1
|
Vlad ML, Mares RG, Jakobsson G, Manea SA, Lazar AG, Preda MB, Popa MA, Simionescu M, Schiopu A, Manea A. Therapeutic S100A8/A9 inhibition reduces NADPH oxidase expression, reactive oxygen species production and NLRP3 inflammasome priming in the ischemic myocardium. Eur J Pharmacol 2025; 996:177575. [PMID: 40180274 DOI: 10.1016/j.ejphar.2025.177575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Oxidative stress and alterations in redox signalling have been implicated in the pathophysiology of myocardial infarction (MI). NADPH oxidase (Nox) is an important source of reactive oxygen species (ROS) in the infarcted myocardium. Alarmin S100A8/A9 amplifies acute myocardial inflammation in MI and has been shown to be a promising therapeutic target to improve cardiac function post-MI. We aimed to elucidate the underlying mechanisms linking S100A8/A9, oxidative stress and the inflammatory response in MI. MI was induced by permanent left coronary artery ligation in C57BL/6J mice, followed by treatment with the S100A8/A9 inhibitor ABR-238901 (30 mg/kg) or PBS for 3 days. The in-vivo experiments were complemented with mechanistic studies on cultured macrophages (Mac), important cellular effectors in MI. Compared to sham-operated animals, we detected significant increases in the Nox1, Nox2, Nox4 catalytic subunits at mRNA and protein levels, and NADPH-dependent ROS production in the left ventricle of MI mice. S100A8/A9 blockade prevented the up-regulation of Nox1/2/4 expression, reduced ROS formation, suppressed NF-kB activation and prevented NLRP3 inflammasome priming and activation, leading to reduced levels of active IL-1β. In-vitro, S100A8/A9 induced gene expression of Nox catalytic subtypes and NLRP3 in Mac in a TLR4-dependent and dose-dependent manner. These effects were counteracted by pharmacological inhibition of S100A8/9, TLR4, Nox1/4 and Nox2. In conclusion, we show that Nox upregulation and ROS formation triggered by S100A8/A9 contributes to NLRP3 inflammasome priming and increased IL-1β production in the infarcted myocardium. These mechanisms can be therapeutically targeted to prevent inflammatory and oxidant myocardial damage in acute MI.
Collapse
Affiliation(s)
- Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Razvan Gheorghita Mares
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania; Department of Cardiology II, Emergency Clinical County Hospital, Targu Mures, Romania.
| | - Gabriel Jakobsson
- Department of Translational Medicine, Lund University, Malmö, Sweden.
| | - Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Mirel Adrian Popa
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Alexandru Schiopu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania; Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, Lund, Sweden.
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
2
|
Drummond SE, Burns DP, El Maghrani S, Ziegler O, Healy V, O'Halloran KD. Chronic Intermittent Hypoxia-Induced Diaphragm Muscle Weakness Is NADPH Oxidase-2 Dependent. Cells 2023; 12:1834. [PMID: 37508499 PMCID: PMC10377874 DOI: 10.3390/cells12141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic intermittent hypoxia (CIH)-induced redox alterations underlie diaphragm muscle dysfunction. We sought to establish if NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS) underpin CIH-induced changes in diaphragm muscle, which manifest as impaired muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) administered in the drinking water throughout exposure to CIH. In separate studies, we examined sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Apocynin co-treatment or NOX2 deletion proved efficacious in entirely preventing diaphragm muscle dysfunction following exposure to CIH. Exposure to CIH had no effect on NOX2 expression. However, NOX4 mRNA expression was increased following exposure to CIH in wild-type and NOX2 null mice. There was no evidence of overt CIH-induced oxidative stress. A NOX2-dependent increase in genes related to muscle regeneration, antioxidant capacity, and autophagy and atrophy was evident following exposure to CIH. We suggest that NOX-dependent CIH-induced diaphragm muscle weakness has the potential to affect ventilatory and non-ventilatory performance of the respiratory system. Therapeutic strategies employing NOX2 blockade may function as an adjunct therapy to improve diaphragm muscle performance and reduce disease burden in diseases characterised by exposure to CIH, such as obstructive sleep apnoea.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Sarah El Maghrani
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Oscar Ziegler
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
3
|
Kumar RA, Hahn D, Kelley RC, Muscato DR, Shamoun A, Curbelo-Bermudez N, Butler WG, Yegorova S, Ryan TE, Ferreira LF. Skeletal muscle Nox4 knockout prevents and Nox2 knockout blunts loss of maximal diaphragm force in mice with heart failure with reduced ejection fraction. Free Radic Biol Med 2023; 194:23-32. [PMID: 36436728 PMCID: PMC10191720 DOI: 10.1016/j.freeradbiomed.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.
Collapse
Affiliation(s)
- Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Endocrine Society, Washington, D.C, USA
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Alex Shamoun
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - W Greyson Butler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Manea SA, Vlad ML, Lazar AG, Muresian H, Simionescu M, Manea A. Pharmacological Inhibition of Lysine-Specific Demethylase 1A Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice by a Mechanism Involving Decreased Oxidative Stress and Inflammation; Potential Implications in Human Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11122382. [PMID: 36552592 PMCID: PMC9774905 DOI: 10.3390/antiox11122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Dysregulated epigenetic mechanisms promote transcriptomic and phenotypic alterations in cardiovascular diseases. The role of histone methylation-related pathways in atherosclerosis is largely unknown. We hypothesize that lysine-specific demethylase 1A (LSD1/KDM1A) regulates key molecular effectors and pathways linked to atherosclerotic plaque formation. Human non-atherosclerotic and atherosclerotic tissue specimens, ApoE-/- mice, and in vitro polarized macrophages (Mac) were examined. Male ApoE-/- mice fed a normal/atherogenic diet were randomized to receive GSK2879552, a highly specific LSD1 inhibitor, or its vehicle, for 4 weeks. The mRNA and protein expression levels of LSD1/KDM1A were significantly elevated in atherosclerotic human carotid arteries, atherosclerotic aortas of ApoE-/- mice, and M1-Mac. Treatment of ApoE-/- mice with GSK2879552 significantly reduced the extent of atherosclerotic lesions and the aortic expression of NADPH oxidase subunits (Nox1/2/4, p22phox) and 4-hydroxynonenal-protein adducts. Concomitantly, the markers of immune cell infiltration and vascular inflammation were significantly decreased. LSD1 blockade down-regulated the expression of genes associated with Mac pro-inflammatory phenotype. Nox subunit transcript levels were significantly elevated in HEK293 reporter cells overexpressing LSD1. In experimental atherosclerosis, LSD1 mediates the up-regulation of molecular effectors connected to oxidative stress and inflammation. Together, these data indicate that LSD1-pharmacological interventions are novel targets for supportive therapeutic strategies in atherosclerosis.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Horia Muresian
- Cardiovascular Surgery Department, University Hospital Bucharest, 050098 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
- Correspondence:
| |
Collapse
|
5
|
Schisandrin B Diet Inhibits Oxidative Stress to Reduce Ferroptosis and Lipid Peroxidation to Prevent Pirarubicin-Induced Hepatotoxicity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5623555. [PMID: 36060128 PMCID: PMC9433297 DOI: 10.1155/2022/5623555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 12/06/2022]
Abstract
Objective Pirarubicin (THP) is one of anthracycline anticancer drugs. It is widely used in the treatment of various cancers, but its hepatotoxicity cannot be ignored. Schisandrin B (SchB) is a traditional liver-protecting drug, which has the ability to promote mitochondrial function and upregulate cellular antioxidant defense mechanism. However, whether it can resist THP-induced hepatotoxicity has not been reported. The purpose of this study was to observe and explore the effect of SchB on THP-induced hepatotoxicity and its potential mechanism by adding SchB to the diet of rats with THP-induced hepatotoxicity. Methods The rat model of THP-induced hepatotoxicity was established and partly treated with SchB diet. The changes of serum liver function indexes ALT and AST were observed. The histomorphological changes of liver were observed by HE staining. The biomarker levels of oxidative stress in rat serum and liver were measured to observe oxidative stress state. The expressions of ferroptosis-related protein GPX4 and oxidative stress-related protein were detected by Western blot. Primary hepatocytes were prepared and cocultured with THP, SchB, and Fer-1 to detect the production of reactive oxygen species (ROS) and verify the above signal pathways. Results THP rats showed a series of THP-induced hepatotoxicity changes, such as liver function damage, oxidative stress, and ferroptosis. SchB diet effectively alleviated these adverse reactions. Further studies showed that SchB had strong antioxidant and antiferroptosis abilities in THP-induced hepatotoxicity. Conclusion SchB has obvious protective effect on THP-induced hepatotoxicity. The mechanism may be closely related to inhibiting oxidative stress and ferroptosis in the liver.
