i17.3043] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Macrophage inflammatory protein (MIP)-2 is one of the CXC chemokines and is also known as chemokine CXC ligand (CXCL2). MIP-2 affects neutrophil recruitment and activation through the p38 mitogen-activated-protein-kinase-dependent signaling pathway, by binding to its specific receptors, CXCR1 and CXCR2. MIP-2 is produced by a variety of cell types, such as macrophages, monocytes, epithelial cells, and hepatocytes, in response to infection or injury. In liver injury, activated Kupffer cells are known as the major source of MIP-2. MIP-2-recruited and activated neutrophils can accelerate liver inflammation by releasing various inflammatory mediators. Here, we give a brief introduction to the basic molecular and cellular sources of MIP-2, and focus on its physiological and pathological functions in acute liver injury induced by concanavalin A, lipopolysaccharides, irradiation, ischemia/reperfusion, alcohol, and hypoxia, and hepatectomy-induced liver regeneration and tumor colorectal metastasis. Further understanding of the regulatory mechanisms of MIP-2 secretion and activation may be helpful to develop MIP-2-targeted therapeutic strategies to prevent liver inflammation.
Collapse
|
15
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015; 2:506-21. [PMID: 27227071 PMCID: PMC4843933 DOI: 10.1080/23328940.2015.1102802] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 11/13/2022] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Li S, Wang CX, Liu NZ, Liu P. Anti-inflammatory effects of propofol on lipopolysaccharides-treated rat hepatic Kupffer cells. Cell Biochem Biophys 2015; 71:845-50. [PMID: 25296958 DOI: 10.1007/s12013-014-0272-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study is set to explore the role of commonly used intravenous anesthetic propofol on the inflammatory response of rat liver Kupffer cells (KCs) induced by lipopolysaccharides (LPS). The isolated KCs were cultured at the density of 1 × 10(5)/ml, divided into five groups randomly after 48 h culture: group C, control group; group L, KCs were treated with 1 μg/ml LPS for 24 h; groups P1, P2, P3, KCs were pretreated with propofol at low (25 μM), medium (50 μM), high (100 μM) concentration for 2 h, respectively, and then were stimulated with 1 μg/ml LPS for 24 h. The expressions of tumor necrosis factor-α (TNF-α) mRNA and interleukin-1β (IL-1β) mRNA of every group were measured by RT-PCR. Nuclear NF-ΚB p65 was determined by Western blot. The concentrations of IL-1β and TNF-α in supernatant were measured by ELISA. Compared with the group C, TNF-α mRNA and IL-1β mRNA in group L were significantly up-regulated and NF-ΚB p65 was significantly up-regulated after LPS treatment (P < 0.05). Meanwhile, TNF-α and IL-1β were also significantly increased (P < 0.05). With propofol the mRNA expressions of aforementioned inflammatory mediators were significantly down-regulated and NF-ΚB p65 was significantly inhibited in group P2 and P3 (P < 0.05), compared with group L. However, low propofol concentration did not exhibit any effect (group P1, P > 0.05). Propofol at medium and high concentration can counteract the LPS-induced inflammatory response in KCs by regulating NF-ΚB p65 protein expression.
Collapse
Affiliation(s)
- Sen Li
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | | | | | | |
Collapse
|
17
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015. [PMID: 27227071 DOI: 10.1080/23328940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Reifen R, Karlinsky A, Stark AH, Berkovich Z, Nyska A. α-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease. J Nutr Biochem 2015; 26:1632-40. [PMID: 26350254 DOI: 10.1016/j.jnutbio.2015.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
Studies suggest that consumption of omega-3 (n-3) polyunsaturated fatty acids (PUFA) plays a protective role in inflammatory bowel disease; however, the use of plant-derived oils rich in α-linolenic acid (ALA) has not been widely investigated. The aims of this study were to test the effects of two different sources of (n-3) PUFA, fish and plant-derived oils, in two animal models of experimental colitis and to determine whether the (n-3) PUFA-enriched diets could ameliorate the inflammatory status. Rats were fed diets rich in corn, fish or sage oil with or without vitamin A supplementation for 3weeks then colitis was induced by adding dextran sodium sulfate to the drinking water or by injecting 2,4,6-trinitrobenzene sulfonic acid. We show that colitic rats fed the sage oil diets had a lower inflammatory response, improved histological repair and had less necrotic damage in the mucosa when compared to the corn and fish oil groups. Colonic damage and myeloperoxidase activity were significantly lower. Colonic mRNA levels of pro-inflammatory genes including interleukin IL-6, cyclooxygenase 2 and tumor necrosis factor α were markedly down-regulated in rats fed fish and sage oils compared to control. These results were supported by experiments in the human colonic epithelial cell line Caco-2, where ALA supplementation was shown to be effective in inhibiting inflammation induced by IL-1β by down-regulating mRNA levels of pro-inflammatory genes including IL-8, COX2 and inducible nitric oxide synthase. Taken together, these results suggest that plant-derived oil rich in ALA could ameliorate the inflammatory damage in colitis.
