1
|
Hou Y, Yu L, Liu D, Wilson-Lemoine E, Wu X, Moreira JP, Mujica BF, Mukhopadhyay ES, Novotney AN, Payne JM. Systematic Review and Meta-Analysis: Attention-Deficit/Hyperactivity Disorder Symptoms in Children With Neurofibromatosis Type 1. J Am Acad Child Adolesc Psychiatry 2025; 64:447-462. [PMID: 39709008 DOI: 10.1016/j.jaac.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This meta-analysis aimed to robustly estimate differences in attention-deficit/hyperactivity disorder (ADHD) symptoms between children and adolescents with and without neurofibromatosis type 1 (NF1). METHOD Systematic literature searches were conducted in Scopus, PsycINFO, Web of Science, PubMed, and ProQuest in September 2022, with a supplemental search conducted in Google Scholar in February 2023. The searches identified 2,153 unique articles. Screening identified 114 academic journal articles that assessed parent/caregiver- or teacher-reported ADHD symptoms for children/adolescents with NF1. Two researchers independently screened articles and extracted data. The primary outcome was group differences in ADHD symptoms between children/adolescents with and without NF1 (Hedges g). Data were analyzed using robust variance estimation and random-effects models. RESULTS The meta-analysis included 70 studies (138 effect sizes), involving 3,653 children/adolescents with NF1 (46% female; mean age = 9.69 years, SD = 2.60 years) and 4,895 children/adolescents without NF1 (48% female; mean age = 10.03 years, SD = 3.10 years). According to parent/caregiver reports, children/adolescents with NF1 exhibited more severe inattentive symptoms (g = 1.20; 95% CI = 1.06-1.35), hyperactive/impulsive symptoms (g = 0.85; 95% CI = 0. 68-1.03), and combined ADHD symptoms (g = 1.02; 95% CI = 0.87-1.17) than unaffected controls. Inattentive ADHD symptoms were more elevated than hyperactivity/impulsivity for children/adolescents with NF1. Larger effect sizes for inattention and hyperactivity/impulsivity were associated with older age, lower intelligence quotient (IQ), and parent/caregiver vs teacher reports. CONCLUSION NF1 is a monogenic condition that has strong associations with elevated ADHD symptoms. Findings highlight the importance of early intervention and targeted support for ADHD-related problems in children with NF1. PLAIN LANGUAGE SUMMARY Increasing evidence has suggested a higher risk for attention-deficit/hyperactivity disorder (ADHD) in individuals with neurofibromatosis type 1 (NF1). In this study of ADHD symptom severity in youth with NF1, the authors analyzed data from 70 articles. The authors found much more severe ADHD symptoms in children and adolescents with NF1 compared to youth without NF1. Inattentive symptoms were more pronounced in children with NIF who were older or had a lower IQ. STUDY PREREGISTRATION INFORMATION Compare the ADHD problems between NF1 and control groups; https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=462063.
Collapse
Affiliation(s)
- Yang Hou
- Florida State University, Tallahassee, Florida, USA.
| | - Liyan Yu
- Florida State University, Tallahassee, Florida, USA
| | - Dan Liu
- Florida State University, Tallahassee, Florida, USA
| | | | - Xian Wu
- University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | - Jonathan M Payne
- Murdoch Children's Research Institute, Australia and The University of Melbourne, Australia
| |
Collapse
|
2
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review From Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2025; 97:461-498. [PMID: 39366539 PMCID: PMC11805629 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK (Ras/extracellular signal-regulated kinase/mitogen-activated protein kinase) signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorder. We systematically review the literature between 2010 and 2023 focusing on the social communication construct of the Research Domain Criteria framework. We provide an integrative summary of the research on facial and nonfacial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic (gamma-aminobutyric acidergic), glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., corticostriatal connectivity) is also implicated in social communication. We highlight less-researched potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified, and a roadmap for future research is provided. By leveraging genetic syndrome research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
3
|
Glad DM, Pardej SK, Olszewski E, Klein-Tasman BP. Feasibility and acceptability of a telehealth intervention for improving peer relationships for adolescents with neurofibromatosis type 1: a single-arm pilot study. J Pediatr Psychol 2024; 49:647-655. [PMID: 38908005 DOI: 10.1093/jpepsy/jsae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVE Elevated rates of social difficulties are evident for children and adolescents with neurofibromatosis type 1 (NF1) but the effects of social skills interventions have not been investigated for this population. The Program for the Education and Enrichment of Relational Skills (PEERS®), a widely established social skills intervention in autism spectrum disorders with expansion to other conditions, was recently modified to be offered virtually. This study examined the feasibility and acceptability of this telehealth intervention. METHODS 27 adolescents with NF1 with social skills difficulties and at least 1 caregiver enrolled in the study. 19 of those participants (Mage = 14.21 years, SD = 1.63; 7 females; 79% White) completed PEERS® via telehealth in a single-arm pilot study. Dropout rates, attendance records, helpfulness of the curriculum topics and caregiver-reported acceptability, including ratings on the Treatment Acceptability Questionnaire, were examined. RESULTS Low study drop out (30% of enrolled participants; 14% of participants who began the intervention) and high attendance rates were observed. Caregivers found sessions related to common, everyday interactions most helpful. Adolescents indicated sessions related to having get-togethers and social nuances (e.g., humor) as most helpful. Caregiver ratings indicated acceptability of the intervention. CONCLUSIONS This investigation supported the feasibility and acceptability of telehealth PEERS®, a social skills intervention program, among adolescents with NF1 and their caregivers based on attendance patterns as well as appraisal of the curriculum and telehealth modality.
Collapse
Affiliation(s)
- Danielle M Glad
- Department of Psychology, University of Wisconsin, Milwaukee, WI, United States
| | - Sara K Pardej
- Department of Psychology, University of Wisconsin, Milwaukee, WI, United States
| | - Ellen Olszewski
- Department of Psychology, University of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
4
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
5
|
Routier L, Querné L, Fontaine C, Berquin P, Le Moing AG. Distinct attentional and executive profiles in neurofibromatosis type 1: Is there difference with primary attention deficit-hyperactivity disorder? Eur J Paediatr Neurol 2024; 51:93-99. [PMID: 38905883 DOI: 10.1016/j.ejpn.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE Attentional and executive dysfunctions are the most frequent cognitive disorders in neurofibromatosis type 1 (NF1), with a high prevalence of attention deficit-hyperactivity disorder (ADHD). We (i) compared attentional profiles between NF1 children with and without ADHD and children with primary ADHD criteria and (ii) investigated the possible relationship between attentional disorders and "unidentified bright objects" (UBOs) in NF1. METHODS This retrospective study included 47 NF1 children, 25 with ADHD criteria (NF1+adhd group), matched for age, sex, and cognitive level with 47 children with primary ADHD (ADHD group). We collected computer task (sustained-attention, visuomotor-decision, inhibition, and cognitive-flexibility tasks) scores normalized for age and sex, and brain magnetic resonance imaging data. RESULTS (i) Working memory was impaired in all groups. (ii) Omissions (p < 0.002) and response-time variability (p < 0.05) in sustained-attention and visuomotor-decision tasks and errors (p < 0.02) in the cognitive-flexibility task were lower for the NFI+adhd and ADHD groups than for the NF1-no-adhd group. (iii) The NF1+adhd group had slower response times (p ≤ 0.02) for inhibition and visuomotor-decision tasks than the other groups. (iv) We found no relevant association between cognitive performance and UBOs. CONCLUSIONS NF1 children with ADHD have an attentional and executive functions deficit profile similar to that of children with primary ADHD, but with a slower response-time, increasing learning difficulties. The atypical connectivity of fronto-striatal pathways, poorer dopamine homeostasis, and increased GABA inhibition observed in NF1 renders vulnerable the development of the widely distributed neural networks that support attentional, working-memory, and executive functions.