Collapse
|
6
|
Drummond SE, Burns DP, Maghrani SE, Ziegler O, Healy V, O'Halloran KD. NADPH oxidase-2 is necessary for chronic intermittent hypoxia-induced sternohyoid muscle weakness in adult male mice. Exp Physiol 2022; 107:946-964. [PMID: 35728802 PMCID: PMC9542769 DOI: 10.1113/ep090536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022]
Abstract
New Findings What is the central question of this study? Exposure to chronic intermittent hypoxia (CIH) evokes redox changes, culminating in impaired upper airway muscle function: what is the specific source of CIH‐induced reactive oxygen species? What is the main finding and its importance? Profound sternohyoid muscle dysfunction following exposure to CIH was entirely prevented by apocynin co‐treatment or NADPH oxidase 2 (NOX2) deletion. The results have implications for human obstructive sleep apnoea syndrome and point to antioxidant intervention, potentially targeting NOX2 blockade, as a therapeutic strategy.
Abstract Exposure to chronic intermittent hypoxia (CIH) evokes redox changes, culminating in impaired upper airway muscle function. We sought to determine if NADPH oxidase 2 (NOX2)‐derived reactive oxygen species underpin CIH‐induced maladaptive changes in upper airway (sternohyoid) muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); CIH‐exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) given in the drinking water throughout exposure to CIH. In addition, we studied sham and CIH‐exposed NOX2‐null mice (B6.129S‐CybbTM1Din/J). Profound sternohyoid muscle dysfunction following exposure to CIH was entirely prevented by apocynin co‐treatment or NOX2 deletion. Exposure to CIH increased sternohyoid muscle NOX enzyme activity, with no alteration to the gene or protein expression of NOX subunits. There was no evidence of overt oxidative stress, muscle regeneration, inflammation or atrophy following exposure to CIH. We suggest that NOX‐dependent CIH‐induced upper airway muscle weakness increases vulnerability to upper airway obstruction. Our results have implications for human obstructive sleep apnoea syndrome and point to antioxidant intervention, potentially targeting NOX2 blockade, as a therapeutic strategy.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Sarah El Maghrani
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Oscar Ziegler
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Müller N, Warwick T, Noack K, Malacarne PF, Cooper AJL, Weissmann N, Schröder K, Brandes RP, Rezende F. Reactive Oxygen Species Differentially Modulate the Metabolic and Transcriptomic Response of Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11020434. [PMID: 35204316 PMCID: PMC8869421 DOI: 10.3390/antiox11020434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species (ROS) are important mediators of both physiological and pathophysiological signal transduction in the cardiovascular system. The effects of ROS on cellular processes depend on the concentration, localization, and duration of exposure. Cellular stress response mechanisms have evolved to mitigate the negative effects of acute oxidative stress. In this study, we investigate the short-term and long-term metabolic and transcriptomic response of human umbilical vein endothelial cells (HUVEC) to different types and concentrations of ROS. To generate intracellular H2O2, we utilized a lentiviral chemogenetic approach for overexpression of human D-amino acid oxidase (DAO). DAO converts D-amino acids into their corresponding imino acids and H2O2. HUVEC stably overexpressing DAO (DAO-HUVEC) were exposed to D-alanine (3 mM), exogenous H2O2 (10 µM or 300 µM), or menadione (5 µM) for various timepoints and subjected to global untargeted metabolomics (LC-MS/MS) and RNAseq by MACE (Massive analysis of cDNA ends). A total of 300 µM H2O2 led to pronounced changes on both the metabolic and transcriptomic level. In particular, metabolites linked to redox homeostasis, energy-generating pathways, and nucleotide metabolism were significantly altered. Furthermore, 300 µM H2O2 affected genes related to the p53 pathway and cell cycle. In comparison, the effects of menadione and DAO-derived H2O2 mainly occurred at gene expression level. Collectively, all types of ROS led to subtle changes in the expression of ribosomal genes. Our results show that different types and concentration of ROS lead to a different metabolic and transcriptomic response in endothelial cells.
Collapse
Affiliation(s)
- Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
| | - Kurt Noack
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
| | - Pedro Felipe Malacarne
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
| | - Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA;
| | - Norbert Weissmann
- Justus Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35390 Giessen, Germany;
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern Kai 7, 60590 Frankfurt, Germany; (N.M.); (T.W.); (K.N.); (P.F.M.); (K.S.); (R.P.B.)
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-85321; Fax: +49-69-6301-7668
| |
Collapse
|
8
|
Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP. Effects of Pharmacological Inhibitors of NADPH Oxidase on Myogenic Contractility and Evoked Vasoactive Responses in Rat Resistance Arteries. Front Physiol 2022; 12:752366. [PMID: 35140625 PMCID: PMC8818784 DOI: 10.3389/fphys.2021.752366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide, are reported to contribute to the dynamic regulation of contractility in various arterial preparations, however, the situation in pressurized, myogenically active resistance arteries is much less clear. In the present study, we have utilized established pharmacological inhibitors of NADPH oxidase activity to examine the potential contribution of ROS to intrinsic myogenic contractility in adult Sprague–Dawley rat resistance arteries and responses to vasoactive agents acting via the endothelium (i.e., acetylcholine, SKA-31) or smooth muscle (i.e., sodium nitroprusside, phenylephrine). In cannulated and pressurized cremaster skeletal muscle and middle cerebral arteries, the NOX inhibitors 2-acetylphenothiazine (2-APT) and VAS2870, selective for NOX1 and NOX2, respectively, evoked concentration-dependent inhibition of basal myogenic tone in a reversible and irreversible manner, respectively, whereas the non-selective inhibitor apocynin augmented myogenic contractility. The vasodilatory actions of 2-APT and VAS2870 occurred primarily via the vascular endothelium and smooth muscle, respectively. Functional responses to established endothelium-dependent and –independent vasoactive agents were largely unaltered in the presence of either 2-APT or apocynin. In cremaster arteries from Type 2 Diabetic (T2D) Goto-Kakizaki rats with endothelial dysfunction, treatment with either 2-APT or apocynin did not modify stimulus-evoked vasoactive responses, but did affect basal myogenic tone. These same NOX inhibitors produced robust inhibition of total NADPH oxidase activity in aortic tissue homogenates from control and T2D rats, and NOX isozymes 1, 2 and 4, along with superoxide dismutase 1, were detected by qPCR in cremaster arteries and aorta from both species. Based on the diverse effects that we observed for established, chemically distinct NOX inhibitors, the functional contribution of vascular NADPH oxidase activity to stimulus-evoked vasoactive signaling in myogenically active, small resistance arteries remains unclear.
Collapse
|
9
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
10
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [PMID: 32859763 DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.