Collapse
Affiliation(s)
- Ram Reifen
- The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Anna Karlinsky
- The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aliza H Stark
- The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zipi Berkovich
- The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Paredes-Turrubiarte G, González-Chávez A, Pérez-Tamayo R, Salazar-Vázquez BY, Hernández VS, Garibay-Nieto N, Fragoso JM, Escobedo G. Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients. Clin Exp Med 2015; 16:193-202. [PMID: 25894568 DOI: 10.1007/s10238-015-0347-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Morbid obesity has been shown to increase the risk to develop hepatic steatosis, also referred to as non-alcoholic fatty liver disease (NAFLD). Emerging evidence suggests that the severity of NAFLD may associate with increased serum levels of inflammatory markers as well as decreased concentration of mediators with anti-inflammatory actions, such as tumor necrosis factor alpha (TNF-α) and interleukin (IL) 10, respectively. We thus examined the serum levels of TNF-α and IL-10 in 102 morbidly obese women and men (body mass index > 40 kg/m(2)), exhibiting different grades of NAFLD. Blood glucose, glycated hemoglobin, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol, triglycerides, high- and low-density lipoproteins, parameters of liver function, TNF-α, and IL-10 were measured in each subject. The stage of NAFLD was estimated by abdominal ultrasound imaging. In comparison with morbidly obese subjects without steatosis, morbidly obese patients with NAFLD showed increased age (39.23 ± 9.80 years), HOMA-IR (6.74 ± 1.62), total cholesterol (219.7 ± 9.58 mg/dl), aspartate aminotransferase (36.25 ± 3.24 UI/l), gamma-glutamyl transpeptidase (37.12 ± 3.41 UI/l), and TNF-α (37.41 ± 1.72 pg/ml) as well as decreased serum levels of IL-10 (61.05 ± 2.43 pg/ml). Interestingly, the systemic levels of TNF-α increased, while IL-10 decreased in accordance with the severity of NAFLD, which supports a role for systemic inflammatory mediators in promoting steatosis progression. Further clinical prospective studies need to be addressed to elucidate the role of TNF-α and IL-10 in the development of NAFLD while also establishing their clinical utility in the assessment of morbidly obese patients at higher risk to develop severe steatosis.
Collapse
Affiliation(s)
| | - Antonio González-Chávez
- Department of Internal Medicine, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico.
| | - Ruy Pérez-Tamayo
- Unit of Experimental Medicine, School of Medicine, National University of Mexico, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico
| | - Beatriz Y Salazar-Vázquez
- Unit of Experimental Medicine, School of Medicine, National University of Mexico, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico
| | - Vito S Hernández
- Departament of Physiology, School of Medicine, National University of Mexico, 04510, Mexico, D.F., Mexico
| | - Nayeli Garibay-Nieto
- Department of Human Genetics, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", 14080, Mexico, D.F., Mexico
| | - Galileo Escobedo
- Unit of Experimental Medicine, School of Medicine, National University of Mexico, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico.