Collapse
Affiliation(s)
- Laura Routier
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France; Pediatric Neurophysiology Unit, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France.
| | - Laurent Querné
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| | - Cécile Fontaine
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France
| | - Patrick Berquin
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| | - Anne-Gaëlle Le Moing
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| |
Collapse
|
6
|
Debbaut E, Steyaert J, El Bakkali M. Autism spectrum disorder profiles in RASopathies: A systematic review. Mol Genet Genomic Med 2024; 12:e2428. [PMID: 38581124 PMCID: PMC10997847 DOI: 10.1002/mgg3.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND RASopathies are associated with an increased risk of autism spectrum disorder (ASD). For neurofibromatosis type 1 (NF1) there is ample evidence for this increased risk, while for other RASopathies this association has been studied less. No specific ASD profile has been delineated so far for RASopathies or a specific RASopathy individually. METHODS We conducted a systematic review to investigate whether a specific RASopathy is associated with a specific ASD profile, or if RASopathies altogether have a distinct ASD profile compared to idiopathic ASD (iASD). We searched PubMed, Web of Science, and Open Grey for data about ASD features in RASopathies and potential modifiers. RESULTS We included 41 articles on ASD features in NF1, Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Individuals with NF1, NS, CS, and CFC on average have higher ASD symptomatology than healthy controls and unaffected siblings, though less than people with iASD. There is insufficient evidence for a distinct ASD phenotype in RASopathies compared to iASD or when RASopathies are compared with each other. We identified several potentially modifying factors of ASD symptoms in RASopathies. CONCLUSIONS Our systematic review found no convincing evidence for a specific ASD profile in RASopathies compared to iASD, or in a specific RASopathy compared to other RASopathies. However, we identified important limitations in the research literature which may also account for this result. These limitations are discussed and recommendations for future research are formulated.
Collapse
Affiliation(s)
- Edward Debbaut
- Center for Developmental Psychiatry, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Autism Research (LAuRes)KU LeuvenLeuvenBelgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Autism Research (LAuRes)KU LeuvenLeuvenBelgium
| | | |
Collapse
|
7
|
Glad DM, Pardej SK, Olszewski E, Klein-Tasman BP. Pilot study of the effectiveness of a telehealth group for improving peer relationships for adolescents with neurofibromatosis type 1. Orphanet J Rare Dis 2024; 19:115. [PMID: 38475852 DOI: 10.1186/s13023-024-03093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Interventions for social difficulties have not been investigated in the neurofibromatosis type 1 (NF1) population despite observations of elevated rates of social difficulties. In this pilot study, the effectiveness of a 14-week telehealth PEERS® intervention with nineteen adolescents with NF1 (Mage=13.79 years, SD = 1.32) with social skills difficulties was examined. Measures of social outcomes were completed at three timepoints (before, immediately after, and at 14-week follow-up). RESULTS Caregiver-reported social-emotional skills, social impairment, caregiver-reported number of adolescent get-togethers, and teen social knowledge showed significant improvement following the intervention. CONCLUSIONS The PEERS® intervention is promising to support the social and friendship skills of adolescents with NF1 who have social difficulties.
Collapse
Affiliation(s)
- Danielle M Glad
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA.
| | - Sara K Pardej
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA
| | - Ellen Olszewski
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA
| | - Bonita P Klein-Tasman
- Department of Psychology, University of Wisconsin- Milwaukee, 2441 E Hartford Ave, Wisconsin, 53211, Milwaukee, USA
| |
Collapse
|
8
|
Lee YJ, Park BS, Lee DA, Park KM. Structural brain network changes in patients with neurofibromatosis type 1: A retrospective study. Medicine (Baltimore) 2023; 102:e35676. [PMID: 37933055 PMCID: PMC10627666 DOI: 10.1097/md.0000000000035676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
We investigated the changes in structural connectivity (using diffusion tensor imaging [DTI]) and the structural covariance network based on structural volume using graph theory in patients with neurofibromatosis type 1 (NF1) compared to a healthy control group. We included 14 patients with NF1, according to international consensus recommendations, and 16 healthy individuals formed the control group. This was retrospectively observational study followed STROBE guideline. Both groups underwent brain magnetic resonance imaging including DTI and 3-dimensional T1-weighted imaging. We analyzed structural connectivity using DTI and Diffusion Spectrum Imaging Studio software and evaluated the structural covariance network based on the structural volumes using FreeSurfer and Brain Analysis Using Graph Theory software. There were no differences in the global structural connectivity between the 2 groups, but several brain regions showed significant differences in local structural connectivity. Additionally, there were differences between the global structural covariance networks. The characteristic path length was longer and the small-worldness index was lower in patients with NF1. Furthermore, several regions showed significant differences in the local structural covariance networks. We observed changes in structural connectivity and covariance networks in patients with NF1 compared to a healthy control group. We found that global structural efficiency is decreased in the brains of patients with NF1, and widespread changes in the local structural network were found. These results suggest that NF1 is a brain network disease, and our study provides direction for further research to elucidate the biological processes of NF1.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Departments of Internal Medicine, Busan, South Korea
| | - Bong Soo Park
- Departments of Internal Medicine, Busan, South Korea
| | - Dong Ah Lee
- Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
9
|
Booth SJ, Garg S, Brown LJE, Green J, Pobric G, Taylor JR. Aberrant oscillatory activity in neurofibromatosis type 1: an EEG study of resting state and working memory. J Neurodev Disord 2023; 15:27. [PMID: 37608248 PMCID: PMC10463416 DOI: 10.1186/s11689-023-09492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic neurodevelopmental disorder commonly associated with impaired cognitive function. Despite the well-explored functional roles of neural oscillations in neurotypical populations, only a limited number of studies have investigated oscillatory activity in the NF1 population. METHODS We compared oscillatory spectral power and theta phase coherence in a paediatric sample with NF1 (N = 16; mean age: 13.03 years; female: n = 7) to an age/sex-matched typically developing control group (N = 16; mean age: 13.34 years; female: n = 7) using electroencephalography measured during rest and during working memory task performance. RESULTS Relative to typically developing children, the NF1 group displayed higher resting state slow wave power and a lower peak alpha frequency. Moreover, higher theta power and frontoparietal theta phase coherence were observed in the NF1 group during working memory task performance, but these differences disappeared when controlling for baseline (resting state) activity. CONCLUSIONS Overall, results suggest that NF1 is characterised by aberrant resting state oscillatory activity that may contribute towards the cognitive impairments experienced in this population. TRIAL REGISTRATION ClinicalTrials.gov, NCT03310996 (first posted: October 16, 2017).
Collapse
Affiliation(s)
- Samantha J Booth
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shruti Garg
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura J E Brown
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan Green
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Gorana Pobric
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jason R Taylor
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
10
|
Pride NA, Haebich KM, Walsh KS, Lami F, Rouel M, Maier A, Chisholm AK, Lorenzo J, Hearps SJC, North KN, Payne JM. Sensory Processing in Children and Adolescents with Neurofibromatosis Type 1. Cancers (Basel) 2023; 15:3612. [PMID: 37509275 PMCID: PMC10377664 DOI: 10.3390/cancers15143612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the evidence of elevated autistic behaviors and co-occurring neurodevelopmental difficulties in many children with neurofibromatosis type 1 (NF1), we have a limited understanding of the sensory processing challenges that may occur with the condition. This study examined the sensory profile of children and adolescents with NF1 and investigated the relationships between the sensory profiles and patient characteristics and neuropsychological functioning. The parent/caregivers of 152 children with NF1 and 96 typically developing children completed the Sensory Profile 2 (SP2), along with standardized questionnaires assessing autistic behaviors, ADHD symptoms, internalizing symptoms, adaptive functioning, and social skills. Intellectual functioning was also assessed. The SP2 data indicated elevated sensory processing problems in children with NF1 compared to typically developing children. Over 40% of children with NF1 displayed differences in sensory registration (missing sensory input) and were unusually sensitive to and unusually avoidant of sensory stimuli. Sixty percent of children with NF1 displayed difficulties in one or more sensory modalities. Elevated autistic behaviors and ADHD symptoms were associated with more severe sensory processing difficulties. This first detailed assessment of sensory processing, alongside other clinical features, in a relatively large cohort of children and adolescents with NF1 demonstrates the relationships between sensory processing differences and adaptive skills and behavior, as well as psychological well-being. Our characterization of the sensory profile within a genetic syndrome may help facilitate more targeted interventions to support overall functioning.
Collapse
Affiliation(s)
- Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Kristina M Haebich
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Francesca Lami
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anita K Chisholm
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jennifer Lorenzo
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | | | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Hagan AJ, Verity SJ. The influence of methylphenidate on sustained attention in paediatric acquired brain injury: a meta-analytical review. Child Neuropsychol 2023; 29:710-741. [PMID: 36000579 DOI: 10.1080/09297049.2022.2112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Impairment in sustained attention is a common consequence of childhood Acquired Brain Injury (ABI). Whilst methylphenidate provides promise in enhancing "attention" as a unitary construct, little work has explored its effectiveness upon individual attentional domains. The current systematic review and meta-analysis evaluates the utility of methylphenidate on sustained attentional performance across childhood ABI groups. Five databases (PsycINFO, MEDLINE, Embase, Scopus & Cochrane Library) were searched for relevant articles from their inception to March 2022. A purpose-developed evaluation tool was used to assess each study's research quality (QuEST:MAP). Nine of the 1600 identified articles were included within this review (n = 259). Meta-analytical findings reported an overall significant benefit of methylphenidate on sustained attention in childhood ABI (g = -0.33, 95% CI: -0.62 to -0.04). Associated summary effect sizes were relatively small, particularly when adjusting for outlier cases. Subgroup analyses identified a significantly greater benefit of methylphenidate in clinical subgroups with comorbid ADHD diagnoses (p < .01). The current evidence base is characterized by small-scale clinical trials with variable research quality and low generalizability. Further robust research is needed to quantify methylphenidate utility upon individual attentional domains in larger and more representative ABI samples.
