1
|
Ashraf S, Jerome H, Bugembe DL, Ssemwanga D, Byaruhanga T, Kayiwa JT, Downing R, Salazar-Gonzalez JF, Salazar MG, Shepherd JG, Wilkie C, Davis C, Logan N, Vattipally SB, Wilkie GS, da Silva Filipe A, Ssekagiri A, Namuwulya P, Bukenya H, Kigozi BK, McConnell WW, Willett BJ, Balinandi S, Lutwama J, Kaleebu P, Bwogi J, Thomson EC. Uncovering the viral aetiology of undiagnosed acute febrile illness in Uganda using metagenomic sequencing. Nat Commun 2025; 16:2844. [PMID: 40122843 PMCID: PMC11930947 DOI: 10.1038/s41467-025-57696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Viruses associated with acute febrile illness in Africa cause a spectrum of clinical disease from mild to life-threatening. Routine diagnostic methods are insufficient to identify all viral pathogens in this region. In this study, 1281 febrile Ugandan patients were prospectively recruited as part of the CDC-UVRI Acute Febrile Illness Study and pre-screened for common pathogens. 210/1281 undiagnosed samples, and 20 additional samples from viral outbreaks were subjected to metagenomic sequencing. Viral pathogens were identified in 44/230 (19%), including respiratory, hepatitis, blood-borne, gastrointestinal and vector-borne viruses. Importantly, one case of Crimean-Congo haemorrhagic fever and two cases each of Rift Valley fever, dengue and yellow fever were detected in 7/230 (3%) of cases. Le Dantec virus, last reported in 1969, was also identified in one patient. The presence of high-consequence and (re-)emerging viruses of public health concern highlights the need for enhanced population-based diagnostic surveillance in the African region.
Collapse
Affiliation(s)
- Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | - Hanna Jerome
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | - Daniel Lule Bugembe
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
- MRC/UVRI & LSHTM Uganda Research Unit, (MRC-UVRI), Entebbe, Uganda
| | - Deogratius Ssemwanga
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
- MRC/UVRI & LSHTM Uganda Research Unit, (MRC-UVRI), Entebbe, Uganda
| | - Timothy Byaruhanga
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
- Department of Virology, Animal and Plant Health Agency, (APHA), Surrey, UK
| | | | - Robert Downing
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
| | - Jesus F Salazar-Gonzalez
- MRC/UVRI & LSHTM Uganda Research Unit, (MRC-UVRI), Entebbe, Uganda
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, (NIH), Rockville, MD, USA
| | - Maria G Salazar
- MRC/UVRI & LSHTM Uganda Research Unit, (MRC-UVRI), Entebbe, Uganda
| | - James G Shepherd
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | - Craig Wilkie
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | | | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | | | - Alfred Ssekagiri
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
| | - Prossy Namuwulya
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
| | - Henry Bukenya
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
| | - Brian K Kigozi
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
| | | | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK
| | | | - Julius Lutwama
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
| | - Pontiano Kaleebu
- Uganda Virus Research Institute, (UVRI), Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, (LSHTM), Glasgow, UK
| | | | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, (CVR), Glasgow, UK.
- London School of Hygiene and Tropical Medicine, (LSHTM), Glasgow, UK.
| |
Collapse
|
2
|
Decena-Segarra LP, Rovito SM. Transposable Element Diversity and Activity Patterns in Neotropical Salamanders. Mol Biol Evol 2024; 41:msae225. [PMID: 39470441 PMCID: PMC11562844 DOI: 10.1093/molbev/msae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) compose a substantial proportion of the largest eukaryotic genomes. TE diversity has been hypothesized to be negatively correlated with genome size, yet empirical demonstrations of such a relationship in a phylogenetic context are largely lacking. Furthermore, the most abundant type of TEs in genomes varies across groups, and it is not clear if there are patterns of TE activity consistent with genome size among different taxa with large genome sizes. We use low-coverage sequencing of 16 species of Neotropical salamanders, which vary ∼7-fold in genome size, to estimate TE relative abundance and diversity for each species. We also compare the divergence of copies of each TE superfamily to estimate patterns of TE activity in each species. We find a negative relationship between TE diversity and genome size, which is consistent with the hypothesis that either competition among TEs or reduced selection against ectopic recombination may result in lower diversity in the largest genomes. We also find divergent activity patterns in the largest versus the smallest genomes, suggesting that the history of TE activity may explain differences in genome size. Our results suggest that both TE diversity and relative abundance may be predictable, at least within taxonomic groups.
Collapse
Affiliation(s)
- Louis Paul Decena-Segarra
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, Mexico
| | - Sean M Rovito
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Weinell JL, Burbrink FT, Das S, Brown RM. Novel phylogenomic inference and 'Out of Asia' biogeography of cobras, coral snakes and their allies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240064. [PMID: 39113776 PMCID: PMC11303032 DOI: 10.1098/rsos.240064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/10/2024]
Abstract
Estimation of evolutionary relationships among lineages that rapidly diversified can be challenging, and, in such instances, inaccurate or unresolved phylogenetic estimates can lead to erroneous conclusions regarding historical geographical ranges of lineages. One example underscoring this issue has been the historical challenge posed by untangling the biogeographic origin of elapoid snakes, which includes numerous dangerously venomous species as well as species not known to be dangerous to humans. The worldwide distribution of this lineage makes it an ideal group for testing hypotheses related to historical faunal exchanges among the many continents and other landmasses occupied by contemporary elapoid species. We developed a novel suite of genomic resources, included worldwide sampling, and inferred a robust estimate of evolutionary relationships, which we leveraged to quantitatively estimate geographical range evolution through the deep-time history of this remarkable radiation. Our phylogenetic and biogeographical estimates of historical ranges definitively reject a lingering former 'Out of Africa' hypothesis and support an 'Out of Asia' scenario involving multiple faunal exchanges between Asia, Africa, Australasia, the Americas and Europe.
Collapse
Affiliation(s)
- Jeffrey L. Weinell
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Lawrence, KS66045, USA
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY10024, USA
| | - Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY10024, USA
| | - Sunandan Das
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Rafe M. Brown
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Lawrence, KS66045, USA
| |
Collapse
|
4
|
Puritz JB, Guo X, Hare M, He Y, Hillier LW, Jin S, Liu M, Lotterhos KE, Minx P, Modak T, Proestou D, Rice ES, Tomlinson C, Warren WC, Witkop E, Zhao H, Gomez-Chiarri M. A second unveiling: Haplotig masking of the eastern oyster genome improves population-level inference. Mol Ecol Resour 2024; 24:e13801. [PMID: 37186213 DOI: 10.1111/1755-0998.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.
Collapse
Affiliation(s)
- Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, New Jersey, USA
| | - Matthew Hare
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Yan He
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, New Jersey, USA
| | - LaDeana W Hillier
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Shubo Jin
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, New Jersey, USA
| | - Ming Liu
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, New Jersey, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Pat Minx
- Donald Danforth Plant Science Center, Olivette, Missouri, USA
| | - Tejashree Modak
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dina Proestou
- USDA Agricultural Research Service, National Cold Water Marine Aquaculture Center, Kingston, Rhode Island, USA
| | - Edward S Rice
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, USA
| | - Wesley C Warren
- Departments of Animal Sciences and Surgery, Institute of Informatics and Data Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Erin Witkop
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Honggang Zhao
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
5
|
Yuan S, Nie C, Jia S, Liu T, Zhao J, Peng J, Kong W, Liu W, Gou W, Lei X, Xiong Y, Xiong Y, Yu Q, Ling Y, Ma X. Complete chloroplast genomes of three wild perennial Hordeum species from Central Asia: genome structure, mutation hotspot, phylogenetic relationships, and comparative analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1170004. [PMID: 37554563 PMCID: PMC10405828 DOI: 10.3389/fpls.2023.1170004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Hordeum L. is widely distributed in mountain or plateau of subtropical and warm temperate regions around the world. Three wild perennial Hordeum species, including H. bogdanii, H. brevisubulatum, and H. violaceum, have been used as forage and for grassland ecological restoration in high-altitude areas in recent years. To date, the degree of interspecies sequence variation in the three Hordeum species within existing gene pools is still not well-defined. Herein, we sequenced and assembled chloroplast (cp) genomes of the three species. The results revealed that the cp genome of H. bogdanii showed certain sequence variations compared with the cp genomes of the other two species (H. brevisubulatum and H. violaceum), and the latter two were characterized by a higher relative affinity. Parity rule 2 plot (PR2) analysis illuminated that most genes of all ten Hordeum species were concentrated in nucleotide T and G. Numerous single nucleotide polymorphism (SNP) and insertion/deletion (In/Del) events were detected in the three Hordeum species. A series of hotspots regions (tRNA-GGU ~ tRNA-GCA, tRNA-UGU ~ ndhJ, psbE ~ rps18, ndhF ~ tRNA-UAG, etc.) were identified by mVISTA procedures, and the five highly polymorphic genes (tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-UAC, and ndhA) were proved by the nucleotide diversity (Pi). Although the distribution and existence of cp simple sequence repeats (cpSSRs) were predicted in the three Hordeum cp genomes, no rearrangement was found between them. A similar phenomenon has been found in the cp genome of the other seven Hordeum species, which has been published so far. In addition, evolutionary relationships were reappraised based on the currently reported cp genome of Hordeum L. This study offers a framework for gaining a better understanding of the evolutionary history of Hordeum species through the re-examination of their cp genomes, and by identifying highly polymorphic genes and hotspot regions that could provide important insights into the genetic diversity and differentiation of these species.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Cong Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weixia Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Xiong Lei
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Crameri S, Fior S, Zoller S, Widmer A. A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (Dalbergia spp.) and the legume family (Fabaceae). Mol Ecol Resour 2022; 22:3087-3105. [PMID: 35689779 PMCID: PMC9796917 DOI: 10.1111/1755-0998.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Understanding the genetic changes associated with the evolution of biological diversity is of fundamental interest to molecular ecologists. The assessment of genetic variation at hundreds or thousands of unlinked genetic loci forms a sound basis to address questions ranging from micro- to macroevolutionary timescales, and is now possible thanks to advances in sequencing technology. Major difficulties are associated with (i) the lack of genomic resources for many taxa, especially from tropical biodiversity hotspots; (ii) scaling the numbers of individuals analysed and loci sequenced; and (iii) building tools for reproducible bioinformatic analyses of such data sets. To address these challenges, we developed target capture probes for genomic studies of the highly diverse, pantropically distributed and economically significant rosewoods (Dalbergia spp.), explored the performance of an overlapping probe set for target capture across the legume family (Fabaceae), and built the general purpose bioinformatic pipeline CaptureAl. Phylogenomic analyses of Malagasy Dalbergia species yielded highly resolved and well supported hypotheses of evolutionary relationships. Population genomic analyses identified differences between closely related species and revealed the existence of a potentially new species, suggesting that the diversity of Malagasy Dalbergia species has been underestimated. Analyses at the family level corroborated previous findings by the recovery of monophyletic subfamilies and many well-known clades, as well as high levels of gene tree discordance, especially near the root of the family. The new genomic and bioinformatic resources, including the Fabaceae1005 and Dalbergia2396 probe sets, will hopefully advance systematics and ecological genetics research in legumes, and promote conservation of the highly diverse and endangered Dalbergia rosewoods.