| |
Collapse
|
20
|
Noh JS, Park CH, Tanaka T, Yokozawa T. 7-O-galloyl-D-sedoheptulose attenuates oxidative stress-induced diabetic injury via decreasing expression of nuclear factor-κB- and apoptosis-related protein in the liver. Biol Pharm Bull 2012; 35:950-6. [PMID: 22687537 DOI: 10.1248/bpb.35.950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was conducted to examine whether 7-O-galloyl-D-sedoheptulose (GS) has an ameliorative effect on diabetic alterations such as oxidative stress, inflammation, and apoptosis in the liver of type 2 diabetic db/db mice. GS was administered at 20 or 100 mg/kg body weight per day for 6 weeks to db/db mice, and its effect was compared with vehicle-treated db/db and m/m mice. In the serum and hepatic tissue, biochemical factors and protein expressions associated with nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, inflammation, and apoptosis were examined. As a result, GS administration to type 2 diabetic mice lowered serum and hepatic oxidative stress through the reduction of reactive oxygen species and lipid peroxidation. These results were derived, at least in part, from attenuating the expression of NADPH oxidase subunit proteins, Nox-4 and p22(phox). In the diabetic condition, augmented nuclear factor (NF)-E2-related factor 2 and heme oxygenase-1 were reduced with a decrease in oxidative stress on GS treatment. Furthermore, in the GS-treated group, NF-kappa B-related pro-inflammatory factors and pro-apoptotic protein expressions were alleviated in the hepatic tissue. Taking these into consideration, our findings support the therapeutic evidence for GS ameliorating the development of diabetic complications via regulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Jeong Sook Noh
- Institute of Natural Medicine, University of Toyama, Japan
| | | | | | | |
Collapse
|
21
|
Budick-Harmelin N, Anavi S, Madar Z, Tirosh O. Fatty acids-stress attenuates gluconeogenesis induction and glucose production in primary hepatocytes. Lipids Health Dis 2012; 11:66. [PMID: 22676303 PMCID: PMC3391994 DOI: 10.1186/1476-511x-11-66] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/07/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic gluconeogenesis tightly controls blood glucose levels in healthy individuals, yet disorders of fatty acids (FAs) oxidation are characterized by hypoglycemia. We studied the ability of free-FAs to directly inhibit gluconeogenesis, as a novel mechanism that elucidates the hypoglycemic effect of FAs oxidation defects. METHODS Primary rat hepatocytes were pre-treated with FAs prior to gluconeogenic stimuli with glucagon or dexamethasone and cAMP. RESULTS Pre-treatment with 1 mM FAs (mixture of 2:1 oleate:palmitate) for 1 hour prior to gluconeogenic induction, significantly decreases the induced expression of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) as well as the induced glucose production by the cells. The inhibitory effect of FAs upon gluconeogenesis is abolished when pre-treatment is elongated to 18 hours, allowing clearance of FAs into triglycerides by the cells. Replacement of palmitate with the non-metabolic fatty acid 2-bromopalmitate inhibits esterification of FAs into triglycerides. Accordingly, the increased exposure to unesterified-FAs allows their inhibitory effect to be extended even when pre-treatment is elongated to 18 hours. Similar changes were caused by FAs to the induction of peroxisome-proliferator-activated receptor-γ coactivator 1α (PGC1α) expression, indicating this transcriptional coactivator as the mediating link of the effect. This inhibitory effect of FAs upon gluconeogenic induction is shown to involve reduced activation of cAMP response element-binding (CREB) transcription factor. CONCLUSIONS The present results demonstrate that free-FAs directly inhibit the induced gluconeogenic response in hepatocytes. Hence, high levels of free-FAs may attenuate hepatic gluconeogenesis, and liver glucose output.