Collapse
Affiliation(s)
- Alexander J Hagan
- Department of Paediatric Health Psychology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK
| | - Sarah J Verity
- Department of Paediatric Health Psychology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
12
|
Crow AJD, Janssen JM, Marshall C, Moffit A, Brennan L, Kohler CG, Roalf DR, Moberg PJ. A systematic review and meta-analysis of intellectual, neuropsychological, and psychoeducational functioning in neurofibromatosis type 1. Am J Med Genet A 2022; 188:2277-2292. [PMID: 35546306 PMCID: PMC9302478 DOI: 10.1002/ajmg.a.62773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder frequently associated with cognitive deficits. Despite cognitive deficits being a key feature of NF1, the profile of such impairments in NF1 has been shown to be heterogeneous. Thus, we sought to quantitatively synthesize the extant literature on cognitive functioning in NF1. A random-effects meta-analysis of cross-sectional studies was carried out comparing cognitive functioning of patients with NF1 to typically developing or unaffected sibling comparison subjects of all ages. Analyses included 50 articles (Total NNF1 = 1,522; MAge = 15.70 years, range = 0.52-69.60), yielding 460 effect sizes. Overall moderate deficits were observed [g = -0.64, 95% CI = (-0.69, -0.60)] wherein impairments differed at the level of cognitive domain. Deficits ranged from large [general intelligence: g = -0.95, 95% CI = (-1.12, -0.79)] to small [emotion: g = -0.37, 95% CI = (-0.63, -0.11)]. Moderation analyses revealed nonsignificant contributions of age, sex, educational attainment, and parental level of education to outcomes. These results illustrate that cognitive impairments are diffuse and salient across the lifespan in NF1. Taken together, these results further demonstrate efforts should be made to evaluate and address cognitive morbidity in patients with NF1 in conjunction with existing best practices.
Collapse
Affiliation(s)
- Andrew J D Crow
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennica M Janssen
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Carolina Marshall
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Psychology, Hope College, Holland, Michigan, USA
| | - Anne Moffit
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Christian G Kohler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul J Moberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Bruno JL, Shrestha SB, Reiss AL, Saggar M, Green T. Altered canonical and striatal-frontal resting state functional connectivity in children with pathogenic variants in the Ras/mitogen-activated protein kinase pathway. Mol Psychiatry 2022; 27:1542-1551. [PMID: 35087195 PMCID: PMC9106817 DOI: 10.1038/s41380-021-01422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Abstract
Mounting evidence supports the role of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway in neurodevelopmental disorders. Here, the authors used a genetics-first approach to examine how Ras/MAPK pathogenic variants affect the functional organization of the brain and cognitive phenotypes including weaknesses in attention and inhibition. Functional MRI was used to examine resting state functional connectivity (RSFC) in association with Ras/MAPK pathogenic variants in children with Noonan syndrome (NS). Participants (age 4-12 years) included 39 children with NS (mean age 8.44, SD = 2.20, 25 females) and 49 typically developing (TD) children (mean age 9.02, SD = 9.02, 33 females). Twenty-eight children in the NS group and 46 in the TD group had usable MRI data and were included in final analyses. The results indicated significant hyperconnectivity for the NS group within canonical visual, ventral attention, left frontoparietal and limbic networks (p < 0.05 FWE). Higher connectivity within canonical left frontoparietal and limbic networks positively correlated with cognitive function within the NS but not the TD group. Further, the NS group demonstrated significant group differences in seed-based striatal-frontal connectivity (Z > 2.6, p < 0.05 FWE). Hyperconnectivity within canonical brain networks may represent an intermediary phenotype between Ras/MAPK pathogenic variants and cognitive phenotypes, including weaknesses in attention and inhibition. Altered striatal-frontal connectivity corresponds with smaller striatal volume and altered white matter connectivity previously documented in children with NS. These results may indicate delayed maturation and compensatory mechanisms and they are important for understanding the pathophysiology underlying cognitive phenotypes in NS and in the broader population of children with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jennifer L Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sharon B Shrestha
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics and Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Glad DM, Casnar CL, Yund BD, Lee K, Klein-Tasman BP. Parent-Reported Social Skills in Children with Neurofibromatosis Type 1: Longitudinal Patterns and Relations with Attention and Cognitive Functioning. J Dev Behav Pediatr 2021; 42:656-665. [PMID: 34618723 PMCID: PMC8944791 DOI: 10.1097/dbp.0000000000000939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Social skills difficulties are commonly reported by parents and teachers of school age (SA) children with neurofibromatosis type 1 (NF1). Investigations of social skills of young children with NF1 are scarce. This study aimed to characterize the emergence of social skills challenges beginning in early childhood, examine social skills longitudinally into SA, and explore interrelations with attention-deficit hyperactivity disorder (ADHD) symptomatology and cognitive functioning among children with NF1 cross-sectionally and longitudinally. METHOD Three samples of children with NF1 and their parents participated: (1) early childhood (n = 50; ages 3-6; mean [M] = 3.96, SD = 1.05), (2) SA (n = 40; ages 9-13; [M] = 10.90, SD = 1.59), and (3) both early childhood and SA (n = 25). Parent-reported social skills (Social Skills Rating System and Social Skills Improvement System), ADHD symptomatology (Conners Parent Rating Scales - Revised and Conners - Third Edition), and parent-reported cognitive abilities (Differential Ability Scales - Second Edition) were evaluated. RESULTS Parental ratings of social skills were relatively stable throughout childhood. Ratings of social skills at the end of early childhood significantly predicted school-age social skills. Parental ratings of ADHD symptomatology showed significant negative relations with social skills. Early childhood inattentive symptoms predicted school-age social skills ratings. Cognitive functioning was not significantly related to social skills. CONCLUSION Parent-reported social skills difficulties are evident during early childhood. This work adds to the literature by describing the frequency and stability of social skills challenges in early childhood and in the school-age period in NF1. Research about interventions to support social skills when difficulties are present is needed.
Collapse
Affiliation(s)
- Danielle M. Glad
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Christina L. Casnar
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Wauwatosa, WI
| | - Brianna D. Yund
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Kristin Lee
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | | |
Collapse
|
15
|
Janusz JA, Klein-Tasman BP, Payne JM, Wolters PL, Thompson HL, Martin S, de Blank P, Ullrich N, Del Castillo A, Hussey M, Hardy KK, Haebich K, Rosser T, Toledo-Tamula MA, Walsh KS. Recommendations for Social Skills End Points for Clinical Trials in Neurofibromatosis Type 1. Neurology 2021; 97:S73-S80. [PMID: 34230205 PMCID: PMC8594002 DOI: 10.1212/wnl.0000000000012422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To review parent-report social skills measures to identify and recommend consensus outcomes for use in clinical trials of social deficit in children and adolescents (ages 6-18 years) with neurofibromatosis type 1 (NF1). METHODS Searches were conducted via PubMed and ClinicalTrials.gov to identity social skills outcome measures with English language versions used in clinical trials in the past 5 years with populations with known social skills deficits, including attention-deficit/hyperactivity disorder and autism spectrum disorder (ASD). Measures were rated by the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) Neurocognitive Committee on patient characteristics, use in published studies, domains assessed, availability of standard scores, psychometric properties, and feasibility to determine their appropriateness for use in NF1 clinical trials. RESULTS Two measures were ultimately recommended by the committee: the Social Responsiveness Scale-2 (SRS-2) and the Social Skills Improvement System-Rating Scale (SSIS-RS). CONCLUSIONS Each of the 2 measures assesses different aspects of social functioning. The SSIS-RS is appropriate for studies focused on broader social functioning; the SRS-2 is best for studies targeting problematic social behaviors associated with ASD. Researchers will need to consider the goals of their study when choosing a measure, and specific recommendations for their use are provided.