Collapse
Affiliation(s)
- Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Cristian Nogales
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Hermann A M Mucke
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Alexandra Petraina
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Antonio Cuadrado
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Ana I Rojo
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Pietro Ghezzi
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Vincent Jaquet
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fiona Augsburger
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Francois Dufrasne
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Jalal Soubhye
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Soni Deshwal
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Moises Di Sante
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Nina Kaludercic
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| |
Collapse
|
11
|
Oxidation of HDAC4 by Nox4-derived H 2O 2 maintains tube formation by endothelial cells. Redox Biol 2020; 36:101669. [PMID: 32818796 PMCID: PMC7452117 DOI: 10.1016/j.redox.2020.101669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
NADPH oxidases produce reactive oxygen species that differ in localization, type and concentration. Within the Nox family only Nox4 produces H2O2 which can directly oxidize cysteine residues. With this post-translational modification, activity, stability, localization and protein-protein interactions of the affected protein is altered. Nox4 controls differentiation, cellular homeostasis and prevents inflammation. Therefore, is likely that epigenetic mechanisms contribute to the effects of Nox4. One group of epigenetic modifiers are class IIa histone deacetylases (HDACs). We hypothesize that Nox4-derived H2O2 oxidizes HDACs and analyzed whether HDACs can be differentially oxidized by Nox4. As an artificial system, we utilized HEK293 cells, overexpressing Nox4 in a tetracycline-inducible manner. HDAC4 was oxidized upon Nox4 overexpression. Additionally, Nox4 overexpression increased HDAC4 phosphorylation on Ser632. H2O2 disrupted HDAC4/Mef2A complex, which de-represses Mef2A. In endothelial cells such as HUVECs and HMECs, overexpression of HDAC4 significantly reduced tube formation. Overexpression of a redox insensitive HDAC4 had no effect on endothelial tube formation. Treatment with H2O2, induction of Nox4 expression by treatment of the cells with TGFβ and co-overexpression of Nox4 not only induced phosphorylation of HDAC4, but also restored the repressive effect of HDAC4 for tube formation, while overexpression of a redox dead mutant of Nox4 did not. Taken together, Nox4 oxidizes HDAC4, increases its phosphorylation, and eventually ensures proper tube formation by endothelial cells.
Collapse
|
12
|
Nox2 NADPH oxidase is dispensable for platelet activation or arterial thrombosis in mice. Blood Adv 2020; 3:1272-1284. [PMID: 30995985 DOI: 10.1182/bloodadvances.2018025569] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Deficiency of the Nox2 (gp91phox) catalytic subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a genetic cause of X-linked chronic granulomatous disease, a condition in which patients are prone to infection resulting from the loss of oxidant production by neutrophils. Some studies have suggested a role for superoxide derived from Nox2 NADPH oxidase in platelet activation and thrombosis, but data are conflicting. Using a rigorous and comprehensive approach, we tested the hypothesis that genetic deficiency of Nox2 attenuates platelet activation and arterial thrombosis. Our study was designed to test the genotype differences within male and female mice. Using chloromethyl-dichlorodihydrofluorescein diacetate, a fluorescent dye, as well as high-performance liquid chromatography analysis with dihydroethidium as a probe to detect intracellular reactive oxygen species (ROS), we observed no genotype differences in ROS levels in platelets. Similarly, there were no genotype-dependent differences in levels of mitochondrial ROS. In addition, we did not observe any genotype-associated differences in platelet activation, adhesion, secretion, or aggregation in male or female mice. Platelets from chronic granulomatous disease patients exhibited similar adhesion and aggregation responses as platelets from healthy subjects. Susceptibility to carotid artery thrombosis in a photochemical injury model was similar in wild-type and Nox2-deficient male or female mice. Our findings indicate that Nox2 NADPH oxidase is not an essential source of platelet ROS or a mediator of platelet activation or arterial thrombosis in large vessels, such as the carotid artery.
Collapse
|
13
|
Kračun D, Klop M, Knirsch A, Petry A, Kanchev I, Chalupsky K, Wolf CM, Görlach A. NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess. Redox Biol 2020; 34:101536. [PMID: 32413743 PMCID: PMC7226895 DOI: 10.1016/j.redox.2020.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular side effects are frequent problems accompanying systemic glucocorticoid therapy, although the underlying mechanisms are not fully resolved. Reactive oxygen species (ROS) have been shown to promote various cardiovascular diseases although the link between glucocorticoid and ROS signaling has been controversial. As the family of NADPH oxidases has been identified as important source of ROS in the cardiovascular system we investigated the role of NADPH oxidases in response to the synthetic glucocorticoid dexamethasone in the cardiovascular system in vitro and in vivo in mice lacking functional NADPH oxidases due to a mutation in the gene coding for the essential NADPH oxidase subunit p22phox. We show that dexamethasone induced NADPH oxidase-dependent ROS generation, leading to vascular proliferation and angiogenesis due to activation of the transcription factor hypoxia-inducible factor-1 (HIF1). Chronic treatment of mice with low doses of dexamethasone resulted in the development of systemic hypertension, cardiac hypertrophy and left ventricular dysfunction, as well as in pulmonary hypertension and pulmonary vascular remodeling. In contrast, mice deficient in p22phox-dependent NADPH oxidases were protected against these cardiovascular side effects. Mechanistically, dexamethasone failed to upregulate HIF1α levels in these mice, while vascular HIF1α deficiency prevented pulmonary vascular remodeling. Thus, p22phox-dependent NADPH oxidases and activation of the HIF pathway are critical elements in dexamethasone-induced cardiovascular pathologies and might provide interesting targets to limit cardiovascular side effects in patients on chronic glucocorticoid therapy.
Collapse
Affiliation(s)
- Damir Kračun
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Mathieu Klop
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Anna Knirsch
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Ivan Kanchev
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Karel Chalupsky
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Cordula M Wolf
- Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
14
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Manea SA, Vlad ML, Fenyo IM, Lazar AG, Raicu M, Muresian H, Simionescu M, Manea A. Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol 2019; 28:101338. [PMID: 31634818 PMCID: PMC6807290 DOI: 10.1016/j.redox.2019.101338] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are instrumental in all inflammatory phases of atherosclerosis. Dysregulated histone deacetylase (HDAC)-related epigenetic pathways have been mechanistically linked to alterations in gene expression in experimental models of cardiovascular disorders. Hitherto, the relation between HDAC and Nox in atherosclerosis is not known. We aimed at uncovering whether HDAC plays a role in mediating Nox up-regulation, oxidative stress, inflammation, and atherosclerotic lesion progression. Human non-atherosclerotic and atherosclerotic arterial samples, ApoE-/- mice, and in vitro polarized monocyte-derived M1/M2-macrophages (Mac) were examined. Male ApoE-/- mice, maintained on normal or high-fat, cholesterol-rich diet, were randomized to receive 10 mg/kg suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor, or its vehicle, for 4 weeks. In the human/animal studies, real-time PCR, Western blot, lipid staining, lucigenin-enhanced chemiluminescence assay, and enzyme-linked immunosorbent assay were employed. The protein levels of class I, class IIa, class IIb, and class IV HDAC isoenzymes were significantly elevated both in human atherosclerotic tissue samples and in atherosclerotic aorta of ApoE-/- mice. Treatment of ApoE-/- mice with SAHA reduced significantly the extent of atherosclerotic lesions, and the aortic expression of Nox subtypes, NADPH-stimulated ROS production, oxidative stress and pro-inflammatory markers. Significantly up-regulated HDAC and Nox subtypes were detected in inflammatory M1-Mac. In these cells, SAHA reduced the Nox1/2/4 transcript levels. Collectively, HDAC inhibition reduced atherosclerotic lesion progression in ApoE-/- mice, possibly by intertwined mechanisms involving negative regulation of Nox expression and inflammation. The data propose that HDAC-oriented pharmacological interventions could represent an effective therapeutic strategy in atherosclerosis.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Monica Raicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Horia Muresian
- University Hospital Bucharest, Cardiovascular Surgery Department, Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
16
|
Holterman CE, Boisvert NC, Thibodeau JF, Kamto E, Novakovic M, Abd-Elrahman KS, Ferguson SSG, Kennedy CRJ. Podocyte NADPH Oxidase 5 Promotes Renal Inflammation Regulated by the Toll-Like Receptor Pathway. Antioxid Redox Signal 2019; 30:1817-1830. [PMID: 30070142 DOI: 10.1089/ars.2017.7402] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Oxidative stress associated with a proinflammatory state occurs in endothelial dysfunction, hypertension, chronic kidney disease, and diabetes. The NADPH oxidase (Nox) family of reactive oxygen species (ROS) generating enzymes is implicated in these processes, yet little information regarding the role of Nox5 is available. Our aim was to investigate the role of Nox5 in promoting renal inflammation and identify mechanisms regulating its activity. RESULTS Mice with podocyte-specific Nox5 (Nox5pod+) expression demonstrated greater glomerular inflammation and increased expression of Toll-like receptors (TLRs) and proinflammatory cytokines. In a lipopolysaccharide (LPS) model of acute kidney injury, Nox5pod+ and control littermates exhibited increased TLR and Nox1 expression. Compared with control littermates, Nox5pod+ animals developed greater glomerular inflammation and ROS production. Immortalized human podocytes (hPODs) incubated with LPS demonstrated TLR induction, increased Nox5 expression, and enhanced ROS production. Inhibition of interleukin-1 receptor-associated kinases (IRAK)-1 and -4 that lie downstream of TLR inhibited LPS-induced ROS production. Interaction between IRAK1 and Nox5 was confirmed by coimmunoprecipitation. Furthermore, LPS treatment of hPODs resulted in phosphorylation of threonine residue(s) in Nox5 that was attenuated by an IRAK1/4 inhibitor. Innovation and Conclusion: These results are the first to demonstrate that Nox5 is a downstream target of the TLR pathway and that Nox5-derived ROS may be modulated by IRAK1/4 activity. Nox5-derived ROS in podocytes can promote a proinflammatory state in the kidney via induction of cytokine expression and upregulation of TLRs leading to a feed-forward loop in which TLR activation enhances Nox5-mediated ROS production.