Collapse
Affiliation(s)
- Simon Crameri
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Stefan Zoller
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
- Genetic Diversity Centre (GDC)ETH ZurichZürichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| |
Collapse
|
7
|
Naranjo-Ortiz MA, Molina M, Fuentes D, Mixão V, Gabaldón T. Karyon: a computational framework for the diagnosis of hybrids, aneuploids, and other nonstandard architectures in genome assemblies. Gigascience 2022; 11:giac088. [PMID: 36205401 PMCID: PMC9540331 DOI: 10.1093/gigascience/giac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent technological developments have made genome sequencing and assembly highly accessible and widely used. However, the presence in sequenced organisms of certain genomic features such as high heterozygosity, polyploidy, aneuploidy, heterokaryosis, or extreme compositional biases can challenge current standard assembly procedures and result in highly fragmented assemblies. Hence, we hypothesized that genome databases must contain a nonnegligible fraction of low-quality assemblies that result from such type of intrinsic genomic factors. FINDINGS Here we present Karyon, a Python-based toolkit that uses raw sequencing data and de novo genome assembly to assess several parameters and generate informative plots to assist in the identification of nonchanonical genomic traits. Karyon includes automated de novo genome assembly and variant calling pipelines. We tested Karyon by diagnosing 35 highly fragmented publicly available assemblies from 19 different Mucorales (Fungi) species. CONCLUSIONS Our results show that 10 (28.57%) of the assemblies presented signs of unusual genomic configurations, suggesting that these are common, at least for some lineages within the Fungi.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortiz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Biology Department, Clark University, Worcester, MA 01610, USA
- Naturhistoriskmuseum, University of Oslo, Oslo 0562, Norway
| | - Manu Molina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
| | - Diego Fuentes
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Verónica Mixão
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona 28029, Spain
| |
Collapse
|
8
|
Alors D, Amses KR, James TY, Boussiba S, Zarka A. Paraphysoderma sedebokerense GlnS III Is Essential for the Infection of Its Host Haematococcus lacustris. J Fungi (Basel) 2022; 8:561. [PMID: 35736044 PMCID: PMC9224648 DOI: 10.3390/jof8060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Glutamine synthetase (GlnS) is a key enzyme in nitrogen metabolism. We investigated the effect of the GlnS inhibitor glufosinate on the infection of H. lacustris by the blastocladialean fungus P. sedebokerense, assuming that interfering with the host nitrogen metabolism will affect the success of the parasite. Complete inhibition of infection, which could be bypassed by the GlnS product glutamine, was observed at millimolar concentrations of glufosinate. However, this effect of glufosinate was attributed to its direct interaction with the blastoclad and not the host, which results in development and growth inhibition of the blastoclad. In our P. sedebokerense draft genome, we found that the sequence of GlnS is related to another fungal GlnS, type III, found in many poor known phyla of fungi, including Blastocladiomycota and Chytridiomycota, and absent in the main subkingdom of fungi, the Dikarya. We further tested the ability of the blastoclad to utilize nitrate and ammonia as inorganic nitrogen sources and glutamine for growth. We found that P. sedebokerense equally use ammonia and glutamine and use also nitrate, but with less efficiency. Altogether, our results show that GlnS type III is mandatory for the development and growth of P. sedebokerense and could be an efficient target to develop strategies for the control of the fungal parasite of H. lacustris.
Collapse
Affiliation(s)
- David Alors
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
- Departamento de Biología y Químicas, Facultad de Recursos Naturales, Campus San Juan Pablo II, Universidad Católica de Temuco, Temuco 478 0694, Chile
| | - Kevin R. Amses
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.R.A.); (T.Y.J.)
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.R.A.); (T.Y.J.)
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
9
|
Hutter CR, Cobb KA, Portik DM, Travers SL, Wood PL, Brown RM. FrogCap: A modular sequence capture probe-set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales. Mol Ecol Resour 2022; 22:1100-1119. [PMID: 34569723 DOI: 10.1111/1755-0998.13517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/01/2022]
Abstract
Despite the prevalence of high-throughput sequencing in phylogenetics, many relationships remain difficult to resolve because of conflicting signal among genomic regions. Selection of different types of molecular markers from different genomic regions is required to overcome these challenges. For evolutionary studies in frogs, we introduce the publicly available FrogCap suite of genomic resources, which is a large collection of ~15,000 markers that unifies previous genetic sequencing efforts. FrogCap is designed to be modular, such that subsets of markers and SNPs can be selected based on the desired phylogenetic scale. FrogCap uses a variety of marker types that include exons and introns, ultraconserved elements, and previously sequenced Sanger markers, which span up to 10,000 bp in alignment lengths; in addition, we demonstrate potential for SNP-based analyses. We tested FrogCap using 121 samples distributed across five phylogenetic scales, comparing probes designed using a consensus- or exemplar genome-based approach. Using the consensus design is more resilient to issues with sensitivity, specificity, and missing data than picking an exemplar genome sequence. We also tested the impact of different bait kit sizes (20,020 vs. 40,040) on depth of coverage and found triple the depth for the 20,020 bait kit. We observed sequence capture success (i.e., missing data, sequenced markers/bases, marker length, and informative sites) across phylogenetic scales. The incorporation of different marker types is effective for deep phylogenetic relationships and shallow population genetics studies. Having demonstrated FrogCap's utility and modularity, we conclude that these new resources are efficacious for high-throughput sequencing projects across variable timescales.