Collapse
Affiliation(s)
- Jennifer A Janusz
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD.
| | - Bonita P Klein-Tasman
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Jonathan M Payne
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Pamela L Wolters
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Heather L Thompson
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Staci Martin
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Peter de Blank
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Nicole Ullrich
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Allison Del Castillo
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Maureen Hussey
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Kristina K Hardy
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Kristina Haebich
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Tena Rosser
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Mary Anne Toledo-Tamula
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| | - Karin S Walsh
- From the Children's Hospital Colorado and University of Colorado School of Medicine (J.A.J.), Aurora; Department of Psychology (B.P.K.-T.), University of Wisconsin-Milwaukee; Murdoch Children's Research Institute and Department of Pediatrics (J.M.P., K.H.), University of Melbourne, Australia; Pediatric Oncology Branch (P.L.W., S.M., M.A.T.-T.), National Cancer Institute, Bethesda, MD; Department of Communication Sciences and Disorders (H.L.T.), California State University, Sacramento; University of Cincinnati Medical Center (P.d.B.), OH; Boston Children's Hospital (N.U.), MA; Children's National Hospital, Gilbert NF Institute (A.d.C., K.K.H., K.S.W.), Washington, DC; Children's Tumor Foundation (M.H.), New York, NY; The George Washington School of Medicine (K.K.H., K.S.W.), Washington, DC; Children's Hospital Los Angeles (T.R.), CA; and Leidos Biomedical Research, Inc. (M.A.T.-T.), Frederick, MD
| |
Collapse
|
16
|
Russo C, Russo C, Cascone D, Mazio F, Santoro C, Covelli EM, Cinalli G. Non-Oncological Neuroradiological Manifestations in NF1 and Their Clinical Implications. Cancers (Basel) 2021; 13:cancers13081831. [PMID: 33921292 PMCID: PMC8070534 DOI: 10.3390/cancers13081831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Central nervous system involvement (CNS) is a common finding in Neurofibromatosis type 1 (NF1). Beside tumor-related manifestations, NF1 is also characterized by a wide spectrum of CNS alterations with variable impacts on functioning and life quality. Here, we propose an overview of non-oncological neuroradiological findings in NF1, with an insight on pathophysiological and embryological clues for a better understanding of the development of these specific alterations. Abstract Neurofibromatosis type 1 (NF1), the most frequent phakomatosis and one of the most common inherited tumor predisposition syndromes, is characterized by several manifestations that pervasively involve central and peripheral nervous system structures. The disorder is due to mutations in the NF1 gene, which encodes for the ubiquitous tumor suppressor protein neurofibromin; neurofibromin is highly expressed in neural crest derived tissues, where it plays a crucial role in regulating cell proliferation, differentiation, and structural organization. This review article aims to provide an overview on NF1 non-neoplastic manifestations of neuroradiological interest, involving both the central nervous system and spine. We also briefly review the most recent MRI functional findings in NF1.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-333-7050711
| | - Carmela Russo
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Daniele Cascone
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Federica Mazio
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Claudia Santoro
- Neurofibromatosis Referral Center, Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental and Physical Health, and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy;
| |
Collapse
|
17
|
Thompson K, Nahmias E, Fani N, Kvaran T, Turner J, Tone E. The Prisoner's Dilemma paradigm provides a neurobiological framework for the social decision cascade. PLoS One 2021; 16:e0248006. [PMID: 33735226 PMCID: PMC7971531 DOI: 10.1371/journal.pone.0248006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
To function during social interactions, we must be able to consider and coordinate our actions with other people's perspectives. This process unfolds from decision-making, to anticipation of that decision's consequences, to feedback about those consequences, in what can be described as a "cascade" of three phases. The iterated Prisoner's Dilemma (iPD) task, an economic-exchange game used to illustrate how people achieve stable cooperation over repeated interactions, provides a framework for examining this "social decision cascade". In the present study, we examined neural activity associated with the three phases of the cascade, which can be isolated during iPD game rounds. While undergoing functional magnetic resonance imaging (fMRI), 31 adult participants made a) decisions about whether to cooperate with a co-player for a monetary reward, b) anticipated the co-player's decision, and then c) learned the co-player's decision. Across all three phases, participants recruited the temporoparietal junction (TPJ) and the dorsomedial prefrontal cortex (dmPFC), regions implicated in numerous facets of social reasoning such as perspective-taking and the judgement of intentions. Additionally, a common distributed neural network underlies both decision-making and feedback appraisal; however, differences were identified in the magnitude of recruitment between both phases. Furthermore, there was limited evidence that anticipation following the decision to defect evoked a neural signature that is distinct from the signature of anticipation following the decision to cooperate. This study is the first to delineate the neural substrates of the entire social decision cascade in the context of the iPD game.
Collapse
Affiliation(s)
- Khalil Thompson
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Eddy Nahmias
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Trevor Kvaran
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Erin Tone
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Beaussart-Corbat ML, Barbarot S, Farges D, Martin L, Roy A. Executive functions in preschool-aged children with neurofibromatosis type 1: Value for early assessment. J Clin Exp Neuropsychol 2021; 43:163-175. [PMID: 33685350 DOI: 10.1080/13803395.2021.1893277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Executive functions (EFs) impairment is common in children with neurofibromatosis type 1 (NF1), and could be a significant vulnerability associated with this medical disorder. However, we still know little about EFs in preschool NF1. Our study assessed EFs in NF1 children using performance-based tests and daily life questionnaires, which combined the views of parents and teachers.Method: Seven classic experimental tasks were used to evaluate EFs in 33 NF1 children aged 3 to 5 years old, and BRIEF-P questionnaires were completed by their parents and teachers. These children's performance was compared with a control group of 52 healthy children matched in age, gender and socio-cultural status.Results: NF1 children have significantly lower scores for 5 out of 7 executive tasks than control children and significantly higher levels of EF concerns in the parent and teacher BRIEF-P ratings. The correlations between performance-based tests and questionnaires are weak.Conclusions: Our results support an early executive dysfunction in NF1 children and call for early and systematic assessment of EFs. Both performance-based tests and questionnaires are complementary tools to investigate early EFs dysfunction in children with NF1.
Collapse
Affiliation(s)
| | - Sébastien Barbarot
- Department of Dermatology, Nantes University, CHU Nantes, Nantes, France.,Neurofibromatosis Clinic, Nantes University Hospital, Nantes, France
| | - Denis Farges
- Pediatrics Department, Angers University Hospital, France
| | - Ludovic Martin
- Department of Dermatology, Angers University Hospital, France.,Reference Center for Inherited Skin Disorders (MAGEC Nord), Angers University Hospital, France
| | - Arnaud Roy
- Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France.,Neurofibromatosis Clinic, Nantes University Hospital, Nantes, France.,Reference Center for Learning Disabilities, Nantes University Hospital, Nantes, France
| |
Collapse
|
19
|
Johnson EM, Ishak AD, Naylor PE, Stevenson DA, Reiss AL, Green T. PTPN11 Gain-of-Function Mutations Affect the Developing Human Brain, Memory, and Attention. Cereb Cortex 2020; 29:2915-2923. [PMID: 30059958 DOI: 10.1093/cercor/bhy158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/28/2023] Open
Abstract
The Ras-MAPK pathway has an established role in neural development and synaptic signaling. Mutations in this pathway are associated with a collection of neurodevelopmental syndromes, Rasopathies; among these, Noonan syndrome (NS) is the most common (1:2000). Prior research has focused on identifying genetic mutations and cellular mechanisms of the disorder, however, effects of NS on the human brain remain unknown. Here, imaging and cognitive data were collected from 12 children with PTPN11-related NS, ages 4.0-11.0 years (8.98 ± 2.33) and 12 age- and sex-matched typically developing controls (8.79 ± 2.17). We observe reduced gray matter volume in bilateral corpus striatum (Cohen's d = -1.0:-1.3), reduced surface area in temporal regions (d = -1.8:-2.2), increased cortical thickness in frontal regions (d = 1.2-1.3), and reduced cortical thickness in limbic regions (d = -1.6), including limbic structures integral to the circuitry of the hippocampus. Further, we find high levels of inattention, hyperactivity, and memory deficits in children with NS. Taken together, these results identify effects of NS on specific brain regions associated with ADHD and learning in children. While our research lays the groundwork for elucidating the neural and behavioral mechanisms of NS, it also adds an essential tier to understanding the Ras-MAPK pathway's role in human brain development.