Collapse
Affiliation(s)
- Chet E Holterman
- 1 Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Naomi C Boisvert
- 2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Eldjonai Kamto
- 3 Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Melica Novakovic
- 2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Khaled S Abd-Elrahman
- 4 University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Canada
- 5 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Stephen S G Ferguson
- 4 University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Canada
| | - Christopher R J Kennedy
- 1 Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
- 2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
17
|
Steven S, Dib M, Hausding M, Kashani F, Oelze M, Kröller-Schön S, Hanf A, Daub S, Roohani S, Gramlich Y, Lutgens E, Schulz E, Becker C, Lackner KJ, Kleinert H, Knosalla C, Niesler B, Wild PS, Münzel T, Daiber A. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res 2019; 114:312-323. [PMID: 29036612 DOI: 10.1093/cvr/cvx197] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023] Open
Abstract
Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L-/- mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery. Conclusion CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mobin Dib
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Hausding
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Fatemeh Kashani
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Alina Hanf
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Daub
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Siyer Roohani
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yves Gramlich
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany
| | - Eberhard Schulz
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Christian Becker
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Philipp S Wild
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
18
|
Schröder K. NADPH oxidase-derived reactive oxygen species: Dosis facit venenum. Exp Physiol 2019; 104:447-452. [PMID: 30737851 PMCID: PMC6593456 DOI: 10.1113/ep087125] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/07/2019] [Indexed: 01/24/2023]
Abstract
New Findings What is the topic of this review? Within this review, the role of reactive oxygen species in cellular homeostasis, physiology and pathophysiology is discussed.
What advances does it highlight? The review provides new concepts of how reactive oxygen species influence gene expression, energy consumption and other aspects of the life of a cell. Furthermore, a model is provided to illustrate how reactive oxygen species elicit specific oxidation of target molecules.
Abstract Reactive oxygen species (ROS) have a long history of bad reputation. They are needed and effective in host defense, but on the contrary may induce situations of oxidative stress. Besides that, within recent years several soft functions (functions that may occur and are not directly connected to an effect, but may influence signaling in an indirect manner) of NADPH oxidases have been discovered, which are slowly eroding the image of the solely dangerous ROS. NADPH oxidase‐derived ROS serve to ease or enable signal transduction and to maintain homeostasis. However, there is still an enormous lag in the knowledge concerning target proteins and how ROS can elicit specific signalling in different cells and tissues. The present review summarizes some important functions of Nox2 and Nox4. Furthermore, although highly speculative, a model is provided of how those NADPH oxidases might be able to oxidize target proteins in a specific way. Many concepts mentioned in this review represent my personal view and are supported only in part by published studies.
Collapse
Affiliation(s)
- Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
19
|
Zielonka J, Kalyanaraman B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 2018; 128:3-22. [PMID: 29567392 PMCID: PMC6146080 DOI: 10.1016/j.freeradbiomed.2018.03.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in both pathogenic cellular damage events and physiological cellular redox signaling and regulation. To unravel the biological role of ROS, it is very important to be able to detect and identify the species involved. In this review, we introduce the reader to the methods of detection of ROS using luminescent (fluorescent, chemiluminescent, and bioluminescent) probes and discuss typical limitations of those probes. We review the most widely used probes, state-of-the-art assays, and the new, promising approaches for rigorous detection and identification of superoxide radical anion, hydrogen peroxide, and peroxynitrite. The combination of real-time monitoring of the dynamics of ROS in cells and the identification of the specific products formed from the probes will reveal the role of specific types of ROS in cellular function and dysfunction. Understanding the molecular mechanisms involving ROS may help with the development of new therapeutics for several diseases involving dysregulated cellular redox status.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
20
|
How Supraphysiological Oxygen Levels in Standard Cell Culture Affect Oxygen-Consuming Reactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8238459. [PMID: 30363917 PMCID: PMC6186316 DOI: 10.1155/2018/8238459] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
Most mammalian tissue cells experience oxygen partial pressures in vivo equivalent to 1–6% O2 (i.e., physioxia). In standard cell culture, however, headspace O2 levels are usually not actively regulated and under these conditions are ~18%. This drives hyperoxia in cell culture media that can affect a wide variety of cellular activities and may compromise the ability of in vitro models to reproduce in vivo biology. Here, we review and discuss some specific O2-consuming organelles and enzymes, including mitochondria, NADPH oxidases, the transplasma membrane redox system, nitric oxide synthases, xanthine oxidase, and monoamine oxidase with respect to their sensitivities to O2 levels. Many of these produce reactive oxygen and/or nitrogen species (ROS/RNS) as either primary end products or byproducts and are acutely sensitive to O2 levels in the range from 1% to 18%. Interestingly, many of them are also transcriptional targets of hypoxia-inducible factors (HIFs) and chronic cell growth at physioxia versus 18% O2 may alter their expression. Aquaporins, which facilitate hydrogen peroxide diffusion into and out of cells, are also regulated by HIFs, indicating that O2 levels may affect intercellular communication via hydrogen peroxide. The O2 sensitivities of these important activities emphasize the importance of maintaining physioxia in culture.
Collapse
|
21
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a powerful effector of redox signaling. It is able to oxidize cysteine residues, metal ion centers, and lipids. Understanding H2O2-mediated signaling requires, to some extent, measurement of H2O2 level. Recent Advances: Chemically and genetically encoded fluorescent probes for the detection of H2O2 are currently the most sensitive and popular. Novel probes are constantly being developed, with the latest progress particular with boronates and genetically encoded probes. CRITICAL ISSUES All currently available probes display limitations in terms of sensitivity, local and temporal resolution, and specificity in the detection of low H2O2 concentrations. In this review, we discuss the power of fluorescent probes and the systems in which they have been successfully employed. Moreover, we recommend approaches for overcoming probe limitations and for the avoidance of artifacts. FUTURE DIRECTIONS Constant improvements will lead to the generation of probes that are not only more sensitive but also specifically tailored to individual cellular compartments. Antioxid. Redox Signal. 29, 585-602.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| |
Collapse
|
22
|
Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol 2018; 16:332-343. [PMID: 29587244 PMCID: PMC5953221 DOI: 10.1016/j.redox.2018.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) generated by up-regulated NADPH oxidase (Nox) contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC)-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC) line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Mihaela-Loredana Antonescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Monica Raicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
23
|
Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadły R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid Redox Signal 2018; 28:1416-1432. [PMID: 29037049 PMCID: PMC5910052 DOI: 10.1089/ars.2017.7398] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Collapse
Affiliation(s)
- Micael Hardy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Santander, Colombia
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
24
|
Moll F, Walter M, Rezende F, Helfinger V, Vasconez E, De Oliveira T, Greten FR, Olesch C, Weigert A, Radeke HH, Schröder K. NoxO1 Controls Proliferation of Colon Epithelial Cells. Front Immunol 2018; 9:973. [PMID: 29867954 PMCID: PMC5951971 DOI: 10.3389/fimmu.2018.00973] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Aim Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. Results NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. Conclusion NoxO1 affects colon epithelium homeostasis and prevents inflammation.