Collapse
Affiliation(s)
- Noga Budick-Harmelin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
22
|
Naz N, Malik IA, Sheikh N, Ahmad S, Khan S, Blaschke M, Schultze F, Ramadori G. Ferroportin-1 is a 'nuclear'-negative acute-phase protein in rat liver: a comparison with other iron-transport proteins. J Transl Med 2012; 92:842-56. [PMID: 22469696 DOI: 10.1038/labinvest.2012.52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Liver is the central organ of iron metabolism. During acute-phase-response (APR), serum iron concentration rapidly decreases. The current study aimed to compare expression and localization of iron transport protein ferroportin-1 (Fpn-1) and of other iron import proteins after experimental tissue damage induced by injecting turpentine oil in the hind limbs of rats and mice. Serum and spleen iron concentration decreased with an increase in total liver, cytoplasmic and nuclear iron concentration. In liver, mRNA amount of Fpn-1, Fpn-1a, Fpn-1b, HFE, hemojuvelin (HJV) and hephaestin (heph) genes showed a rapid decrease. Hepcidin, divalent metal transporter-1 (DMT-1), transferrin (Tf) and Tf-receptor-1 (TfR1), TfR-2 (TfR2) gene expression was increased. Western blot analysis of liver tissue lysate confirmed the changes observed at mRNA level. In spleen, a rapid decrease in gene expression of Fpn-1, Fpn-1a, Fpn-1b, DMT-1, Tf, TfR1 and TfR2, and an increase in hepcidin was observed. Immunohistochemistry of DMT-1 and TfR2 were mainly detected in the nucleus of rat liver and spleen, whereas TfR1 was clearly localized in the plasma membrane. Fpn-1 was mostly found in the nuclei of liver cells, whereas in spleen, the protein was mainly detected in the cell membrane. Western blot analysis of liver fractions confirmed immunohistochemical results. In livers of wild-type mice, gene expression of Fpn-1, Fpn-1a and Fpn-1b was downregulated, whereas hepcidin gene expression was increased. In contrast, these changes were less pronounced in IL-6ko-mice. Cytokine (IL-6, IL-1b and TNF-a) treatment of rat hepatocytes showed a downregulation of Fpn-1, Fpn-1a and Fpn-1b, and upregulation of hepcidin gene expression. Moreover, western blot analysis of cell lysate of IL-6-treated hepatocytes detected, as expected, an increase of a2-macroglobulin (positive acute-phase protein), whereas albumin (negative acute-phase protein) and Fpn-1 were downregulated. Our results demonstrate that liver behaves as a 'sponge' for iron under acute-phase conditions, and Fpn-1 behaves as a negative acute-phase protein in rat hepatocytes mainly, but not exclusively, because of the effect of IL-6. These changes could explain iron retention in the cytoplasm and in the nucleus of hepatocytes during APR.
Collapse
Affiliation(s)
- Naila Naz
- Division of Gastroenterology and Endocrinology, Department of Internal Medicine, University Hospital, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response. Cell Tissue Res 2011; 344:299-312. [PMID: 21437659 PMCID: PMC3085758 DOI: 10.1007/s00441-011-1152-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/22/2011] [Indexed: 01/17/2023]
Abstract
The “acute phase” is clinically characterized by homeostatic alterations such as somnolence, adinamia, fever, muscular weakness, and leukocytosis. Dramatic changes in iron metabolism are observed under acute-phase conditions. Rats were administered turpentine oil (TO) intramuscularly to induce a sterile abscess and killed at various time points. Tissue iron content in the liver and brain increased progressively after TO administration. Immunohistology revealed an abundant expression of transferrin receptor-1 (TfR1) in the membrane and cytoplasm of the liver cells, in contrast to almost only nuclear expression of TfR1 in brain tissue. The expression of TfR1 increased at the protein and RNA levels in both organs. Gene expression of hepcidin, ferritin-H, iron-regulatory protein-1, and heme oxygenase-1 was also upregulated, whereas that of hemojuvelin, ferroportin-1, and the hemochromatosis gene was significantly downregulated at the same time points in both the brain and the liver at the RNA level. However, in contrast to observations in the liver, gene expression of the main acute-phase cytokine (interleukin-6) in the brain was significantly upregulated. In vitro experiments revealed TfR1 membranous protein expression in the liver cells, whereas nuclear and cytoplasmic TfR1 protein was detectable in brain cells. During the non-bacterial acute phase, iron content in the liver and brain increased together with the expression of TfR1. The iron metabolism proteins were regulated in a way similar to that observed in the liver, possibly by locally produced acute-phase cytokines. The significance of the presence of TfR1 in the nucleus of the brain cells has to be clarified.