Collapse
Affiliation(s)
- Emily M Johnson
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Department of Radiology/Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Alexandra D Ishak
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Paige E Naylor
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - David A Stevenson
- Department of Pediatrics-Medical Genetics, Stanford University, Stanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Department of Radiology and Pediatrics, Stanford University, Stanford, CA, USA
| | - Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Brain-wide structural and functional disruption in mice with oligodendrocyte-specific Nf1 deletion is rescued by inhibition of nitric oxide synthase. Proc Natl Acad Sci U S A 2020; 117:22506-22513. [PMID: 32839340 PMCID: PMC7486714 DOI: 10.1073/pnas.2008391117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study assessed the effects of myelin decompaction on motor behavior and brain-wide structural and functional connectivity, and the effect of nitric oxide synthase inhibition by N-nitro-l-arginine methyl ester (L-NAME) on these imaging measures. We report that inducible oligodendrocyte-specific inactivation of the Nf1 gene, which causes myelin decompaction, results in reduced initial motor coordination. Using diffusion-based magnetic resonance imaging (MRI), we show reduced myelin integrity, and using functional MRI, we show reduced functional connectivity in awake passive mice. L-NAME administration results in rescue of the pathology at the mesoscopic level, as measured using imaging procedures that can be directly applied to humans to study treatment efficacy in clinical trials. Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition.
Collapse
|
21
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
22
|
Baudou E, Nemmi F, Biotteau M, Maziero S, Peran P, Chaix Y. Can the Cognitive Phenotype in Neurofibromatosis Type 1 (NF1) Be Explained by Neuroimaging? A Review. Front Neurol 2020; 10:1373. [PMID: 31993017 PMCID: PMC6971173 DOI: 10.3389/fneur.2019.01373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most frequent monogenetic disorders. It can be associated with cognitive dysfunctions in several domains such as executive functioning, language, visual perception, motor skills, social skills, memory and/or attention. Neuroimaging is becoming more and more important for a clearer understanding of the neural basis of these deficits. In recent years, several studies have used different imaging techniques to examine structural, morphological and functional alterations in NF1 disease. They have shown that NF1 patients have specific brain characteristics such as Unidentified Bright Objects (UBOs), macrocephaly, a higher volume of subcortical structures, microstructure integrity alterations, or connectivity alterations. In this review, which focuses on the studies published after the last 2 reviews of this topic (in 2010 and 2011), we report on recent structural, morphological and functional neuroimaging studies in NF1 subjects, with special focus on those that examine the neural basis of the NF1 cognitive phenotype. Although UBOs are one of the most obvious and visible elements in brain imaging, correlation studies have failed to establish a robust and reproducible link between major cognitive deficits in NF1 and their presence, number or localization. In the same vein, the results among structural studies are not consistent. Functional magnetic resonance imaging (fMRI) studies appear to be more sensitive, especially for understanding the executive function deficit that seems to be associated with a dysfunction in the right inferior frontal areas and the middle frontal areas. Similarly, fMRI studies have found that visuospatial deficits could be associated with a dysfunction in the visual cortex and especially in the magnocellular pathway involved in the processing of low spatial frequency and high temporal frequency. Connectivity studies have shown a reduction in anterior-posterior “long-range” connectivity and a deficit in deactivation in default mode network (DMN) during cognitive tasks. In conclusion, despite the contribution of new imaging techniques and despite relative advancement, the cognitive phenotype of NF1 patients is not totally understood.
Collapse
Affiliation(s)
- Eloïse Baudou
- Children's Hospital, Purpan University Hospital, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Maëlle Biotteau
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- Children's Hospital, Purpan University Hospital, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
23
|
McNeill AM, Hudock RL, Foy AMH, Shanley R, Semrud-Clikeman M, Pierpont ME, Berry SA, Sommer K, Moertel CL, Pierpont EI. Emotional functioning among children with neurofibromatosis type 1 or Noonan syndrome. Am J Med Genet A 2019; 179:2433-2446. [PMID: 31566897 DOI: 10.1002/ajmg.a.61361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
While neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are clinically distinct genetic syndromes, they have overlapping features because they are caused by pathogenic variants in genes encoding molecules within the Ras-mitogen-activated protein kinase signaling pathway. Increased risk for emotional and behavioral challenges has been reported in both children and adults with these syndromes. The current study examined parent-report and self-report measures of emotional functioning among children with NF1 and NS as compared to their unaffected siblings. Parents and children with NS (n = 39), NF1 (n = 39), and their siblings without a genetic condition (n = 32) completed well-validated clinical symptom rating scales. Results from parent questionnaires indicated greater symptomatology on scales measuring internalizing behaviors and symptoms of attention deficit hyperactivity disorder (ADHD) in both syndrome groups as compared with unaffected children. Frequency and severity of emotional and behavioral symptoms were remarkably similar across the two clinical groups. Symptoms of depression and anxiety were higher in children who were also rated as meeting symptom criteria for ADHD. While self-report ratings by children generally correlated with parent ratings, symptom severity was less pronounced. Among unaffected siblings, parent ratings indicated higher than expected levels of anxiety. Study findings may assist with guiding family-based interventions to address emotional challenges.
Collapse
Affiliation(s)
- Alana M McNeill
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Rebekah L Hudock
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Allison M H Foy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Margaret Semrud-Clikeman
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mary Ella Pierpont
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Susan A Berry
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Katherine Sommer
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher L Moertel
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
24
|
Holter MC, Hewitt LT, Koebele SV, Judd JM, Xing L, Bimonte-Nelson HA, Conrad CD, Araki T, Neel BG, Snider WD, Newbern JM. The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PLoS Genet 2019; 15:e1008108. [PMID: 31017896 PMCID: PMC6502435 DOI: 10.1371/journal.pgen.1008108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/06/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function. The RASopathies are a large and complex family of syndromes caused by mutations in the RAS/MAPK signaling cascade with no known cure. Individuals with these syndromes often present with heart defects, craniofacial differences, and neurological abnormalities, such as developmental delay, cognitive changes, epilepsy, and an increased risk of autism. However, there is wide variation in the extent of intellectual ability between individuals. It is currently unclear how different RASopathy mutations affect brain development. Here, we describe the cellular and behavioral consequences of a mutation in a gene called Raf1 that is associated with a common RASopathy, Noonan Syndrome. We find that mice harboring a mutation in Raf1 show moderate increases in the number of two subsets of glial cells, which is also observed in a number of other RASopathy brain samples. Surprisingly, we found that Raf1 mutant mice show improved performance in several learning and memory tasks. Our work highlights potential mutation-specific changes in RASopathy brain function and helps set the framework for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Michael C. Holter
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lauren. T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Jessica M. Judd
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Lei Xing
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - William D. Snider
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
Mennigen E, Schuette P, Vajdi A, Pacheco L, Rosser T, Bearden CE. Reduced higher dimensional temporal dynamism in neurofibromatosis type 1. Neuroimage Clin 2019; 22:101692. [PMID: 30710873 PMCID: PMC6354288 DOI: 10.1016/j.nicl.2019.101692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common single gene disorder resulting in multi-organ involvement. In addition to physical manifestations such as characteristic pigmentary changes, nerve sheath tumors, and skeletal abnormalities, NF1 is also associated with increased rates of learning disabilities, attention deficit hyperactivity disorder, and autism spectrum disorder. While there are established NF1-related structural brain anomalies, including brain overgrowth and white matter disruptions, little is known regarding patterns of functional connectivity in NF1. Here, we sought to investigate functional network connectivity (FNC) in a well-characterized sample of NF1 participants (n = 30) vs. age- and sex-matched healthy controls (n = 30). We conducted a comprehensive investigation of both static as well as dynamic FNC and meta-state analysis, a novel approach to examine higher-dimensional temporal dynamism of whole-brain connectivity. We found that static FNC of the cognitive control domain is altered in NF1 participants. Specifically, connectivity between anterior cognitive control areas and the cerebellum is decreased, whereas connectivity within the cognitive control domain is increased in NF1 participants relative to healthy controls. These alterations are independent of IQ. Dynamic FNC analysis revealed that NF1 participants spent more time in a state characterized by whole-brain hypoconnectivity relative to healthy controls. However, connectivity strength of dynamic states did not differ between NF1 participants and healthy controls. NF1 participants exhibited also reduced higher-dimensional dynamism of whole-brain connectivity, suggesting that temporal fluctuations of FNC are reduced. Given that similar findings have been observed in individuals with schizophrenia, higher occurrence of hypoconnected dynamic states and reduced temporal dynamism may be more general indicators of global brain dysfunction and not specific to either disorder.
