1
|
Peiter N, Einert A, Just P, Jannasch F, Najdovska M, Rother M. Defining the methanogenic SECIS element in vivo by targeted mutagenesis. RNA Biol 2025; 22:1-13. [PMID: 40000419 PMCID: PMC11881835 DOI: 10.1080/15476286.2025.2472448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In all domains of life, Archaea, Eukarya and Bacteria, the unusual amino acid selenocysteine (Sec) is co-translationally incorporated into proteins by recoding a UGA stop codon to a sense codon. A secondary structure on the mRNA, the selenocysteine insertion sequence (SECIS), is required, but its position, secondary structure and binding partner(s) are not conserved across the tree of life. Thus far, the nature of archaeal SECIS elements has been derived mainly from sequence analyses. A recently developed in vivo reporter system was used to study the structure-function relationships of SECIS elements in Methanococcus maripaludis. Through targeted mutagenesis, we defined the minimal functional SECIS element, the parts of the SECIS where structure and not the identity of the bases are relevant for function, and identified two conserved -and invariant- adenines that are most likely to interact with the other factor(s) of the Sec recoding machinery. Finally, we demonstrated the functionality of SECIS elements in the 5`-untranslated region of the mRNA and identified a potential mechanism of SECIS repositioning in the vicinity of the UGA for efficient selenocysteine insertion.
Collapse
Affiliation(s)
- Nils Peiter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Anna Einert
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Pauline Just
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Frida Jannasch
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Marija Najdovska
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Mojadadi A, Au A, Ortiz Cerda T, Shao JY, O’Neil T, Bell-Anderson K, Andersen JW, Webb J, Salah W, Ahmad G, Harris HH, Witting PK. Dietary supplementation of male mice with inorganic, organic or nanoparticle selenium preparations: evidence supporting a putative gut-thyroid-male fertility axis. Redox Rep 2025; 30:2495367. [PMID: 40277453 PMCID: PMC12035940 DOI: 10.1080/13510002.2025.2495367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Selenium (Se) is linked to physiological homeostasis. Male mice (n = 8/group) were fed control (AIN93G) or diets enriched in sodium selenite (NaSe, 5.6 ppm), methylselenocysteine (Met, 4.7 ppm), diphenyl diselenide (DPDS, 14.2 ppm), or nanoselenium (NanoSe, 2.7 ppm); dietary Se ascertained by inductively-coupled plasma mass spectrometry. At 4 weeks testes, sperm, thyroids, blood and stool were collected to assess histoarchitecture, circulating hormones (thyroxine, T4; triiodothyronine, T3; thyroid stimulating hormone, TSH) and gut microbiome (16S rRNAV3-V4 amplicon sequencing). Supplemented NaSe, Met, and NanoSe increased plasma testosterone and testis glutathione peroxidases (GPx-1/4) while testicular superoxide dismutase and catalase increased slightly in the NanoSe group indicating a selective antioxidant response. Overall, NanoSe and NaSe enhanced male reproductive factors. All thyroids isolated from Se-supplemented mice contained marginal vacuoles and a lower follicle area vs control. Nano-Se enhanced thyroidiodothyronine deiodinase-1 (DIO1) expression however, thyroid GPx-1/4 remained unchanged. Supplemented NaSe and DPDSl increased plasma T3/T4 ratio, while plasma TSH was unchanged. Microbiome analyses showed that NanoSe was most efficacious in altering composition (judged by α-diversity, Shannon index and taxon richness) while the NaSe diet showed the greatest overall change in α-diversity. Dietary Se supplementation, particularly encapsulated NanoSe, may improve male fertility factors by enhancing the gut-thyroid-fertility axis.
Collapse
Affiliation(s)
- A. Mojadadi
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - A. Au
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - T. Ortiz Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - J.-Y. Shao
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - T. O’Neil
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - K. Bell-Anderson
- Discipline of Nutrition, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - J. W. Andersen
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | - J. Webb
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - W. Salah
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - G. Ahmad
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - H. H. Harris
- Discipline of Nutrition, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - P. K. Witting
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Nunes LGA, Ma C, Pitts MW, Hoffmann PR. Insights from selenoprotein I mouse models for understanding biological roles of this enzyme. Arch Biochem Biophys 2025; 768:110394. [PMID: 40107406 PMCID: PMC11994276 DOI: 10.1016/j.abb.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Selenoprotein I (selenoi) is a metabolic enzyme expressed in a wide variety of tissues that catalyzes the transfer of the ethanolamine phosphate group from CDP-ethanolamine to lipid acceptors to generate ethanolamine phospholipids. It is a member of the selenoprotein family, a class of proteins that mostly play fundamental roles in redox homeostasis and are defined by the co-translational incorporation of selenium in the form of selenocysteine. Loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a complex form of hereditary spastic paraplegia. Understanding the roles of this selenoprotein and its phospholipid products in different cell types has benefited from the development of mouse models. In particular, global and conditional knockout (KO) of the Selenoi gene in mice has enabled a more complete picture to emerge of how this important selenoprotein is integrated into metabolic pathways. These data have revealed how Selenoi loss-of-function affects embryogenesis, neurodevelopment, the immune system and liver physiology. This review summarizes the insights gained through mouse model experiments and the current understanding the different physiological roles played by this selenoprotein.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
4
|
Xiao Y, Zhang Y. deep-Sep: a deep learning-based method for fast and accurate prediction of selenoprotein genes in bacteria. mSystems 2025; 10:e0125824. [PMID: 40062874 PMCID: PMC12013277 DOI: 10.1128/msystems.01258-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 04/23/2025] Open
Abstract
Selenoproteins are a special group of proteins with major roles in cellular antioxidant defense. They contain the 21st amino acid selenocysteine (Sec) in the active sites, which is encoded by an in-frame UGA codon. Compared to eukaryotes, identification of selenoprotein genes in bacteria remains challenging due to the absence of an effective strategy for distinguishing the Sec-encoding UGA codon from a normal stop signal. In this study, we have developed a deep learning-based algorithm, deep-Sep, for quickly and precisely identifying selenoprotein genes in bacterial genomic sequences. This algorithm uses a Transformer-based neural network architecture to construct an optimal model for detecting Sec-encoding UGA codons and a homology search-based strategy to remove additional false positives. During the training and testing stages, deep-Sep has demonstrated commendable performance, including an F1 score of 0.939 and an area under the receiver operating characteristic curve of 0.987. Furthermore, when applied to 20 bacterial genomes as independent test data sets, deep-Sep exhibited remarkable capability in identifying both known and new selenoprotein genes, which significantly outperforms the existing state-of-the-art method. Our algorithm has proved to be a powerful tool for comprehensively characterizing selenoprotein genes in bacterial genomes, which should not only assist in accurate annotation of selenoprotein genes in genome sequencing projects but also provide new insights for a deeper understanding of the roles of selenium in bacteria.IMPORTANCESelenium is an essential micronutrient present in selenoproteins in the form of Sec, which is a rare amino acid encoded by the opal stop codon UGA. Identification of all selenoproteins is of vital importance for investigating the functions of selenium in nature. Previous strategies for predicting selenoprotein genes mainly relied on the identification of a special cis-acting Sec insertion sequence (SECIS) element within mRNAs. However, due to the complexity and variability of SECIS elements, recognition of all selenoprotein genes in bacteria is still a major challenge in the annotation of bacterial genomes. We have developed a deep learning-based algorithm to predict selenoprotein genes in bacterial genomic sequences, which demonstrates superior performance compared to currently available methods. This algorithm can be utilized in either web-based or local (standalone) modes, serving as a promising tool for identifying the complete set of selenoprotein genes in bacteria.