Collapse
Affiliation(s)
- Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Estefania Vasconez
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Tiago De Oliveira
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | | | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| |
Collapse
|
25
|
Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z, Zheng F, Zhou MS. Macrophage Depletion Lowered Blood Pressure and Attenuated Hypertensive Renal Injury and Fibrosis. Front Physiol 2018; 9:473. [PMID: 29867533 PMCID: PMC5949360 DOI: 10.3389/fphys.2018.00473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage recruitment is closely associated with the degree of hypertensive renal injury. We investigated the direct role of macrophages using liposome-encapsulated clodronate (LEC) to deplete monocytes/macrophages in hypertensive renal injury. C57BL/6 mice were treated with a pressor dose of angiotensin (Ang, 1.4 mg/kg/day) II plus LEC or the PBS-liposome for 2 weeks. Ang II mice developed hypertension, albuminuria, glomerulosclerosis, and renal fibrosis. LEC treatment reduced systolic blood pressure (SBP), albuminuria, and protected against renal structural injury in Ang II mice. Ang II significantly increased renal macrophage infiltration (MOMA2+ cells) and the expression of renal tumor necrosis factor α and interleukin β1, which were significantly reduced in Ang II/LEC mice. Ang II increased renal oxidative stress and the expression of profibrotic factors transforming growth factor (TGF) β1 and fibronectin. Ang II also inhibited the phosphorylation of endothelial nitric oxide synthase [phospho-endothelial nitric oxide synthesis (eNOS), ser1177]. LEC treatment reduced renal oxidative stress and TGFβ1 and fibronectin expressions, and increased phospho-eNOS expression in the Ang II mice. In Dahl rats of salt-sensitive hypertension, LEC treatment for 4 weeks significantly attenuated the elevation of SBP induced by high salt intake and protected against renal injury and fibrosis. Our results demonstrate that renal macrophages play a critical role in the development of hypertension and hypertensive renal injury and fibrosis; the underlying mechanisms may be involved in the reduction in macrophage-driven renal inflammation and restoration of the balance between renal oxidative stress and eNOS. Therefore, macrophages should be considered as a potential therapeutic target to reduce the adverse consequences of hypertensive renal diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Yun Hao
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhihang Yang
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Feng Zheng
- Department of Nephrology, Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
26
|
Lejal N, Truchet S, Bechor E, Bouguyon E, Khedkar V, Bertho N, Vidic J, Adenot P, Solier S, Pick E, Slama-Schwok A. Turning off NADPH oxidase-2 by impeding p67 phox activation in infected mouse macrophages reduced viral entry and inflammation. Biochim Biophys Acta Gen Subj 2018. [PMID: 29524539 DOI: 10.1016/j.bbagen.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Targeting cells of the host immune system is a promising approach to fight against Influenza A virus (IAV) infection. Macrophage cells use the NADPH oxidase-2 (NOX2) enzymatic complex as a first line of defense against pathogens by generating superoxide ions O2- and releasing H2O2. Herein, we investigated whether targeting membrane -embedded NOX2 decreased IAV entry via raft domains and reduced inflammation in infected macrophages. METHODS Confocal microscopy and western blots monitored levels of the viral nucleoprotein NP and p67phox, NOX2 activator subunit, Elisa assays quantified TNF-α levels in LPS or IAV-activated mouse or porcine alveolar macrophages pretreated with a fluorescent NOX inhibitor, called nanoshutter NS1. RESULTS IAV infection in macrophages promoted p67phox translocation to the membrane, rafts clustering and activation of the NOX2 complex at early times. Disrupting rafts reduced intracellular viral NP. NS1 markedly reduced raft clustering and viral entry by binding to the C-terminal of NOX2 also characterized in vitro. NS1 decrease of TNF-α release depended on the cell type. CONCLUSION NOX2 participated in IAV entry and raft-mediated endocytosis. NOX2 inhibition by NS1 reduced viral entry. NS1 competition with p67phox for NOX2 binding shown by in silico models and cell-free assays was in agreement with NS1 inhibiting p67phox translocation to membrane-embedded NOX2 in mouse and porcine macrophages. GENERAL SIGNIFICANCE We introduce NS1 as a compound targeting NOX2, a critical enzyme controlling viral levels and inflammation in macrophages and discuss the therapeutic relevance of targeting the C-terminal of NADPH oxidases by probes like NS1 in viral infections.
Collapse
Affiliation(s)
- Nathalie Lejal
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | | | - Edna Bechor
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | - Vijay Khedkar
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | - Nicolas Bertho
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | - Jasmina Vidic
- Paris Saclay University, U892 INRA, Jouy en Josas, France
| | - Pierre Adenot
- Paris-Saclay University, UMR BDR, INRA, ENVA, Jouy en Josas, France; Paris-Saclay University, MIMA2 Plateform, INRA, Jouy en Josas, France
| | - Stéphanie Solier
- Paris Saclay University, Gustave Roussy Institute, U1170 INSERM, Villejuif, France
| | - Edgar Pick
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Anny Slama-Schwok
- Paris Saclay University, U892 INRA, Jouy en Josas, France; Paris Saclay University, Gustave Roussy Institute, UMR 8200 CNRS, Villejuif, France.
| |
Collapse
|
27
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
28
|
Silva I, Rausch V, Peccerella T, Millonig G, Seitz HK, Mueller S. Hypoxia enhances H 2O 2-mediated upregulation of hepcidin: Evidence for NOX4-mediated iron regulation. Redox Biol 2018; 16:1-10. [PMID: 29459227 PMCID: PMC5832675 DOI: 10.1016/j.redox.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022] Open
Abstract
The exact regulation of the liver-secreted peptide hepcidin, the key regulator of systemic iron homeostasis, is still poorly understood. It is potently induced by iron, inflammation, cytokines or H2O2 but conflicting results have been reported on hypoxia. In our current study, we first show that pronounced (1%) and mild (5%) hypoxia strongly induces hepcidin in human Huh7 hepatoma and primary liver cells predominantly at the transcriptional level via STAT3 using two hypoxia systems (hypoxia chamber and enzymatic hypoxia by the GOX/CAT system). SiRNA silencing of JAK1, STAT3 and NOX4 diminished the hypoxia-mediated effect while a role of HIF1α could be clearly ruled out by the response to hypoxia-mimetics and competition experiments with a plasmid harboring the oxygen-dependent degradation domain of HIF1α. Specifically, hypoxia drastically enhances the H2O2-mediated induction of hepcidin strongly pointing towards an oxidase as powerful upstream control of hepcidin. We finally provide evidences for an efficient regulation of hepcidin expression by NADPH-dependent oxidase 4 (NOX4) in liver cells. In summary, our data demonstrate that hypoxia strongly potentiates the peroxide-mediated induction of hepcidin via STAT3 signaling pathway. Moreover, oxidases such as NOX4 or artificially overexpressed urate oxidase (UOX) can induce hepcidin. It remains to be studied whether the peroxide-STAT3-hepcidin axis simply acts to continuously compensate for oxygen fluctuations or is directly involved in iron sensing per se. Hypoxia strongly induces hepcidin via STAT3 signaling. HIF1α is not involved in hepcidin regulation under hypoxia. Hypoxia enhances hydrogen peroxide-mediated hepcidin induction. Oxidases, such as NOX4 are powerful inducers of hepcidin.