Collapse
Affiliation(s)
- Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Kerry A Cobb
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Daniel M Portik
- California Academy of Sciences, San Francisco, California, USA
| | - Scott L Travers
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Department of Biological Sciences, Rutgers University-Newark, Newark, New Jersey, USA
| | - Perry L Wood
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Mixão V, del Olmo V, Hegedűsová E, Saus E, Pryszcz L, Cillingová A, Nosek J, Gabaldón T. Genome analysis of five recently described species of the CUG-Ser clade uncovers Candida theae as a new hybrid lineage with pathogenic potential in the Candida parapsilosis species complex. DNA Res 2022; 29:6570588. [PMID: 35438177 PMCID: PMC9046093 DOI: 10.1093/dnares/dsac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Candida parapsilosis species complex comprises three important pathogenic species: Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. The majority of C. orthopsilosis and all C. metapsilosis isolates sequenced thus far are hybrids, and most of the parental lineages remain unidentified. This led to the hypothesis that hybrids with pathogenic potential were formed by the hybridization of non-pathogenic lineages that thrive in the environment. In a search for the missing hybrid parentals, and aiming to get a better understanding of the evolution of the species complex, we sequenced, assembled and analysed the genome of five close relatives isolated from the environment: Candida jiufengensis, Candida pseudojiufengensis, Candida oxycetoniae, Candida margitis and Candida theae. We found that the linear conformation of mitochondrial genomes in Candida species emerged multiple times independently. Furthermore, our analyses discarded the possible involvement of these species in the mentioned hybridizations, but identified C. theae as an additional hybrid in the species complex. Importantly, C. theae was recently associated with a case of infection, and we also uncovered the hybrid nature of this clinical isolate. Altogether, our results reinforce the hypothesis that hybridization is widespread among Candida species, and potentially contributes to the emergence of lineages with opportunistic pathogenic behaviour.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Valentina del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eva Hegedűsová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Leszek Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Barcelona 08010, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
11
|
McGill F, Tokarz R, Thomson EC, Filipe A, Sameroff S, Jain K, Bhuva N, Ashraf S, Lipkin WI, Corless C, Pattabiraman C, Gibney B, Griffiths MJ, Geretti AM, Michael BD, Beeching NJ, McKee D, Hart IJ, Mutton K, Jung A, Miller A, Solomon T. Viral capture sequencing detects unexpected viruses in the cerebrospinal fluid of adults with meningitis. J Infect 2022; 84:499-510. [PMID: 34990710 DOI: 10.1016/j.jinf.2021.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Many patients with meningitis have no aetiology identified leading to unnecessary antimicrobials and prolonged hospitalisation. We used viral capture sequencing to identify possible pathogenic viruses in adults with community-acquired meningitis. METHODS Cerebrospinal fluid (CSF) from 73 patients was tested by VirCapSeq-VERT, a probe set designed to capture viral targets using high throughput sequencing. Patients were categorised as suspected viral meningitis - CSF pleocytosis, no pathogen identified (n = 38), proven viral meningitis - CSF pleocytosis with a pathogen identified (n = 15) or not meningitis - no CSF pleocytosis (n = 20). RESULTS VirCapSeq-VERT detected virus in the CSF of 16/38 (42%) of those with suspected viral meningitis, including twelve individual viruses. A potentially clinically relevant virus was detected in 9/16 (56%). Unexpectedly Toscana virus, rotavirus and Saffold virus were detected and assessed to be potential causative agents. CONCLUSION VirCapSeq-VERT increases the probability of detecting a virus. Using this agnostic approach we identified Toscana virus and, for the first time in adults, rotavirus and Saffold virus, as potential causative agents in adult meningitis. Further work is needed to determine the prevalence of atypical viral candidates as well as the clinical impact of using sequencing methods in real time. This knowledge can help to reduce antimicrobial use and hospitalisations leading to both patient and health system benefits.
Collapse
Affiliation(s)
- Fiona McGill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Emma C Thomson
- Institute of infection, immunity and inflammation, University of Glasgow, Glasgow, UK
| | - Ana Filipe
- Institute of infection, immunity and inflammation, University of Glasgow, Glasgow, UK
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Nishit Bhuva
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Shirin Ashraf
- Institute of infection, immunity and inflammation, University of Glasgow, Glasgow, UK
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Caroline Corless
- Liverpool Specialist virology centre, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Chitra Pattabiraman
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; National Institute for Mental Health and Neurosciences, Bangalore, India
| | - Barry Gibney
- UK Health Security Agency (previously Public Health England), UK
| | - Michael J Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Alder Hey Children's NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Anna Maria Geretti
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Faculty of Medicine, University of Rome Tor Vergata
| | - Benedict D Michael
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Nicholas J Beeching
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Liverpool School of Tropical Medicine, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - David McKee
- Central Manchester Foundation Trust, Manchester, UK
| | - Ian J Hart
- Liverpool Specialist virology centre, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ken Mutton
- University of Manchester, Manchester, UK
| | - Agam Jung
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Alastair Miller
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
| |
Collapse
|
12
|
Mixão V, Hegedűsová E, Saus E, Pryszcz LP, Cillingová A, Nosek J, Gabaldón T. Genome analysis of Candida subhashii reveals its hybrid nature and dual mitochondrial genome conformations. DNA Res 2021; 28:6299387. [PMID: 34129020 PMCID: PMC8311171 DOI: 10.1093/dnares/dsab006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Candida subhashii belongs to the CUG-Ser clade, a group of phylogenetically closely related yeast species that includes some human opportunistic pathogens, such as Candida albicans. Despite being present in the environment, C. subhashii was initially described as the causative agent of a case of peritonitis. Considering the relevance of whole-genome sequencing and analysis for our understanding of genome evolution and pathogenicity, we sequenced, assembled and annotated the genome of C. subhashii type strain. Our results show that C. subhashii presents a highly heterozygous genome and other signatures that point to a hybrid ancestry. The presence of functional pathways for assimilation of hydroxyaromatic compounds goes in line with the affiliation of this yeast with soil microbial communities involved in lignin decomposition. Furthermore, we observed that different clones of this strain may present circular or linear mitochondrial DNA. Re-sequencing and comparison of strains with differential mitochondrial genome topology revealed five candidate genes potentially associated with this conformational change: MSK1, SSZ1, ALG5, MRPL9 and OYE32.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eva Hegedűsová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Andrea Cillingová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
13
|
Schikora-Tamarit MÀ, Marcet-Houben M, Nosek J, Gabaldón T. Shared evolutionary footprints suggest mitochondrial oxidative damage underlies multiple complex I losses in fungi. Open Biol 2021; 11:200362. [PMID: 33906412 PMCID: PMC8080010 DOI: 10.1098/rsob.200362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative phosphorylation is among the most conserved mitochondrial pathways. However, one of the cornerstones of this pathway, the multi-protein complex NADH : ubiquinone oxidoreductase (complex I) has been lost multiple independent times in diverse eukaryotic lineages. The causes and consequences of these convergent losses remain poorly understood. Here, we used a comparative genomics approach to reconstruct evolutionary paths leading to complex I loss and infer possible evolutionary scenarios. By mining available mitochondrial and nuclear genomes, we identified eight independent events of mitochondrial complex I loss across eukaryotes, of which six occurred in fungal lineages. We focused on three recent loss events that affect closely related fungal species, and inferred genomic changes convergently associated with complex I loss. Based on these results, we predict novel complex I functional partners and relate the loss of complex I with the presence of increased mitochondrial antioxidants, higher fermentative capabilities, duplications of alternative dehydrogenases, loss of alternative oxidases and adaptation to antifungal compounds. To explain these findings, we hypothesize that a combination of previously acquired compensatory mechanisms and exposure to environmental triggers of oxidative stress (such as hypoxia and/or toxic chemicals) induced complex I loss in fungi.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Genete M, Castric V, Vekemans X. Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Mol Biol Evol 2021; 37:1193-1201. [PMID: 31688901 DOI: 10.1093/molbev/msz258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.
Collapse
Affiliation(s)
- Mathieu Genete
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
15
|
Wang J, Itgen MW, Wang H, Gong Y, Jiang J, Li J, Sun C, Sessions SK, Mueller RL. Gigantic Genomes Provide Empirical Tests of Transposable Element Dynamics Models. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:123-139. [PMID: 33677107 PMCID: PMC8498967 DOI: 10.1016/j.gpb.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are a major determinant of eukaryotic genome size. The collective properties of a genomic TE community reveal the history of TE/host evolutionary dynamics and impact present-day host structure and function, from genome to organism levels. In rare cases, TE community/genome size has greatly expanded in animals, associated with increased cell size and changes to anatomy and physiology. Here, we characterize the TE landscape of the genome and transcriptome in an amphibian with a giant genome — the caecilianIchthyophis bannanicus, which we show has a genome size of 12.2 Gb. Amphibians are an important model system because the clade includes independent cases of genomic gigantism. The I. bannanicus genome differs compositionally from other giant amphibian genomes, but shares a low rate of ectopic recombination-mediated deletion. We examine TE activity using expression and divergence plots; TEs account for 15% of somatic transcription, and most superfamilies appear active. We quantify TE diversity in the caecilian, as well as other vertebrates with a range of genome sizes, using diversity indices commonly applied in community ecology. We synthesize previous models that integrate TE abundance, diversity, and activity, and test whether the caecilian meets model predictions for genomes with high TE abundance. We propose thorough, consistent characterization of TEs to strengthen future comparative analyses. Such analyses will ultimately be required to reveal whether the divergent TE assemblages found across convergent gigantic genomes reflect fundamental shared features of TE/host genome evolutionary dynamics.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Huiju Wang
- School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yuzhou Gong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiatang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | | | | |
Collapse
|
16
|
Pegueroles C, Mixão V, Carreté L, Molina M, Gabaldón T. HaploTypo: a variant-calling pipeline for phased genomes. Bioinformatics 2020; 36:2569-2571. [PMID: 31834373 PMCID: PMC7178392 DOI: 10.1093/bioinformatics/btz933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 11/15/2022] Open
Abstract