Collapse
Affiliation(s)
- Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Varlamova EG. Selenium-containing compounds, selenium nanoparticles and selenoproteins in the prevention and treatment of lung cancer. J Trace Elem Med Biol 2025; 88:127620. [PMID: 39970692 DOI: 10.1016/j.jtemb.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
THE OBJECTIVE Is to review the latest data on the role of key organic and inorganic compounds of the essential trace element selenium, selenium-containing nanocomposites and nanoparticles, and selenoproteins in lung cancer therapy. OBJECT OF RESEARCH Sodium selenite, methylselenic acid, selenomethionine, selenium nanoparticles, mammalian selenoproteins KEY OBJECTIVES:: To describe the molecular mechanisms of the cytotoxic effect of sodium selenite, methylselenic acid and selenomethionine on lung cancer cells, to discuss the latest advances in lung cancer nanomedicine using selenium-based nanoparticles and nanocomposites and to assess the prospects for creating antitumor drugs based on them, to assess the role of selenoproteins in the progression or inhibition of lung cancer and to study the molecular mechanisms of such regulation CONCLUSIONS:: This review provides a complete picture of the role of selenium and selenium-containing agents of various natures in the regulation of carcinogenesis and therapy of lung cancer, which significantly complements the fundamental data on the functions of these compounds, on the molecular mechanisms of regulation of processes associated with lung cancer. This knowledge provides insight into the latest developments and future prospects in the treatment and prevention of lung cancer with the active participation of the trace element selenium.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", st. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
6
|
Wang Q, Zhang J, Liang J, Wang Y, Ren C, Chen X, Cheng D, Zhang H, Liu H. Genomic Insights into Selenate Reduction by Anaerobacillus Species. Microorganisms 2025; 13:659. [PMID: 40142551 PMCID: PMC11944866 DOI: 10.3390/microorganisms13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Selenium (Se), a potentially toxic trace element, undergoes complex biogeochemical cycling in the environment, largely driven by microbial activity. The reduction in selenate or selenite to elemental selenium is an environmentally beneficial process, as it decreases both Se toxicity and mobility. This reduction is catalyzed by enzymes encoded by various related genes. The link between Se reduction gene clusters and specific taxonomic groups is significant for elucidating the ecological roles and processes of Se reduction in diverse environments. In this study, a new species of Se-reducing microorganism belonging to the genus Anaerobacillus was isolated from a mining site. A comparative analysis of the growth characteristics reveals that Anaerobacillus species exhibit notable metabolic versatility, particularly in their fermentation abilities and utilization of diverse electron donors and acceptors. Genome analysis identified a diverse array of gene clusters associated with selenate uptake (sul, pst), selenate reduction (ser), and selenite reduction (hig, frd, trx, and bsh). Since selenate reduction is the first crucial step in Se reduction, genes linked to selenate reductase are the focus. The serA gene clusters analysis suggests that the serA gene is highly conserved across Anaerobacillus species. The surrounding genes of serA show significant variability in both presence and gene size. This evolutionary difference in coenzyme utilization and serA regulation suggests distinct survival strategies among Anaerobacillus species. This study offers insights into Se bio-transformations and the adaptive strategies of Se-reducing microorganisms.
Collapse
Affiliation(s)
- Qidong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
- School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| | - Jinhui Liang
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan 250101, China;
- Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chongyang Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huanxin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
7
|
Wang W, Tan Q, Wang Q, Wang J, Zhang F, Zheng X, Yun J, Zhang W, Zhao F. Glutathione peroxidase gene regulates substrate development and prevents strain aging in Volvariella volvacea. Int J Biol Macromol 2025; 289:138835. [PMID: 39689802 DOI: 10.1016/j.ijbiomac.2024.138835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Degradation of Volvariella volvacea is associated with the accumulation of reactive oxygen species (ROS), and glutathione peroxidase (GPX) is one of the key antioxidant enzyme. The purpose of this research is to uncover the importance of the gpx gene in the degradation and revitalization of V. volvacea. In this study, a gpx-silenced strain of the primordial strain T0 and an overexpression strain of the degraded strain T19 of V. volvacea were constructed, and their antioxidant properties, matrix degradation ability, and production traits were determined. The results showed that the expression level of gpx altered the homeostasis of the V. volvacea redox system and affected the substrate degradation ability of V. volvacea, which altered the physiological traits of the V. volvacea mycelium. Most importantly, the primordial strain T0 was unable to produce fruiting bodies due to the silence of the gpx gene. On the other hand, the gpx gene overexpression promoted the regrowth of fruiting bodies in degenerated strains of V. volvacea T19. This study provides a new biotechnological strategy to control the degeneration of V. volvacea and other edible fungi.