Collapse
Affiliation(s)
- Inês Silva
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Teresa Peccerella
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Gunda Millonig
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Helmut-Karl Seitz
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, Heidelberg, Germany.
| |
Collapse
|
29
|
Hofmann A, Brunssen C, Poitz DM, Langbein H, Strasser RH, Henle T, Ravens U, Morawietz H. Lectin-like oxidized low-density lipoprotein receptor-1 promotes endothelial dysfunction in LDL receptor knockout background. ATHEROSCLEROSIS SUPP 2018; 30:294-302. [PMID: 29096854 DOI: 10.1016/j.atherosclerosissup.2017.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized LDL in endothelial cells. LOX-1 is highly expressed in atherosclerotic plaques. The impact of LOX-1 on development of endothelial dysfunction in large vessels in absence or presence of atherosclerosis-prone conditions has not been studied to date. METHODS Mice with endothelial cell-specific LOX-1 overexpression (bLOX-1tg) were analyzed. Wild-type (WT) mice served as controls. In addition, bLOX-1tg mice were crossed with LDL receptor knockout (Ldlr-/-) mice. All mice were fed a western-type diet (WD) or control diet (CD) for 20 weeks. Afterwards, endothelial function was analyzed ex vivo in thoracic aortas using a Mulvany myograph. RESULTS WD induced hypertriglyceridemia (bLOX-1tg: 1.6-fold; WT: 1.4-fold) and hypercholesterolemia (P < 0.0001) in bLOX-1tg and WT mice without HDL-elevation in bLOX-1tg mice. Gonadal fat pad weight was 1.7 and 1.2-fold increased on CD and WD in bLOX-1tg mice compared to WT. LOX-1 overexpression impaired endothelial function by 15-16% (P < 0.05) on CD and WD. Crossing bLOX-1tg mice into Ldlr-/- background strongly elevated total (∼6-fold) and LDL-cholesterol (∼9-fold) compared to WT and bLOX-1tg mice on WD. Endothelial function in response to WD was impaired in bLOX-1tg/Ldlr-/- mice (Effmax: 56.7 ± 23.0%) compared to WT (Effmax: 88.2 ± 15.8%, P < 0.001), bLOX-1tg (Effmax: 76.7 ± 12.9%, P < 0.05) and Ldlr-/- mice (Effmax: 70.1 ± 13.1%, P < 0.05). No differences between WT, bLOX-1tg and Ldlr-/- mice were detectable when comparing all genotypes. CONCLUSION Endothelial LOX-1 overexpression in an atherosclerosis-prone background impairs endothelial function, proving its importance in the development of atherosclerosis.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Department of Internal Medicine and Cardiology at the Technische Universität Dresden, Dresden, Germany
| | - Heike Langbein
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ruth H Strasser
- Department of Internal Medicine and Cardiology at the Technische Universität Dresden, Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ursula Ravens
- Department of Physiology, Medical Faculty Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Centre Freiburg Bad Krozingen, Freiburg I. Br., Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
30
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
31
|
Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, Duveau V, Sanoudou D, Skosgater S, Vlahou A, Wasquel D, Krause KH, Jaquet V. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic Biol Med 2017; 112:387-396. [PMID: 28811143 DOI: 10.1016/j.freeradbiomed.2017.08.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O2•-) and hydrogen peroxide (H2O2). However in the context of neuroinflammation, they present paradoxical features since O2•-/H2O2 generated by NOX and/or secondary reactive oxygen species (ROS) derived from O2•-/H2O2 can either lead to neuronal oxidative damage or resolution of inflammation. The role of NOX enzymes has been investigated in many models of neurodegenerative diseases by using either genetic or pharmacological approaches. In the present review we provide a critical assessment of recent findings related to the role of NOX in the CNS as well as how the field has advanced over the last 5 years. In particular, we focus on the data derived from the work of a consortium (Neurinox) funded by the European Commission's Programme 7 (FP7). We discuss the evidence gathered from animal models and human samples linking NOX expression/activity with neuroinflammation in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease as well as autoimmune demyelinating diseases like multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). We address the possibility to use measurement of the activity of the NOX2 isoform in blood samples as biomarker of disease severity and treatment efficacy in neurodegenerative disease. Finally we clarify key controversial aspects in the field of NOX, such as NOX cellular expression in the brain, measurement of NOX activity, impact of genetic deletion of NOX in animal models of neurodegeneration and specificity of NOX inhibitors.
Collapse
Affiliation(s)
- Silvia Sorce
- Neuropathology Institute, University of Zürich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales, Australia
| | - Tamara Seredenina
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Rikard Holmdahl
- Section for Medical Inflammation research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Adriano Aguzzi
- Neuropathology Institute, University of Zürich, Switzerland
| | - Adriano Chio
- Department of Neuroscience, University of Torino, Italy
| | - Antoine Depaulis
- Grenoble Institut des Neurosciences, Inserm U1216 and Univ, Grenoble Alpes, F-38000 Grenoble, France
| | | | - Peter Olofsson
- Redoxis AB, Medicon Village, Lund, Sweden; Pronoxis AB, Medicon Village, Lund, Sweden
| | - Tomas Olsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Skosgater
- Arttic, 58A rue du Dessous des Berges, F-75013 Paris, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
32
|
Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun 2017; 8:466. [PMID: 28878211 PMCID: PMC5587708 DOI: 10.1038/s41467-017-00503-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species are produced transiently in response to cell stimuli, and function as second messengers that oxidize target proteins. Protein-tyrosine phosphatases are important reactive oxygen species targets, whose oxidation results in rapid, reversible, catalytic inactivation. Despite increasing evidence for the importance of protein-tyrosine phosphatase oxidation in signal transduction, the cell biological details of reactive oxygen species-catalyzed protein-tyrosine phosphatase inactivation have remained largely unclear, due to our inability to visualize protein-tyrosine phosphatase oxidation in cells. By combining proximity ligation assay with chemical labeling of cysteine residues in the sulfenic acid state, we visualize oxidized Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2). We find that platelet-derived growth factor evokes transient oxidation on or close to RAB5+/ early endosome antigen 1− endosomes. SHP2 oxidation requires NADPH oxidases (NOXs), and oxidized SHP2 co-localizes with platelet-derived growth factor receptor and NOX1/4. Our data demonstrate spatially and temporally limited protein oxidation within cells, and suggest that platelet-derived growth factor-dependent “redoxosomes,” contribute to proper signal transduction. Protein-tyrosine phosphatases (PTPs) are thought to be major targets of receptor-activated reactive oxygen species (ROS). Here the authors describe a method that allows the localized visualization of oxidized intermediates of PTPs inside cells during signaling, and provide support for the “redoxosome” model.
Collapse
|
33
|
Daiber A, Oelze M, Steven S, Kröller-Schön S, Münzel T. Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system. Redox Biol 2017; 12:35-49. [PMID: 28212522 PMCID: PMC5312509 DOI: 10.1016/j.redox.2017.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) confer redox regulation of essential cellular functions (e.g. differentiation, proliferation, migration, apoptosis), initiate and catalyze adaptive stress responses. In contrast, excessive formation of RONS caused by impaired break-down by cellular antioxidant systems and/or insufficient repair of the resulting oxidative damage of biomolecules may lead to appreciable impairment of cellular function and in the worst case to cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, the knowledge of the severity of oxidative stress and tissue specific localization is of great biological and clinical importance. However, at this level of investigation quantitative information may be enough. For the development of specific drugs, the cellular and subcellular localization of the sources of RONS or even the nature of the reactive species may be of great importance, and accordingly, more qualitative information is required. These two different philosophies currently compete with each other and their different needs (also reflected by different detection assays) often lead to controversial discussions within the redox research community. With the present review we want to shed some light on these different philosophies and needs (based on our personal views), but also to defend some of the traditional assays for the detection of RONS that work very well in our hands and to provide some guidelines how to use and interpret the results of these assays. We will also provide an overview on the "new assays" with a brief discussion on their strengths but also weaknesses and limitations.