Collapse
|
24
|
Meilin E, Aviram M, Hayek T. Insulin increases macrophage triglyceride accumulation under diabetic conditions through the down regulation of hormone sensitive lipase and adipose triglyceride lipase. Biofactors 2011; 37:95-103. [PMID: 21344529 DOI: 10.1002/biof.144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/19/2010] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is a major risk factor for the development of atherosclerosis, and high-serum levels of insulin are strongly associated with type 2 DM. Atherosclerosis is characterized by lipid-laden macrophage foam cell formations, which contain substantial amount of cholesterol and triglycerides (TG). This study analyzed for the first time, the effects of insulin on TG metabolism in macrophages under normal and diabetic conditions. Mouse peritoneal macrophages from C57BL6 mice were cultured under normal (5 mM) or high (diabetic condition, 25 mM) glucose concentration, with or without insulin, followed by the assessment of TGs metabolism in these cells. Under diabetic condition, insulin increased TG accumulation in macrophages by 100%, decreased cellular TG degradation by 21%, and increased C-reactive protein levels in macrophages by 83%. Insulin decreased hormone-sensitive lipase mRNA and protein expression by 28 and 60%, respectively, and adipose TG lipase (ATGL) protein expression by 36%, with no significant reduction in ATGL mRNA levels. The inhibition of insulin-mediated phosphorylation, and the addition of cyclic adenosine 3'5'-monoposphate, abolished the insulin-mediated inhibition of TGs degradation in cells. Insulin increases macrophage TGs accumulation only under diabetic conditions, suggesting that impaired glycemic control in diabetic patients treated with insulin may contribute to foam cell formations and enhanced inflammation in macrophages.
Collapse
Affiliation(s)
- Edna Meilin
- The Lipid Research Laboratory, Technion, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Science, Rambam Medical Center, Haifa, Israel
| | | | | |
Collapse
|
25
|
Yamabe N, Noh JS, Park CH, Kang KS, Shibahara N, Tanaka T, Yokozawa T. Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur J Pharmacol 2010; 648:179-87. [DOI: 10.1016/j.ejphar.2010.08.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/16/2010] [Accepted: 08/25/2010] [Indexed: 02/02/2023]
|
26
|
Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. FIBROGENESIS & TISSUE REPAIR 2010; 3:21. [PMID: 20964825 PMCID: PMC2984459 DOI: 10.1186/1755-1536-3-21] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/21/2010] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors (PRR) that play a key role in innate and adaptive immunity by recognizing structural components unique to bacteria, fungi and viruses. TLR4 is the most studied of the TLRs, and its primary exogenous ligand is lipopolysaccharide, a component of Gram-negative bacterial walls. In the absence of exogenous microbes, endogenous ligands including damage-associated molecular pattern molecules from damaged matrix and injured cells can also activate TLR4 signaling. In humans, single nucleotide polymorphisms of the TLR4 gene have an effect on its signal transduction and on associated risks of specific diseases, including cirrhosis. In liver, TLR4 is expressed by all parenchymal and non-parenchymal cell types, and contributes to tissue damage caused by a variety of etiologies. Intact TLR4 signaling was identified in hepatic stellate cells (HSCs), the major fibrogenic cell type in injured liver, and mediates key responses including an inflammatory phenotype, fibrogenesis and anti-apoptotic properties. Further clarification of the function and endogenous ligands of TLR4 signaling in HSCs and other liver cells could uncover novel mechanisms of fibrogenesis and facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jinsheng Guo
- Division of Liver Diseases, Mount Sinai Hospital, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
27
|
Steib CJ, Bilzer M, op den Winkel M, Pfeiler S, Hartmann AC, Hennenberg M, Göke B, Gerbes AL. Treatment with the leukotriene inhibitor montelukast for 10 days attenuates portal hypertension in rat liver cirrhosis. Hepatology 2010; 51:2086-96. [PMID: 20512996 DOI: 10.1002/hep.23596] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The mechanisms underlying intrahepatic vasoconstriction are not fully elucidated. Here we investigated the Kupffer cell (KC)-dependent increase in portal pressure by way of actions of vasoconstrictive cysteinyl leukotrienes (Cys-LTs). Liver cirrhosis was induced in rats by bile duct ligation (BDL for 4 weeks; controls: sham-operation) and thioacetamide application (18 weeks). Infusion of leukotriene (LT) C(4) or LTD(4) in isolated perfused livers (20 nM, BDL and sham) demonstrated that LTC(4) is a more relevant vasoconstrictor. In BDL animals the Cys-LT(1) receptor inhibitor montelukast (1 microM) reduced the maximal portal perfusion pressure following LTC(4) or LTD(4) infusion. The infusion of LTC(4) or D(4) in vivo (15 microg/kg b.w.) confirmed LTC(4) as the more relevant vasoconstrictor. Activation of KCs with zymosan (150 microg/mL) in isolated perfused BDL livers increased the portal perfusion pressure markedly, which was attenuated by LT receptor blockade (Ly171883, 20 microM). Cys-LTs in the effluent perfusate increased with KC activation but less with additional blockade of KCs with gadolinium chloride (10 mg/kg body weight, 48 and 24 hours pretreatment). KCs were isolated from normal rat livers and activated with zymosan or lipopolysaccharide at different timepoints. This resulted in an increase in Cys-LT production that was not influenced by preincubation with montelukast (1 microM). Infusion of LTC(4) (20 nM) and the thromboxane analog U46619 (0.1 microM) further enhanced portal pressure, indicating additive effects. Treatment with montelukast for 10 days resulted in an impressive reduction in the basal portal pressure and an attenuation of the KC-dependent increase in portal pressure. CONCLUSION Activation of isolated KCs produced Cys-LTs. Infusion of Cys-LTs increased portal pressure and, vice versa, treatment with montelukast reduced portal pressure in rat liver cirrhosis. Therefore, montelukast may be of therapeutic benefit for patients with portal hypertension.