Collapse
Affiliation(s)
- Wenpei Wang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China; Lanzhou Institute of Biological Products Limited Liability Company, Lanzhou 730046, China
| | - Qiangfei Tan
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Wang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China; Kangle County Special Agricultural Development Center, Linxia 731599, China
| | - Jing Wang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Fanhong Zhang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Zheng
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianmin Yun
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenwei Zhang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengyun Zhao
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
8
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
9
|
Li X, Zhou H, Ma R, Guo W, Yang X, Li X, Liu Z, Zhong Y, Jing Z. Structure of POU2AF1 recombinant protein and it affects the progression and treatment of liver cancer based on WGCNA and molecular docking analysis. Int J Biol Macromol 2024; 278:134629. [PMID: 39128756 DOI: 10.1016/j.ijbiomac.2024.134629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma, also referred to as HCC, is the most frequent form of primary liver cancer. It is anticipated that the discovery of the molecular pathways related with HCC would open up new possibilities for the treatment of HCC.WGCNA (Weighted gene co-expression network analysis) and molecular docking analysis were used to study the structural characteristics of POU2AF1 recombinant protein and its interaction with related proteins. Normal samples were placed in one group, and tumor samples were placed in another group inside the GEO database. We continued our investigation of the DEGs by performing an enrichment analysis using GO and KEGG. The GSCA platform is utilized in the process of doing an analysis of the connection between gene expression and medication sensitivity. In the end, the core target and the active molecule were both given the green light for a molecular docking investigation. POU2AF1 is being considered as a possible therapeutic target for HCC, and the results of our work have presented novel concepts for the treatment of HCC.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hongxu Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Cui L, Zhang M, Zheng F, Yuan C, Wang Z, Qiu S, Meng X, Dong J, Liu K, Guo L, Wang H, Li J. Selenium elicited an enhanced anti-inflammatory effect in primary bovine endometrial stromal cells with high cortisol background. BMC Vet Res 2024; 20:383. [PMID: 39192330 DOI: 10.1186/s12917-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND An elevated endogenous cortisol level due to the peripartum stress is one of the risk factors of postpartum bovine uterine infections. Selenium is a trace element that elicits anti-inflammation and antioxidation properties. This study aimed to reveal the modulatory effect of selenium on the inflammatory response of primary bovine endometrial stromal cells in the presence of high-level cortisol. The cells were subjected to lipopolysaccharide to establish cellular inflammation. The mRNA expression of toll-like receptor 4 (TLR4), proinflammatory factors, and selenoproteins was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blot and immunofluorescence. RESULTS The pretreatment with sodium selenite (2 and 4 µΜ) resulted in a down-regulation of TLR4 and genes encoding proinflammatory factors, including interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α, cyclooxygenase 2, and inducible nitric oxide synthase. Selenium inhibited the activation of NF-κB and the phosphorylation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase. The suppression of those genes and pathways by selenium was more significant in the presence of high cortisol level (30 ng/mL). Meanwhile the gene expression of glutathione peroxidase 1 and 4 was promoted by selenium, and was even higher in the presence of cortisol and selenium. CONCLUSIONS The anti-inflammatory action of selenium is probably mediated through NF-κB and MAPK, and is augmented by cortisol in primary bovine endometrial stromal cells.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangling Zheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shangfei Qiu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
11
|
Liang J, Zeng Y, Hu H, Yin Y, Zhou X. Prevotella copri Improves Selenium Deposition and Meat Quality in the longissimus dorsi Muscle of Fattening Pigs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10340-1. [PMID: 39105886 DOI: 10.1007/s12602-024-10340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Selenium is among the important trace elements that influence the quality of meat. Although it has been established that the gut microbiota is closely associated with selenium metabolism, it has yet to be determined whether these microbes influence the accumulation of selenium in muscles. To identify gut microbiota that potentially influence the deposition of selenium in muscles, we compared the colonic microbial composition of pigs characterized by high and low contents of selenium in the longissimus dorsi muscle and accordingly detected a higher abundance of the bacterium Prevotella copri (P. copri) in pigs with a higher muscle selenium content. To verify the effect of P. copri, 16 pigs weighing approximately 61 kg were fed either a basal diet or a basal diet supplemented with P. copri (1.0 × 1010 CFU/kg feed) for 45 days. The results revealed significant increases in the contents of selenium and selenoprotein in the serum and longissimus dorsi muscle of fattening pigs fed the P. copri-supplemented diet. Moreover, supplementing the feed of pigs with P. copri was observed to promote significant improvement in the antioxidant capacity and quality of meat, including drip loss, pH, and meat color. In conclusion, our findings in this study indicate that P. copri has potential utility as a dietary supplement for improving the selenium status and meat quality in fattening pigs.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hong Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410208, China.
| |
Collapse
|
12
|
Shen K, Xia L, Gao X, Li C, Sun P, Liu Y, Fan H, Li X, Han L, Lu C, Jiao K, Xia C, Wang Z, Deng B, Pan F, Sun T. Tobacco as bioenergy and medical plant for biofuels and bioproduction. Heliyon 2024; 10:e33920. [PMID: 39055830 PMCID: PMC11269859 DOI: 10.1016/j.heliyon.2024.e33920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco, a widely cultivated crop, has been extensively utilized by humans for an extended period. However, the tobacco industry generates a significant amount of organic waste, and the effective utilization of this tobacco waste has been limited. Currently, most tobacco waste is either recycled as reconstituted tobacco sheets or disposed of in landfills. However, tobacco possesses far more potential value than just these applications. This article provides an overview of the diverse uses of tobacco waste in agriculture, medicine, chemical engineering, and energy sectors. In the realm of agriculture, tobacco waste finds primary application as fertilizers and pesticides. In medical applications, the bioactive compounds present in tobacco are fully harnessed, resulting in the production of phenols, solanesol, polysaccharides, proteins, and even alkaloids. These bioactive compounds exhibit beneficial effects on human health. Additionally, the applications of tobacco waste in chemical engineering and energy sectors are centered around the utilization of lignocellulosic compounds and certain fuels. Chemical platform compounds derived from tobacco waste, as well as selected fuel sources, play a significant role in these areas. The rational utilization of tobacco waste represents a promising prospect, particularly in the present era when sustainable development is widely advocated. Moreover, this approach holds significant importance for enhancing energy utilization.