Summary An increasing number of phased (i.e. with resolved haplotypes) reference genomes are available. However, the most genetic variant calling tools do not explicitly account for haplotype structure. Here, we present HaploTypo, a pipeline tailored to resolve haplotypes in genetic variation analyses. HaploTypo infers the haplotype correspondence for each heterozygous variant called on a phased reference genome. Availability and implementation HaploTypo is implemented in Python 2.7 and Python 3.5, and is freely available at https://github.com/gabaldonlab/haplotypo, and as a Docker image. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cinta Pegueroles
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Verónica Mixão
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Laia Carreté
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Manu Molina
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona 08010, Spain
| |
Collapse
|
17
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
18
|
Steenwyk JL, Lind AL, Ries LNA, Dos Reis TF, Silva LP, Almeida F, Bastos RW, Fraga da Silva TFDC, Bonato VLD, Pessoni AM, Rodrigues F, Raja HA, Knowles SL, Oberlies NH, Lagrou K, Goldman GH, Rokas A. Pathogenic Allodiploid Hybrids of Aspergillus Fungi. Curr Biol 2020; 30:2495-2507.e7. [PMID: 32502407 PMCID: PMC7343619 DOI: 10.1016/j.cub.2020.04.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Interspecific hybridization substantially alters genotypes and phenotypes and can give rise to new lineages. Hybrid isolates that differ from their parental species in infection-relevant traits have been observed in several human-pathogenic yeasts and plant-pathogenic filamentous fungi but have yet to be found in human-pathogenic filamentous fungi. We discovered 6 clinical isolates from patients with aspergillosis originally identified as Aspergillus nidulans (section Nidulantes) that are actually allodiploid hybrids formed by the fusion of Aspergillus spinulosporus with an unknown close relative of Aspergillus quadrilineatus, both in section Nidulantes. Evolutionary genomic analyses revealed that these isolates belong to Aspergillus latus, an allodiploid hybrid species. Characterization of diverse infection-relevant traits further showed that A. latus hybrid isolates are genomically and phenotypically heterogeneous but also differ from A. nidulans, A. spinulosporus, and A. quadrilineatus. These results suggest that allodiploid hybridization contributes to the genomic and phenotypic diversity of filamentous fungal pathogens of humans.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, USA; Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Laure N A Ries
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Thaila F Dos Reis
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Lilian P Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Rafael W Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Thais Fernanda de Campos Fraga da Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Vania L D Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - André Moreira Pessoni
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida Bandeirantes 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, USA
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 1400 Spring Garden Street, Greensboro, NC 27412, USA
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café S/N, Ribeirão Preto 14040-903, Brazil.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Baaijens JA, Schönhuth A. Overlap graph-based generation of haplotigs for diploids and polyploids. Bioinformatics 2020; 35:4281-4289. [PMID: 30994902 DOI: 10.1093/bioinformatics/btz255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Haplotype-aware genome assembly plays an important role in genetics, medicine and various other disciplines, yet generation of haplotype-resolved de novo assemblies remains a major challenge. Beyond distinguishing between errors and true sequential variants, one needs to assign the true variants to the different genome copies. Recent work has pointed out that the enormous quantities of traditional NGS read data have been greatly underexploited in terms of haplotig computation so far, which reflects that methodology for reference independent haplotig computation has not yet reached maturity. RESULTS We present POLYploid genome fitTEr (POLYTE) as a new approach to de novo generation of haplotigs for diploid and polyploid genomes of known ploidy. Our method follows an iterative scheme where in each iteration reads or contigs are joined, based on their interplay in terms of an underlying haplotype-aware overlap graph. Along the iterations, contigs grow while preserving their haplotype identity. Benchmarking experiments on both real and simulated data demonstrate that POLYTE establishes new standards in terms of error-free reconstruction of haplotype-specific sequence. As a consequence, POLYTE outperforms state-of-the-art approaches in various relevant aspects, where advantages become particularly distinct in polyploid settings. AVAILABILITY AND IMPLEMENTATION POLYTE is freely available as part of the HaploConduct package at https://github.com/HaploConduct/HaploConduct, implemented in Python and C++. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Alexander Schönhuth
- Centrum Wiskunde & Informatica, XG Amsterdam, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Xiong Y, Xiong Y, Jia S, Ma X. The Complete Chloroplast Genome Sequencing and Comparative Analysis of Reed Canary Grass ( Phalaris arundinacea) and Hardinggrass ( P. aquatica). PLANTS 2020; 9:plants9060748. [PMID: 32545897 PMCID: PMC7356517 DOI: 10.3390/plants9060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
There are 22 species in the Phalaris genera that distribute almost all over the temperate regions of the world. Among them, reed canary grass (Phalaris arundinacea, tetraploid and hexaploid) and hardinggrass (P. aquatica, tetraploid) have been long cultivated as forage grass and have received attention as bio-energy materials in recent years. We aimed to facilitate inter-species/ploidies comparisons, and to illuminate the degree of sequence variation within existing gene pools, chloroplast (cp) genomes of three Phalaris cytotypes (P. aquatica/4x, P. arundinacea/4x and P. arundinacea/6x) were sequenced and assembled. The result indicated that certain sequence variations existed between the cp genomes of P. arundinacea and P. aquatica. Several hotspot regions (atpI~atpH, trnT-UGU~ndhJ, rbcL~psaI, and ndhF~rpl32) were found, and variable genes (infA, psaI, psbK, etc.) were detected. SNPs (single nucleotide polymorphisms) and/or indels (insertions and deletions) were confirmed by the high Ka/Ks and Pi value. Furthermore, distribution and presence of cp simple sequence repeats (cpSSRs) were identified in the three Phalaris cp genomes, although little difference was found between hexaploid and tetraploid P. arundinacea, and no rearrangement was detected among the three Phalaris cp genomes. The evolutionary relationship and divergent time among these species were discussed. The RNA-seq revealed several differentially expressed genes (DEGs), among which psaA, psaB, and psbB related to leaf color were further verified by leaf color differences.
Collapse
Affiliation(s)
- Yi Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.)
| | - Yanli Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.)
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Correspondence: (S.J.); (X.M.)
| | - Xiao Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.)
- Correspondence: (S.J.); (X.M.)
| |
Collapse
|
21
|
Whole Genome Sequences of 23 Species from the Drosophila montium Species Group (Diptera: Drosophilidae): A Resource for Testing Evolutionary Hypotheses. G3-GENES GENOMES GENETICS 2020; 10:1443-1455. [PMID: 32220952 PMCID: PMC7202002 DOI: 10.1534/g3.119.400959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large groups of species with well-defined phylogenies are excellent systems for testing evolutionary hypotheses. In this paper, we describe the creation of a comparative genomic resource consisting of 23 genomes from the species-rich Drosophila montium species group, 22 of which are presented here for the first time. The montium group is well-positioned for clade genomics. Within the montium clade, evolutionary distances are such that large numbers of sequences can be accurately aligned while also recovering strong signals of divergence; and the distance between the montium group and D. melanogaster is short enough so that orthologous sequence can be readily identified. All genomes were assembled from a single, small-insert library using MaSuRCA, before going through an extensive post-assembly pipeline. Estimated genome sizes within the montium group range from 155 Mb to 223 Mb (mean = 196 Mb). The absence of long-distance information during the assembly process resulted in fragmented assemblies, with the scaffold NG50s varying widely based on repeat content and sample heterozygosity (min = 18 kb, max = 390 kb, mean = 74 kb). The total scaffold length for most assemblies is also shorter than the estimated genome size, typically by 5-15%. However, subsequent analysis showed that our assemblies are highly complete. Despite large differences in contiguity, all assemblies contain at least 96% of known single-copy Dipteran genes (BUSCOs, n = 2,799). Similarly, by aligning our assemblies to the D. melanogaster genome and remapping coordinates for a large set of transcriptional enhancers (n = 3,457), we showed that each montium assembly contains orthologs for at least 91% of D. melanogaster enhancers. Importantly, the genic and enhancer contents of our assemblies are comparable to that of far more contiguous Drosophila assemblies. The alignment of our own D. serrata assembly to a previously published PacBio D. serrata assembly also showed that our longest scaffolds (up to 1 Mb) are free of large-scale misassemblies. Our genome assemblies are a valuable resource that can be used to further resolve the montium group phylogeny; study the evolution of protein-coding genes and cis-regulatory sequences; and determine the genetic basis of ecological and behavioral adaptations.
Collapse
|
22
|
Wood PL, Guo X, Travers SL, Su YC, Olson KV, Bauer AM, Grismer LL, Siler CD, Moyle RG, Andersen MJ, Brown RM. Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements. Mol Phylogenet Evol 2020; 146:106731. [PMID: 31904508 DOI: 10.1016/j.ympev.2020.106731] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
Abstract
Recent phylogenetic studies of gekkonid lizards have revealed unexpected, widespread paraphyly and polyphyly among genera, unclear generic boundaries, and a tendency towards the nesting of taxa exhibiting specialized, apomorphic morphologies within geographically widespread "generalist" clades. This is especially true in Australasia, where monophyly of Gekko proper has been questioned with respect to phenotypically ornate flap-legged geckos of the genus Luperosaurus, the Philippine false geckos of the genus Pseudogekko, and even the elaborately "derived" parachute geckos of the genus Ptychozoon. Here we employ sequence capture targeting 5060 ultraconserved elements (UCEs) to infer phylogenomic relationships among 42 representative ingroup gekkonine lizard taxa. We analyze multiple datasets of varying degrees of completeness (10, 50, 75, 95, and 100 percent complete with 4715, 4051, 3376, 2366, and 772 UCEs, respectively) using concatenated maximum likelihood and multispecies coalescent methods. Our sampling scheme addresses four persistent systematic questions in this group: (1) Are Luperosaurus and Ptychozoon monophyletic, and are any of these named species truly nested within Gekko? (2) Are prior phylogenetic estimates of Sulawesi's L. iskandari as the sister taxon to Melanesian G. vittatus supported by our genome-scale dataset? (3) Is the high-elevation L. gulat of Palawan Island correctly placed within Gekko? (4) And, finally, where do the enigmatic taxa P. rhacophorus and L. browni fall in a higher-level gekkonid phylogeny? We resolve these issues; confirm with strong support some previously inferred findings (placement of Ptychozoon taxa within Gekko; the sister taxon relationship between L. iskandari and G. vittatus); resolve the systematic position of unplaced taxa (L. gulat, and L. browni); and transfer L. iskandari, L. gulat, L. browni, and all members of the genus Ptychozoon to the genus Gekko. Our unexpected and novel systematic inference of the placement of Ptychozoon rhacophorus suggests that this species is not grouped with Ptychozoon or even Luperosaurus (as previously expected) but may, in fact, be most closely related to several Indochinese species of Gekko. With our resolved and strongly supported phylogeny, we present a new classification emphasizing the most inclusive, original generic name (Gekko) for these ~60 taxa, arranged into seven subgenera.