Collapse
Affiliation(s)
- Christian J Steib
- Department of Medicine II (Gastroenterology and Hepatology), Liver Center Munich, University of Munich, Grosshadern, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gao P, Si LY. Meprin-α metalloproteases enhance lipopolysaccharide-stimulated production of tumour necrosis factor-α and interleukin-1β in peripheral blood mononuclear cells via activation of NF-κB. ACTA ACUST UNITED AC 2010; 160:99-105. [DOI: 10.1016/j.regpep.2009.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/05/2009] [Accepted: 12/14/2009] [Indexed: 12/23/2022]
|
29
|
Abstract
The liver is a central regulator of glucose homeostasis and stores or releases glucose according to metabolic demands. In insulin resistant states or diabetes the dysregulation of hepatic glucose release contributes significantly to the pathophysiology of these conditions. Acute or chronic liver disease can aggravate insulin resistance and the physiological effects of insulin on hepatocytes are disturbed. Insulin resistance has also been recognized as an independent risk factor for the development of liver injury. In the healthy liver tissue homeostasis is achieved through cell turnover by apoptosis and dysregulation of the physiological process resulting in too much or too little cell death can have potentially devastating effects on liver tissue. The delineation of the signaling pathways that mediate apoptosis changed the paradigms of understanding of many liver diseases. These signaling events include cell surface based receptor-ligand systems and intracellular signaling pathways that are regulated through kinases on multiple levels. The dissection of these signaling pathways has shown that the regulators of apoptosis signaling events in hepatocytes can also modulate insulin signaling pathways and that mediators of insulin resistance in turn influence liver cell apoptosis. This review will summarize the potential crosstalk between apoptosis and insulin resistance signaling events and discuss the involved mediators.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- I. Medizinsiche Klinik, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | |
Collapse
|
30
|
Prieur X, Roszer T, Ricote M. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:327-37. [PMID: 19796705 DOI: 10.1016/j.bbalip.2009.09.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 02/06/2023]
Abstract
Accumulation of lipid metabolites within non-adipose tissues can induce chronic inflammation by promoting macrophage infiltration and activation. Oxidized and glycated lipoproteins, free fatty acids, free cholesterol, triacylglycerols, diacylglycerols and ceramides have long been known to induce cellular dysfunction through their pro-inflammatory and pro-apoptotic properties. Emerging evidence suggests that macrophage activation by lipid metabolites and further modulation by lipid signaling represents a common pathogenic mechanism underlying lipotoxicity in atherosclerosis, obesity-associated insulin resistance and inflammatory diseases related to metabolic syndrome such as liver steatosis and chronic kidney disease. In this review, we discuss the latest discoveries that support the role of lipids in modulating the macrophage phenotype in different metabolic diseases. We describe the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver, muscle and kidney disease. We discuss the molecular mechanism of lipid activation of pro-inflammatory pathways (JNK, NFkappaB) and the key roles played by the PPAR and LXR nuclear receptors-lipid sensors that link lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Xavier Prieur
- Institute of Metabolic Science, Metabolic Research Laboratories and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|