Collapse
Affiliation(s)
- Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Peter Schuette
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Laura Pacheco
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Tena Rosser
- Children's Hospital Los Angeles, Los Angeles, CA, USA; University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Molosh AI, Shekhar A. Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. PROGRESS IN BRAIN RESEARCH 2018; 241:37-62. [PMID: 30447756 DOI: 10.1016/bs.pbr.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is monogenic neurodevelopmental disorder caused by mutation of NF1 gene, which leads to increased susceptibility to various tumors formations. Additionally, majority of patients with NF1 are experience high incidence of cognitive deficits. Particularly, we review the growing number of reports demonstrated a higher incidence of autism spectrum disorder (ASD) in individuals with NF1. In this review we also discuss face validity of preclinical Nf1 mouse models. Then we describe discoveries from these animal models that have uncovered the deficiencies in the regulation of Ras and other intracellular pathways as critical mechanisms underlying the Nf1 cognitive problems. We also summarize and interpret recent preclinical and clinical studies that point toward potential pharmacological therapies for NF1 patients.
Collapse
Affiliation(s)
- Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States.
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States; Department of Pharmacology & Toxicology, IU School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translational Institute, IU School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
27
|
Systematic Review and Meta-analysis of Executive Functions in Preschool and School-Age Children With Neurofibromatosis Type 1. J Int Neuropsychol Soc 2018; 24:977-994. [PMID: 30375317 DOI: 10.1017/s1355617718000383] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Neurofibromatosis type 1 (NF1) is a genetic disorder in which the most frequent complication in children is learning disabilities. Over the past decade, growing arguments support the idea that executive dysfunction is a core deficit in children with NF1. However, some data remain inconsistent. The aim of this study was to determine the magnitude of impairment for each executive function (EF) and clarify the impact of methodological choices and participant's characteristics on EFs. METHODS In this meta-analysis, 19 studies met the selection criteria and were included with data from a total of 805 children with NF1 and 667 controls. Based on the Diamond's model (2013), EF measures were coded separately according to the following EF components: working memory, inhibitory control, cognitive flexibility, planning/problem solving. The review protocol was registered with PROSPERO (International prospective register of systematic reviews; CRD42017068808). RESULTS A significant executive dysfunction in children with NF1 is demonstrated. Subgroup analysis showed that the impairment varied as a function of the specific component of executive functioning. The effect size for working memory and planning/problem solving was moderate whereas it was small for inhibitory control and cognitive flexibility. Executive dysfunction seems to be greater with increasing age whereas assessment tool type, intellectual performance, attention deficit hyperactivity disorder and control group composition did not seem to affect EF results. CONCLUSIONS EF deficits are a core feature in children with NF1 and an early identification of executive dysfunctions is essential to limit their impact on the quality of life. (JINS, 2018, 24, 977-994).
Collapse
|
28
|
Schütze M, de Souza Costa D, de Paula JJ, Malloy-Diniz LF, Malamut C, Mamede M, de Miranda DM, Brammer M, Romano-Silva MA. Use of machine learning to predict cognitive performance based on brain metabolism in Neurofibromatosis type 1. PLoS One 2018; 13:e0203520. [PMID: 30192842 PMCID: PMC6128556 DOI: 10.1371/journal.pone.0203520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) can cause a wide range of cognitive deficits, but its underlying nature is still unknown. We investigated the correlation between cognitive performance and specific patterns of resting-state brain metabolism in a NF1 sample. Sixteen individuals diagnosed with NF1 underwent 18F-FDG PET/CT brain imaging followed by a neuropsychological assessment. Principal component analysis was performed on 17 measures of cognitive function and a machine learning approach based on Gaussian Process Regression was used to individually predict the components that represented most of the variance in the neuropsychological data. The accuracy of the method was estimated using leave-one-out cross-validation and its significance through permutation testing. We found that only the first component could be accurately predicted from resting state metabolism (r = 0.926, p<0.001). Multiple and heterogeneous measures contribute to the first component, mainly WISC/WAIS Procedure and Verbal IQ, verbal memory and fluency. Considering the accurate prediction of measures of neuropsychological performance based on brain metabolism in NF1 patients, this suggests an underlying metabolic pattern that relates to cognitive performance in this group.
Collapse
Affiliation(s)
- Manuel Schütze
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| | - Danielle de Souza Costa
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jonas Jardim de Paula
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Fernandes Malloy-Diniz
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Malamut
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Belo Horizonte, Brazil
| | - Marcelo Mamede
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora Marques de Miranda
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Brammer
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Neuroimaging, Institute of Psychiatry, London, United Kingdom
| | - Marco Aurélio Romano-Silva
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Social Function and Autism Spectrum Disorder in Children and Adults with Neurofibromatosis Type 1: a Systematic Review and Meta-Analysis. Neuropsychol Rev 2018; 28:317-340. [DOI: 10.1007/s11065-018-9380-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
30
|
Pierpont EI, Hudock RL, Foy AM, Semrud-Clikeman M, Pierpont ME, Berry SA, Shanley R, Rubin N, Sommer K, Moertel CL. Social skills in children with RASopathies: a comparison of Noonan syndrome and neurofibromatosis type 1. J Neurodev Disord 2018; 10:21. [PMID: 29914349 PMCID: PMC6006579 DOI: 10.1186/s11689-018-9239-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Background Gene mutations within the RAS-MAPK signaling cascade result in Noonan syndrome (NS), neurofibromatosis type 1 (NF1), and related disorders. Recent research has documented an increased risk for social difficulties and features of autism spectrum disorder (ASD) among children with these conditions. Despite this emerging evidence, the neuropsychological characteristics associated with social skills deficits are not well understood, particularly for children with NS. Methods Parents of children with NS (n = 39), NF1 (n = 39), and unaffected siblings (n = 32) between the ages of 8 and 16 years were administered well-validated caregiver questionnaires assessing their child’s social skills, language abilities, attention-deficit hyperactivity disorder (ADHD) symptoms and anxiety. Results With respect to overall social skills, average ratings of children in both clinical groups were similar, and indicated weaker social skills compared to unaffected siblings. Although ratings of social skills were outside of normal limits for more than four in ten children within the clinical groups, most of the deficits were mild/moderate. Fifteen percent of the children with NS and 5% of the children with NF1 were rated as having severe social skills impairment (< − 2SD). Independent of diagnosis, having fewer ADHD symptoms or better social-pragmatic language skills was predictive of stronger social skills. Conclusions Amidst efforts to support social skill development among children and adolescents with RASopathies, neuropsychological correlates such as social language competence, attention, and behavioral self-regulation could be important targets of intervention.
Collapse
Affiliation(s)
- Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA.
| | - Rebekah L Hudock
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| | - Allison M Foy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| | - Margaret Semrud-Clikeman
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| | - Mary Ella Pierpont
- Division of Genetics & Metabolism, Department of Pediatrics and Ophthalmology, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55455, USA
| | - Susan A Berry
- Division of Genetics & Metabolism, Department of Pediatrics and Ophthalmology, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55455, USA
| | - Ryan Shanley
- Biostatistics Core, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Nathan Rubin
- Biostatistics Core, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Katherine Sommer
- University of Minnesota Health, 2450 Riverside Avenue, Minneapolis, MN, 55455, USA
| | - Christopher L Moertel
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Mayo Mail Code 484, 420 Delaware Street SE, Mayo Mail Code 486, Minneapolis, MN, 55455, USA
| |
Collapse
|
31
|
Stivaros S, Garg S, Tziraki M, Cai Y, Thomas O, Mellor J, Morris AA, Jim C, Szumanska-Ryt K, Parkes LM, Haroon HA, Montaldi D, Webb N, Keane J, Castellanos FX, Silva AJ, Huson S, Williams S, Gareth Evans D, Emsley R, Green J. Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA). Mol Autism 2018; 9:12. [PMID: 29484149 PMCID: PMC5824534 DOI: 10.1186/s13229-018-0190-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) is a monogenic model for syndromic autism. Statins rescue the social and cognitive phenotype in animal knockout models, but translational trials with subjects > 8 years using cognition/behaviour outcomes have shown mixed results. This trial breaks new ground by studying statin effects for the first time in younger children with NF1 and co-morbid autism and by using multiparametric imaging outcomes. Methods A single-site triple-blind RCT of simvastatin vs. placebo was done. Assessment (baseline and 12-week endpoint) included peripheral MAPK assay, awake magnetic resonance imaging spectroscopy (MRS; GABA and glutamate+glutamine (Glx)), arterial spin labelling (ASL), apparent diffusion coefficient (ADC), resting state functional MRI, and autism behavioural outcomes (Aberrant Behaviour Checklist and Clinical Global Impression). Results Thirty subjects had a mean age of 8.1 years (SD 1.8). Simvastatin was well tolerated. The amount of imaging data varied by test. Simvastatin treatment was associated with (i) increased frontal white matter MRS GABA (t(12) = - 2.12, p = .055), GABA/Glx ratio (t(12) = - 2.78, p = .016), and reduced grey nuclei Glx (ANCOVA p < 0.05, Mann-Whitney p < 0.01); (ii) increased ASL perfusion in ventral diencephalon (Mann-Whitney p < 0.01); and (iii) decreased ADC in cingulate gyrus (Mann-Whitney p < 0.01). Machine-learning classification of imaging outcomes achieved 79% (p < .05) accuracy differentiating groups at endpoint against chance level (64%, p = 0.25) at baseline. Three of 12 (25%) simvastatin cases compared to none in placebo met 'clinical responder' criteria for behavioural outcome. Conclusions We show feasibility of peripheral MAPK assay and autism symptom measurement, but the study was not powered to test effectiveness. Multiparametric imaging suggests possible simvastatin effects in brain areas previously associated with NF1 pathophysiology and the social brain network. Trial registration EU Clinical Trial Register (EudraCT) 2012-005742-38 (www.clinicaltrialsregister.eu).