Collapse
Affiliation(s)
- Perry L Wood
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Xianguang Guo
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Scott L Travers
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Yong-Chao Su
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan.
| | - Karen V Olson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship , 800 Lancaster Avenue, Villanova University, Villanova, PA 19085, USA.
| | - L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA 92515, USA.
| | - Cameron D Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072-7029, USA.
| | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
23
|
Jerome H, Taylor C, Sreenu VB, Klymenko T, Filipe ADS, Jackson C, Davis C, Ashraf S, Wilson-Davies E, Jesudason N, Devine K, Harder L, Aitken C, Gunson R, Thomson EC. Metagenomic next-generation sequencing aids the diagnosis of viral infections in febrile returning travellers. J Infect 2019; 79:383-388. [PMID: 31398374 PMCID: PMC6859916 DOI: 10.1016/j.jinf.2019.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Travel-associated infections are challenging to diagnose because of the broad spectrum of potential aetiologies. As a proof-of-principle study, we used MNGS to identify viral pathogens in clinical samples from returning travellers in a single center to explore its suitability as a diagnostic tool. METHODS Plasma samples from 40 returning travellers presenting with a fever of ≥38°C were sequenced using MNGS on the Illumina MiSeq platform and compared with standard-of-care diagnostic assays. RESULTS In total, 11/40 patients were diagnosed with a viral infection. Standard of care diagnostics revealed 5 viral infections using plasma samples; dengue virus 1 (n = 2), hepatitis E (n = 1), Ebola virus (n = 1) and hepatitis A (n = 1), all of which were detected by MNGS. Three additional patients with Chikungunya virus (n = 2) and mumps virus were diagnosed by MNGS only. Respiratory infections detected by nasal/throat swabs only were not detected by MNGS of plasma. One patient had infection with malaria and mumps virus during the same admission. CONCLUSIONS MNGS analysis of plasma samples improves the sensitivity of diagnosis of viral infections and has potential as an all-in-one diagnostic test. It can be used to identify infections that have not been considered by the treating physician, co-infections and new or emerging pathogens. SUMMARY Next generation sequencing (NGS) has potential as an all-in-one diagnostic test. In this study we used NGS to diagnose returning travellers with acute febrile illness in the UK, highlighting cases where the diagnosis was missed using standard methods.
Collapse
Affiliation(s)
- Hanna Jerome
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Callum Taylor
- Department of Infectious Diseases, Queen Elizabeth University Hospital, 1345 Govan Rd, Govan, Glasgow G51 4TF, UK
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Tanya Klymenko
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Celia Jackson
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Eleri Wilson-Davies
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK
| | - Natasha Jesudason
- Queen Elizabeth University Hospital, 1345 Govan Rd, Govan, Glasgow G51 4TF, UK
| | - Karen Devine
- Department of Infectious Diseases, Queen Elizabeth University Hospital, 1345 Govan Rd, Govan, Glasgow G51 4TF, UK
| | - Lisbeth Harder
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Celia Aitken
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow G31 2ER, UK
| | - Emma C. Thomson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
- Department of Infectious Diseases, Queen Elizabeth University Hospital, 1345 Govan Rd, Govan, Glasgow G51 4TF, UK
| |
Collapse
|
24
|
Maldonado LL, Arrabal JP, Rosenzvit MC, Oliveira GCD, Kamenetzky L. Revisiting the Phylogenetic History of Helminths Through Genomics, the Case of the New Echinococcus oligarthrus Genome. Front Genet 2019; 10:708. [PMID: 31440275 PMCID: PMC6692484 DOI: 10.3389/fgene.2019.00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
The first parasitic helminth genome sequence was published in 2007; since then, only ∼200 genomes have become available, most of them being draft assemblies. Nevertheless, despite the medical and economical global impact of helminthic infections, parasite genomes in public databases are underrepresented. Recently, through an integrative approach involving morphological, genetic, and ecological aspects, we have demonstrated that the complete life cycle of Echinococcus oligarthrus (Cestoda: Taeniidae) is present in South America. The neotropical E. oligarthrus parasite is capable of developing in any felid species and producing human infections. Neotropical echinococcosis is poorly understood yet and requires a complex medical examination to provide the appropriate intervention. Only a few cases of echinococcosis have been unequivocally identified and reported as a consequence of E. oligarthrus infections. Regarding phylogenetics, the analyses of mitogenomes and nuclear datasets have resulted in discordant topologies, and there is no unequivocal taxonomic classification of Echinococcus species so far. In this work, we sequenced and assembled the genome of E. oligarthrus that was isolated from agoutis (Dasyprocta azarae) naturally infected and performed the first comparative genomic study of a neotropical Echinococcus species. The E. oligarthrus genome assembly consisted of 86.22 Mb which showed ∼90% identity and 76.3% coverage with Echinococcus multilocularis and contained the 85.0% of the total expected genes. Genetic variants analysis of whole genome revealed a higher rate of intraspecific genetic variability (23,301 SNPs; 0.22 SNPs/kb) rather than for the genomes of E. multilocularis and Echinococcus canadensis G7 but lower with respect to Echinococcus granulosus G1. Comparative genomics against E. multilocularis, E. granulosus G1, and E. canadensis G7 revealed 38,762, 125,147, and 170,049 homozygous polymorphic sites, respectively, indicating a higher genetic distance between E. oligarthrus and E. granulosus sensu lato species. The SNP distribution in chromosomes revealed a higher SNP density in the longest chromosomes. Phylogenetic analysis using whole-genome SNPs demonstrated that E. oligarthrus is one of the basal species of the genus Echinococcus and is phylogenetically closer to E. multilocularis. This work sheds light on the Echinococcus phylogeny and settles the basis to study sylvatic Echinococcus species and their developmental evolutionary features.
Collapse
Affiliation(s)
- Lucas L Maldonado
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Pablo Arrabal
- INMet, Instituto Nacional de Medicina Tropical, Puerto Iguazú, Argentina
| | - Mara Cecilia Rosenzvit
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Laura Kamenetzky
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Muñoz JF, Delorey T, Ford CB, Li BY, Thompson DA, Rao RP, Cuomo CA. Coordinated host-pathogen transcriptional dynamics revealed using sorted subpopulations and single macrophages infected with Candida albicans. Nat Commun 2019; 10:1607. [PMID: 30962448 PMCID: PMC6453965 DOI: 10.1038/s41467-019-09599-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/20/2019] [Indexed: 02/08/2023] Open
Abstract
The outcome of fungal infections depends on interactions with innate immune cells. Within a population of macrophages encountering Candida albicans, there are distinct host-pathogen trajectories; however, little is known about the molecular heterogeneity that governs these fates. Here we developed an experimental system to separate interaction stages and single macrophage cells infected with C. albicans from uninfected cells and assessed transcriptional variability in the host and fungus. Macrophages displayed an initial up-regulation of pathways involved in phagocytosis and proinflammatory response after C. albicans exposure that declined during later time points. Phagocytosed C. albicans shifted expression programs to survive the nutrient poor phagosome and remodeled the cell wall. The transcriptomes of single infected macrophages and phagocytosed C. albicans displayed a tightly coordinated shift in gene expression co-stages and revealed expression bimodality and differential splicing that may drive infection outcome. This work establishes an approach for studying host-pathogen trajectories to resolve heterogeneity in dynamic populations. The outcomes of the interactions between individual host cells and pathogens are heterogeneous. Here, the authors assess transcriptional variability in both host and pathogen during infection of macrophages with the fungus Candida albicans, using sorted subpopulations and single macrophages.
Collapse
Affiliation(s)
- José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | | | - Bi Yu Li
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Reeta P Rao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | | |
Collapse
|
26
|
High-Quality Draft Genome Sequence of the Microcolonial Black Fungus Aeminium ludgeri DSM 106916. Microbiol Resour Announc 2019; 8:8/14/e00202-19. [PMID: 30948467 PMCID: PMC6449558 DOI: 10.1128/mra.00202-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aeminium ludgeri is an extremotolerant microcolonial black fungus isolated from a biodeteriorated limestone art piece in the Old Cathedral of Coimbra, Portugal (a UNESCO World Heritage Site). The high-quality draft genome sequence of Aeminium ludgeri presented here represents the first sequenced genome for both the recently described fungal family Aeminiaceae and the genus Aeminium. Aeminium ludgeri is an extremotolerant microcolonial black fungus isolated from a biodeteriorated limestone art piece in the Old Cathedral of Coimbra, Portugal (a UNESCO World Heritage Site). The high-quality draft genome sequence of Aeminium ludgeri presented here represents the first sequenced genome for both the recently described fungal family Aeminiaceae and the genus Aeminium.