Collapse
Affiliation(s)
- Kai Shen
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Liwei Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaoyuan Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Cuiyu Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ping Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yikuan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hu Fan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Xu Li
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Leyuan Han
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chengfei Lu
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Kaixuan Jiao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chen Xia
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Zhi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bin Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Tulai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
13
|
Funkner K, Poehlein A, Jehmlich N, Egelkamp R, Daniel R, von Bergen M, Rother M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis. mSystems 2024; 9:e0133823. [PMID: 38591896 PMCID: PMC11097638 DOI: 10.1128/msystems.01338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.
Collapse
Affiliation(s)
- Katrina Funkner
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Michael Rother
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Chatterji P, Xing G, Furst L, Dave K, Zhou Q, LaBarbera DV, Thamm DH, Eaton JK, Wawer MJ, Viswanathan VS. Validation of ferroptosis in canine cancer cells to enable comparative oncology and translational medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591561. [PMID: 38746359 PMCID: PMC11092520 DOI: 10.1101/2024.04.28.591561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ferroptosis is a cell death mechanism that has attracted significant attention as a potential basis for the development of new cancer therapies. Validation of ferroptosis biology in species commonly used in translation and pre-clinical development is a necessary foundation for enabling the advancement of such ferroptosis modulating drugs. Here, we demonstrate that canine cancer cells exhibit sensitivity to a wide range of ferroptosis-inducing perturbations in a manner indistinguishable from human cancer cells, and recapitulate characteristic patterns of ferroptotic response across tumor types seen in the human setting. The foundation provided herein establishes the dog as a relevant efficacy and toxicology model for ferroptosis and creates new opportunities to leverage the canine comparative oncology paradigm to accelerate the development of ferroptosis-inducing drugs for human cancer patients.
Collapse
Affiliation(s)
- Priya Chatterji
- Kojin Therapeutics, 451 D Street, Suite 502, Boston, MA 02210
| | - Gang Xing
- Kojin Therapeutics, 451 D Street, Suite 502, Boston, MA 02210
| | - Laura Furst
- Kojin Therapeutics, 451 D Street, Suite 502, Boston, MA 02210
| | - Krishna Dave
- Kojin Therapeutics, 451 D Street, Suite 502, Boston, MA 02210
| | - Qiong Zhou
- The CU Anschutz Center for Drug Discovery, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO 80045
| | - Daniel V LaBarbera
- The CU Anschutz Center for Drug Discovery, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO 80045
| | - Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523
| | - John K Eaton
- Kojin Therapeutics, 451 D Street, Suite 502, Boston, MA 02210
| | - Mathias J Wawer
- Kojin Therapeutics, 451 D Street, Suite 502, Boston, MA 02210
| | | |
Collapse
|
15
|
Mullegama SV, Kiernan KA, Torti E, Pavlovsky E, Tilton N, Sekula A, Gao H, Alaimo JT, Engleman K, Rush ET, Blocker K, Dipple KM, Fettig VM, Hare H, Glass I, Grange DK, Griffin M, Phornphutkul C, Massingham L, Mehta L, Miller DE, Thies J, Merritt JL, Muller E, Osmond M, Sawyer SL, Slaugh R, Hickey RE, Wolf B, Choudhary S, Simonović M, Zhang Y, Palculict TB, Telegrafi A, Carere DA, Wentzensen IM, Morrow MM, Monaghan KG, Yang J, Juusola J. De novo missense variants in exon 9 of SEPHS1 cause a neurodevelopmental condition with developmental delay, poor growth, hypotonia, and dysmorphic features. Am J Hum Genet 2024; 111:778-790. [PMID: 38531365 PMCID: PMC11023921 DOI: 10.1016/j.ajhg.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sureni V Mullegama
- GeneDx, Gaithersburg, MD 20877, USA; Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA.
| | - Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Ethan Pavlovsky
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Nicholas Tilton
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Austin Sekula
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Hua Gao
- GeneDx, Gaithersburg, MD 20877, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA; Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eric T Rush
- Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA; Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Karli Blocker
- Division of Clinical Genetics, Stanford Children's Health, San Francisco, CA, USA
| | - Katrina M Dipple
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Veronica M Fettig
- Center for Inherited Cardiovascular Disease, Cardiovascular Genetics Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather Hare
- Northeastern Ontario Medical Genetics Program, Health Sciences, North Sudbury, ON, Canada
| | - Ian Glass
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Griffin
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Chanika Phornphutkul
- Division of Genetics, Department of Pediatrics, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Lauren Massingham
- Division of Genetics, Department of Pediatrics, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - J Lawrence Merritt
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Eric Muller
- Division of Clinical Genetics, Stanford Children's Health, San Francisco, CA, USA
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sarah L Sawyer
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel E Hickey
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Anne & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Barry Wolf
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Anne & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Sanjeev Choudhary
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
16
|
Miksanek JR, Adarkwah C, Tuda M. Low concentrations of selenium nanoparticles enhance the performance of a generalist parasitoid and its host, with no net effect on host suppression. PEST MANAGEMENT SCIENCE 2024; 80:1812-1820. [PMID: 38032005 DOI: 10.1002/ps.7907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The environmental and economic costs of conventional insecticides have stirred an interest in alternative management tactics, including the use of nanotechnologies. Selenium nanoparticles (SeNPs) have many applications in agriculture but may not be compatible with biological control; however, low concentrations of SeNPs may benefit natural enemies via hormesis. This study investigates the concentration-dependent effects of SeNPs (0-1000 mg L-1 ) on Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), a generalist parasitoid of stored product pests. RESULTS The LC50 of SeNPs was 1540 mg L-1 for female parasitoids and 1164 mg L-1 for males. SeNPs had a significant hormetic effect; average lifespan increased by 10% at a concentration of 4.03 mg L-1 for females and by 35% at 13.83 mg L-1 for males. In a bioassay including hosts [the azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae)], a low concentration of SeNPs (25 mg L-1 ) enhanced the performance of female parasitoids; lifespan increased by 23% and the number of offspring increased by 88%. However, the number of emerging hosts did not significantly decrease; in the absence of parasitism, SeNPs actually improved host emergence by 17%. CONCLUSION Because higher concentrations of SeNPs reduced parasitoid lifespan, whereas low concentrations enhanced not only parasitoid performance but also host emergence, practitioners should exercise caution when considering SeNPs for use in integrated pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- James Rudolph Miksanek
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Charles Adarkwah
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Horticulture and Crop Production, School of Agriculture and Technology, Dormaa-Ahenkro Campus, University of Energy and Natural Resources, Sunyani, Ghana
- Division Urban Plant Ecophysiology, Faculty Life Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Zhang DG, Kunz WS, Lei XJ, Zito E, Zhao T, Xu YC, Wei XL, Lv WH, Luo Z. Selenium Ameliorated Oxidized Fish Oil-Induced Lipotoxicity via the Inhibition of Mitochondrial Oxidative Stress, Remodeling of Usp4-Mediated Deubiquitination, and Stabilization of Pparα. Antioxid Redox Signal 2024; 40:433-452. [PMID: 37265154 DOI: 10.1089/ars.2022.0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid β-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Xi-Jun Lei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Tao Zhao
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yi-Chuang Xu
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wu-Hong Lv
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
18
|
Ralston NVC, Raymond LJ, Gilman CL, Soon R, Seale LA, Berry MJ. Maternal seafood consumption is associated with improved selenium status: Implications for child health. Neurotoxicology 2024; 101:26-35. [PMID: 38272071 PMCID: PMC10978253 DOI: 10.1016/j.neuro.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in ∼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase ∼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.