Collapse
Affiliation(s)
- Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
34
|
Schröder K, Weissmann N, Brandes RP. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 2017; 109:22-32. [PMID: 28336130 DOI: 10.1016/j.freeradbiomed.2017.03.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Teixeira G, Szyndralewiez C, Molango S, Carnesecchi S, Heitz F, Wiesel P, Wood JM. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol 2017; 174:1647-1669. [PMID: 27273790 PMCID: PMC5446584 DOI: 10.1111/bph.13532] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
The NADPH oxidase (NOX) family of enzymes produces ROS as their sole function and is becoming recognized as key modulators of signal transduction pathways with a physiological role under acute stress and a pathological role after excessive activation under chronic stress. The seven isoforms differ in their regulation, tissue and subcellular localization and ROS products. The most studied are NOX1, 2 and 4. Genetic deletion of NOX1 and 4, in contrast to NOX2, has revealed no significant spontaneous pathologies and a pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases and in particular inflammatory and fibrotic diseases. This has stimulated interest in NOX inhibitors for therapeutic application. GKT136901 and GKT137831 are two structurally related compounds demonstrating a preferential inhibition of NOX1 and 4 that have suitable properties for in vivo studies and have consequently been evaluated across a range of disease models and compared with gene deletion. In contrast to gene deletion, these inhibitors do not completely suppress ROS production, maintaining some basal level of ROS. Despite this and consistent with most gene deletion studies, these inhibitors are well tolerated and slow or prevent disease progression in a range of models of chronic inflammatory and fibrotic diseases by modulating common signal transduction pathways. Clinical trials in patients with GKT137831 have demonstrated excellent tolerability and reduction of various markers of chronic inflammation. NOX1/4 inhibition may provide a safe and effective therapeutic strategy for a range of inflammatory and fibrotic diseases. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Teixeira
- Evotec International GmbHGoettingenGermany
| | | | - S Molango
- Genkyotex SAPlan les OuatesSwitzerland
| | | | - F Heitz
- Genkyotex SAPlan les OuatesSwitzerland
| | - P Wiesel
- Genkyotex SAPlan les OuatesSwitzerland
| | | |
Collapse
|
36
|
Beloqui O, Moreno MU, San José G, Pejenaute Á, Cortés A, Landecho MF, Díez J, Fortuño A, Zalba G. Increased phagocytic NADPH oxidase activity associates with coronary artery calcification in asymptomatic men. Free Radic Res 2017; 51:389-396. [PMID: 28427294 DOI: 10.1080/10715762.2017.1321745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vascular calcification is a common feature in atherosclerosis and associates with cardiovascular events. Oxidative stress may be involved in the pathogenesis of vascular calcification. Previous studies have shown that the phagocytic NADPH oxidase is associated with atherosclerosis. The objective of the present study was to investigate the association between phagocytic NADPH oxidase-mediated superoxide production and coronary artery calcium (CAC). NADPH oxidase-mediated superoxide production was determined by chemiluminescence and CAC by computed tomography in 159 asymptomatic men free of overt clinical atherosclerosis. Multivariate linear regression analyses were used to assess the relationship between CAC and NADPH oxidase-mediated superoxide production. Compared with individuals in the lowest score of CAC (= 0 Agatston units), those in the upper score (>400 Agatston units) showed higher superoxide production (p < 0.05). In correlation analysis, superoxide production positively (p < 0.01) correlated with CAC, which in multivariate analysis remained significant after adjusting for age, HDL-cholesterol, triglycerides, body mass index, smoking, arterial hypertension and diabetes mellitus. In conclusion, in a population of men without clinically overt atherosclerotic disease, increased NADPH oxidase-mediated superoxide production associated with enhanced CAC. Albeit descriptive, these findings suggest a potential involvement of phagocytic NADPH oxidase-mediated oxidative stress in CAC.
Collapse
Affiliation(s)
- Oscar Beloqui
- a Department of Internal Medicine , Clínica Universidad de Navarra , Pamplona , Spain.,b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - María U Moreno
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain
| | - Gorka San José
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain
| | - Álvaro Pejenaute
- d Department of Biochemistry and Genetics , University of Navarra , Pamplona , Spain
| | - Adriana Cortés
- d Department of Biochemistry and Genetics , University of Navarra , Pamplona , Spain
| | - Manuel F Landecho
- a Department of Internal Medicine , Clínica Universidad de Navarra , Pamplona , Spain.,b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - Javier Díez
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain.,e Deparment of Cardiology and Cardiac Surgery , Clínica Universidad de Navarra , Pamplona , Spain
| | - Ana Fortuño
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain
| | - Guillermo Zalba
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain.,d Department of Biochemistry and Genetics , University of Navarra , Pamplona , Spain
| |
Collapse
|
37
|
Dickson BJ, Gatie MI, Spice DM, Kelly GM. NOX1 and NOX4 are required for the differentiation of mouse F9 cells into extraembryonic endoderm. PLoS One 2017; 12:e0170812. [PMID: 28152080 PMCID: PMC5289483 DOI: 10.1371/journal.pone.0170812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/11/2017] [Indexed: 01/23/2023] Open
Abstract
Mouse F9 cells differentiate to primitive endoderm (PrE) when treated with retinoic acid (RA). Differentiation is accompanied by increased reactive oxygen species (ROS) levels, and while treating F9 cells with antioxidants attenuates differentiation, H2O2 treatment alone is sufficient to induce PrE. We identified the NADPH oxidase (NOX) complexes as candidates for the source of this endogenous ROS, and within this gene family, and over the course of differentiation, Nox1 and Nox 4 show the greatest upregulation induced by RA. Gata6, encoding a master regulator of extraembryonic endoderm is also up-regulated by RA and we provide evidence that NOX1 and NOX4 protein levels increase in F9 cells overexpressing Gata6. Pan-NOX and NOX1-specific inhibitors significantly reduced the ability of RA to induce PrE, and this was recapitulated using a genetic approach to knockdown Nox1 and/or Nox4 transcripts. Interestingly, overexpressing either gene in untreated F9 cells did not induce differentiation, even though each elevated ROS levels. Thus, the data suggests that ROS produced during PrE differentiation is dependent in part on increased NOX1 and NOX4 levels, which is under the control of GATA6. Furthermore, these results suggest that the combined activity of multiple NOX proteins is necessary for the differentiation of F9 cells to primitive endoderm.
Collapse
Affiliation(s)
- Benjamin J. Dickson
- Department of Biology, Molecular Genetics Unit, Western University, London, Ontario, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, Ontario, Canada
| | - Danielle M. Spice
- Department of Biology, Molecular Genetics Unit, Western University, London, Ontario, Canada
| | - Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, Ontario, Canada
- Child Health Research Institute, London, Ontario, Canada
- Ontario Institute for Regenerative Medicine, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Ahn B, Coblentz PD, Beharry AW, Patel N, Judge AR, Moylan JS, Hoopes CW, Bonnell MR, Ferreira LF. Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation. Front Physiol 2017; 7:686. [PMID: 28119629 PMCID: PMC5220111 DOI: 10.3389/fphys.2016.00686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023] Open
Abstract
Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p < 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p < 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals.