Collapse
|
27
|
Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D. Iso-Seq Allows Genome-Independent Transcriptome Profiling of Grape Berry Development. G3 (BETHESDA, MD.) 2019; 9:755-767. [PMID: 30642874 PMCID: PMC6404599 DOI: 10.1534/g3.118.201008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023]
Abstract
Transcriptomics has been widely applied to study grape berry development. With few exceptions, transcriptomic studies in grape are performed using the available genome sequence, PN40024, as reference. However, differences in gene content among grape accessions, which contribute to phenotypic differences among cultivars, suggest that a single reference genome does not represent the species' entire gene space. Though whole genome assembly and annotation can reveal the relatively unique or "private" gene space of any particular cultivar, transcriptome reconstruction is a more rapid, less costly, and less computationally intensive strategy to accomplish the same goal. In this study, we used single molecule-real time sequencing (SMRT) to sequence full-length cDNA (Iso-Seq) and reconstruct the transcriptome of Cabernet Sauvignon berries during berry ripening. In addition, short reads from ripening berries were used to error-correct low-expression isoforms and to profile isoform expression. By comparing the annotated gene space of Cabernet Sauvignon to other grape cultivars, we demonstrate that the transcriptome reference built with Iso-Seq data represents most of the expressed genes in the grape berries and includes 1,501 cultivar-specific genes. Iso-Seq produced transcriptome profiles similar to those obtained after mapping on a complete genome reference. Together, these results justify the application of Iso-Seq to identify cultivar-specific genes and build a comprehensive reference for transcriptional profiling that circumvents the necessity of a genome reference with its associated costs and computational weight.
Collapse
Affiliation(s)
- Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| | | | - Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| |
Collapse
|
28
|
Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 2018; 19:460. [PMID: 30497373 PMCID: PMC6267036 DOI: 10.1186/s12859-018-2485-7] [Citation(s) in RCA: 663] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/12/2018] [Indexed: 12/04/2022] Open
Abstract
Background Recent developments in third-gen long read sequencing and diploid-aware assemblers have resulted in the rapid release of numerous reference-quality assemblies for diploid genomes. However, assembly of highly heterozygous genomes is still problematic when regional heterogeneity is so high that haplotype homology is not recognised during assembly. This results in regional duplication rather than consolidation into allelic variants and can cause issues with downstream analysis, for example variant discovery, or haplotype reconstruction using the diploid assembly with unpaired allelic contigs. Results A new pipeline—Purge Haplotigs—was developed specifically for third-gen sequencing-based assemblies to automate the reassignment of allelic contigs, and to assist in the manual curation of genome assemblies. The pipeline uses a draft haplotype-fused assembly or a diploid assembly, read alignments, and repeat annotations to identify allelic variants in the primary assembly. The pipeline was tested on a simulated dataset and on four recent diploid (phased) de novo assemblies from third-generation long-read sequencing, and compared with a similar tool. After processing with Purge Haplotigs, haploid assemblies were less duplicated with minimal impact on genome completeness, and diploid assemblies had more pairings of allelic contigs. Conclusions Purge Haplotigs improves the haploid and diploid representations of third-gen sequencing based genome assemblies by identifying and reassigning allelic contigs. The implementation is fast and scales well with large genomes, and it is less likely to over-purge repetitive or paralogous elements compared to alignment-only based methods. The software is available at https://bitbucket.org/mroachawri/purge_haplotigs under a permissive MIT licence. Electronic supplementary material The online version of this article (10.1186/s12859-018-2485-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Roach
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia.
| | - Simon A Schmidt
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
29
|
Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153. [PMID: 30286803 PMCID: PMC6172800 DOI: 10.1186/s13059-018-1540-z] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/12/2018] [Indexed: 01/20/2023] Open
Abstract
SKESA is a DeBruijn graph-based de-novo assembler designed for assembling reads of microbial genomes sequenced using Illumina. Comparison with SPAdes and MegaHit shows that SKESA produces assemblies that have high sequence quality and contiguity, handles low-level contamination in reads, is fast, and produces an identical assembly for the same input when assembled multiple times with the same or different compute resources. SKESA has been used for assembling over 272,000 read sets in the Sequence Read Archive at NCBI and for real-time pathogen detection. Source code for SKESA is freely available at https://github.com/ncbi/SKESA/releases .
Collapse
Affiliation(s)
| | - Richa Agarwala
- NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, 20894 MD USA
| | - David J. Lipman
- NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, 20894 MD USA
- Impossible Foods, impossiblefoods.com, Redwood City, 94063 CA USA
| |
Collapse
|
30
|
Kamm K, Osigus HJ, Stadler PF, DeSalle R, Schierwater B. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci Rep 2018; 8:11168. [PMID: 30042472 PMCID: PMC6057997 DOI: 10.1038/s41598-018-29400-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
The phylum Placozoa officially consists of only a single described species, Trichoplax adhaerens, although several lineages can be separated by molecular markers, geographical distributions and environmental demands. The placozoan 16S haplotype H2 (Trichoplax sp. H2) is the most robust and cosmopolitan lineage of placozoans found to date. In this study, its genome was found to be distinct but highly related to the Trichoplax adhaerens reference genome, for remarkably unique reasons. The pattern of variation and allele distribution between the two lineages suggests that both originate from a single interbreeding event in the wild, dating back at least several decades ago, and both seem not to have engaged in sexual reproduction since. We conclude that populations of certain placozoan haplotypes remain stable for long periods without bisexual reproduction. Furthermore, allelic variation within and between the two Trichoplax lineages indicates that successful bisexual reproduction between related placozoan lineages might serve to either counter accumulated negative somatic mutations or to cope with changing environmental conditions. On the other hand, enrichment of neutral or beneficial somatic mutations by vegetative reproduction, combined with rare sexual reproduction, could instantaneously boost genetic variation, generating novel ecotypes and eventually species.
Collapse
Affiliation(s)
- Kai Kamm
- University of Veterinary Medicine Hannover, Foundation, ITZ Ecology and Evolution, Bünteweg 17d, D-30559, Hannover, Germany.
| | - Hans-Jürgen Osigus
- University of Veterinary Medicine Hannover, Foundation, ITZ Ecology and Evolution, Bünteweg 17d, D-30559, Hannover, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Bernd Schierwater
- University of Veterinary Medicine Hannover, Foundation, ITZ Ecology and Evolution, Bünteweg 17d, D-30559, Hannover, Germany. .,Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA. .,Yale University, Molecular, Cellular and Developmental Biology, New Haven, CT, 06520, USA.
| |
Collapse
|
31
|
Fan W, Peng Y, Meng Y, Zhang W, Zhu N, Wang J, Guo C, Li J, Du H, Dang Z. Transcriptomic Analysis Reveals Reduced Inorganic Sulfur Compound Oxidation Mechanism in Acidithiobacillus ferriphilus. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol 2018; 16:e2005359. [PMID: 30063702 PMCID: PMC6067683 DOI: 10.1371/journal.pbio.2005359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.
Collapse
Affiliation(s)
- Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Bernd Schierwater
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Ecology & Evolution, Yale University, New Haven, Connecticut, United States of America
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
33
|
Draft Genome Sequence of a Highly Heterozygous Yeast Strain from the Metschnikowia pulcherrima Subclade, UCD127. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00550-18. [PMID: 29930059 PMCID: PMC6013633 DOI: 10.1128/genomea.00550-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metschnikowia strain UCD127 was isolated from soil in Ireland and sequenced. It is a highly heterozygous diploid strain with 385,000 single nucleotide polymorphisms (SNPs). Its ribosomal DNA has the highest similarity to that of M. chrysoperlae, but its ACT1 and TEF1 loci and mitochondrial genome show affinity to those of M. fructicola, whose genome is significantly larger.
Collapse
|
34
|
Young ND, Gasser RB. Opisthorchis viverrini Draft Genome - Biomedical Implications and Future Avenues. ADVANCES IN PARASITOLOGY 2018; 101:125-148. [PMID: 29907252 DOI: 10.1016/bs.apar.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Opisthorchiasis is a neglected tropical disease of major proportion, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Southeast Asia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Despite technological advances, little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. The advent of high-throughput nucleic acid sequencing and bioinformatic technologies is enabling researchers to gain global insights into the molecular pathways and processes in parasites. The principal aims of this chapter are to (1) review molecular research of O. viverrini and opisthorchiasis; (2) provide an account of recent advances in the sequencing and characterization of the genome and transcriptomes of O. viverrini; (3) describe the complex life of this worm in the biliary system of the definitive (human) host and how the fluke interacts with this host and causes disease at the molecular level; (4) discuss the implications of systems biological research and (5) consider how progress in genomics and informatics might enable explorations of O. viverrini and related worms and the discovery of new interventions against opisthorchiasis and CCA.