Collapse
Affiliation(s)
| | - Laura J Raymond
- Sage Green Nutrition Research Guidance, Grand Forks, ND, 58203, USA
| | - Christy L Gilman
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Reni Soon
- Department of Obstetrics and Gynecology, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
19
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
20
|
Huang B, Xiao Y, Zhang Y. Asgard archaeal selenoproteome reveals a roadmap for the archaea-to-eukaryote transition of selenocysteine incorporation machinery. THE ISME JOURNAL 2024; 18:wrae111. [PMID: 38896033 PMCID: PMC11227280 DOI: 10.1093/ismejo/wrae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure. We analyzed >400 Asgard archaeal genomes to examine the occurrence of both Sec encoding system and selenoproteins in this archaeal superphylum, the closest prokaryotic relatives of eukaryotes. A comprehensive map of Sec utilization trait has been generated, providing the most detailed understanding of the use of this nonstandard amino acid in Asgard archaea so far. By characterizing the selenoproteomes of all organisms, several selenoprotein-rich phyla and species were identified. Most Asgard archaeal selenoprotein genes possess eukaryotic SECIS-like structures with varying degrees of diversity. Moreover, euryarchaeal SECIS elements might originate from Asgard archaeal SECIS elements via lateral gene transfer, indicating a complex and dynamic scenario of the evolution of SECIS element within archaea. Finally, a roadmap for the transition of eukaryotic SECIS elements from archaea was proposed, and selenophosphate synthetase may serve as a potential intermediate for the generation of ancestral eukaryotic SECIS element. Our results offer new insights into a deeper understanding of the evolution of Sec insertion machinery.
Collapse
Affiliation(s)
- Biyan Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, Guangdong Province, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong Province, P. R. China
| |
Collapse
|
21
|
Zheng X, Toyama T, Siu S, Kaneko T, Sugiura H, Yamashita S, Shimoda Y, Kanamori M, Arisawa K, Endo H, Saito Y. Selenoprotein P expression in glioblastoma as a regulator of ferroptosis sensitivity: preservation of GPX4 via the cycling-selenium storage. Sci Rep 2024; 14:682. [PMID: 38182643 PMCID: PMC10770386 DOI: 10.1038/s41598-024-51259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadly brain tumors; however, its current therapeutic strategies are limited. Selenoprotein P (SeP; SELENOP, encoded by the SELENOP gene) is a unique selenium-containing protein that exhibits high expression levels in astroglia. SeP is thought to be associated with ferroptosis sensitivity through the induction of glutathione peroxidase 4 (GPX4) via selenium supplementation. In this study, to elucidate the role of SeP in GBM, we analyzed its expression in GBM patients and found that SeP expression levels were significantly higher when compared to healthy subjects. Knock down of SeP in cultured GBM cells resulted in a decrease in GPX1 and GPX4 protein levels. Under the same conditions, cell death caused by RSL3, a ferroptosis inducer, was enhanced, however this enhancement was canceled by supplementation of selenite. These results indicate that SeP expression contributes to preserving GPX and selenium levels in an autocrine/paracrine manner, i.e., SeP regulates a dynamic cycling-selenium storage system in GBM. We also confirmed the role of SeP expression in ferroptosis sensitivity using patient-derived primary GBM cells. These findings indicate that expression of SeP in GBM can be a significant therapeutic target to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Xi Zheng
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Stephanie Siu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hikari Sugiura
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shota Yamashita
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Yoshiteru Shimoda
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo Aoba-ku, Sendai, 980-0872, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
22
|
Li B, Liu X, Zhang C, Yu T, Wu T, Zhuo X, Li C, Wang L, Lin K, Ma X, Li X, Zhang H, Ji W, Yang Z. Spatially varying relationships of soil Se concentration and rice Se concentration in Guangxi, China: A geographically weighted regression approach. CHEMOSPHERE 2023; 343:140241. [PMID: 37742768 DOI: 10.1016/j.chemosphere.2023.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
In recent years, the biogeochemical behavior and environmental impact of Selenium (Se) on soil-plant systems have received widespread attention, and traditional statistical methods reveal generally positive correlations between rice Se and soil Se. However, that initial positive relationship may have been obscured by local external factors. Using local scale data from the geochemical evaluation of land quality project, this work employed geographically weighted regression (GWR) to examine the spatial variation of rice Se (as the dependent variable) and soil Se (as the independent variable) in Guangxi. Strong and weak correlation coefficients occur between rice Se and soil Se, thereby indicating that their relationships are spatially varying. Guangxi is characterized by significantly positive correlations in most areas, with weak correlations mostly found in the south-western and central-eastern regions. Areas with weak correlation can be divided into two patterns: high soil Se with low rice Se and high rice Se with low soil Se. The unique patterns are correlated with distinct natural factors, particularly the abundance of Fe-rich soils in the carbonate area; by contrast, sandstone areas in central Guangxi may have been affected by anthropogenic activities. To reveal the spatially varying relationships at the local scale, we employed GWR, an effective tool that allowed us to identify the association between environmental variables and influencing factors and explore spatially varying relationships between them. This study breaks through the existing understanding that soil Se is completely positively correlated with rice Se for the first time, and concludes that their correlation is spatially variable, providing an effective approach for the study of complex relationships.