Collapse
Affiliation(s)
- Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Philip D Coblentz
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Adam W Beharry
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| | - Nikhil Patel
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| | | | - Charles W Hoopes
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark R Bonnell
- Division of Cardiothoracic Surgery, University of Toledo Medical Center Toledo, OH, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| |
Collapse
|
39
|
Rezende F, Prior KK, Löwe O, Wittig I, Strecker V, Moll F, Helfinger V, Schnütgen F, Kurrle N, Wempe F, Walter M, Zukunft S, Luck B, Fleming I, Weissmann N, Brandes RP, Schröder K. Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays. Free Radic Biol Med 2017; 102:57-66. [PMID: 27863990 DOI: 10.1016/j.freeradbiomed.2016.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
UNLABELLED Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox. IN CONCLUSION the cytochrome P450 system accounts for the majority of the signal of Nox activity chemiluminescence based assays.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Kim-Kristin Prior
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Oliver Löwe
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, Frankfurt, Germany
| | - Valentina Strecker
- Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, Frankfurt, Germany
| | - Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Frank Schnütgen
- Institute for Molecular Hematology, Goethe-University, Frankfurt, Germany
| | - Nina Kurrle
- Institute for Molecular Hematology, Goethe-University, Frankfurt, Germany
| | - Frank Wempe
- Institute for Molecular Hematology, Goethe-University, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Bert Luck
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | | | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
40
|
Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med 2016; 98:18-28. [PMID: 27184955 PMCID: PMC4975970 DOI: 10.1016/j.freeradbiomed.2016.05.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/31/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| |
Collapse
|
41
|
CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity. Redox Biol 2016; 9:287-295. [PMID: 27614387 PMCID: PMC5021817 DOI: 10.1016/j.redox.2016.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
The NADPH oxidases are important transmembrane proteins producing reactive oxygen species (ROS). Within the Nox family, different modes of activation can be discriminated. Nox1-3 are dependent on different cytosolic subunits, Nox4 seems to be constitutively active and Nox5 is directly activated by calcium. With the exception of Nox5, all Nox family members are thought to depend on the small transmembrane protein p22phox. With the discovery of the CRISPR/Cas9-system, a tool to alter genomic DNA sequences has become available. So far, this method has not been widely used in the redox community. On such basis, we decided to study the requirement of p22phox in the Nox complex using CRISPR/Cas9-mediated knockout. Knockout of the gene of p22phox, CYBA, led to an ablation of activity of Nox4 and Nox1 but not of Nox5. Production of hydrogen peroxide or superoxide after knockout could be rescued with either human or rat p22phox, but not with the DUOX-maturation factors DUOXA1/A2. Furthermore, different mutations of p22phox were studied regarding the influence on Nox4-dependent H2O2 production. P22phox Q130* and Y121H affected maturation and activity of Nox4. Hence, Nox5-dependent O2•- production is independent of p22phox, but native p22phox is needed for maturation of Nox4 and production of H2O2.
Collapse
|
42
|
Prior KK, Wittig I, Leisegang MS, Groenendyk J, Weissmann N, Michalak M, Jansen-Dürr P, Shah AM, Brandes RP. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. J Biol Chem 2016; 291:7045-59. [PMID: 26861875 PMCID: PMC4807287 DOI: 10.1074/jbc.m115.710772] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/24/2022] Open
Abstract
Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Kim-Kristin Prior
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany the Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany, the Cluster of Excellence "Macromolecular Complexes," Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Matthias S Leisegang
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| | - Jody Groenendyk
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Norbert Weissmann
- the Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University Member of the German Center for Lung Research (DZL), 60590 Giessen, Germany
| | - Marek Michalak
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Pidder Jansen-Dürr
- the Institute for Biomedical Ageing Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Insbruk, Austria
| | - Ajay M Shah
- the King's College London British Heart Foundation Centre, Cardiovascular Division, London WC2R 2LS, United Kingdom, and
| | - Ralf P Brandes
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Cowley AW, Yang C, Zheleznova NN, Staruschenko A, Kurth T, Rein L, Kumar V, Sadovnikov K, Dayton A, Hoffman M, Ryan RP, Skelton MM, Salehpour F, Ranji M, Geurts A. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2015; 67:440-50. [PMID: 26644237 DOI: 10.1161/hypertensionaha.115.06280] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.
Collapse
Affiliation(s)
- Allen W Cowley
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.).
| | - Chun Yang
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Nadezhda N Zheleznova
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alexander Staruschenko
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Theresa Kurth
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Lisa Rein
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Vikash Kumar
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Katherine Sadovnikov
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alex Dayton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Matthew Hoffman
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Robert P Ryan
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Meredith M Skelton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Fahimeh Salehpour
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Mahsa Ranji
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Aron Geurts
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| |
Collapse
|
44
|
Rezende F, Löwe O, Helfinger V, Prior KK, Walter M, Zukunft S, Fleming I, Weissmann N, Brandes RP, Schröder K. Response to Pagano et al. Antioxid Redox Signal 2015; 23:1247-9. [PMID: 26173053 DOI: 10.1089/ars.2015.6396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In their letter, Pagano et al. appreciate the development of the Nox1, Nox2, and Nox4 triple (3N(-/-)) knockout mouse. They also agree on the view that chemiluminescence assays in general have severe limitations. However, they criticize the fact that the membrane assays in the particular study were restricted to chemiluminescence techniques. Moreover, Pagano et al. got the impression that statements concerning membrane assays of Nox activity in general were made. In addition to a lack of some technical details, Pagano et al. also found the characterization of the 3N(-/-) incomplete and some of the results to be incomprehensible. Although we are grateful for the interest of Pagano et al. in our work, we realized that basically each observation of our study was questioned. This is certainly an excessive rejection of the study in total and fails to appreciate the clear chain of evidences presented. Our work focused on chemiluminescence, and thus, any conclusions are restricted to this technique. Moreover, the 3N(-/-) mice were never developed to study the physiology of Nox enzymes, but rather to validate Nox specificity of NADPH-stimulated chemiluminescence assays. We are convinced that our findings are a valid demonstration that chemiluminescence-based assays in membrane preparations stimulated with NADPH do not measure Nox activity. This conclusion is based on both overexpression studies as well as genetic deficient mouse models. The criticisms of Pagano et al. thus might be justified in some aspects; they, however, cannot disprove the conclusions of our work. Antioxid. Redox Signal. 23, 1247-1249.
Collapse
Affiliation(s)
- Flávia Rezende
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| | - Oliver Löwe
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| | - Valeska Helfinger
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| | - Kim-Kristin Prior
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| | - Maria Walter
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| | - Sven Zukunft
- 2 Institute for Vascular Signaling, Goethe-University Frankfurt , Frankfurt, Germany
| | - Ingrid Fleming
- 2 Institute for Vascular Signaling, Goethe-University Frankfurt , Frankfurt, Germany
| | - Norbert Weissmann
- 3 Excellencecluster Cardiopulmonary System, Justus-Liebig-University Giessen , Giessen, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University Frankfurt , Frankfurt, Germany
| |
Collapse
|
45
|
Pagano PJ, Griendling KK, Miller FJ, Laurindo FRM, Touyz RM. Chemiluminescence and the Nox1-Nox2-Nox4 Triple Knockout. Antioxid Redox Signal 2015; 23:1246-7. [PMID: 26054248 DOI: 10.1089/ars.2015.6382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Patrick J Pagano
- 1 Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kathy K Griendling
- 2 Division of Cardiology, Department of Medicine, Emory University , Atlanta, Georgia
| | - Francis J Miller
- 3 Division of Cardiovascular Diseases, Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center , Iowa City, Iowa
| | - Francisco R M Laurindo
- 4 Laboratório de Biologia Vascular, Faculdade de Medicina, Instituto do Coração (Incor), Universidade de São Paulo , São Paulo, Brasil
| | - Rhian M Touyz
- 5 Institute of Cardiovascular and Medical Sciences, University of Glasgow , Glasgow, United Kingdom
| |
Collapse
|
46
|
Bedard K, Whitehouse S, Jaquet V. Challenges, Progresses, and Promises for Developing Future NADPH Oxidase Therapeutics. Antioxid Redox Signal 2015. [PMID: 26207329 DOI: 10.1089/ars.2015.6450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
NADPH oxidase (NOX) enzymes show great potential as therapeutic pharmacological targets. This Forum revolves around the roles of specific NOX isoforms in oxidative stress-mediated pathologies, available NOX antagonists/agonists as well as the potential side effects of NOX inhibition and the requisite identification of novel oxidative biomarkers as a measure of NOX activity in patients. In addition, an original article reports the discovery of a novel small molecule NOX2 inhibitor. Finally an attractive and innovative therapeutic approach for modulating NOX activity through the inhibition of the proton channel Hv1 is discussed.
Collapse
Affiliation(s)
- Karen Bedard
- 1 Department of Pathology, Dalhousie University , Halifax, Canada
| | - Scott Whitehouse
- 1 Department of Pathology, Dalhousie University , Halifax, Canada
| | - Vincent Jaquet
- 2 Department of Pathology and Immunology, Centre Médical Universitaire , University of Geneva, Geneva, Switzerland
| |
Collapse
|