Collapse
Affiliation(s)
- Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
35
|
Naranjo-Ortíz MA, Rodríguez-Píres S, Torres R, De Cal A, Usall J, Gabaldón T. Genome Sequence of the Brown Rot Fungal Pathogen Monilinia laxa. GENOME ANNOUNCEMENTS 2018; 6:e00214-18. [PMID: 29700136 PMCID: PMC5920163 DOI: 10.1128/genomea.00214-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022]
Abstract
Monilinia laxa (phylum Ascomycota) is a plant pathogen responsible for the brown rot blossom blight disease in stone fruit trees of the Rosaceae family, such as apricots. We report here the genome sequence of strain 8L of this species, which was assembled into 618 scaffolds, having a total size of 40.799 Mb and encoding 9,567 unique protein-coding genes.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortíz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Rodríguez-Píres
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | | | - Antonieta De Cal
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Lleida, Catalonia, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
36
|
Messmer AM, Leong JS, Rondeau EB, Mueller A, Despins CA, Minkley DR, Kent MP, Lien S, Boyce B, Morrison D, Fast MD, Norman JD, Danzmann RG, Koop BF. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate. Mar Genomics 2018; 40:45-57. [PMID: 29673959 DOI: 10.1016/j.margen.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 11/28/2022]
Abstract
Antiparasitic drugs such as emamectin benzoate (EMB) are relied upon to reduce the parasite load, particularly of the sea louse Lepeophtheirus salmonis, on farmed salmon. The decline in EMB treatment efficacy for this purpose is an important issue for salmon producers around the world, and particularly for those in the Atlantic Ocean where widespread EMB tolerance in sea lice is recognized as a significant problem. Salmon farms in the Northeast Pacific Ocean have not historically experienced the same issues with treatment efficacy, possibly due to the relatively large population of endemic salmonid hosts that serve to both redistribute surviving lice and dilute populations potentially under selection by introducing naïve lice to farms. Frequent migration of lice among farmed and wild hosts should limit the effect of farm-specific selection pressures on changes to the overall allele frequencies of sea lice in the Pacific Ocean. A previous study using microsatellites examined L. salmonis oncorhynchi from 10 Pacific locations from wild and farmed hosts and found no population structure. Recently however, a farm population of sea lice was detected where EMB bioassay exposure tolerance was abnormally elevated. In response, we have developed a Pacific louse draft genome that complements the previously-released Atlantic louse sequence. These genomes were combined with whole-genome re-sequencing data to design a highly sensitive 201,279 marker SNP array applicable for both subspecies (90,827 validated Pacific loci; 153,569 validated Atlantic loci). Notably, kmer spectrum analysis of the re-sequenced samples indicated that Pacific lice exhibit a large within-individual heterozygosity rate (average of 1 in every 72 bases) that is markedly higher than that of Atlantic individuals (1 in every 173 bases). The SNP chip was used to produce a high-density map for Atlantic sea louse linkage group 5 that was previously shown to be associated with EMB tolerance in Atlantic lice. Additionally, 478 Pacific louse samples from farmed and wild hosts obtained between 2005 and 2014 were also genotyped on the array. Clustering analysis allowed us to detect the apparent emergence of an otherwise rare genotype at a high frequency among the lice collected from two farms in 2013 that had reported elevated EMB tolerance. This genotype was not observed in louse samples collected from the same farm in 2010, nor in any lice sampled from other locations prior to 2013. However, this genotype was detected at low frequencies in louse samples from farms in two locations reporting elevated EMB tolerance in 2014. These results suggest that a rare genotype present in Pacific lice may be locally expanded in farms after EMB treatment. Supporting this hypothesis, 437 SNPs associated with this genotype were found to be in a region of linkage group 5 that overlaps the region associated with EMB resistance in Atlantic lice. Finally, five of the top diagnostic SNPs within this region were used to screen lice that had been subjected to an EMB survival assay, revealing a significant association between these SNPs and EMB treatment outcome. To our knowledge this work is the first report to identify a genetic link to altered EMB efficacy in L. salmonis in the Pacific Ocean.
Collapse
Affiliation(s)
- Amber M Messmer
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Eric B Rondeau
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Anita Mueller
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Cody A Despins
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - David R Minkley
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada.
| | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Brad Boyce
- Marine Harvest Canada, Campbell River, BC, Canada.
| | | | - Mark D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada.
| | - Joseph D Norman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Present address: The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada.
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria V8W 2Y2, BC, Canada; Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
37
|
Nowell RW, Almeida P, Wilson CG, Smith TP, Fontaneto D, Crisp A, Micklem G, Tunnacliffe A, Boschetti C, Barraclough TG. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol 2018; 16:e2004830. [PMID: 29689044 PMCID: PMC5916493 DOI: 10.1371/journal.pbio.2004830] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer.
Collapse
Affiliation(s)
- Reuben W. Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Christopher G. Wilson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Thomas P. Smith
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Diego Fontaneto
- National Research Council of Italy, Institute of Ecosystem Study, Verbania Pallanza, Italy
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
| | - Gos Micklem
- Department of Genetics, Cambridge Systems Biology Centre, Downing Site, University of Cambridge, Cambridge, United Kingdom
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
- School of Biological and Marine Sciences, Plymouth University, Portland Square Building, Plymouth, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| |
Collapse
|
38
|
Campbell MA, Tapper BA, Simpson WR, Johnson RD, Mace W, Ram A, Lukito Y, Dupont PY, Johnson LJ, Scott DB, Ganley ARD, Cox MP. Epichloë hybrida, sp. nov., an emerging model system for investigating fungal allopolyploidy. Mycologia 2018; 109:715-729. [PMID: 29370579 DOI: 10.1080/00275514.2017.1406174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endophytes of the genus Epichloë (Clavicipitaceae, Ascomycota) frequently occur within cool-season grasses and form interactions with their hosts that range from mutualistic to antagonistic. Many Epichloë species have arisen via interspecific hybridization, resulting in species with two or three subgenomes that retain all or nearly all of their original parental genomes, a process termed allopolyploidization. Here, we characterize Epichloë hybrida, sp. nov., a mutualistic species that has increasingly become a model system for investigating allopolyploidy in fungi. The Epichloë species so far identified as the closest known relatives of the two progenitors of E. hybrida are E. festucae var. lolii and E. typhina. We confirm that the nuclear genome of E. hybrida contains two homeologs of most protein-coding genes from E. festucae and E. typhina, with genome-wide gene expression analysis indicating a slight bias in overall gene expression from the E. typhina subgenome. Mitochondrial DNA is detectable only from E. festucae, whereas ribosomal DNA is detectable only from E. typhina. Inheriting ribosomal DNA from just one parent might be expected to preferentially favor interactions with ribosomal proteins from the same parent, but we find that ribosomal protein genes from both parental subgenomes are nearly all expressed equally in E. hybrida. Finally, we provide a comprehensive set of resources for this model system that are intended to facilitate further study of fungal hybridization by other researchers.
Collapse
Affiliation(s)
- Matthew A Campbell
- a Institute of Fundamental Sciences, Massey University , Private Bag 11 222, Palmerston North 4410 , New Zealand
| | - Brian A Tapper
- b AgResearch Ltd., Grasslands Research Centre , Tennent Drive, Palmerston North 4442 , New Zealand
| | - Wayne R Simpson
- b AgResearch Ltd., Grasslands Research Centre , Tennent Drive, Palmerston North 4442 , New Zealand
| | - Richard D Johnson
- b AgResearch Ltd., Grasslands Research Centre , Tennent Drive, Palmerston North 4442 , New Zealand
| | - Wade Mace
- b AgResearch Ltd., Grasslands Research Centre , Tennent Drive, Palmerston North 4442 , New Zealand
| | - Arvina Ram
- a Institute of Fundamental Sciences, Massey University , Private Bag 11 222, Palmerston North 4410 , New Zealand
| | - Yonathan Lukito
- a Institute of Fundamental Sciences, Massey University , Private Bag 11 222, Palmerston North 4410 , New Zealand
| | - Pierre-Yves Dupont
- a Institute of Fundamental Sciences, Massey University , Private Bag 11 222, Palmerston North 4410 , New Zealand
| | - Linda J Johnson
- b AgResearch Ltd., Grasslands Research Centre , Tennent Drive, Palmerston North 4442 , New Zealand
| | - D Barry Scott
- a Institute of Fundamental Sciences, Massey University , Private Bag 11 222, Palmerston North 4410 , New Zealand
| | - Austen R D Ganley
- c School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Murray P Cox
- a Institute of Fundamental Sciences, Massey University , Private Bag 11 222, Palmerston North 4410 , New Zealand
| |
Collapse
|
39
|
Nunez JCB, Elyanow RG, Ferranti DA, Rand DM. Population Genomics and Biogeography of the Northern Acorn Barnacle (Semibalanus balanoides) Using Pooled Sequencing Approaches. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Huang S, Kang M, Xu A. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 2017; 33:2577-2579. [PMID: 28407147 PMCID: PMC5870766 DOI: 10.1093/bioinformatics/btx220] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
SUMMARY De novo assembly is a difficult issue for heterozygous diploid genomes. The advent of high-throughput short-read and long-read sequencing technologies provides both new challenges and potential solutions to the issue. Here, we present HaploMerger2 (HM2), an automated pipeline for rebuilding both haploid sub-assemblies from the polymorphic diploid genome assembly. It is designed to work on pre-existing diploid assemblies, which are typically created by using de novo assemblers. HM2 can process any diploid assemblies, but it is especially suitable for diploid assemblies with high heterozygosity (≥3%), which can be difficult for other tools. This pipeline also implements flexible and sensitive assembly error detection, a hierarchical scaffolding procedure and a reliable gap-closing method for haploid sub-assemblies. Using HM2, we demonstrate that two haploid sub-assemblies reconstructed from a real, highly-polymorphic diploid assembly show greatly improved continuity. AVAILABILITY AND IMPLEMENTATION Source code, executables and the testing dataset are freely available at https://github.com/mapleforest/HaploMerger2/releases/. CONTACT hshengf2@mail.sysu.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Mingjing Kang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
41
|
Draft Genome Sequence of Dermatophagoides pteronyssinus, the European House Dust Mite. GENOME ANNOUNCEMENTS 2017; 5:5/32/e00789-17. [PMID: 28798186 PMCID: PMC5552995 DOI: 10.1128/genomea.00789-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dermatophagoides pteronyssinus is the European dust mite and a major source of human allergens. Here, we present the first draft genome sequence of the mite, as well as the ab initio gene prediction and functional analyses that will facilitate comparative genomic analyses with other mite species.