Collapse
Affiliation(s)
- Stavros Stivaros
- Academic Unit of Paediatric Radiology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Foundation Trust, Room 3.311, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL UK
| | - Maria Tziraki
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Cai
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, Brain Research Institute, University of California, California, LA 90095 USA
| | - Owen Thomas
- Academic Unit of Radiology, Salford Royal Foundation NHS Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Joseph Mellor
- Computer Science, University of Manchester, Manchester, UK
| | - Andrew A. Morris
- Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carly Jim
- Manchester Metropolitan University, Manchester, UK
| | - Karolina Szumanska-Ryt
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Hamied A. Haroon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Daniela Montaldi
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicholas Webb
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - John Keane
- Computer Science, University of Manchester, Manchester, UK
| | - Francisco X. Castellanos
- Hassenfeld Children’s Hospital at NYU Langone, Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Alcino J. Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, Brain Research Institute, University of California, California, LA 90095 USA
| | - Sue Huson
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - Stephen Williams
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - Richard Emsley
- Centre for Biostatistics, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Foundation Trust, Room 3.311, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL UK
| |
Collapse
|
32
|
Koini M, Rombouts SARB, Veer IM, Van Buchem MA, Huijbregts SCJ. White matter microstructure of patients with neurofibromatosis type 1 and its relation to inhibitory control. Brain Imaging Behav 2017; 11:1731-1740. [PMID: 27796732 PMCID: PMC5707233 DOI: 10.1007/s11682-016-9641-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is commonly associated with deficits in executive functions such as working memory and inhibitory control. A valid biomarker to describe the pathological basis of these deficits in NF1 is not available. The aim of this study was to investigate whether any abnormalities in white matter integrity of the executive function related anterior thalamic radiation (ATR), cingulate bundle (CB), and superior longitudinal fasciculus (SLF) may be regarded as a pathological basis for inhibitory control deficits in adolescents with NF1. Sixteen NF1 patients and 32 healthy controls underwent 3 T DTI MRI scanning. Whole brain-, ATR-, CB-, and SLF-white matter integrity were studied using fractional anisotropy, mean (MD), radial, and axial (DA) diffusivity. Correlation analyses between white matter metrics and inhibitory control (as measured with a computerized task) were performed. Also, verbal and performance abilities (IQ-estimates) were assessed and correlated with white matter metrics. Patients showed significant whole brain- and local microstructural pathology when compared to healthy controls in all measures. In NF1-patients, whole-brain (MD: r = .646 and DA: r = .673) and ATR- (r-range: -.405-.771), but not the CB- (r-range: -.307-.472) and SLF- (r-range: -.187-.406) white matter integrity, were correlated with inhibitory control. Verbal and performance abilities were not associated with white matter pathology. In NF1, white matter abnormalities are observed throughout the brain, but damage to the ATR seems specifically, or at least most strongly related to inhibitory control. Future studies should examine whether reduced white matter integrity in other brain regions or tracts is (more strongly) associated with different aspects of the cognitive-behavioral phenotype associated with NF1.
Collapse
Affiliation(s)
- M Koini
- Institute of Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, A-8036, Graz, Austria.
| | - S A R B Rombouts
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - I M Veer
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - M A Van Buchem
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - S C J Huijbregts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands
| |
Collapse
|
33
|
Yoncheva YN, Hardy KK, Lurie DJ, Somandepalli K, Yang L, Vezina G, Kadom N, Packer RJ, Milham MP, Castellanos FX, Acosta MT. Computerized cognitive training for children with neurofibromatosis type 1: A pilot resting-state fMRI study. Psychiatry Res 2017; 266:53-58. [PMID: 28605662 PMCID: PMC5582983 DOI: 10.1016/j.pscychresns.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/19/2022]
Abstract
In this pilot study, we examined training effects of a computerized working memory program on resting state functional magnetic resonance imaging (fMRI) measures in children with neurofibromatosis type 1 (NF1). We contrasted pre- with post-training resting state fMRI and cognitive measures from 16 participants (nine males; 11.1 ± 2.3 years) with NF1 and documented working memory difficulties. Using non-parametric permutation test inference, we found significant regionally specific differences (family-wise error corrected) in two of four voxel-wise resting state measures: fractional amplitude of low frequency fluctuations (indexing peak-to-trough intensity of spontaneous oscillations) and regional homogeneity (indexing local intrinsic synchrony). Some cognitive task improvement was observed as well. These preliminary findings suggest that regionally specific changes in resting state fMRI indices may be associated with treatment-related cognitive amelioration in NF1. Nevertheless, current results must be interpreted with caution pending independent controlled replication.
Collapse
Affiliation(s)
- Yuliya N Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Kristina K Hardy
- Department of Pediatrics and Neurology, George Washington University, School of Medicine, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Daniel J Lurie
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lanbo Yang
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Gilbert Vezina
- Children's National Health System, Washington, DC, USA; Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC, USA
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Children's Healthcare of Atlanta (Egleston), Atlanta, GA, USA
| | - Roger J Packer
- Department of Pediatrics and Neurology, George Washington University, School of Medicine, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Michael P Milham
- Child Mind Institute, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria T Acosta
- Department of Pediatrics and Neurology, George Washington University, School of Medicine, Washington, DC, USA; Children's National Health System, Washington, DC, USA.