Collapse
Affiliation(s)
- Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Xu Liu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; Ministry Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Chaosheng Zhang
- International Network for Environment and Health (INEH), School of Geography, Archaeology and Irish Studies & Ryan Institute, University of Galway, Ireland
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, PR China; National Research Center for Geoanalysis, Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing, 100037, PR China
| | - Tiansheng Wu
- Guangxi Institute of Geological Survey, Nanning, 530023, PR China
| | - Xiaoxiong Zhuo
- Guangxi Institute of Geological Survey, Nanning, 530023, PR China
| | - Cheng Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Lei Wang
- Guangxi Institute of Geological Survey, Nanning, 530023, PR China
| | - Kun Lin
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Xudong Ma
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Xuezhen Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Husheng Zhang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Wenbing Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; National Research Center for Geoanalysis, Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing, 100037, PR China.
| |
Collapse
|
23
|
Li F, Shi Z, Cheng M, Zhou Z, Chu M, Sun L, Zhou JC. Biology and Roles in Diseases of Selenoprotein I Characterized by Ethanolamine Phosphotransferase Activity and Antioxidant Potential. J Nutr 2023; 153:3164-3172. [PMID: 36963501 DOI: 10.1016/j.tjnut.2023.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status.
Collapse
Affiliation(s)
- Fengna Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Minning Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhongwei Zhou
- School of Medical, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ming Chu
- Department of Neurosurgery, The Third People's Hospital of Shenzhen, Shenzhen 518112, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China.
| |
Collapse
|
24
|
Zhang L, Liu B, Su J. CCNB2 as a potential biomarker of bladder cancer via the high throughput technology. Medicine (Baltimore) 2023; 102:e32825. [PMID: 36820589 PMCID: PMC9907924 DOI: 10.1097/md.0000000000032825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Bladder cancer and oral squamous cell carcinoma (OSCC) seriously affect people's health. However, the relationship between bladder cancer and OSCC remains unclear. Got GSE138206, GSE146483, GSE184616, and bladder cancer datasets GSE65635, GSE100926 from Gene Expression Omnibus database. Weighted gene co-expression network analysis was used to identify the significant module. Functional enrichment analysis was performed via the Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes. Furthermore, the Gene Set Enrichment Analysis was also used to complete the enrichment analysis. Comparative Toxicogenomics Database found most relevant diseases to core genes. TargetScan is used to forecast analysis of microRNA and target genes. In Gene Ontology analysis, differentially expressed genes were mostly concentrated in cell differentiation, extrallular region, structural molecule activity, and actin binding. In Kyoto Encyclopedia of Genes and Genomes analysis, the differentially expressed genes were mainly enriched in PI3K-Akt signaling pathway, pathway in cancer, and extracellular matrix-receptor interaction. Seven hub genes (cyclin B2 [CCNB2], TK1, CDC20, PCNA, CKS1B, CDCA5, MCM4) were obtained. Hub genes (CCNB2, CDC20) are highly expressed in OSCC and bladder cancer samples. CCNB2 was one common oncogene of bladder cancer and OSCC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology Surgery, Fuxing Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
- * Correspondence: Lei Zhang, Department of Urology Surgery, Fuxing Hospital Affiliated to Capital Medical University, No. 20 Fuxingmenwai Dajie, Xicheng District, Beijing 100038, China (e-mail: )
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| |
Collapse
|
25
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
26
|
Liu A, Li F, Xu P, Chen Y, Liang X, Zheng S, Meng H, Zhu Y, Mo J, Gong C, Zhou JC. Gpx4, Selenov, and Txnrd3 Are Three Most Testis-Abundant Selenogenes Resistant to Dietary Selenium Concentrations and Actively Expressed During Reproductive Ages in Rats. Biol Trace Elem Res 2023; 201:250-259. [PMID: 35076866 DOI: 10.1007/s12011-022-03118-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 01/20/2023]
Abstract
Almost all selenogenes are expressed in the testis, and those have the highest and constant expressions will be the primary candidates for functional analysis of selenium (Se) in male reproduction. This study aimed to profile the mRNA expressions of the testis-abundant selenogenes of rat models in responses to growth and dietary Se concentrations. Forty-eight weaning SD male rats were fed Se deficient basal diet (BD) for 5 weeks and then randomly grouped (n = 12/group) for being fed BD or BD plus 0.25, 3, or 5 mg Se/kg for 4 more weeks before sacrifice. Abundances of selenogenomic mRNAs in the liver and testis were determined with relative qPCR and those of the testis-abundant selenogenes in 13 kinds of tissues were assayed with a molecular beacon-based qPCR. Spatiotemporal expressions of rat selenogenome were also analyzed with the RNA-Seq transcriptomic data published by NCBI. mRNA abundances of glutathione peroxidase 4 (Gpx4), nuclear Gpx4 (nGpx4), selenoprotein V (Selenov), and thioredoxin reductase 3 (Txnrd3) in the testis were significantly higher than that in any other tissues (P < 0.05). Moreover, testicular mRNA abundances of Gpx4, Selenov, and Txnrd3 were not affected by levels of dietary Se supplementation (P > 0.05), and much higher at 6-21 weeks old than at 2 and 104 weeks old (P < 0.05). The result showed that Gpx4, Selenov, and Txnrd3 were most highly expressed in the testis of rats especially at reproductive ages and resistant to the impact of dietary Se levels, which suggested their specific importance in male reproduction.
Collapse
Affiliation(s)
- Aiping Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
- Nanjing Gulou District Center for Disease Control and Prevention, Nanjing, 210000, Jiangsu, China
| | - Fengna Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ping Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
- Shenzhen Health Development Research and Data Management Center, Shenzhen, 518028, Guangdong, China
| | - Yanmei Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510000, Guangdong, China
| | - Xiongshun Liang
- Shenzhen Center for Chronic Disease Control, Shenzhen, 518020, Guangdong, China
| | - Shijie Zheng
- Service Center for Public Health of Bao'an District, Shenzhen, 518018, Guangdong, China
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, 510080, Guangdong, China
| | - Yumei Zhu
- Shenzhen Center for Chronic Disease Control, Shenzhen, 518020, Guangdong, China
| | - Junluan Mo
- Shenzhen Center for Chronic Disease Control, Shenzhen, 518020, Guangdong, China
| | - Chunmei Gong
- Shenzhen Center for Chronic Disease Control, Shenzhen, 518020, Guangdong, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
- Shenzhen Center for Chronic Disease Control, Shenzhen, 518020, Guangdong, China.