Collapse
|
42
|
Li M, Wu B, Yan X, Luo J, Pan Y, Wu FX, Wang J. PECC: Correcting contigs based on paired-end read distribution. Comput Biol Chem 2017; 69:178-184. [DOI: 10.1016/j.compbiolchem.2017.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
|
43
|
Madoui MA, Poulain J, Sugier K, Wessner M, Noel B, Berline L, Labadie K, Cornils A, Blanco-Bercial L, Stemmann L, Jamet JL, Wincker P. New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepodOithona. Mol Ecol 2017. [DOI: 10.1111/mec.14214] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mohammed-Amin Madoui
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
- Centre National de la Recherche Scientifique; UMR 8030 Université d'Evry val d'Essonne; Evry France
- Université d'Evry Val D'Essonne; Evry France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Kevin Sugier
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
- Centre National de la Recherche Scientifique; UMR 8030 Université d'Evry val d'Essonne; Evry France
- Université d'Evry Val D'Essonne; Evry France
| | - Marc Wessner
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Leo Berline
- CNRS/INSU/IRD; Mediterranean Institute of Oceanography (MIO); Aix-Marseille Université; Marseille France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Astrid Cornils
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Polar Biological Oceanography; Bremerhaven Germany
| | | | - Lars Stemmann
- INSU-CNRS; Laboratoire D'Océanographie de Villefranche; UPMC Univ Paris 06; Sorbonne Universités; Villefranche-Sur-Mer France
| | - Jean-Louis Jamet
- Laboratoire PROTEE-EBMA E.A. 3819; Université de Toulon; La Garde Cedex France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
- Centre National de la Recherche Scientifique; UMR 8030 Université d'Evry val d'Essonne; Evry France
- Université d'Evry Val D'Essonne; Evry France
| |
Collapse
|
44
|
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824-834. [PMID: 28298430 PMCID: PMC5411777 DOI: 10.1101/gr.213959.116] [Citation(s) in RCA: 2476] [Impact Index Per Article: 309.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023]
Abstract
While metagenomics has emerged as a technology of choice for analyzing bacterial populations, the assembly of metagenomic data remains challenging, thus stifling biological discoveries. Moreover, recent studies revealed that complex bacterial populations may be composed from dozens of related strains, thus further amplifying the challenge of metagenomic assembly. metaSPAdes addresses various challenges of metagenomic assembly by capitalizing on computational ideas that proved to be useful in assemblies of single cells and highly polymorphic diploid genomes. We benchmark metaSPAdes against other state-of-the-art metagenome assemblers and demonstrate that it results in high-quality assemblies across diverse data sets.
Collapse
Affiliation(s)
- Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Dmitry Meleshko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004.,Department of Statistical Modelling, St. Petersburg State University, St. Petersburg, Russia 198515
| | - Pavel A Pevzner
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004.,Department of Computer Science and Engineering, University of California, San Diego, California 92093-0404, USA
| |
Collapse
|
45
|
Maldonado LL, Assis J, Araújo FMG, Salim ACM, Macchiaroli N, Cucher M, Camicia F, Fox A, Rosenzvit M, Oliveira G, Kamenetzky L. The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases. BMC Genomics 2017; 18:204. [PMID: 28241794 PMCID: PMC5327563 DOI: 10.1186/s12864-017-3574-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. RESULTS We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. CONCLUSIONS This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.
Collapse
Affiliation(s)
- Lucas L. Maldonado
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juliana Assis
- Genomics and Computational Biology Group, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Flávio M. Gomes Araújo
- Genomics and Computational Biology Group, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Anna C. M. Salim
- Genomics and Computational Biology Group, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Natalia Macchiaroli
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Cucher
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Camicia
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adolfo Fox
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mara Rosenzvit
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
- Instituto Tecnológico Vale, Belém, Brazil
| | - Laura Kamenetzky
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
46
|
Vollmers J, Wiegand S, Kaster AK. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters! PLoS One 2017; 12:e0169662. [PMID: 28099457 PMCID: PMC5242441 DOI: 10.1371/journal.pone.0169662] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
With the constant improvement in cost-efficiency and quality of Next Generation Sequencing technologies, shotgun-sequencing approaches -such as metagenomics- have nowadays become the methods of choice for studying and classifying microorganisms from various habitats. The production of data has dramatically increased over the past years and processing and analysis steps are becoming more and more of a bottleneck. Limiting factors are partly the availability of computational resources, but mainly the bioinformatics expertise in establishing and applying appropriate processing and analysis pipelines. Fortunately, a large diversity of specialized software tools is nowadays available. Nevertheless, choosing the most appropriate methods for answering specific biological questions can be rather challenging, especially for non-bioinformaticians. In order to provide a comprehensive overview and guide for the microbiological scientific community, we assessed the most common and freely available metagenome assembly tools with respect to their output statistics, their sensitivity for low abundant community members and variability in resulting community profiles as well as their ease-of-use. In contrast to the highly anticipated "Critical Assessment of Metagenomic Interpretation" (CAMI) challenge, which uses general mock community-based assembler comparison we here tested assemblers on real Illumina metagenome sequencing data from natural communities of varying complexity sampled from forest soil and algal biofilms. Our observations clearly demonstrate that different assembly tools can prove optimal, depending on the sample type, available computational resources and, most importantly, the specific research goal. In addition, we present detailed descriptions of the underlying principles and pitfalls of publically available assembly tools from a microbiologist's perspective, and provide guidance regarding the user-friendliness, sensitivity and reliability of the resulting phylogenetic profiles.
Collapse
Affiliation(s)
- John Vollmers
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sandra Wiegand
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
47
|
Minio A, Lin J, Gaut BS, Cantu D. How Single Molecule Real-Time Sequencing and Haplotype Phasing Have Enabled Reference-Grade Diploid Genome Assembly of Wine Grapes. FRONTIERS IN PLANT SCIENCE 2017; 8:826. [PMID: 28567052 PMCID: PMC5434136 DOI: 10.3389/fpls.2017.00826] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 05/23/2023]
Affiliation(s)
- Andrea Minio
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Jerry Lin
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
- *Correspondence: Dario Cantu
| |
Collapse
|
48
|
Exploring viral infection using single-cell sequencing. Virus Res 2016; 239:55-68. [PMID: 27816430 DOI: 10.1016/j.virusres.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication.
Collapse
|
49
|
Pryszcz LP, Gabaldón T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res 2016; 44:e113. [PMID: 27131372 PMCID: PMC4937319 DOI: 10.1093/nar/gkw294] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/06/2016] [Indexed: 11/14/2022] Open
Abstract
Many genomes display high levels of heterozygosity (i.e. presence of different alleles at the same loci in homologous chromosomes), being those of hybrid organisms an extreme such case. The assembly of highly heterozygous genomes from short sequencing reads is a challenging task because it is difficult to accurately recover the different haplotypes. When confronted with highly heterozygous genomes, the standard assembly process tends to collapse homozygous regions and reports heterozygous regions in alternative contigs. The boundaries between homozygous and heterozygous regions result in multiple assembly paths that are hard to resolve, which leads to highly fragmented assemblies with a total size larger than expected. This, in turn, causes numerous problems in downstream analyses such as fragmented gene models, wrong gene copy number, or broken synteny. To circumvent these caveats we have developed a pipeline that specifically deals with the assembly of heterozygous genomes by introducing a step to recognise and selectively remove alternative heterozygous contigs. We tested our pipeline on simulated and naturally-occurring heterozygous genomes and compared its accuracy to other existing tools. Our method is freely available at https://github.com/Gabaldonlab/redundans.
Collapse
Affiliation(s)
- Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
50
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|