| |
Collapse
|
34
|
Green T, Naylor PE, Davies W. Attention deficit hyperactivity disorder (ADHD) in phenotypically similar neurogenetic conditions: Turner syndrome and the RASopathies. J Neurodev Disord 2017; 9:25. [PMID: 28694877 PMCID: PMC5502326 DOI: 10.1186/s11689-017-9205-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background ADHD (attention deficit hyperactivity disorder) is a common neurodevelopmental disorder. There has been extensive clinical and basic research in the field of ADHD over the past 20 years, but the mechanisms underlying ADHD risk are multifactorial, complex and heterogeneous and, as yet, are poorly defined. In this review, we argue that one approach to address this challenge is to study well-defined disorders to provide insights into potential biological pathways that may be involved in idiopathic ADHD. Main body To address this premise, we selected two neurogenetic conditions that are associated with significantly increased ADHD risk: Turner syndrome and the RASopathies (of which Noonan syndrome and neurofibromatosis type 1 are the best-defined with regard to ADHD-related phenotypes). These syndromes were chosen for two main reasons: first, because intellectual functioning is relatively preserved, and second, because they are strikingly phenotypically similar but are etiologically distinct. We review the cognitive, behavioural, neural and cellular phenotypes associated with these conditions and examine their relevance as a model for idiopathic ADHD. Conclusion We conclude by discussing current and future opportunities in the clinical and basic research of these conditions, which, in turn, may shed light upon the biological pathways underlying idiopathic ADHD.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, USA
| | - Paige E Naylor
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA USA
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
35
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Bluschke A, von der Hagen M, Papenhagen K, Roessner V, Beste C. Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls - Two pathways to success. NEUROIMAGE-CLINICAL 2017; 14:499-505. [PMID: 28289600 PMCID: PMC5338893 DOI: 10.1016/j.nicl.2017.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 01/11/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is a monogenetic autosomal-dominant disorder with a broad spectrum of clinical symptoms and is commonly associated with cognitive deficits. Patients with NF1 frequently exhibit cognitive impairments like attention problems, working memory deficits and dysfunctional inhibitory control. The latter is also relevant for the resolution of cognitive conflicts. However, it is unclear how conflict monitoring processes are modulated in NF1. To examine this question in more detail, we used a system neurophysiological approach combining high-density ERP recordings with source localisation analyses in juvenile patients with NF1 and controls during a flanker task. Behaviourally, patients with NF1 perform significantly slower than controls. Specifically on trials with incompatible flanker-target pairings, however, the patients with NF1 made significantly fewer errors than healthy controls. Yet, importantly, this overall successful conflict resolution was reached via two different routes in the two groups. The healthy controls seem to arrive at a successful conflict monitoring performance through a developing conflict recognition via the N2 accompanied by a selectively enhanced N450 activation in the case of perceived flanker-target conflicts. The presumed dopamine deficiency in the patients with NF1 seems to result in a reduced ability to process conflicts via the N2. However, NF1 patients show an increased N450 irrespective of cognitive conflict. Activation differences in the orbitofrontal cortex (BA11) and anterior cingulate cortex (BA24) underlie these modulations. Taken together, juvenile patients with NF1 and juvenile healthy controls seem to accomplish conflict monitoring via two different cognitive neurophysiological pathways.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany
| | - Maja von der Hagen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Katharina Papenhagen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany; Experimental Neurobiology, National Institute of Mental Health, Czech Republic, Germany
| |
Collapse
|
37
|
Torres Nupan MM, Velez Van Meerbeke A, López Cabra CA, Herrera Gomez PM. Cognitive and Behavioral Disorders in Children with Neurofibromatosis Type 1. Front Pediatr 2017; 5:227. [PMID: 29164079 PMCID: PMC5670111 DOI: 10.3389/fped.2017.00227] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
AIM The last systematic review of research on the behavior of children with neurofibromatosis type 1 (NF1) was in 2012. Since then, several important findings have been published. Therefore, the study aim was to synthesize recent relevant work related to this issue. METHOD We conducted a systematic review of the literature. Relevant articles were identified using the electronic databases PubMed, PsycINFO, and Scopus and a manual search of references lists. Thirty of 156 articles identified met the inclusion criteria. A quality evaluation of the articles was performed and the information was synthesized using a narrative approach. RESULTS Compared with controls, children and adolescents with NF1 present significant alterations in language, reading, visuospatial skills, motor function, executive function, attention, behavior, emotion, and social skills. The prevalence of attention-deficit/hyperactivity disorder (ADHD) is important and can affect cognition and executive function variables. A high prevalence of autistic traits and autistic spectrum disorder were reported. The benefits of using statins to treat cognitive deficits are unclear. However, children with NF1 and ADHD seem to benefit from methylphenidate treatment. The presence of hyperintensities in brain magnetic resonance imaging data seem to be related to poor cognitive performance. Analysis of these lesions could help to predict cognitive alterations in children with NF1. INTERPRETATION There has been important progress to evaluate cognitive characteristics of children with NF1 and to determine the physiological mechanisms of the concomitant disorders. However, discrepancies in relation to intelligence, learning disabilities, attention deficits, and treatment remain. Further investigations on this topic are recommended.
Collapse
Affiliation(s)
- Martha Milade Torres Nupan
- Neurosciences Research Group, Medicine and Health Sciences School, Universidad del Rosario, Bogota, Colombia
| | - Alberto Velez Van Meerbeke
- Neurosciences Research Group, Medicine and Health Sciences School, Universidad del Rosario, Bogota, Colombia
| | | | - Paula Marcela Herrera Gomez
- Neurosciences Research Group, Medicine and Health Sciences School, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
38
|
Petrella LI, Cai Y, Sereno JV, Gonçalves SI, Silva AJ, Castelo-Branco M. Brain and behaviour phenotyping of a mouse model of neurofibromatosis type-1: an MRI/DTI study on social cognition. GENES BRAIN AND BEHAVIOR 2016; 15:637-46. [PMID: 27283753 DOI: 10.1111/gbb.12305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 01/03/2023]
Abstract
Neurofibromatosis type-1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain-behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1(+/-) ) using T2-weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1(+/-) mice have larger volumes than wild-type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate-putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure-function correlations were identified concerning social recognition performance and PFC volumes in Nf1(+/-) mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub-groups in Nf1(+/-) mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub-group of Nf1(+/-) mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1.
Collapse
Affiliation(s)
- L I Petrella
- Institute of Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Y Cai
- Department of Neurobiology, University of California, Los Angeles, CA, USA.,Department of Psychology, University of California, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.,Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - J V Sereno
- Institute of Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - S I Gonçalves
- Institute of Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - A J Silva
- Department of Neurobiology, University of California, Los Angeles, CA, USA.,Department of Psychology, University of California, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.,Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - M Castelo-Branco
- Institute of Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Tomson SN, Schreiner MJ, Narayan M, Rosser T, Enrique N, Silva AJ, Allen GI, Bookheimer SY, Bearden CE. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1. Hum Brain Mapp 2015; 36:4566-81. [PMID: 26304096 PMCID: PMC4619152 DOI: 10.1002/hbm.22937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 01/19/2023] Open
Abstract
Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted.
Collapse
Affiliation(s)
- Steffie N Tomson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California
- Brain Mapping Center, UCLA, Los Angeles, California
- Center for Cognitive Neuroscience, UCLA, Los Angeles, California
| | - Matthew J Schreiner
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California
- Interdepartmental Neuroscience Program, UCLA, Los Angeles, California
| | - Manjari Narayan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas
| | - Tena Rosser
- Children's Hospital Los Angeles, Los Angeles, California
- USC Keck School of Medicine, Los Angeles, California
| | - Nicole Enrique
- Center for Cognitive Neuroscience, UCLA, Los Angeles, California
| | - Alcino J Silva
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California
- Department of Neurobiology, UCLA, Los Angeles, California
- Department of Psychology, UCLA, Los Angeles, California
- Integrative Center for Learning and Memory, UCLA, Los Angeles, California
| | - Genevera I Allen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas
- Department of Statistics, Rice University, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California
- Center for Cognitive Neuroscience, UCLA, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California
- Department of Psychology, UCLA, Los Angeles, California
- Integrative Center for Learning and Memory, UCLA, Los Angeles, California
| |
Collapse
|
40
|
Huijbregts SC, Loitfelder M, Rombouts SA, Swaab H, Verbist BM, Arkink EB, Van Buchem MA, Veer IM. Cerebral volumetric abnormalities in Neurofibromatosis type 1: associations with parent ratings of social and attention problems, executive dysfunction, and autistic mannerisms. J Neurodev Disord 2015; 7:32. [PMID: 26473019 PMCID: PMC4607002 DOI: 10.1186/s11689-015-9128-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a single-gene neurodevelopmental disorder, in which social and cognitive problems are highly prevalent. Several commonly observed central nervous system (CNS) abnormalities in NF1 might underlie these social and cognitive problems. Cerebral volumetric abnormalities are among the most consistently observed CNS abnormalities in NF1. This study investigated whether differences were present between NF1 patients and healthy controls (HC) in volumetric measures of cortical and subcortical brain regions and whether differential associations existed for NF1 patients and HC between the volumetric measures and parent ratings of social skills, attention problems, social problems, autistic mannerisms, and executive dysfunction. Methods Fifteen NF1 patients (mean age 12.9 years, SD 2.6) and 18 healthy controls (HC, mean age 13.8 years, SD 3.6) underwent 3 T MRI scanning. Segmentation of cortical gray and white matter, as well as volumetry of subcortical nuclei, was carried out. Voxel-based morphometry was performed to assess cortical gray matter density. Correlations were calculated, for NF1-patients and HC separately, between MRI parameters and scores on selected dimensions of the following behavior rating scales: the Social Skills Rating System, the Child Behavior Checklist, the Social Responsiveness Scale, the Behavior Rating Inventory of Executive Functioning, and the Dysexecutive Questionnaire. Results After correction for age, sex, and intracranial volume, larger volumes of all subcortical regions were found in NF1 patients compared to controls. Patients further showed decreased gray matter density in midline regions of the frontal and parietal lobes and larger total white matter volume. Significantly more social and attention problems, more autistic mannerisms, and poorer executive functioning were reported for NF1 patients compared to HC. In NF1 patients, larger left putamen volume and larger total white matter volume were associated with more social problems and poorer executive functioning, larger right amygdala volume with poorer executive functioning and autistic mannerisms, and smaller precentral gyrus gray matter density was associated with more social problems. In controls, only significant negative correlations were observed: larger volumes (and greater gray matter density) were associated with better outcomes. Conclusions Widespread volumetric differences between patients and controls were found in cortical and subcortical brain regions. In NF1 patients but not HC, larger volumes were associated with poorer behavior ratings.
Collapse
Affiliation(s)
- Stephan Cj Huijbregts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands
| | - Marisa Loitfelder
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Serge A Rombouts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Hanna Swaab
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands
| | - Berit M Verbist
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Enrico B Arkink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark A Van Buchem
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilya M Veer
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|