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
27
|
Peiter N, Rother M. In vivo probing of SECIS-dependent selenocysteine translation in Archaea. Life Sci Alliance 2023; 6:6/1/e202201676. [PMID: 36316034 PMCID: PMC9622424 DOI: 10.26508/lsa.202201676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Cotranslational insertion of selenocysteine (Sec) proceeds by recoding UGA to a sense codon. This recoding is governed by the Sec insertion sequence (SECIS) element, an RNA structure on the mRNA, but size, location, structure determinants, and mechanism differ for Bacteria, Eukarya, and Archaea. For Archaea, the structure-function relation of the SECIS is poorly understood, as only rather laborious experimental approaches are established. Furthermore, these methods do not allow for quantitative probing of Sec insertion. In order to overcome these limitations, we engineered bacterial β-lactamase into an archaeal selenoprotein, thereby establishing a reporter system, which correlates enzyme activity to Sec insertion. Using this system, in vivo Sec insertion depending on the availability of selenium and the presence of a SECIS element was assessed in Methanococcus maripaludis Furthermore, a minimal SECIS element required for Sec insertion in M. maripaludis was defined and a conserved structural motif shown to be essential for function. Besides developing a convenient tool for selenium research, converting a bacterial enzyme into an archaeal selenoprotein provides proof of concept that novel selenoproteins can be engineered in Archaea.
Collapse
Affiliation(s)
- Nils Peiter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Effects of Dietary Selenium and Oxidized Fish Oils on Intestinal Lipid Metabolism and Antioxidant Responses of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2022; 11:antiox11101904. [PMID: 36290629 PMCID: PMC9598306 DOI: 10.3390/antiox11101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, the effect of selenium and oxidized fish oil interactions on the intestinal lipid metabolism and antioxidant responses of fish remains unknown. Herein, yellow catfish Pelteobagrus fulvidraco (weight: 3.99 ± 0.01 g) were used as experimental animals and were fed four diets: an adequate amount of selenium (0.25 mg kg−1) with fresh fish oil (A-Se+FFO), an adequate amount of selenium with oxidized fish oil (A-Se+OFO), a high amount of selenium (0.50 mg kg−1) with fresh fish oil (H-Se+FFO), and a high amount of selenium with oxidized fish oil (H-Se+OFO). The feeding experiment was conducted for 10 weeks. The results showed that selenium supplementation alleviated the intestinal tissue damage and reduced the lipid accumulation that was induced by oxidized fish oils. Meanwhile, we also found that 0.50 mg kg−1 selenium reduced the oxidative stress that is caused by oxidized fish oils through increasing the GSH and the activity and mRNA expression of antioxidant enzymes. Dietary selenium and oxidized fish oils also affected the mRNA expression of intestinal selenoproteins including selenow2a, selenop2, and selenot2. Mechanistically, Se and oxidized eicosapentaenoic acid (oxEPA) influenced the GSH content by affecting the DNA binding ability of activating transcription factor (ATF) 3 to the slc7a11 promoter. For the first time, our results suggested that selenium alleviated the oxidized fish oil-induced intestinal lipid deposition and the oxidative stress of the fish. We also elucidated the novel mechanism of selenium increasing the GSH content by affecting the interaction of ATF3 and the slc7a11 promoter.
Collapse
|
29
|
Deep Learning-Based Medical Data Association Rules to Explore the Connectivity and Regulation Mechanism of miRNA-mRNA Network in Myocarditis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9272709. [PMID: 36193199 PMCID: PMC9525760 DOI: 10.1155/2022/9272709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Acute, chronic myocarditis as myocardial localized or diffuse inflammation lesions is usually involving cardiac function in patients with severe adverse outcomes such as heart failure, sudden death, and no unified, but its pathogenesis clinical is mainly composed of a number of factors including infection and autoimmune defects, such as physical and chemical factors; therefore, it is of great significance to explore the regulation mechanism of myocarditis-related miRNA network connectivity and temperament for in-depth understanding of the pathogenesis of myocarditis and the direction of targeted therapy. Based on this, this study explored the miRNA network related to the pathogenesis of myocarditis through deep learning medical data association rules and analyzed its specific mechanism. The results showed that 39 upregulated miRNAs, 88 downregulated miRNAs, 109 upregulated differentially expressed miRNAs, and 589 downregulated mRNAs were obtained by data association through GSE126677 and GSE4172 databases. GO enrichment and KRGG enrichment analysis showed that the differentially expressed mRNAs were involved in the regulation of a variety of biological processes, cellular components, and molecular functions. At the same time, the miRNA with differentially expressed miRNAs and their corresponding mRNAs were connected to further clarify the specific molecular mechanism of the pathological changes of myocarditis by constructing miRNA-mRNA network. It provides effective potential molecular targets for subsequent treatment and diagnosis.
Collapse
|
30
|
Hayek H, Eriani G, Allmang C. eIF3 Interacts with Selenoprotein mRNAs. Biomolecules 2022; 12:biom12091268. [PMID: 36139107 PMCID: PMC9496622 DOI: 10.3390/biom12091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of selenoproteins requires the co-translational recoding of an in-frame UGASec codon. Interactions between the Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2) in the 3'untranslated region (3'UTR) of selenoprotein mRNAs enable the recruitment of the selenocysteine insertion machinery. Several selenoprotein mRNAs undergo unusual cap hypermethylation and are not recognized by the translation initiation factor 4E (eIF4E) but nevertheless translated. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), can selectively recruit several cellular mRNAs and plays roles in specialized translation initiation. Here, we analyzed the ability of eIF3 to interact with selenoprotein mRNAs. By combining ribonucleoprotein immunoprecipitation (RNP IP) in vivo and in vitro with cross-linking experiments, we found interactions between eIF3 and a subgroup of selenoprotein mRNAs. We showed that eIF3 preferentially interacts with hypermethylated capped selenoprotein mRNAs rather than m7G-capped mRNAs. We identified direct contacts between GPx1 mRNA and eIF3 c, d, and e subunits and showed the existence of common interaction patterns for all hypermethylated capped selenoprotein mRNAs. Differential interactions of eIF3 with selenoprotein mRNAs may trigger specific translation pathways independent of eIF4E. eIF3 could represent a new player in the translation regulation and hierarchy of selenoprotein expression.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Department of Microbiology, Immunology, and Inflammation, Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Correspondence:
| |
Collapse
|
31
|
Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective. Biomolecules 2022; 12:biom12070917. [PMID: 35883471 PMCID: PMC9312934 DOI: 10.3390/biom12070917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Selenium (Se) is an important trace element that mainly occurs in the form of selenocysteine in selected proteins. In prokaryotes, Se is also required for the synthesis of selenouridine and Se-containing cofactor. A large number of selenoprotein families have been identified in diverse prokaryotic organisms, most of which are thought to be involved in various redox reactions. In the last decade or two, computational prediction of selenoprotein genes and comparative genomics of Se metabolic pathways and selenoproteomes have arisen, providing new insights into the metabolism and function of Se and their evolutionary trends in bacteria and archaea. This review aims to offer an overview of recent advances in bioinformatics analysis of Se utilization in prokaryotes. We describe current computational strategies for the identification of selenoprotein genes and generate the most comprehensive list of prokaryotic selenoproteins reported to date. Furthermore, we highlight the latest research progress in comparative genomics and metagenomics of Se utilization in prokaryotes, which demonstrates the divergent and dynamic evolutionary patterns of different Se metabolic pathways, selenoprotein families, and selenoproteomes in sequenced organisms and environmental samples. Overall, bioinformatics analyses of Se utilization, function, and evolution may contribute to a systematic understanding of how this micronutrient is used in nature.
Collapse
|
32
|
The Role and Mechanism of Essential Selenoproteins for Homeostasis. Antioxidants (Basel) 2022; 11:antiox11050973. [PMID: 35624837 PMCID: PMC9138076 DOI: 10.3390/antiox11050973] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
Selenium (Se) is one of the essential trace elements that plays a biological role in the body, mainly in the form of selenoproteins. Selenoproteins can be involved in the regulation of oxidative stress, endoplasmic reticulum (ER) stress, antioxidant defense, immune and inflammatory responses and other biological processes, including antioxidant, anti-inflammation, anti-apoptosis, the regulation of immune response and other functions. Over-loading or lack of Se causes certain damage to the body. Se deficiency can reduce the expression and activity of selenoproteins, disrupt the normal physiological function of cells and affect the body in antioxidant, immunity, toxin antagonism, signaling pathways and other aspects, thus causing different degrees of damage to the body. Se intake is mainly in the form of dietary supplements. Due to the important role of Se, people pay increasingly more attention to Se-enriched foods, which also lays a foundation for better research on the mechanism of selenoproteins in the future. In this paper, the synthesis and mechanism of selenoproteins, as well as the role and mechanism of selenoproteins in the regulation of diseases, are reviewed. Meanwhile, the future development of Se-enriched products is prospected, which is of great significance to further understand the role of Se.
Collapse
|
33
|
SecMS analysis of selenoproteins with selenocysteine insertion sequence and beyond. Methods Enzymol 2022; 662:227-240. [DOI: 10.1016/bs.mie.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Selenium and protozoan parasitic infections: selenocompounds and selenoproteins potential. Parasitol Res 2022; 121:49-62. [PMID: 34993638 PMCID: PMC8735723 DOI: 10.1007/s00436-021-07400-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
The current drug treatments against protozoan parasitic diseases including Chagas, malaria, leishmaniasis, and toxoplasmosis represent good examples of drug resistance mechanisms and have shown diverse side effects. Therefore, the identification of novel therapeutic strategies and drug compounds against such life-threatening diseases is urgent. According to the successful usage of selenium (Se) compounds-based therapy against some diseases, this therapeutic strategy has been recently further underlined against these parasitic diseases by targeting different parasite´s essential pathways. On the other hand, due to the important functions played by parasite selenoproteins in their biology (such as modulating the host immune response), they can be also considered as a novel therapeutic strategy by designing specific inhibitors against these important proteins. In addition, the immunomodulatory potentiality of these compounds to trigger T helper type 1 (Th1) cells and cytokine-mediated immune response for the substantial induction of proinflammatory cytokines, thus, Se, selenoproteins, and parasite selenoproteins could be further investigated to find possible vaccine antigens. Herein, we collect and present the results of some studies regarding Se-based therapy against protozoan parasitic diseases and highlight relevant information and some viewpoints that might be insightful to advance toward more effective studies in the future.
Collapse
|
35
|
Ye R, Huang J, Wang Z, Chen Y, Dong Y. Trace Element Selenium Effectively Alleviates Intestinal Diseases. Int J Mol Sci 2021; 22:ijms222111708. [PMID: 34769138 PMCID: PMC8584275 DOI: 10.3390/ijms222111708] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Selenium (Se) is an essential trace element in the body. It is mainly used in the body in the form of selenoproteins and has a variety of biological functions. Intestinal diseases caused by chronic inflammation are among the most important threats to human health, and there is no complete cure at present. Due to its excellent antioxidant function, Se has been proven to be effective in alleviating intestinal diseases such as inflammatory bowel diseases (IBDs). Therefore, this paper introduces the role of Se and selenoproteins in the intestinal tract and the mechanism of their involvement in the mediation of intestinal diseases. In addition, it introduces the advantages and disadvantages of nano-Se as a new Se preparation and traditional Se supplement in the prevention and treatment of intestinal diseases, so as to provide a reference for the further exploration of the interaction between selenium and intestinal health.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100193, China;
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
- Correspondence:
| |
Collapse
|
36
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
37
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
38
|
Ekumah JN, Ma Y, Akpabli-Tsigbe NDK, Kwaw E, Ma S, Hu J. Global soil distribution, dietary access routes, bioconversion mechanisms and the human health significance of selenium: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Wang Y, Liu P, Chang J, Xu Y, Wang J. Site-Specific Selenocysteine Incorporation into Proteins by Genetic Engineering. Chembiochem 2021; 22:2918-2924. [PMID: 33949764 DOI: 10.1002/cbic.202100124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.
Collapse
Affiliation(s)
- Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| | - Pengcheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Jiao Chang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Yunping Xu
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China
| | - Jiangyun Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| |
Collapse
|
40
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|